Table D.11.
Tumor burden ranking in MICCAI-LiTS 2017.
Ranking | Ref. name | Institution | RMSE | Max error |
---|---|---|---|---|
1 | C. Li et al. | CUHK | 0.015 (1) | 0.062 (6) |
2 | J. Wu et al. | NJU | 0.016 (2) | 0.048 (2) |
3 | C. Wang et al. | KTH | 0.016 (3) | 0.058 (4) |
4 | Y. Yuan et al. | MSSM | 0.017 (4) | 0.049 (3) |
5 | J. Zou et al. | Lenovo | 0.017 (5) | 0.045 (1) |
6 | K. Kaluva et al. | Predible Health | 0.020 (6) | 0.090 (12) |
7 | X. Han et al. | Elekta Inc. | 0.020 (7) | 0.080 (10) |
8 | A. Ben-Cohen et al. | Uni Tel Aviv | 0.020 (8) | 0.070 (7) |
9 | G. Chlebus et al. | Fraunhofer | 0.020 (9) | 0.070 (8) |
10 | L. Zhang et al. | CUHK | 0.022 (10) | 0.074 (11) |
11 | E. Vorontsov et al. | MILA | 0.023 (11) | 0.112 (13) |
12 | J. Lipkova et al. | TUM | 0.030 (12) | 0.140 (14) |
13 | K. Roth et al. | Volume Graphics | 0.030 (13) | 0.180 (15) |
14 | M. Piraud et al. | TUM | 0.037 (14) | 0.143 (16) |
15 | Jin Qi | 0.0420 (12) | 0.0330 (2) | |
16 | L. Bi et al. | Uni Sydney | 0.170 (15) | 0.074 (9) |
17 | J. Ma et al. | NJUST | 0.920 (16) | 0.061 (5) |