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ABSTRACT

Functional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling
(FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-
based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to
each brain. This approach neglects individual differences in brain functional organization and may
inaccurately delineate the true borders of functional regions. These inaccuracies could inflate or
underestimate group differences in case-control analyses. We investigated how individual
differences in brain organization influence group comparisons of FC using psychosis as a case
study, drawing on fMRI data in 121 early psychosis patients and 57 controls. We defined FC
networks using either a group-based parcellation or an individually tailored variant of the same
parcellation. Individualized parcellations yielded more functionally homogeneous ROIs than did
group-based parcellations. At the level of individual connections, case-control FC differences were
widespread, but the group-based parcellation identified approximately 7.7% more connections as
dysfunctional than the individualized parcellation. When considering differences at the level of
functional networks, the results from both parcellations converged. Our results suggest that a
substantial fraction of dysconnectivity previously observed in psychosis may be driven by the
parcellation method, rather than by a pathophysiological process related to psychosis.

AUTHOR SUMMARY

Functional magnetic resonance imaging is widely used to map how brain network dysfunction
is affected by diverse diseases. A fundamental step in this work involved defining specific brain
regions, which act as network nodes in the analysis. Most research to date has used a one-size-
fits-all approach, defining such regions on a template brain that is then applied to individual
people, which neglects the potential for variability in regional borders and brain organization.
Here, we show that using an individualized approach to region definition results in more valid
area definitions and more conservative estimates of brain network dysfunction in people with
psychosis, indicating that at least some of the group differences reported in the extant literature
may be due to differences in regional definitions rather than a consequence of the illness itself.
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INTRODUCTION

Psychosis is a neuropsychiatric condition that has long been thought to arise from aberrant
neural connectivity, or dysconnectivity, between neuronal populations (Andreasen et al.,
1998; Baker et al., 2019; Fornito et al., 2012; Nogovitsyn et al., 2022). Such dysconnectivity
is often studied using a network-based approach (Fornito et al., 2016), with the brains of indi-
viduals being modeled as a collection of nodes, representing discrete brain regions, connected
by edges, representing interregional structural connectivity or functional coupling (FC). This
approach has revealed extensive FC disruptions in psychosis patients; these disruptions are
often characterized by a global decrease in FC upon which is superimposed more network-
specific increases and decreases (Argyelan et al., 2014; Baker et al., 2019; Chopra et al., 2021;
Fornito et al., 2012; Hummer et al., 2020; T. Li et al., 2017; Narr & Leaver, 2015; Nogovitsyn
et al., 2022; Tu et al., 2013). However, the reported findings have been inconsistent, with
reports of increased and decreased FC sometimes found within the same network in different
samples (Lynall et al., 2010; Moran et al., 2013; Whitfield-Gabrieli et al., 2009; Woodward
et al., 2011).

Some of these inconsistencies may be explained by methodological differences in defining
the nodes (brain regions of interest, ROIs) of the constructed brain networks, which is a fun-
damental step in network analysis that could affect the validity and interpretation of subse-
quent results (Fornito et al., 2010, 2016; Zalesky, Fornito, Harding, et al., 2010). Each node
should ideally represent a functionally specialized area with homogenous activity (Eickhoff,
Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018), but there is no consensus on the opti-
mal way of parcellating the brain, meaning that investigators must rely on various heuristic
methods (Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018).

The vast majority of studies in patients with psychosis have used a one-size-fits-all, group-
based approach in defining distinct ROIs. A parcellation using this approach is often defined in
a standardized coordinate space based on a sample average and then mapped to individual
participants via a spatial normalization procedure (Eickhoff, Yeo, & Genon, 2018). This
approach fails to consider interindividual variability in functional and anatomical brain orga-
nization (Amunts et al., 2005; Mueller et al., 2013). Investigation of such variability with
resting-state fMRI (rsfMRI) has shown that, although most cortical areas can indeed be robustly
identified in every individual, their sizes and shapes vary across the population, especially
when using more fine-grained parcellation methods (Gordon et al., 2017). Furthermore, the
topographical locations of specific areas tend to shift between individuals, sometimes across
anatomical landmarks such as sulci and gyri (Gordon et al., 2017), which are often used as
reference points in many standard parcellations (Fornito et al., 2016).

To better accommodate this individual variability, approaches have been developed to
derive individualized parcellations at the level of either canonical functional networks (S. Li
et al., 2016; Yeo et al., 2011) or cortical regions (Gordon et al., 2017; Kong et al., 2021). These
approaches have revealed that individual variability can considerably impact network analy-
ses. For instance, regions assigned to one network in individual parcellations are often
assigned to a different network in the group average (Bijsterbosch et al., 2018), which could
impact FC analysis. The use of individually tailored parcellations yields more functionally
homogeneous regions (Chong et al., 2017; Kong et al., 2021) and can improve predictions
of behavior from FC (Kong et al., 2019). Indeed, in healthy samples, individual differences
in the locations of functional regions, as represented by individualized parcellation, affect pre-
dictions of fluid intelligence (Kong et al., 2019), life satisfaction (Bijsterbosch et al., 2018),
participant sex (Salehi et al., 2018), and performance in reading and working memory tasks

Functional coupling (FC):
Coactivation of two brain regions,
given by the correlation of the BOLD
time series of a pair of regions.

Parcellation:
A method that divides the brain into
parcels, or nodes.

Individualized parcellation:
A parcellation approach that adapts
each individual’s ROI borders to
account for individual differences in
brain organization.
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(Kong et al., 2021). Moreover, some estimates indicate that up to 62% of variance in network
edge strength (i.e., FC values) can be explained by the spatial variability of defined regions
(Bijsterbosch et al., 2018). These findings suggest that clinically important relationships may
be masked when using a group-based parcellation. On the other hand, these approaches
present several challenges, such as establishing a correspondence between similar regions
in different people and accounting for differences in region size.

A particularly salient point in clinical studies, such as those of schizophrenia, is that stan-
dard brain atlases have been derived from healthy participants, which may not adequately
capture the characteristic properties in the brain organization of patients (Glasser et al.,
2016; Schaefer et al., 2018). Patient-specific individual variability in functional organization
can influence the results of brain network analyses. Indeed, one study has found that slight
displacements of a seed region in the thalamus can lead to significant differences in
disorder-related dysconnectivity (Welsh et al., 2010), emphasizing the importance of a valid
and consistent node definition.

One strategy to develop individualized parcellations is to adjust the borders of a group-
based template for each individual participant according to predefined functional criteria.
For instance, Chong et al. (2017) developed a Bayesian algorithm (called group prior individ-
ualized parcellation, GPIP) that uses a group-based template as a prior to find an optimal cor-
responding parcellation on individual brains using individual FC data. The group-based prior
ensures that the same regions are mapped in each individual, while updates to the individu-
alized prior account for variability in the shape and size of each parcellated region. Chong
et al. (2017) have shown that this method yields parcellated regions with increased intraregio-
nal functional homogeneity and reduced variance in connectivity strength between individ-
uals. Here, we used this approach to compare FC disruptions observed in people with early
psychosis using analyses that rely on either a group-based or an individualized parcellation.
The parcellation algorithm (Chong et al., 2017) allowed us to match all brain regions across
participants while accounting for individual variability. Our analyses were conducted using
the high-quality, open-access data provided by the Human Connectome Project for Early
Psychosis (HCP-EP) resource (Glasser et al., 2013; HCP Early Psychosis 1.1 Data Release:
Reference Manual, 2021). We tested two competing hypotheses of how individual variability
contributes to apparent FC disruptions in psychosis. Under one hypothesis, a failure to con-
sider individual variability may lead to erroneous regional parcellations, adding noise to the
analyses and reducing statistical power for detecting valid group differences. In this case, we
expect to see fewer differences between patients and controls when using the group-based
parcellation compared with individualized parcellation. Alternatively, FC differences between
groups may be largely driven by variations in the underlying organization of each individual’s
brain, rather than reflecting specific differences in FC. In this case, we expect to see more
differences using the group-based parcellation.

RESULTS

Here, we present results obtained using group-level cortical parcellations provided by
Schaefer et al. (2018) as the basis for our analysis, focusing on the 100-region parcellation
(s100). To ensure that our results are robust to the number of regions, we repeated our analysis
using the 200-region variant (s200) and after applying global signal regression (GSR). Results
obtained using the s200 atlas, and results for both atlases after GSR, can be found in the
Supporting Information and are largely consistent with the primary results reported in the
following sections.

Group-based parcellation:
A one-size-fits-all approach to
parcellation that is usually based on
a group average.

Brain atlas:
A map of the brain that guides
parcellation and can be fit into
individuals’ brains based on
structural landmarks, such as sulci
and gyri.
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Spatial and Functional Properties of Group-Based Versus Individualized Parcellation

Figure 1 shows examples of individualized parcellations generated for three individuals com-
pared with the original group-based s100 atlas. The individualized parcellation algorithm pre-
served the same regions for every individual but shifted their borders and changed their shapes
and sizes to accommodate for individualized variations in brain organization. Indeed, on aver-
age, 42.56% (SD = 2.37) of vertices were reallocated to a different region as a result of the
individualized parcellation algorithm, highlighting the considerable variability of cortical func-
tional organization between individuals. Figure 2A shows the proportion of vertices that were
relabeled in controls M (SD) = 43.28% (2.34) and in patients M (SD) = 42.20% (2.31). The
difference between the two groups was small but statistically significant, following permuta-
tion testing (p = 0.004, Hedges’s g = 0.465). However, at a regional level (Figure 2B), no parcel
showed significant differences in the number of vertices relabeled between patients and con-
trols (i.e., all pFDR > 0.05, corrected with the Benjamini and Hochberg method).

We next compared the average functional homogeneity of the group-based and individu-
alized parcellations. Functional homogeneity was measured out of sample, on functional
scans from Run 2 with parcellations generated for scans from Run 1. In controls, the mean
homogeneity was 0.364 (SD = 0.09) and 0.372 (SD = 0.08) for the group-based and individ-
ualized parcellations, respectively. In patients, the mean homogeneity was 0.297 (SD = 0.06)
and 0.304 (SD = 0.06) for the group-based and individualized parcellations, respectively

Figure 1. Differences in parcel boundaries between group-based and individualized parcellation. The images show different parcellations
overlayed on the inflated fsaverage5 template surface of the left hemisphere, with 20,484 vertices. The top image shows the group-based
parcellation, which was used as a starting point for the individualized parcellation algorithm. Colors correspond to the seven canonical func-
tional networks that are used to group parcels in the atlas (Yeo et al., 2011). The bottom three images show individualized parcellations for
three different subjects after 20 iterations of the GPIP algorithm. The region shaded in orange corresponds to region 1 in the lateral prefrontal
cortex of the control network for all parcellations. The region shaded in red corresponds to region 1 in the parietal lobe of the default mode
network. The same regions are present in all individuals, but their locations, sizes, and shapes show considerable variability. DorsAttn, dorsal
attention network; SomMot, somatomotor network; Cont, control network; Default, default mode network; Limbic, limbic network; SalVentAttn,
salience/ventral attention network; Vis, visual network.
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(Figure 2C). A two-way mixed ANOVA revealed that mean homogeneity was higher for the
individualized parcellation (F(149) = 54.81, p < 0.0001) and higher in controls compared with
patients (F(149) = 30.91, p < 0.0001), with no interaction between parcellation type and
diagnostic group (F(149) = 0, p = 0.898). Post hoc analysis showed that individualized
parcellation resulted in greater homogeneity scores in patients (t(103) = 5.64, p < 0.0001)
and controls (t(46) = 2.90, p = 0.006). When comparing homogeneity scores for individual
parcels (Figures 2D and 2E), 55 out of 85 regions showed significant differences in homoge-
neity between parcellation approaches (i.e., pFDR < 0.05, corrected with the Benjamini and
Hochberg method). Moreover, both methods showed high reliability of homogeneity esti-
mates, as measured with the intraclass correlation coefficient (McGraw & Wong, 1996)
(rgroup-based = 0.842, p < 0.0001 and rindividualized = 0.862, p < 0.0001). To quantify functional
distinctions between parcels, we computed the mean Pearson’s correlation of activity between
each pair of vertices that were not allocated to the same region. We found that the individu-
alized parcellation (Mcorr (SD) = 0.100 (0.066)) delineates parcels that are slightly more func-
tionally distinct than those in the group-based parcellation (Mcorr (SD) = 0.102 (0.066)).
Although small, the difference was statically significant (t(165) = 14.0, p < 0.001).

Homogeneity scores results were similar for the s200 atlas with and without GSR (Support-
ing Information Figures 2 and 3). For the s100 atlas with GSR, differences in homogeneity
between groups and parcellation approach were similar to the main results. However, there
was a significant interaction effect between parcellation type and diagnosis (F(148) = 4.68,

Figure 2. Spatial and functional properties of group-based versus individualized parcellations. Panel A shows the proportion of vertices
relabeled by the individualized parcellations for controls (M (SD) = 0.433 (0.023)) and for patients (M (SD) = 0.422 (0.023)). Panel B shows
the average number of vertices relabeled in every parcel for patients and controls. Panel C shows the distribution of homogeneity scores per
subject. Controls produced more homogenous parcels in both individualized (M (SD) = 0.372 (0.08)) and group-based (M (SD) = 0.364 (0.09))
parcellations than did patients (individualized M (SD) = 0.304 (0.06)), (group-based M (SD) = 0.297 (0.06)). Panel D shows homogeneity scores
for every parcel for group-based and individualized parcellation. Light-colored parcels in panel E represent parcels showing significant
difference in homogeneity scores, between parcellation approaches, for pFDR < 0.05. Homogeneity is displayed in inflated surfaces with
the group-based parcellation.
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p = 0.032; see Supporting Information Figure 1), such that homogeneity scores in patients were
more impacted by individualized parcellation than in controls. This result suggests that, at this
particular resolution, parcellation type may differentially affect FC estimates in patients and
controls only following the application of GSR. The reasons for this sensitivity to parcellation
scale and GSR are unclear.

Unthresholded Edge-Level Group Differences in FC

Following exclusion of regions with poor signal (see Methods), the final networks examined
comprised 85 regions. The FC matrices resulting from both parcellation methods were posi-
tively correlated, with correlations ranging between 0.679 and 0.898 (median = 0.794) across
participants (Supporting Information Figure 4a), indicating that the results obtained with indi-
vidualized and group parcellations are generally similar, although far from identical.

Figure 3A shows the distribution of t statistics across edges, comparing FC between patients
and controls estimated using either the group-based or the individualized parcellation. Both
distributions have predominantly positive values, consistent with evidence of widespread
hypoconnectivity in patients compared with controls. The distribution for the group-based
approach is shifted further to the right, indicating that larger group differences are detected
with this method, on average. The difference in the means of the distributions was statistically
significant, as calculated with a Wilcoxon signed-rank test (Z = 24.053, p < 0.0001). Figure 4
of the Supporting Information shows that most FC edges were positively valued; as such, the
significant FC reductions observed in patients result from patients having lower positive FC

Figure 3. Edge-specific case-control differences in FC depend on parcellation type. (A) Distribu-
tions of t values quantifying FC differences between patients and controls at each edge and for each
parcellation type. A positive t value indicates a greater FC value in controls than in patients. For
reference, a p value = 0.05 corresponds to a t value = 1.65 uncorrected, and t = 4.31 Bonferroni
corrected. (B) Shift function (Rousselet et al., 2017) for the two t distributions. Each circle represents
the difference between the borders of each decile of both distributions as a function of the deciles in
the group-based distribution. The bars represent the 95% bootstrap confidence interval associated
with the difference.
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rather than patients having stronger negative FC. Given the higher functional homogeneity of
the individualized parcellation, this result suggests that the group-based parcellation overstates
FC differences between patients and controls. Similar results were obtained when looking at
the effect size of the differences in edge strength between patients and controls (Supporting
Information Figure 4), with the group-based parcellation yielding higher effect size estimates
than individualized parcellation, on average (p < 0.0001).

The t matrices obtained using the group-based and individualized parcellations were posi-
tively correlated (r = 0.76, p < 0.0001), suggesting that the two approaches show largely similar
between-group FC differences. The effects of parcellation type were consistent across the full
extent of the t distributions, as indicated by the shift function, which compares differences
between distributions at each decile. This analysis showed a significantly higher value in every
decile of the group-based parcellation, when compared with the individualized parcellation,
with the 95% confidence interval never crossing zero (Figure 3B). There was, however, a more
pronounced effect of parcellation type on edges associated with larger case-control differences
in FC relative to those with smaller case-control differences, as can be seen by the greater shift
observed in the right tail of the distribution relative to the left (Figure 3B). This result implies that
variations in parcellation type are more likely to influence the edges that are significantly dif-
ferent between patients and controls. Furthermore, results obtained using the s200 parcellations
are in agreement with results obtained from the s100 parcellation (see Supporting Information
Figure 2). Following GSR, at both parcellation scales, the mean t values were similar, but the
t distribution for the individualized parcellation was narrower than for the group-based parcella-
tion. The shift function showed that significant differences between parcellation approaches were
mainly for edges with positive t values (see Supporting Information Figures 1 and 3).

Thresholded Edge-Level Group Differences in FC

We used the network-based statistic (NBS) for inference on the edge-specific t statistics
(Zalesky, Fornito, & Bullmore, 2010). The NBS identified a single connected component with
significant FC differences between patients and controls using both the group-based (p <
0.0001) and individualized (p < 0.0001) parcellations, for all primary test statistics thresholds
tested. Out of 3,570 possible connections, for a primary threshold equivalent to a p value =
0.05, the group-based and individualized parcellations resulted in components comprising
2,877 edges and 2,672 edges, respectively (Figures 4A–B). Thus, the group-based approach
implicated approximately 7.7% more dysconnected edges. The binary edge matrices defining
these components were moderately correlated (rphi = 0.548, p < 0.0001) and both components
had a total of 571 edges that differed from each other. There was also some variation in the
regional affiliation of the edges. For example, Figures 4C–D show that the insula has a high
dysconnectivity degree in both group-based and individualized parcellations, but that the for-
mer approach implicates more insula subregions. Furthermore, the right medial prefrontal
cortex shows a low degree in the individualized parcellation but not in the group-based par-
cellation. The NBS was repeated with a primary test statistics threshold equivalent to p values =
0.01 and 0.001. For p = 0.01, the component for individualized parcellation comprised
1,786 edges and for group-based parcellation, 2,120. For p = 0.001, the component for
individualized parcellation comprised 775 edges and for group-based, 1,257 edges. Note that
for all edges in these NBS networks, patients showed reduced FC compared with controls.

Effects of Variations in Parcel Size

A challenge of using individualized parcellations is that the ROIs can vary in size across indi-
viduals, which may bias estimates of FC differences between groups. We therefore examined
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changes in parcel size resulting from the individualization algorithm, as quantified by the num-
ber of vertices in each parcel. On average, parcels changed by 50.7 (SD = 45.2) vertices across
patients and 52.0 (SD = 45.3) across controls, with no significant difference between the two
groups, according to permutation testing (p = 0.104) (Supporting Information Figure 8a). There
was also no significant difference in size difference between patients and controls for any of
the parcels, when corrected for multiple comparisons following permutation statistics (i.e., all
pFDR > 0.05). Four parcels had different sizes between patients and controls, without correc-
tion for multiple comparisons (visual network parcel 9 of the left hemisphere, p = 0.023; soma-
tomotor network parcel 1 of the left hemisphere, p = 0.026; limbic network parcel 1 in the
orbital frontal cortex of the left hemisphere, p = 0.039; limbic network parcel 1 in the orbital
frontal cortex of the right hemisphere, p = 0.048). We next correlated the differences in parcel

Figure 4. Edge-level regional and network-level case-control FC differences according to parcellation type. Panels A and B show the specific
edges comprising the NBS components obtained with the group-based and individualized parcellations, respectively, with nodes colored
according to network affiliation and sized by degree. Edges are sized by strength of dysconnectivity. Edges associated with a t value < 3.5
are represented by gray lines and those associated with a t value ≥ 3.5 are represented in pink. The images were created using the software
BrainNet Viewer (Xia et al., 2013). Panels A, C, and E result from the group-based parcellation. Panels C and D show the degree of each region
in the NBS component for the group and individualized parcellations, respectively. The leftmost triangle of each matrix in panels E and F
shows the total number of NBS component edges (raw counts) falling within and between seven canonical networks. The rightmost triangles
show the same data normalized for network size, that is, the total number of possible connections within or between networks (normalized
counts). DorsAttn, dorsal attention network; SomMot, somatomotor network; Cont, control network; Default, default mode network; Limbic,
limbic network; SalVentAttn, salience/ventral attention network; Vis, visual network.

Network Neuroscience 1235

Individualized parcellation and dysconnectivity in psychosis



size in individualized parcellation between patients and controls with differences in node
degree within the NBS network and mean edge dysconnectivity, given by the mean t value
of edges attached to each node for the case-control comparison (Supporting Information
Figures 8b–c). Neither correlation was significant (r = 0.148, pspin = 0.104, and r = 0.133,
pspin = 0.127, respectively), suggesting that parcel size did not impact FC differences between
patients and controls in the individualized parcellation.

Network-Level Group Differences in FC

Having demonstrated that the choice of a parcellation strategy can influence both edge- and
region-level inferences about FC disruptions in psychosis, we next examined whether parcel-
lation type affects the specific networks that are considered to be dysfunctional. We therefore
examined the proportion of edges within the NBS network that fell within and between each of
7 canonical functional networks (Yeo et al., 2011). Considering the raw number of affected
edges across both parcellation approaches, the control network was the most impacted in
patients with psychosis, with over 1,100 dysconnected edges, particularly those linking the
control and somatomotor networks (Figures 4E–F). By comparison, normalized counts, which
are adjusted for the total number of possible edges within or between pairs of networks, sug-
gested a more equal and widespread distribution of FC disruptions across networks. Both the
raw count (r = 0.983, p < 0.0001) and the normalized matrices (r = 0.802, p < 0.0001) were
strongly correlated across the two parcellation methods. These findings indicate that while
parcellation method can influence the specific edges that are identified as dysconnected, these
edges generally fall within or between the same canonical networks.

DISCUSSION

Several studies have reported functional brain dysconnectivity in psychosis. A fundamental
step in such analyses involves defining a priori ROIs to serve as nodes in the network analysis,
which are typically derived from standard parcellation atlases generated from a population or
group average template. Here, we asked whether the failure of such an approach to account
for individual differences in brain functional organization can bias estimates of case-control
differences in FC. Standard methods could result in either an underestimation of the extent of
network dysfunction (owing to noisy FC estimation caused by inaccurate ROI delineations) or
an inflated estimate of the dysfunction (owing to FC differences being attributable to ROI mis-
alignment), compared with when accounting for individual differences in functional organiza-
tion of the brain. Our findings indicate that group-based parcellations might inflate estimates of
FC differences in psychosis, especially at the edge level. Moreover, the use of individualized
parcellations, while yielding a generally consistent pattern of findings, leads to some different
conclusions about the specific edges and regions most affected by the disorder, although infer-
ences at the network level were robust to parcellation variations. Together, our findings suggest
that the use of individualized parcellations can impact findings of brain dysconnectivity in
psychosis and, by extension, other disorders.

Individualized Parcellations Yield More Functionally Homogeneous Regions

The individualized parcellations resulted in nearly half (over 40%) of vertices being assigned
to regions that differed from the group-based atlas, as per prior work (Chong et al., 2017). This
finding reiterates how group-based parcellations can result in a substantial misspecification of
regional borders in individuals and highlights the high degree of variance present in the topo-
graphical organization of functional areas. Despite the high percentage of vertices relabeled,
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FC matrices generated by both parcellations were highly correlated, indicating that the overall
FC patterns seen with group-based parcellation are maintained with the individualized parcel-
lation. Note that with GPIP, correspondence between regions is determined based on similarity
in FC profiles rather than on spatial location. As such, corresponding regions can shift their
spatial location from person to person (see Figure 1).

The higher functional homogeneity of the individualized parcellations supports its
improved validity, although the increment was small (2.4%), which is consistent with past
reports (Kong et al., 2021; Y. Li et al., 2022), increased homogeneity was seen in the majority
of parcels. Regional homogeneity was also marginally (2.3%) higher in controls compared
with patients. This differential improvement in homogeneity was expected, as the starting point
for the GPIP algorithm was the Schaefer atlas (Schaefer et al., 2018), which was derived from a
sample of people with no psychiatric disorders. Defining an initial group atlas in patients
would better account for differences in cortical functional organization caused by psychosis.
However, it would complicate comparisons between groups because of the requirement to
have consistently defined nodes in both patients and controls, which is one of the challenges
of using individualized parcellation. The interaction effect between diagnosis and parcellation
approach was not significant in most cases (apart from s100 with GSR). This result indicates
that individualized parcellations led to a similar improvement in patients and controls. Since
most case-control studies use data obtained in healthy individuals to establish a normative
benchmark for measures acquired in patients (Chopra et al., 2021; Nabulsi et al., 2020;
Nogovitsyn et al., 2022), we relied on the Schaefer parcellation in our analysis. Future work
could develop methods to better capture variations in functional organization associated with
psychosis.

Individualized Parcellations Lead to More Conservative Estimates of Case-Control FC Differences

Widespread decreases in FC in patients with psychosis were identified using both parcellation
approaches, highlighting that the dominant effect of both parcellations is generally similar.
However, the magnitude of the differences in FC was greater in the group-based parcellation
compared with individualized parcellation. Notably, the shift function analysis indicated that
differences between the two parcellation approaches were greater for edges associated with
large case-control differences. These edges are precisely the ones that are most likely to be
declared to be statistically significant following the application of some thresholding proce-
dure. Accordingly, comparison of NBS results revealed a 7.7% reduction in the size of the
dysfunctional component identified using the group-based parcellation. Given the higher
functional homogeneity, and thus validity, of the individualized parcellation, these results
support the hypothesis that at least part of the group differences identified in past studies in
psychosis samples do not reflect actual differences in interregional FC but instead result
from inaccurate ROI boundaries caused by a failure to account for individual differences
in functional organization. These findings imply that individualized parcellations can yield
different estimates of FC differences in case-control studies, especially when investigating
FC changes at an edge or node level.

Parcellation Type Affects FC Differences in Edges and Regions, but Not Networks

While widespread decreases in FC were apparent in patients with psychosis using both par-
cellation methods, the specific edges affected varied considerably. The NBS components of
both group-based and individualized parcellations showed differences in 571 edges (i.e.,
19.8% of the total identified with the group-based parcellation). Examining the regions most
affected by quantifying the node degrees of the NBS components resulted in broadly similar
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patterns, but there were some notable differences in location. For example, the right medial
frontal region accounts for 1.7% of dysconnectivity in the group-based and 2.3% in the indi-
vidualized parcellation. The left insula accounts for a slightly smaller percentage (6.5%) of
dysconnectivity in the group-based than in the individualized parcellation (6.7%). These find-
ings suggest that conclusions about the specific edges and regions affected by psychosis can
vary depending on the parcellation method used. In contrast, inferences at the network level
were largely consistent across the two parcellation approaches, indicating that coarse-grained
localizations of FC differences are robust to this methodological choice. This could be attrib-
uted to network-level inference effectively reducing the dimensionality of the analysis, mini-
mizing the nuances of more fine-grained individual variations. Therefore, studies looking at
group differences in FC at a coarse network level might not be impacted by the use of indi-
vidualized versus group-based parcellations.

Limitations

To minimize the computational cost, we used fsaverage5, a surface mesh with a relatively low
number of vertices. Since GPIP parameters depend on the number of vertices of the mesh,
future work could investigate the impact of different surface mesh resolutions and whether
the differences observed here apply at different mesh resolution.

To facilitate comparison between subjects, the individualized parcellation algorithm main-
tains the same number of regions for every subject and uses a parcellation derived in healthy
individuals as a starting point. This approach may mask differences in cortical organization in
patients, where regions may merge or split, resulting in a different number of ROIs. However,
generating separate parcellations in each group complicates comparisons between groups.
Resolving this challenge remains an open problem for the field. Moreover, we only looked
at cortical regions, owing to the lack of methods available for individual parcellation of sub-
cortical structures.

A proportion of patients in our sample were medicated, and recent evidence has shown that
antipsychotic medication can impact FC, even after only 3 months of use (Chopra et al., 2021).
However, given that most samples examined in past research are also medicated, our sample
is directly comparable to the broader literature. Similarly, the study included more patients
than controls and future work could benefit from a balanced sample size. We also emphasize
that this study is not focused on identifying the specific nature of FC disturbances associated
with psychosis but instead concentrates on how parcellation type affects FC differences in the
same patients. In this context, medication exposure was constant across our main contrast of
interest (parcellation type), meaning that it cannot explain the differences that we focus on
here. The same reasoning applies to the clinical heterogeneity of the patient sample, which
composed people diagnosed with both affective and nonaffective psychoses. Future work
could use individualized parcellations to delineate FC differences more precisely between dis-
tinct patient subgroups.

We have focused here on how the use of individualized versus group-based parcellations
affects group differences in FC. A separate question concerns whether parcellation type also
affects correlations with behavioral or clinical variables. Several studies have shown that indi-
vidualized parcellations yield FC estimates that are marginally more correlated with various
forms of behavior, including psychopathological ratings (Bijsterbosch et al., 2018; Kong et al.,
2019, 2021). A useful direction for future work could involve investigating whether individu-
alized parcellation improves prediction of clinically meaningful outcomes.
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Conclusion

Our findings indicate that traditional reliance on group-based parcellations may inflate case-
control differences in FC at a fine-grained level. The use of individualized parcellations can
yield a more conservative understanding of brain network disruptions in psychotic and possi-
bly other disorders. However, it does not greatly impact case-control differences in network-
level analyses.

METHODS

Study Participants

All data for this study were collected as part of the HCP-EP study, which is an open-access
collection aiming to generate high-quality imaging data in early psychosis patients and healthy
controls (HCP Early Psychosis 1.1 Data Release: Reference Manual, 2021). This study includes
high-resolution structural and functional MRI data from 121 patients with early psychosis
(74 males) and 57 healthy individuals (37 males). Demographic information is provided in
Table 1. Data collection by HCP-EP has been approved by the Partners Healthcare Human
Research Committee/IRB and complies with the regulations set forth by the Declaration of
Helsinki (Lewandowski et al., 2020).

The patient group was composed of outpatients with psychosis, meeting criteria for affec-
tive or nonaffective psychosis, according to the DSM-5, who were within the first 5 years of
onset of symptoms. Patients were recruited by four clinical programs: Beth Israel Deaconess
Medical Center (BMH)–Massachusetts Mental Health Center (BIDMC-MMHC), Prevention of
and Recovery from Early Psychosis (PREP) Program; Indiana University Psychotic Disorders
Program, Prevention and Recovery for Early Psychosis (PARC); McLean Hospital, McLean
On Track; and Massachusetts General Hospital, First Episode and Early Psychosis Program
(FEPP) (HCP Early Psychosis 1.1 Data Release: Reference Manual, 2021). Imaging took place
in three of these sites.

Table 1. Demographic details. AP, affective psychosis; NAP, non-affective psychosis; PANSS, Positive
and Negative Syndrome Scale; IU, Indiana University; BMH, Beth Israel Deaconess Medical
Center; Control, healthy controls; M, males; F, females; age is given as mean (SD) in years at the
time of their first interview; antipsychotic exposure is given as median (range) in months at the time
of their first interview; PANSS total score is given as mean (SD); NIH cognition is given as the mean
(SD) of cognitive composite score, unadjusted for age, assessed by the NIH Toolbox.

Control AP NAP
Age 24.7 (4.1) 24.2 (4.3) 22.1 (3.3)

Sex 36M; 19F 7M; 19F 60M; 26F

Antipsychotic exposure (months) – 1.5 (0–54) 11.5 (0–56)

NIH cognition 113.5 (8.8) 108.9 (7.8) 98.2 (13.0)

PANSS total score – 40.7 (12.6) 48.8 (16.7)

Scan site

IU 23 7 48

BMH 26 9 30

McLean 6 10 8
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The control group included volunteers who did not present with anxiety disorders and/or
psychotic disorders, had no first-degree relative with schizophrenia spectrum disorder, were
not taking psychiatric medication at the time of the study, and had never been hospitalized for
psychiatric reasons. All participants were aged between 16 and 35 years old (mean = 23, SD =
±3.9) at the time of the study (Table 1). A total of 11 subjects were excluded because of
poor data quality, as detailed below, leaving a final sample of 55 (36 male) controls and
112 (67 male) patients.

Data Acquisition

The participants recruited from four locations were scanned at three sites: BMH; Indiana
University; and McLean Hospital, using Siemens MAGNETOM Prisma 3T scanners. The
acquisition parameters between the three sites were harmonized and followed the widely used
HCP protocol (Demro et al., 2021; HCP Early Psychosis 1.1 Data Release: Reference Manual,
2021). The project collected whole-brain T1-weighted MRI (T1w), T2-weighted MRI (T2w),
diffusion MRI, spin echo field maps with anterior to posterior and posterior to anterior phase
encoding directions, and consisted of four resting-state functional MRI (rsfMRI) sessions. The
current study uses the T1w and T2w images, the spin echo field maps, and the first two runs of
the rsfMRI scans. A 32-channel head coil was used at BMH and Indiana University. A 64-
channel head and neck coil, with neck channels turned off, was used at McLean Hospital.
Real-time image reconstruction and processing was performed for quality control, and scans
with detectable problems were repeated (HCP Early Psychosis 1.1 Data Release: Reference
Manual, 2021).

Structural MRI Acquisition Parameters

Acquisition parameters followed HCP standards. T1w images were obtained using a
magnetization-prepared rapid gradient-echo (MPRAGE), with 0.8 mm isotropic spatial resolu-
tion echo time (TE) = 2.22 ms, repetition time (TR) = 2,400 ms, and field of view (FoV) =
256 mm. T2w images were acquired following a 3D-SPACE sequence, with 0.8 mm isotropic
spatial resolution, TE = 563 ms, TR = 33,200 ms, and FoV = 256 mm (HCP Early Psychosis 1.1
Data Release: Reference Manual, 2021).

Functional MRI Acquisition Parameters

The present study mainly utilized the first rsfMRI run (with anterior to posterior phase
encoding). The second run (with posterior to anterior phase encoding) was used to validate
the parcellation with out-of-sample analysis of within-parcel homogeneity. Scans were
acquired for a length of 6.5 min, resulting in a total of 420 volumes; the first 10 volumes were
removed prior to the dataset release. Images have an isotropic spatial resolution of 2 mm, TE =
37 ms, TR = 800 ms, and FoV = 208 mm. A multiband acceleration factor of 8 was used to
improve spatial and temporal resolution (HCP Early Psychosis 1.1 Data Release: Reference
Manual, 2021).

Structural and Functional Image Analysis

Raw image quality control. All analyses were done on the MASSIVE high-performance comput-
ing facility (Goscinski et al., 2014). Raw structural and functional images were first visually
inspected for large artifacts and distortions. Images were then put through an automated
quality-control pipeline (MRIQC; Esteban et al., 2017), which computes 15 image quality

Schizophrenia:
A neurodevelopmental disorder
characterized by positive symptoms,
such as psychosis, and negative
symptoms, such as cognitive
impairment.
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metrics for each scan with the purposes of identifying outliers warranting closer inspection. At
this stage, three subjects were excluded for missing or unusable structural images.

Head motion is a major source of noise in fMRI signals. Its effects remain present even after
volume realignment and can introduce systematic bias in case-control studies when not strictly
controlled (Parkes et al., 2018; Power et al., 2012). Head motion during the fMRI scan was
estimated using framewise displacement (FD), which is a summary measure of the movement
of the head from one volume to the next (Parkes et al., 2018). For each scan, FD was calcu-
lated according to the method described by Jenkinson et al. (2002) and the resulting trace was
band-pass filtered and downsampled to account for the high sampling rate of the multiband
fMRI acquisition (Power et al., 2019). Subjects were excluded if they met at least one of the
following stringent exclusion criteria: scans had a mean filtered FD greater than 0.25 mm;
more than 20% of frames were displaced by more than 0.2 mm; or any frame was displaced
by more than 5 mm. These criteria have previously been shown to effectively mitigate motion-
related contamination in fMRI connectivity analyses (Parkes et al., 2018). In total, 11 subjects
(2 controls) were excluded for excessive head movement in the scanner.

Image preprocessing. T1w images were processed using FreeSurfer version 6.0.1 (Dale et al.,
1999) to generate cortical surface models for each participant. Surfaces were visually exam-
ined for inaccuracies and distortions. The fMRI data were processed according to the minimal
preprocessing pipeline for HCP data (Glasser et al., 2013). The pipeline adapts steps from
FMRIB Software Library (FSL) and FreeSurfer to account for greater spatial and temporal res-
olution and HCP-like distortions resulting from acquisition choices such as multiband accel-
eration (Glasser et al., 2013). Briefly, images were skull stripped by the brain extraction tool
(Smith, 2002) of FSL, which removes non-brain matter from the image. Skull-stripped T1w,
T2w, and fMRI were aligned using FMRIB’s linear image registration tool (FLIRT; Jenkinson
et al., 2002; Jenkinson & Smith, 2001). Spin echo EPI field maps with opposite phase-encoding
directions were used to estimate spatial distortion caused by magnetic field inhomogeneities,
with corrections applied using FSL’s topup tool (Andersson et al., 2003) and FLIRT. This
process was fine-tuned and optimized using FreeSurfer’s BBRegister (Greve & Fischl, 2009).
Furthermore, bias field correction was performed on structural images to remove gradients of
voxel intensity differences, following the HCP pipeline (Glasser et al., 2013). The fMRI
volumes were realigned to the first volume for each participant using FLIRT. The fMRI data
were then coregistered to their structural image, and the structural image was nonlinearly nor-
malized into standard Montreal Neurological Institute (MNI) ICBM152 space (Grabner et al.,
2006) using FLIRT and FMRIB’s nonlinear image registration tool (FNIRT) (Andersson et al.,
2010). The resulting transform was then applied to the functional data.

fMRI Denoising

The functional data were denoised using independent component analysis–based X-noiseifier
(FIX), which decomposes the data into spatially independent components and uses machine
learning to label each resulting component as either signal or noise (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). The preprocessed fMRI time series were then regressed against
the estimated noise component signals and the residuals were retained for further analysis.
Component decomposition was performed using multivariate exploratory linear optimized
decomposition into independent components (MELODIC) (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014). HCP’s training set—HCP_hp2000, which includes pretrained weights to classify
independent components—was used as the training set for the algorithm. A temporal high-pass
filter (2000s full width half maximum) was applied to remove low-frequency signal drifts, as
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recommended by the HCP preprocessing guideline (Glasser et al., 2013). Following HCP’s guide-
lines (Glasser et al., 2013), a lenient threshold component labelling in FIX was used (th = 10),
regressing out the noise components while controlling for the signal components. The accuracy
of the labels was manually verified. The analyses were repeated after applying global signal
regression (GSR), which removes widespread signal fluctuations associated with respiratory
variations (Aquino et al., 2020; Power et al., 2017) (see the Supporting Information).

Surface Registration

The processed images in MNI volume space were resampled to each individual’s cortical sur-
face, as generated by FreeSurfer, and then registered to the fsaverage5 template using a
surface-based registration algorithm (Dale et al., 1999; Fischl, 2012). Fsaverage5 is a standard
template generated by FreeSurfer; the resulting surface mesh comprises a total of 20,484
vertices.

Parcellations

We used group parcellations provided by Schaefer et al. (2018) as the basis for our analysis, as
this parcellation is widely used and has shown superior functional homogeneity compared
with other leading approaches (Schaefer et al., 2018). Our study focused on the 100-region
parcellation, organized into seven networks (s100), but we repeated the analyses using the
200-region variant to check the robustness of the results (see the Supporting Information).
Regions were screened for low BOLD signal intensity, with a method adapted from Brown
et al. (2019). Specifically, we found the elbow of the BOLD signal distribution, given by the
largest decrease in pairwise differences of the mean BOLD signal of each region. This was
used as a cutoff for signal dropout, and regions with lower signal than the cutoff were consid-
ered to have signal dropout. Regions that were found to have signal dropout in over 5% of
subjects were excluded before analysis. For the s100 atlas, 15 regions were excluded; for
the s200 atlas, 16 regions were excluded from further analysis.

To derive individually tailored parcellations, we used the group prior individualized parcel-
lation (GPIP) model (Chong et al., 2017), which relies on a Bayesian formulation with two
priors: one based on group FC and one that drives individualized parcel boundaries. The for-
mer uses a group sparsity constraint to represent FC between parcels, which allows the model
to maintain comparability between subjects. The latter uses a Markov random field in the form
of a Potts model to label the set of parcels and maximize the FC homogeneity within each
parcel based on individual data. This model allows for comparability between subjects, as
it maintains the same areas and labels for every individual while capturing the variability in
the shape and size of each parcel to best estimate each subject’s functional regions. Individ-
ualized parcel borders were optimized across 20 iterations, starting with the group-based
Schaefer atlas and iteratively alternating between updating individual borders and the group
FC prior. Further details are provided in Chong et al. (2017). The algorithm was applied to
patients and controls together.

For both group-based and individualized parcellations, mean time series were extracted for
each region in the s100 and s200 atlases using each individual’s spatially normalized and
denoised functional data. Product-moment correlations were then estimated for every pair
of regional time series to generate FC matrices. We consider only cortical areas here as, to
our knowledge, methods for developing individualized parcellations for subcortical and
cerebellar regions have not yet been developed.

BOLD signal:
Blood oxygen level–dependent
signal, used to infer neural activity,
measured by fMRI.
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Parcellation Homogeneity and Variability

To investigate the differences in parcels between the two parcellation approaches, we com-
puted how many vertices were reassigned to a different parcel after applying GPIP. We then
compared the number of vertices relabeled between patients and controls at ROI and whole-
brain levels. All between-group statistical analyses were evaluated using permutation-based
inference, with 5,000 permutations, unless otherwise indicated. Statistically significant effects
for ROI-level analysis were identified using an FDR-corrected (Benjamini & Hochberg, 1995)
threshold of pFDR < 0.05, two-tailed.

We compared the within-parcel functional homogeneity of the group-based and individu-
alized parcellations as per prior work (Chong et al., 2017; Schaefer et al., 2018). We calcu-
lated the average FC between all pairs of vertices in a given parcel i, denoted FCi. Then,
parcellation homogeneity H was normalized by parcel size as follows:

H ¼
Pn

i¼1 FCi �NViPn
i¼1 NVi

;

where n is the total number of parcels in the parcellation and NV is the number of vertices in
the ith parcel. This analysis was done out of sample, on functional scans from the second run
(phase encoding = posterior to anterior) with parcellations generated for scans from the first
run (phase encoding = anterior to posterior).

To measure intrasubject reliability, we also computed homogeneity scores in the first run
and compared these results between parcellation approaches, using the intraclass correlation
coefficient.

Case-Control Differences in Interregional Functional Coupling

We assessed how parcellation type influences FC differences between patients with psychosis
and healthy controls in three ways. First, we examined the distribution of unthresholded t sta-
tistics obtained at each edge using a general linear model to quantify mean differences
between patient and control groups. This and all subsequent analyses are controlled for
age, sex, test site, and mean FD. The contrast was specified such that a larger t statistic indi-
cated lower FC in patients, compared with controls. To compare the similarity of the symmet-
ric t matrices, we vectorized their upper triangles and computed their Spearman correlation.
The effect of parcellation type was evaluated using a shift function test on these distributions
(Rousselet et al., 2017) to evaluate whether differences between parcellations were restricted
to specific quantiles of the t statistic distributions (rather than just comparing the means of
these distributions). The shift function computes the difference in value of the nine deciles
of the distributions. For inference, it computes the 95% confidence interval associated with
each decile difference, based on a bootstrap estimation of the standard error of each decile,
controlling for multiple comparisons, via the Hochberg’s method. This analysis thus allowed
us to determine whether parcellation type preferentially affected results for edges that showed
small, moderate, or large case-control differences.

Second, we compared thresholded results obtained with the network-based statistic
(Zalesky, Fornito, & Bullmore, 2010). NBS is an adaptation of cluster-based statistics for net-
work data. A primary threshold of p = 0.05, uncorrected, was applied to the matrix of t statis-
tics obtained using the general linear model described above. Results were repeated with a
threshold p = 0.01 and 0.001. The sizes of the connected components of the resulting network
(in terms of number of edges) were then estimated. In this context, the connected components
represent sets of nodes through which a path can be found via supra-threshold edges. The
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group labels (patients and controls) were permuted 5,000 times and the previous steps were
repeated. At each step, the size of the largest connected component was retained, resulting in
an empirical distribution of maximal component sizes under the null hypothesis. The fraction
of null values that exceeded the observed component sizes corresponds to a family-wise cor-
rected p value for each component. The test was repeated with different family-wise error rate
corrected p values = 0.05, 0.01, and 0.001, all resulting in the same connected component.
By performing inference at the level of connected components rather than individual edges,
the NBS results in greater statistical power than do traditional mass univariate thresholding
methods (Zalesky, Fornito, & Bullmore, 2010). This analysis was repeated for each parcella-
tion type (i.e., group-based and individualized) and scale (i.e., s100 and s200). Differences
between significant component sizes observed using the two parcellation methods were
then estimated and evaluated with respect to the differences between null component sizes
estimated for the two approaches.

We calculated changes in parcel size between parcellation approaches for patients and
controls. We compared parcel size difference with a two-sample t test between patients and
controls. To understand how parcel size impacted FC measures, we calculated the Spearman’s
rho correlation between the t values for parcel size and mean dysconnectivity per parcel and
degree of dysconnectivity. The p values were calculated with a spin permutation test, with
5,000 permutations (Alexander-Bloch et al., 2018).

Finally, we examined how parcellation type affects case-control differences at the level of
seven canonical networks. We considered the control network; the default mode network; the
dorsal attention network; the limbic network; the salience/ventral attention network; the soma-
tomotor network; and the visual network using the seven Yeo network assignments associated
with the s100 and s200 atlases (Yeo et al., 2011). Specifically, we quantified the number of
edges in the significant NBS component that fell within and between these seven networks.
We examined both raw edge counts and counts normalized for the size of each
network/network pair and quantified the correlation between the resulting network-level
matrices obtained for each parcellation type.

DATA AVAILABILITY

Code used for analysis and image generation can be found online at https://github.com
/NSBLab/individualised_parc_psychosis, and code for individualized parcellation can be
acquired online at https://neuroimageusc.github.io/GPIP.
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