
resistance (MIC ≥64 mg/L) resulted in a positive test result after 
only 3 h; however, those with resistant MICs closer to the break-
point (32 mg/L) required 4 h. The test was shown to be effective re-
gardless of the Enterobacterales species, β-lactamase content and 
overall mechanism of resistance. This rapid test could be easily im-
plemented in a clinical laboratory and can be set up alongside rou-
tine antimicrobial susceptibility testing methodologies (AST), but 
providing a result 14–20 h earlier than traditional AST and poten-
tially sparing the use of other β-lactams such as the carbapenems. 
These results show that as the use of temocillin to treat 
Gram-negative infections becomes more commonplace, such a 
test can prove useful in determining targeted rather than simply 
empirical therapy in a relatively short time frame.
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Figure 1. An example of a negative and positive test result. 0 = test so-
lution containing no temocillin; 16 = test solution containing temocillin at 
a final concentration of 16 mg/L. T17, E. coli isolate with an MIC of 
16 mg/L, T72, K. pneumoniae isolate with an MIC of 64 mg/L. This figure 
appears in colour in the online version of JAC and in black and white in 
the print version of JAC.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

2771

Research letters                                                                                                                                                

http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad243#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkad243#supplementary-data
https://doi.org/10.1128/AAC.22.3.453
https://doi.org/10.1128/AAC.22.3.453
https://doi.org/10.1128/AAC.26.3.335
https://doi.org/10.1093/jac/dkl043
https://doi.org/10.1093/jac/dkl043
https://doi.org/10.1007/s10096-020-03844-5
https://doi.org/10.1007/s10096-020-03844-5
https://doi.org/10.1016/j.ijantimicag.2011.01.012
https://doi.org/10.1016/j.ijantimicag.2011.01.012
https://doi.org/10.1093/jacamr/dlab192
https://doi.org/10.1093/jac/dkn511
https://doi.org/10.1016/j.cmi.2015.05.022
https://doi.org/10.1016/j.cmi.2015.05.022
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf
https://doi.org/10.1093/jac/dkz397
https://doi.org/10.1016/j.diagmicrobio.2010.12.002
https://doi.org/10.1093/jac/dkad253
https://orcid.org/0000-0002-3564-8603
mailto:smancini@imm.uzh.ch
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Acinetobacter baumannii is a major cause of hospital-acquired 
infections and among the top five pathogens associated with 
mortality.1 Due to its ability to rapidly acquire antimicrobial re-
sistance traits, MDR isolates have been reported worldwide. 
Carbapenem-resistant A. baumannii (CRAB) are a particular 
concern, as only few treatment options, including colistin, tige-
cycline/eravacycline and cefiderocol, are currently available. 
For this reason, this pathogen has been listed by the WHO as 
‘priority 1’ pathogen for research of new antimicrobials.2 In 
this context, rapid diagnostics is crucial to guide best antibiotic 
treatment3 and to prevent nosocomial transmission of CRAB. 
The most prevalent acquired carbapenemases in A. baumannii 
are class D oxacillinases, including the OXA-23, OXA-40 and 
OXA-58 groups. Other less frequently acquired carbapenemases 
include class A (e.g. carbapenemase variants of GES-type) and 
class B MBLs (e.g. NDM, VIM and IMP). Existing phenotypic meth-
ods are quite labour-intensive and exhibit variable performances 

in detecting carbapenemase production in A. baumannii.4,5

Molecular methods including PCR or loop-mediated isothermal 
amplification (LAMP) assays allow for accurate detection of 
most prevalent carbapenemase genes but require expensive 
equipment.6 Isothermal detection methods combined with lat-
eral flow strips have been recently developed for rapid detection 
of the most prevalent carbapenemase genes in A. baumannii, 
but currently these assays are not commercially available.7

Immunochromatographic lateral flow assays (LFIAs) for the de-
tection of carbapenemase-producing A. baumannii isolates are 
available on the market, but only allow detection of single carba-
penemase types, such as OXA-23 (OXA-23 K-SeT, Coris 
BioConcept, Belgium) or metallo-carbapenemases (NG-Biotech, 
France).8 A recently developed type of LFIA for rapid detection 
of the most prevalent acquired carbapenemases in A. baumannii, 
including OXA-23, OXA-40/58 and NDM-types, is the ‘RESIST 
ACINETO’ assay (Coris BioConcept, Belgium).9 It is important 

Figure 1. Phylogenetic neighbour-joining tree of A. baumannii. The tree was generated in Ridom SeqSphere+ based on core genes with associated 
metadata in columns, from left to right: ST (Pasteur), intrinsic oxacillinases identified in the genome, acquired carbapenemases and RESIST 
ACINETO result (green for congruent result).
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here to note that although OXA-40 and OXA-58 belong to differ-
ent families of OXA carbapenemases, their detection is combined 
in a single band and thus cannot be distinguished. This may 
represent a drawback for tracking certain types of outbreaks.

Here we evaluate retrospectively the diagnostic performance of 
this new assay using a collection of 131 A. baumannii clinical isolates 
(Figure 1). Fourteen strains were obtained from the Institut Pasteur’s 
strain collection (https://www.pasteur.fr/en/public-health/biobanks- 
and-collections/collection-institut-pasteur-cip), while the remaining 
117 clinical isolates were derived from single patients between 
January 2014 and December 2022 in the routine diagnostic labora-
tory of the Institute of Medical Microbiology at the University of 
Zurich. Of these, 106 exhibited carbapenem-resistant profiles, while 
25 were susceptible to carbapenems. β-Lactamase-genes were de-
tected by WGS, which was performed using our in-house available 
Illumina MiSeq platform with paired-end 150-nt reads. Intrinsic oxa-
cillinases, as well as acquired carbapenem resistance markers, in-
cluding carbapenemases and ESBLs, were detected using Unicycler 
v0.4.8 assemblies10 in combination with ABRicate (https://github. 
com/tseemann/abricate) and the NCBI database.11 All strains were 
typed in Ridom SeqSphere+ by MLST according to the Pasteur (ST) 
scheme and in addition with core-genome MLST.12 RESIST 
ACINETO was performed on isolated colonies grown overnight on 
blood agar plates (tryptic soy agar with 5% sheep blood, 
bioMérieux, France) at 37°C according to the manufacturer’s instruc-
tions. All genomes were submitted to the ENA (https://www.ebi.ac. 
uk/ena/browser) under project number PRJEB62871.

The strain collection comprised 25 carbapenemase-negative 
and 106 carbapenemase-producing isolates. Seventy-two of 106 
isolates harboured blaOXA-23 (68%), 17 blaOXA-72 (16%), three 
blaOXA-58 and one blaOXA-40, while three isolates carried two oxacil-
linase genes (two blaOXA-23/blaOXA-58 and one blaOXA-23/blaOXA-72). 
Four isolates harboured blaNDM-1 and one blaNDM-2, while the re-
maining carbapenemase producers harboured a combination of 
genes coding for NDM-1 and an oxacillinase (two blaNDM-1/ 
blaOXA-23, three blaNDM-1/blaOXA-72). The A. baumannii isolates be-
longed to 34 different STs, with ST2 being the most prevalent (58/ 
131; 36.7%).

RESIST ACINETO correctly identified all six carbapenemase var-
iants, including those from the isolates producing two carbapene-
mases, thus exhibiting excellent sensitivity (100%). Strong bands 
appeared within 5–10 min of incubation in all but one case, where 
a faint band corresponding to NDM emerged at 15 min incubation. 
Nonetheless this isolate was classified as a true positive. OXA-72 
was identified as a member of the OXA-40 group of OXA 
β-lactamases. No false positive results, which might also arise 
due to cross-reactivity with one of the 23 detected intrinsic 
OXA-51-like oxacillinases, among which OXA-66 was the most 
prevalent (66/131, 50.4%), were observed (specificity 100%).

A limitation of our study is that the collection of A. baumannii 
isolates is biased and reflects the epidemiological situation of the 
Zurich region in Switzerland, with only six different carbapene-
mase variants identified so far. Also, while some types were 
abundantly present, such as OXA-23 (68%), other globally pre-
sent types, such as OXA-40, were underrepresented (1%). 
Moreover, in this study the performance of the RESIST ACINETO 
was tested on A. baumannii colonies grown on blood agar plates. 
Considering that most laboratories identify A. baumannii on 
Columbia agar or MacConkey agar plates, further studies with a 

more diverse collection of carbapenemase variants and isolates 
grown on different media are warranted to fully evaluate the ro-
bustness of the method.

In conclusion, RESIST ACINETO provides a reliable test for the 
detection of the most prevalent carbapenemases in A. bauman-
nii. The sensitivity and specificity from isolated colonies of over-
night growth is excellent (each 100%).
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The multiresistance gene cfr encodes a 23S rRNA methyltransfer-
ase that confers resistance to five classes of antimicrobial agents 
widely used to treat infections in humans and animals, including 
oxazolidinones (limited to linezolid), phenicols, lincosamides, 
pleuromutilins and streptogramin A. It has been globally dissemi-
nated among Gram-positive bacteria such as Staphylococcus 
and Enterococcus from animals, food products, humans 
and the environment, and has occasionally been identified in 
some Gram-positive bacteria such as Bacillus, Macrococcus, 
Jeotgalicoccus and Streptococcus, and Gram-negative bacteria 
including Escherichia coli, Proteus, Providencia rettgeri, 
Morganella morganii, Pasteurella multocida, Leclercia adecarbox-
ylata, Vibrio diabolicus and Salmonella from food-producing 

animals, pig feed or seafood in China.1–4 Here we report the first 
detection of cfr in Klebsiella pneumoniae from pig feed in China.

On 23 September 2022, 48 samples including pig faeces (n = 30), 
feed (n = 14) and water (n = 4) were obtained from a pig farm in 
Shanghai, China. Samples were incubated in LB broth for 16–24 h 
and then inoculated onto MacConkey agar. A colony per plate 
was randomly selected and a total of 45 isolates were obtained. 
We detected the presence of cfr by PCR and sequencing as previ-
ously described,5 and found that one isolate, SH22PE16 (2.22%), 
from a pig feed sample was positive for cfr. This cfr-carrying iso-
late SH22PE16 was classified as K. pneumoniae by 16S rRNA gene 
sequencing.6 MICs for SH22PE16 to 12 antimicrobial agents were 
determined using the agar dilution method or broth microdilu-
tion method (limited to colistin and tigecycline). The results 
were interpreted according to the clinical breakpoints for 
Enterobacterales (version 13) or epidemiological cut-off for K. 
pneumoniae set by EUCAST (https://www.eucast.org/). The 
cfr-positive K. pneumoniae isolate SH22PE16 exhibited resistance 
to numerous antibiotics, including ampicillin, cefotaxime, genta-
micin, tetracycline, tigecycline, florfenicol, ciprofloxacin, fosfomy-
cin and sulfamethoxazole/trimethoprim, but was susceptible to 
meropenem, amikacin and colistin (Table S1, available as 
Supplementary data at JAC Online).

To better characterize the cfr-positive K. pneumoniae isolate 
SH22PE16, the whole genome was sequenced using the 
Illumina NovaSeq 6000 platform combined with Nanopore 
MinION. The raw data were assembled using Unicycler version 
0.4.3.8 and were analysed by multilocus sequence typing, 
resistance genes, mutations and plasmid replicons using 
the Center for Genomic Epidemiology pipeline (http://www. 
genomicepidemiology.org/). SH22PE16 belonged to ST5979, 
and carried one circular chromosome (5 106 356 bp) and five 
plasmids (pYUSHP16-1 to pYUSHP16-5; 2.5 to 218.9 kb) 
(Table S2). The WGS data of the K. pneumoniae isolate 
SH22PE16 are available under the BioProject ID PRJNA957058. 
It contained numerous resistance genes in the chromosome 
or plasmids, such as blaSHV-27, blaCTX-M-3, tet(A), floR, oqxAB, 
qnrB91 and fosA (Table S2), and had a single mutation in gyrA 
(S83I), consistent with its susceptibility profiles. Although tige-
cycline resistance genes tet(X) and tmexCD-toprJ were not iden-
tified, the presence of the tet(A) variant in plasmid pYUSHP16-2, 
previously described to be associated with tigecycline resistance 
in K. pneumoniae,7,8 may account for its resistance to tigecycline 
(MIC = 8 mg/L).

Among them, cfr and additional resistance genes (blaLAP-2 and 
qnrS1) were co-located on the 53 498 bp plasmid pYUSHP16-3, 
which could not be typeable to any known plasmid incompatibil-
ity groups. It was highly similar (>99.99% nucleotide identity and 
90.92% coverage) to our previously reported cfr-carrying 56  
309 bp plasmid pYUSHP29-3 of L. adecarboxylata from pig feed 
(GenBank accession no. CP087283) obtained from the same pig 
farm in 20192 (Figure 1a). To test the transferability of cfr, conju-
gation experiments were performed using streptomycin- 
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