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Abstract

Channel dimensions (width and depth) at varying flows influence a host of instream ecological 

processes, as well as habitat and biotic features; they are a major consideration in stream habitat 

restoration and instream flow assessments. Models of widths and depths are often used to assess 

climate change vulnerability, develop endangered species recovery plans, and model water quality. 

However, development and application of such models require specific skillsets and resources. To 

facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for 

perennial stream segments across the conterminous U.S. We used random forest models to predict 

wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field 

measurements of the National Rivers and Streams Assessment. Observed channel widths varied 

from <5 m to >2000 m and depths varied from <2 m to >125 m. Metrics of watershed area, runoff, 

slope, land use, and more were used as model predictors. The models had high pseudo R-squared 

values (0.70 to 0.91) and median absolute errors within ±6% to ±21% of the interquartile range 

of measured values across ten stream orders. Predicted channel dimensions can be joined to 1.1 

million stream segments of the 1:100K resolution National Hydrography Dataset Plus (version 

2.1). These predictions, combined with a rapidly growing body of nationally available data, will 

further enhance our ability to study and protect aquatic resources.

(Correspondence to Hill: hill.ryan@epa.gov). 
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INTRODUCTION

Assessing habitat extent and availability (i.e., habitat quantity) is a cornerstone of effective 

and efficient management of freshwater stream biota. The width and depth of rivers and 

streams are fundamental measures used to assess aquatic habitat extent and availability. 

Along with channel slope, these dimensions reflect geomorphic processes that shape 

physical habitats of streams. The resultant structure and form of rivers and streams influence 

the abundance and distribution of stream biota, composition of biotic assemblages, as well 

as an array of other in-stream physical and chemical processes (Angermeier and Winston 

1998; Lamouroux et al. 1999; Fausch et al. 2002). Despite the importance of the physical 

dimensions of streams, they are often unavailable and require substantial field work to 

collect at scales that are relevant to regional planning and management. To fill this gap, 

models of width and depth are often used for habitat quantity and quality assessments and as 

inputs to hydrologic models when field measurements are unavailable. Such spatial models 

are being increasingly used for applications such as restoration prioritization (Roni et al. 

2018), climate change vulnerability assessments for freshwater fishes (Sloat et al. 2017), 

recovery strategies for threatened and endangered fish species (FitzGerald et al. 2021) and 

for water quality and streamflow modeling (Mohamoud and Parmar 2006; White et al. 

2017; Han et al. 2019). For example, Bond et al. (2019) used estimates of static channel 

dimensions to assess fish habitat capacity in the Columbia River Basins. In other cases, 

such as Sloat et al. (2017), estimates of channel dimensions are calculated from regional 

hydrological models and then used to evaluate increased flood magnitudes on fish spawning 

habitat. Models such as the Hydrologic and Water Quality System (HAWQS) - which is an 

application of the Soil and Water Assessment Tool (SWAT) – uses estimates of width and 

depth at ungaged sites to quantify various water quality endpoints like nutrient and sediment 

loadings (Ghimire et al. 2021).

Depending on study purpose, models of stream width and depth must be applicable to 

at least two important flow stages: bankfull and low flow. Bankfull flows are those that 

reach the transition between the channel and its adjacent floodplain during large storm 

events or snowmelt (Fig. 1; Leopold et al. 1964). These flows move sediments and form 

channel features that set the stage for habitats, such as riffles and pools, during non-flood 

conditions (Leopold 1994; Hey 2006; Parker et al. 2007; Modrick and Georgakakos 2014). 

In contrast, low flows (also known as baseflows) occur during dry seasons, are sustained by 

groundwater, and are what organisms experience during much of the year (Humphries and 

Baldwin 2003; McMahon and Finlayson 2003; Ledford et al. 2020). During low flows, the 

habitats available for organisms depend on the channel configuration, the sediments moved 

during bankfull stage, and the water currently available to fill them (Finkenbine et al. 2000; 

Menció and Boix 2018). For example, channel configuration, structure, and dimensions can 
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determine carrying capacity for stream fishes during low or high flows (Fausch et al. 2002; 

Rosenfeld 2003).

Beyond habitat availability, channel dimensions strongly influence other key features of 

habitat quality, such as water temperature (Klein 1979; Menció and Mas-Pla 2010; Price 

2011; Mayer 2012), nutrient cycling (Alexander et al. 2000; Peterson et al. 2001), bank 

stability and fine sediments (Menció and Mas-Pla 2010; Price 2011; Ledford et al. 2020). 

The influence of channel dimensions on habitat and water quality, in turn, affects the 

distribution of fish and invertebrate species and the composition of stream communities 

(Rashleigh et al. 2005; Rolls et al. 2012). Furthermore, alterations to channel dimensions 

due to human activity can have consequences for stream ecosystems, such as altered 

availability of useable habitat (Beechie et al. 1994) and reduced resiliency in biological 

communities to disturbances (Detenbeck et al. 1992; Mažeika et al. 2004; Sullivan et al. 

2006).

Measurements of width and depth are routinely collected by practitioners in the field to 

monitor geomorphic and hydrologic conditions, as well as to parameterize models for 

water quality and fisheries management. However, collecting channel width and depth data 

across the thousands of sites typically required for robust large-scale modeling can be 

costly and time consuming. In such cases, modelers may make scaling assumptions between 

unmeasured and measured channels within the mainstem and tributaries of a stream network 

(e.g., Neitsch et al. 2005). For example, a common approach to estimate unmeasured 

channel dimensions is to apply the power functions of Leopold and Maddock (1953) to 

drainage area (e.g., Stewardson 2005; Johnson and Fecko 2008; Han et al. 2019). However, 

reliance on drainage areas alone limits the geographic scope over which such relationships 

can be applied, often constraining their application to specific hydroclimatic regions 

(Johnson and Fecko 2008; Bieger et al. 2015). Additionally, using the power functions 

of Leopold and Maddock (1953) requires researchers to assume a channel cross-sectional 

shape from which they can infer wetted widths and depths (Allen et al. 1994; Ouarda et al. 

2008; Ames et al. 2009). Other models, such as those that relate fish distributions to channel 

dimensions, have included factors in addition to drainage area (e.g., climate, geology, and 

soils) to improve estimates of channel dimensions and expand the geographic scope over 

which models can be applied (Stewardson 2005; Faustini et al. 2009; Bond et al. 2019). A 

recent example of such modeling is from Morel et al. (2020) who used a machine learning 

technique (random forests) to model widths and depths at mean flows for streams in France 

and New Zealand. These models performed as well as models from each country alone, 

indicating the transferability of their approach to other locations. Judes et al. (2021) then 

applied these predictions to study hydropeaking on fish assemblages within French streams.

Despite the potential transferability of these modeling approaches, practitioners may face 

several challenges when applying methods to estimate channel dimensions. Management of 

aquatic resources could benefit substantially from estimates of channel dimensions that are 

derived from methods and data sources that are open and readily accessible to practitioners 

(Beck et al. 2020). See et al. (2021) highlights how practitioners often need access to 

spatially-continuous channel dimension data across large geographic extents to extrapolate 

estimates of fish carrying capacity to other sites of concern. In this article, we describe 

Doyle et al. Page 3

J Am Water Resour Assoc. Author manuscript; available in PMC 2024 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



the development of conterminous U.S. (CONUS) models of low flow and bankfull channel 

dimensions (i.e., wetted width, thalweg depth, bankfull width, and bankfull depth). Our goal 

is to provide a publicly available dataset for managers and researchers that require, but 

currently lack, channel dimension estimates for large scale modeling applications. With each 

of these models, we interpolated predictions of channel dimensions to 1.1 million streams 

across the CONUS. We produced the models and predictions with open and transferrable 

methods; all code and predicted values produced by this study are provided in Supplemental 

Materials and online.

METHODS

Channel Dimension Measurements

We compiled channel dimension measurements from the National Rivers and Streams 

Assessment (NRSA) 2008–09 and 2013–14 surveys (Fig. 2). NRSA is a collaborative 

survey conducted by the United State Environmental Protection Agency (USEPA) with 

state and tribal partners that reports on the condition of rivers and streams throughout the 

CONUS (USEPA 2016; 2020). These surveys generally occur during April to September 

and characterize the conditions of streams during low flows. Survey sites are selected from 

a spatially balanced, random sampling design (Stevens and Olsen 2004). USEPA partners 

collected measurements from approximately 2000 rivers and streams during each of the two-

year surveys. The field protocols of the 2008–09 and 2013–14 NRSA provide definitions 

and methodology on how channel dimension measurements were collected at low flows 

(USEPA 2016; 2020; Fig. 1). Briefly, wetted width represents the distance of the water’s 

edge from left to right bank. Bankfull width represents the distance from left to right bank at 

bankfull stage, i.e., the distance from the top of the left and right banks where the potential 

water height would spill outside of the channel and into the floodplain. Thalweg depth 

measurements were taken systemically at the deepest point in the channel cross section from 

the bottom substrate to the water surface. Bankfull depth is thalweg depth plus bankfull 

height, which is the height from the water surface to the bankfull stage (Fig. 1). The NRSA 

mean bankfull width-to-depth ratio is defined as the ratio of the mean bankfull width to the 

mean bankfull depth.

EPA conducts thorough quality assurance of field-collected NRSA data, and we removed 

measurements that were flagged by this procedure as having quality control issues (e.g., 

missing observations). In addition to these internal checks, we examined the distributions 

of predicted values to identify extreme outliers. Through this process, we determined that 

stream segments identified as “tidal” by the National Hydrography Dataset Plus version 

2 (NHDPlusV2; McKay et al. 2012) tended to have large outliers and were remove 

from subsequent analyses because they are subject to different geomorphic processes than 

unidirectional channels (Torres 2017). When a site was visited more than once within a year, 

we used observations from the first site visit for modeling. In addition, 30–40% of sites are 

revisited among the two surveys and we selected one observation from these repeated visits. 

The final channel measurements were log-transformed to improve model fit, as non-constant 

variation of residuals can give greater weight to higher variance data in random forest 

models (De’ath and Fabricius 2000; Walsh et al. 2017).
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To conduct an assessment of our models, we obtained an independent dataset (Kauffman, 

personal communication, 2020) that included approximately 3000 measurements of bankfull 

width taken between 1994 and 2000 from the Mid-Atlantic Highland wadeable and boatable 

surveys (USEPA 2000), Oregon and Washington State Regional Environmental Monitoring 

and Assessment Program (USEPA 1999), the Environmental Monitoring and Assessment 

Program – West (EMAP; Lazorchak et al. 2000), and Region 7 Regional Environmental 

Monitoring and Assessment Program (REMAP; Angradi 2006). We removed sites from 

these data that were on NHDPlusV2 tidal streams or had missing data (i.e., latitudes, 

longitudes, or channel measurements).

Independent Watershed Metrics

We used landscape watershed summaries as covariates within the models. These watershed 

summaries were modified from the USEPA StreamCat dataset, which includes a large suite 

of anthropogenic and natural watershed features (e.g., soils, land use, and precipitation; 

Hill et al. 2016). StreamCat data are available for download at https://www.epa.gov/national-

aquatic-resource-surveys/streamcat-dataset. We limited these watershed metrics to factors 

that have been shown to influence, or that we hypothesized could influence channel 

dimensions (Leopold et al. 1964; Faustini et al. 2009; Kaufmann et al. 2009; Morel et 

al. 2020). Although correlations among predictor variables generally do not affect RF 

predictions (Fox et al. 2017), they can affect the ranking of variables that were important to 

the model. Therefore, we calculated Pearson correlations among the watershed summaries 

to better understand the correlations structure of the underlying data (Supplemental 

Materials S.1). In addition to Pearson correlations, we calculated distance correlations 

which quantifies non-linear relationships between variables (Székely et al. 2007). Distance 

correlations range between 0 and 1, in contrast to −1 to 1 for Pearson’s r or Spearman’s ρ, 

because they do not assume monotonically increasing or decreasing relationships. In some 

cases, we combined covariates, such as yearly precipitation into two-year summaries, as 

well as landcover metrics, to produce aggregate land classes of the National Land Cover 

Database (NLCD; Homer et al. 2007; Fry et al. 2011). For example, mixed, coniferous, 

and deciduous forest classes were combined to estimate the percent of each watershed 

composed of forested area (Supplemental Materials S.2). These combined covariates were 

then related to the most appropriate NRSA survey years (e.g., NLCD 2006 was related to 

NRSA 2008–09, whereas NLCD 2011 was related to NRSA 2013–14). Some additional 

covariates, such as slope and stream order, were obtained from the NHDPlusV2 datasets 

(Supplemental Materials S.2; McKay et al. 2012). Several metrics known to influence 

channel formation (e.g., presence of woody debris; Van Sickle and Gregory 1990; Kauffman 

et al. 1997) could not be included due to the lack of available CONUS-wide coverage. We 

then joined the NRSA channel dimension measurements (i.e., wetted width, thalweg depth, 

bankfull width, or bankfull depth) and watershed summaries (StreamCat) for modeling 

(Supplemental Materials S.3, table available as Supplemental Materials S.4).

Modeling

We developed Random Forest (RF) models for each channel dimension measurement. 

RF is an ensemble modeling approach that builds many individual regression trees from 

randomized subset of the data (i.e., bootstrapping) and randomized subsets of covariates at 
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each branch of each a tree (Fig. 3). The randomized subset of data used to calibrate each 

tree are called “in-bag” observations (typically about two-thirds of the data) while those 

withheld from modeling are called “out-of-bag” observations. RF has become a popular 

modeling technique over the last two decades because it requires very little, if any, tuning 

and can capture non-linear relationships with response variables and interactions among 

covariates (Breiman 2001; Cutler et al. 2007).The main tuning parameters within RF are the 

number of trees included in the model, the number of randomly selected variables included 

as candidate predictors at each node of each tree, and the minimum node size beyond which 

no further division of the tree is done. However, numerous studies have shown that tuning 

of RF parameters has negligible effects on RF outcomes (Palmer et al. 2007; Fox et al. 

2017; Hurskainen et al. 2019; Tian et al. 2022). An additional advantage is that RF can 

accept many correlated predictor variables and produce good model performance without 

features selection (Cutler et al. 2007; Fox et al. 2017) while feature selection can produce 

negligible improvements in model performance (Hurskainen et al. 2019). In fact, Fox et al. 

(2017) showed that feature selection can cause instabilities in RF output that may indicate 

overfitting to data. Expansion of its use consists of numerous examples in hydrology and 

fluvial geomorphology, including modeling reference condition flows (Carlisle et al. 2009), 

the potential impacts of climate change on ecologically-important flow metrics (Dhungel et 

al. 2016) and more recently to estimate hydraulic geometries in New Zealand and France 

(Morel et al. 2020). Rigorous comparisons of RF with linear modeling techniques, artificial 

neural nets, and boosted regression trees have shown that similar outcomes can be achieved 

with far less, if any, tuning or feature selection (Ogutu et al. 2011; Yang et al. 2016; 

Ouedraogo et al. 2019; Benkendorf and Hawkins 2020; Jun 2021).

To develop each model, we used channel dimension measurements as the response variable 

(e.g., wetted widths) and StreamCat metrics as explanatory variables with default settings 

of the randomForest function in the R package of the same name (Liaw and Wiener 

2002). Once each RF model was developed, we then made predictions (or model-based 

interpolations) of the channel dimensions to unsampled rivers and streams throughout the 

CONUS. To do so, RF produces predictions for each regression tree within the RF model. 

A final RF prediction is the mean of predictions from each individual tree in the case of 

regression (Fig. 3).

RF produces model performance metrics from the out-of-bag (withheld) observations, which 

are a reasonable estimate of model fit (Cutler et al. 2007). Specifically, RF reports the 

pseudo r-squared which conveys the variation explained in the response variable as 1 – 

(MSE / s2), where MSE is the mean squared error of RF out-of-bag predictions and s2 is the 

variance in the response variable (i.e., width or depth). As an additional measure of model 

performance, we calculated the median absolute error (MdAE) for the CONUS and for 

each Strahler stream order. In addition, MdAE values were standardized by the respective 

interquartile range (IQR) of channel dimension measurements to allow comparison between 

models (MdAE/IQR). MdAE was chosen as a performance metric because it is more robust 

to outliers compared to other metrics such as root mean square error (Probst and Boulesteix 

2017). Further, IQR is a measure of statistical dispersion that is less sensitive to non-normal 

distributions and outliers. To estimate the tendency of the models to over- or underestimate 

values relative to observations, we calculated percent bias (PBIAS) of each model (Moriasi 
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et al. 2015). PBIAS is typically used to assess simulations of hydrologic time series 

for single sites or watersheds, and no formal guidance exists for models that account 

for variation in a response variable among sample sites rather than over time. However, 

Moriasi et al. (2015) suggest that PBIAS <±5, <±10, <±15, and ≥±15 represent very good, 

good, satisfactory, and not satisfactory models of hydrologic flow, respectively. Finally, RF 

estimates the importance of each variable to the model by permuting a variable’s values 

while holding other variables constant. By doing so, it can calculate the change in the model 

mean squared error when a variable’s values are randomized and effectively “removed” from 

the model (Breiman 2001). Lastly, the five most important variables were plotted for each 

model based on the RF variable importance measure (Supplemental Materials S.5); however, 

we offer limited interpretation because several predictor variables were highly correlated 

(Supplemental Materials S.1) and correlations among variables limit the interpretability of 

importance rankings in RF.

Other studies have demonstrated that predictions made by regional models can outperform 

CONUS models (e.g., Blackburn-Lynch et al. 2017). However, for ease of application and 

consistency, a single, CONUS model is desirable, especially if it could match or outperform 

regional models. In addition, interpolations of regional models can produce distinct shifts in 

predicted values at regional boundaries which may hinder practioners’ ability to use such 

predictions at large scales (Hill et al. 2017). Thus, models of wetted width were created for 

each US Geological Survey Physiographic Division (Fig. 2; Fenneman and Johsnon 1946) 

to assess how a single CONUS wetted width model compared to regionalized models. We 

used Physiographic Divisions because these regions were recently used to develop bankfull 

width models that are also available for comparison (see below). All regional models were 

developed using the randomForest package in R (Liaw and Wiener 2002; R Development 

Core Team 2019) and methods described above. We compared the regional and national 

models with pseudo-r2, MdAE, MdAE/IQR, and PBIAS.

The width-to-depth (W/d) ratio is often used to assess channel stability and instream habitat 

availability (Rosgen 1998; Dunham et al. 2002). To evaluate the use of our models for such 

assessments, we also calculated bankfull W/d ratios from the two RF model estimates of 

bankfull width and bankfull depth – RF(W)/RF(d). Additional channel dimension products 

could be created from these model predictions such as a the ratio of wetted width to thalweg 

depth; however, we did not compare or evaluate error estimates for these other possible 

combinations.

Finally, we compared predicted bankfull width values from recent regression models 

developed by Bieger et al. (2015) to our own estimates using the independent dataset 

described previously (Kauffman, personal communication, 2020). The models of Bieger et 

al. (2015) are often used as inputs to the process-based SWAT model (e.g., White et al. 

2017). These comparisons were done by Physiographic Division (Fig. 2) with the r-squared 

and regression slopes between predicted and observed values (Piñeiro et al. 2008), MdAE, 

MdAE/IQR, and PBIAS. For accurate models, the slope between predicted and observed 

values should be near one. Bieger et al. (2015) did not produce model equations for two of 

the Physiographic Divisions due to small sample sizes; therefore, comparisons could only be 

made for the Appalachian Highlands, Atlantic Plain, Intermontane Plateau, Interior Plains, 
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Pacific Mountain System, and Rocky Mountain System (Fig. 2). We also used scatter plots 

to visually compare model predictions by region to observed measurements.

RESULTS

Channel Dimension Models

The wetted width model had a pseudo r2 of 0.91 and an overall MdAE of 3.0 m. The 

MdAEs represent ±6% of the IQR of measured values across all stream orders. The RF 

predictions agreed well with known values, however, a few outliers were present (Fig. 4). 

Generally, the predictions captured the variability of observed values (Fig. 5). However, 

the RF predictions tend to underestimate observed values across all stream orders (i.e., 

negative PBIAS; Table 1), especially within stream orders 1–3, and 7. MdAE values 

increased with Strahler stream order but were lowest relative to IQR in orders 5–9 (Table 

1). The most important covariates for this model were mean runoff within the watershed 

(mm), watershed area (km2), average 30-year precipitation (mm), stream order, and average 

2-year precipitation (mm) (Table 2; see Supplemental Materials S.2 for variable definitions). 

Several of the most important covariates were correlated with one another, specifically 

precipitation and runoff (Supplemental Materials S.1). This pattern was the same whether 

examined with linear Pearson’s r or non-linear distance correlations (compare correlation 

matrices in Supplemental Materials S.1). Performance of the CONUS and Physiographic 

Division models were similar, indicating that the CONUS models performed as well or 

better in most regions (Supplemental Materials S.5).

The thalweg depth model had a psuedo r2 of 0.82 and an overall MdAE of 0.16 m. The 

MdAEs represent ±15% of the IQR of observed values. Like wetted width, the thalweg 

depth model tended to underpredict values (PBIAS < 0), but especially in streams of order 

1 (Table 1). The RF predictions captured most of the variability in the observations for 

each stream order but often failed to estimate the largest depths in higher order rivers (Fig. 

5). MdAE values started at 0.06 m for stream order one and increased with stream order 

up to 2.9 m for order ten (Table 1). The top five important covariates for this model were 

mean runoff (mm), watershed area (km2), channel slope (%), stream order, and average 

30-year precipitation (mm; Table 2). As with wetted width, the single CONUS-wide model 

of thalweg depth performed as well as regional models (Supplemental Materials S.5)

The bankfull width model explained 90% of the variation in observed values and had 

an overall MdAE of 4 m (Table 1). MdAE represented ±8% of the IQR of measured 

values across all stream orders. As with the other models, RF predictions of bankfull width 

were closely related to observed values (Fig. 4 and 5), but also tended to have negative 

PBIAS values (i.e., underprediction; Table 1). MdAE values increased with stream order 

but were lowest relative to IQR in stream orders 6–9 (Table 1). The top five covariates 

were mean watershed area (km2), runoff (mm), average 30-year precipitation (mm), stream 

order, and mean watershed elevation (m) (Table 2). Models constructed with CONUS and 

Physiographic Division data performed similarly (Supplemental Materials S.5).

The bankfull depth model explained a lower percentage of the variation in measured values 

(pseudo r2 value of 0.70) and had an overall MdAE of 0.36 m. The MdAE value was 0.19 
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m at stream order one and increased to 4 m by stream order 10 (Table 1). The MdAEs were 

within ±21% of the IQR of observed values. Despite being the lowest performing model, the 

PBIAS of the bankfull depth model did not differ substantially from the other models and 

indicates underprediction, especially in streams of order 2 (Table 1). The top five covariates 

for this model were watershed area (km2), slope (%), mean runoff (mm), stream order, and 

average 30-year precipitation (mm) (Table 2). The single CONUS-wide model had a similar 

performance when compared with models built with data from Physiographic Divisions 

(Supplemental Materials S.5).

Finally, when compared against observed bankfull W/d ratios, the model-estimated ratios 

explained less than half of this observed variation (pseudo r2 = 0.47) and had an overall 

MdAE of 3.20. The MdAEs are ±22.1% of the IQR of observed W/d ratios. We did not 

calculate PBIAS for W/d ratios.

Model Comparisons

Both our RF bankfull width model and the models of Bieger et al. (2015) performed well 

within the Physiographic Divisions when applied to the independent dataset (Table 3). The 

Bieger et al. (2015) models explained from 40% to 73% of the variation in bankfull widths 

across the Physiographic Divisions and had MdAE values of 2.1 to 8.1 m (MdAE/IQR = 

0.23–0.44). PBIAS of these models ranged from −13.5% to 47.4%, with an overall PBIAS 

of 21.2 for the CONUS. Across the same regions, the RF model explained 61% to 76% 

of the variation in bankfull width with MdAE values from 2.2 to 3.4 m (MdAE/IQR = 

0.19–0.37). The RF r-squared and MdAE values are respectively lower and higher than those 

reported by the internal RF performance metrics from out-of-bag observations. PBIAS of the 

RF models was −6.1% for the CONUS and was smaller in most regions (−13.3% to 16.5%), 

with some exceptions (e.g., the Intermontane Plateau). PBIAS values observed with the 

independent data were often better than those produced from the RF out-of-bag predictions. 

The model of Bieger et al. (2015) slightly outperformed the RF model within the Atlantic 

Plain region. In the remainder of regions, the RF model performed better, especially in the 

Appalachian Highlands, Interior Plains, and Pacific Mountain System regions (Table 3). 

With the exceptions of the Appalachian Highlands and Pacific Mountain System, regression 

slopes between predicted and observed values were closer to one for the RF model (Table 

3). The RF models generally did not overpredict observed values; however, in a few regions 

and stream orders there were some under predictions (Figs. 6–7). The Bieger et al. (2015) 

models and RF models had similar residual values when compared to measurements (Fig. 

7). The residual errors for both models increased with higher order streams (Fig. 7). The 

Bieger et al. (2015) models underpredict bankfull width values in some streams in stream 

orders 2–4, and 8 (Figs. 6–7).

DISCUSSION

We developed models to provide channel dimension estimates for 1.1 million perennial 

stream segments in the US. These models were applied to perennial streams, which 

cover large swaths of the CONUS and will be added to the existing suite of attributes 

in the StreamCat dataset (https://www.epa.gov/national-aquatic-resource-surveys/streamcat-
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dataset). These predictions will be of value for aquatic resource managers and can contribute 

to the assessment and modeling of freshwater habitats in lotic ecosystems where estimates of 

channel dimensions are needed. The approach presented here contrasts with previous models 

by providing predicted values at stream segments across the CONUS, rather than regression 

coefficients. Although the predictions are specific to the streams of the CONUS, the 

methods could be used to construct and predict values in areas outside of the U.S. if similar 

hydrographic data are available. Below, we consider how the performance of our models 

compare with previous modeling efforts, the use and limitations of the predicted values, 

potential applications to aquatic resource management, as well as model improvements that 

could be made in the future.

Model Performance

By including additional explanatory variables and using a popular machine learning 

technique that can account for non-linear relationships and interactions, we were able to 

develop satisfactory single, CONUS-wide models of channel dimensions that performed 

well when compared with regional models. Although our models performed well overall, 

the models of bankfull depth and bankfull width-to-depth ratio did not perform as well as 

the other channel dimension models. This lower performance may be due to challenges in 

finding bankfull stage in the field, especially during the dry season. In addition, depending 

on the geometry of side banks, the unit change in depth between non-flood to bankfull 

depth can be much greater than the unit changes in width (Rhodes 1977; Knighton 1998). 

Thus, errors in identifying bankfull stage will translate to greater errors in bankfull depth 

measurements than for bankfull width. However, when standardizing MdAE across stream 

order by the IQR of observed values, the bankfull depth models appear to perform similarly 

to the model of thalweg depth models in stream orders ≥3 (Table 1). Overall, MdAE values 

- regardless of model - were lowest in stream orders one through three (Table 1). The larger 

residual errors in higher order streams (eighth through tenth order) were due to the higher 

variability in observed values and did not represent poorer performance when considered 

proportionally to the IQR of observed values (Table 1).

Throughout the literature and within other modeling approaches, drainage area and slope 

are often cited as indicator of overall hydraulic energy available is cited as driving channel 

formation processes (Leopold et al. 1964; Faustini et al. 2009). Other factors, such as 

regional climatic regime or differences in geology, are often accounted for by constraining 

the extent of models to within regions. Thus, it was not surprising that indicators of 

streams size (watershed area and stream order), slope, and climate were important for 

predicting channel width and depth. The inclusion of precipitation in the models likely 

helped to account for how flow can differ among sites of a given drainage area, but of 

differing climatic regimes. Although it is unclear how much the additional covariates (e.g., 

agriculture, urbanization, and geology) contributed to the overall performance of the models, 

the aggregate effect of their inclusion may have contributed to models that performed as well 

as regional RF models, making predictions from a single model possible.

The ratio of bankfull width to bankfull depth has been used extensively as an indicator 

of geomorphic processes that form channels and habitats, and in multiple geomorphic 
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classification systems (Buffington and Montgomery 2013). Therefore, a possible extension 

of our models could be the use of these ratios to inform regional or national classification 

systems. Thus, determining how the ratios of our bankfull models perform relative to 

NRSA measurements was important. When modeled separately and combined into the 

bankfull W/D ratios, the predicted values did not perform as well when assessed against 

measurements. All models contain prediction error, and the errors of our bankfull width and 

depth models may interact to affect the final accuracy of ratioed values. Thus, care must be 

taken when using combinations of the predicted values in applications that require ratios, 

and the level of accuracy needed for these applications must be considered.

Both the Bieger et al. (2015) and the RF bankfull width models performed well when 

applied to the independent dataset. However, the improved performance of the RF model 

may be due to the inclusion of additional explanatory variables relative to Bieger et 

al. (2015), which used only drainage area. The simplicity of the model produced by 

Bieger et al. (2015) is attractive; however, our models offer at least two advancements. 

First, beyond improvements in overall performance (Table 3), inclusion of additional 

covariates better accounted for variations in spatial drivers of channel width and depth. 

Including these factors allowed us to develop a single nationwide model that performed 

as well as both individual regional RF and traditional regression models (i.e., Bieger et al. 

2015). This outcome contrasts with previous work that found regionalized rating curves 

based on drainage area outperformed a national model (Blackburn-Lynch et al. 2017). 

Second, the spatial extent of NRSA data allowed us to develop and apply models for the 

two Physiographic Divisions that were not modeled by Bieger et al. (2015) because of 

inadequate data. This advancement provides estimated channel dimensions that are directly 

relevant to these regions and avoids the misapplication of models that were developed 

elsewhere.

Use and Limitations of Predicted Values

We will make the model output available as part of a publicly available dataset, which differs 

from how models of width or depth have traditionally been delivered. Previously, regression 

or power law parameters were reported, and practitioners calculated the appropriate 

covariates to apply the models for their needs. However, such an approach could lead 

to application of results outside of the conditions used to develop the models, which 

could cause inaccurate estimations of width or depth. Since we will be making predicted 

channel dimensions available for download, we can constrain estimates to stream segments 

that are within the sampling frame of the NRSA, thereby ensuring model applications 

to appropriate stream segments (Wenger and Olden 2012). Due to this constraint, some 

sections of the CONUS, such as parts of the southwestern United States and the arid 

foothills of Montana (white areas in Fig. 8), produced fewer predicted values. These regions 

have more intermittent and ephemeral stream systems and, although these streams are 

important aquatic resources (Mazor et al. 2014), were not part of this study. Additionally, 

tidal streams (as defined by the NHDPlusV2) were not included in modeling because 

they substantially increased model errors. Our difficulty in modeling tidal streams is likely 

due to the different processes controlling channel dimensions of tidal systems relative to 

unidirectional inland streams (Torres 2017). Lastly, our models may underestimate the 

Doyle et al. Page 11

J Am Water Resour Assoc. Author manuscript; available in PMC 2024 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



impact of water impoundments (e.g., dam density) as there may not have been enough sites 

below dams due to the randomized placement of NRSA sample sites.

Our models may not be appropriate for every management application. For many uses, field 

measurement of channel width and depth may be more appropriate, especially when the 

application might be sensitive to the model errors reported here. Whether the accuracy and 

precision of our models meets the needs of a user will depend on the scale and purpose 

of the application (e.g., watershed-scale SWAT model versus regional fisheries management 

plan). We encourage the careful consideration of such factors and examination of model 

performance metrics within stream orders and regions (Supplemental Materials S.5) before 

using the predicted values provided by the RF models. However, if widths and depths 

are needed from many locations or from larger streams, which can be difficult and costly 

to measure, the model errors may become an acceptable trade-off. The low flow models 

may not be applicable or useful for studies that require temporally dynamic estimates of 

wetted width and thalweg depth because they were built on single measurements at low flow 

conditions. However, the open-source code we provide may help researchers and resource 

managers apply this methodology to their own temporally dynamic datasets (Supplemental 

Materials S.5). Lastly, although we validated the models with an independent dataset of 

several thousand streams, some portion of the 1.1 million stream segments will likely 

have poor predictions with unacceptably high error. We encourage practitioners to ground 

truth predictions in their study area where possible to determine if model predictions are 

acceptable for their application.

Model Applications and Future Work

Stream width and other aspects of channel dimensions are frequently used in fisheries 

habitat or production models (e.g., Shallin Busch et al. 2013; See et al. 2021) that support 

aquatic species recovery planning (Bond et al. 2019), prioritization of habitat restoration 

efforts (Roni et al. 2018), and the establishment of environmental flows for habitat needs 

across broad regions (Dunbar et al. 2012; Spurgeon et al. 2019). Depending on available 

resources and data, researchers and managers may have access to a variety of methodologies 

for estimating channel dimensions and habitat capacity, ranging from sub-meter resolution 

ground-based GPS surveys (e.g., Tonina et al. 2019) to broad regional regression models 

(e.g., Faustini et al. 2009; Bieger et al. 2015). Thus, our models may be of particular value 

to regional and national habitat applications where headwater stream data are unavailable 

through remote sensing (e.g., LIDAR) or when managers are constrained by current 

computational limitations or costs (Robinson et al. 2022).

Our modeled values can inform regional and national-scale assessments and planning and 

provide several potential benefits for practioners and scientists. For example, stream size 

can offer a useful stratum for hierarchical classifications of stream habitats that include 

both regional and local factors and allow the comprehensive application of models across 

large regions. These results will also be useful for planning. For instance, the level of effort 

required to adequately assess stream fish communities is a direct function of channel width 

(Reynolds et al. 2003). Estimates of channel width and stream size can help crews evaluate 

time and resource needs when planning national or regional aquatic assessments or fisheries 
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surveys (Hughes et al. 2011) and stratifying sites for regional and national scale aquatic 

monitoring designs (Olsen and Peck 2008). In such cases, our modeled values could serve as 

an initial estimate of width or depth or be used to expand the locations to which estimates of 

carrying capacity can be applied.

Predictions of channel width and depth will also be useful for model-based water quality 

models, such as SWAT, which is an important tool for conservation and policy managers 

throughout the US. Currently, SWAT uses a variety of methods to calculate bankfull channel 

characteristics (width, depth, and others), such as regression equations (Bieger et al. 2015) 

and the Leopold and Maddock (1953) power functions (White et al. 2017). Recently, Han et 

al. (2019) evaluated predicted values made from these equations against aerial photography 

and found that they often overestimate channel bankfull widths. Although we cannot use 

Han et al. (2019) to assess our models, they provide a useful alternative especially if aerial 

photography is limited or channels are obscured by vegetation.

Future iterations of these models could include adding new years of NRSA data as they 

become available. Doing so will increase the number of observations for model development 

to ensure that the models represent perennial streams and rivers of the US. Further, 

additional years of data could capture greater variation in climatic conditions within regions 

and provide the basis for understanding how these variations affect the availability of fish 

habitat. Such understanding will be increasingly critical in the face of climate change and 

when considering how to mitigate these impacts on fisheries resources (Paukert et al. 2021). 

However, to make improvements to the model, sources of potential error will need to be 

considered. Some portion of this error likely comes from difficulties in identifying the extent 

of bankfull flows in the field as discussed above. Another source of error could be the 

single summertime site visit of low flows. The RF models presented here cannot account for 

temporal variation in flows during this period, contributing to the overall error within the 

models. For example, Bellmore et al. (2018) found that within-season temporal variability 

account for up to 17% of the variation in NRSA nitrogen measurements, thereby defining 

the maximum performance a model could achieve. Finally, identification and inclusion of 

new geospatial predictor variables that better represent the physical processes that drive 

channel dimensions could also improve model performances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Definitions of channel dimensions: Wetted width represents the distance from left to right 

bank of the stream channel filled with water. Bankfull width represents the distance from 

left to right bank at the bankfull stage (i.e., water level at which a stream will overtop its 

banks and enter the floodplain). Thalweg depth represents the depth at the deepest point 

in the channel cross section from the bottom substrate to the water surface. Bankfull depth 

represents thalweg depth added to the bankfull height from the water surface to the bankfull 

stage. Above the bankfull stage, water will no longer be confined solely within the channel 

but will begin to spill into the floodplain.
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FIGURE 2. 
Sampling locations of the 2008/2009 and 2013/2014 National Rivers and Streams 

Assessments. Physiographic Divisions of the United States (Fenneman and Johsnon 1946).
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FIGURE 3. 
Diagram depicting random forest modeling (modified from Berriri et al. 2021). (A) The 

full set of observations are bagged (i.e., subsetted) to create (B) random subsets of the data 

(also called “in-bag” samples) to construct each regression tree of the random forest. In-bag 

samples are typically about two-thirds of the full set of observations. During construction of 

a tree, (C) a randomized subset of candidate predictors is tested at each node (split) of the 

tree. The default number of predictors tested at each node for many random forest regression 

applications is p/3, where p is the number of available predictors. The (D) final prediction 

for a new observation is made by averaging predictions across individual regression trees. 

While the illustration shows a random forest constructed from just three trees, typical 

applications of random forest construct several hundred to thousands of individual trees.
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FIGURE 4. 
Predicted versus observed values of wetted width, thalweg depth, bankfull width, and 

bankfull depth.
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FIGURE 5. 
Distribution of predicted (black) and observed (blue) channel dimensions across Strahler 

stream orders. Pseudo r-squared values for each model are as follow: wetted width = 0.91, 

thalweg depth = 0.82, bankfull width = 0.90, and bankfull depth = 0.70.
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FIGURE 6. 
Comparison of observed bankfull width values from 1994 to 2004 (blue) with predicted 

values using random forest (black; left) and watershed area-based regression coefficients 

(Bieger et al. 2015) (red; right) by Physiographic Division and stream order. AHI: 

Appalachian Highlands, APL: Atlantic Plains, IMP: Intermontane Plateaus, IPL: Interior 

Plains, PMS: Pacific Mountain System, and RMS: Rocky Mountain System.
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FIGURE 7. 
Distribution of residual errors of modeled bankfull width by Strahler stream order. Black = 

random forest model. Red = watershed area-based regression (Bieger et al. 2015).
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FIGURE 8. 
Map of predicted wetted width values across the conterminous U.S.
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TABLE 1.

Median Absolute Error (MdAE) for each model by NHDPlusV2 stream order and the conterminous US 

(CONUS). The MdAE (m) divided by the interquartile range of observed values for each stream order are 

provided within brackets (unitless) to standardize MdAE values across models. Percent bias (PBIAS) 

quantifies the tendency of a model to overestimate (positive) or underestimate (negative) observed values.

Stream Order  Wetted Width Thalweg Depth Bankfull Width Bankfull Depth

MdAE PBIAS MdAE PBIAS MdAE PBIAS MdAE PBIAS

1  0.69 [0.31] −19.4 0.06 [0.33] −21.2 1.23 [0.36] −15.6 0.19 [0.41] −15.4

2  1.10 [0.30] −12.1 0.09 [0.35] −13.0 1.80 [0.35] −9.5 0.24 [0.42] −24.6

3  1.62 [0.24] −18.8 0.11 [0.35] −9.4 2.57 [0.28] −14.8 0.26 [0.37] −13.8

4  2.84 [0.18] −10.7 0.15 [0.35] −10.2 4.12 [0.24] −10.6 0.33 [0.37] −9.4

5  4.92 [0.14] −10.3 0.25 [0.28] −12.1 6.50 [0.17] −11.3 0.44 [0.32] −10.0

6  8.79 [0.12] −10.3 0.30 [0.19] −14.5 10.84 [0.13] −9.3 0.56 [0.27] −11.2

7  12.67 [0.12] −14.2 0.38 [0.17] −15.0 16.77 [0.15] −13.2 0.57 [0.16] −13.5

8  29.22 [0.09] −8.5 0.68 [0.16] −10.6 37.23 [0.11] −9.3 0.98 [0.21] −7.8

9  27.27 [0.07] −14.8 0.87 [0.27] −8.3 28.67 [0.07] −13.9 0.80 [0.23] −5.8

10+  173.38 [0.35] −4.8 2.92 [0.45] −3.3 204.05 [0.35] −4.2 4.04 [0.41] −7.6

CONUS 2.96 [0.06] −9.7 0.16 [0.15] −11.1 4.27 [0.08] −9.2 0.36 [0.20] −11.3
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TABLE 2.

Ranking of top 5 most important covariates from each model (1: most important, 5: least important).

Important Covariates  Wetted Width Thalweg Depth Bankfull Width Bankfull Depth

Mean Runoff (mm)  1 1 2 3

Watershed Area (km2)  2 2 1 1

Average 30-year Precipitation (mm)  3 5 3 5

Average 2-year Precipitation (mm)  5

Slope (%) 3 2

Stream Order  4 4 4 4

Mean Watershed Elevation (m) 5
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TABLE 3.

Comparison of random forest and Bieger et al. (2015) models of bankfull width when applied to an 

independent dataset. Regression r-squared (R2) and slope between predicted and observed values indicate 

model precision and accuracy, respectively. Also provided are Median Absolute Error (m) (MdAE) and MdAE 

standardized by the interquartile range of observed values in brackets (unitless). Percent bias (PBIAS) 

estimates the propensity of the model to overestimate (positive) or underestimate (negative) observed values 

(Moriasi et al. 2015).

Random Forest Bieger et al. (2015)

Physiographic Region n R2 Slope MdAE PBIAS R2 Slope MdAE PBIAS

Appalachian Highlands 589 0.76 1.03 2.20 [0.23] 1.0 0.73 0.98 4.15 [0.42] 19.2

Atlantic Plain 114 0.61 1.00 2.30 [0.37] 16.5 0.57 0.79 2.10 [0.34] 8.0

Interior Plains  716 0.63 1.07 3.42 [0.25] −10.4 0.40 0.68 8.05 [0.59] 47.4

Intermontane Plateaus 350 0.67 1.00 2.05 [0.19] −13.3 0.61 0.82 2.49 [0.23] −2.5

Pacific Mountain System 350 0.74 1.12 2.48 [0.27] −6.9 0.59 0.96 4.04 [0.44] 10.4

Rocky Mountain System 287 0.68 1.02 2.21 [0.26] −7.4 0.52 0.84 3.06 [0.37] −13.5

CONUS 2406 0.70 1.03 2.55 [0.24] −6.1 0.56 0.78 4.20 [0.39] 21.2
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