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Age-dependent topic modeling of 
comorbidities in UK Biobank identifies 
disease subtypes with differential  
genetic risk

Xilin Jiang    1,2,3,4,5,6  , Martin Jinye Zhang    4,7,18, Yidong Zhang1,8,9,18, 
Arun Durvasula4,7,10,11,18, Michael Inouye5,6,12,13,14,15,16, Chris Holmes1,2,16, 
Alkes L. Price    4,7,17,19   & Gil McVean    1,19 

The analysis of longitudinal data from electronic health records (EHRs) 
has the potential to improve clinical diagnoses and enable personalized 
medicine, motivating efforts to identify disease subtypes from patient 
comorbidity information. Here we introduce an age-dependent topic 
modeling (ATM) method that provides a low-rank representation of 
longitudinal records of hundreds of distinct diseases in large EHR datasets. 
We applied ATM to 282,957 UK Biobank samples, identifying 52 diseases with 
heterogeneous comorbidity profiles; analyses of 211,908 All of Us samples 
produced concordant results. We defined subtypes of the 52 heterogeneous 
diseases based on their comorbidity profiles and compared genetic risk 
across disease subtypes using polygenic risk scores (PRSs), identifying  
18 disease subtypes whose PRS differed significantly from other subtypes 
of the same disease. We further identified specific genetic variants with 
subtype-dependent effects on disease risk. In conclusion, ATM identifies 
disease subtypes with differential genome-wide and locus-specific genetic 
risk profiles.

Longitudinal electronic health record (EHR) data, encompassing diag-
noses across hundreds of distinct diseases, offers immense potential to 
improve clinical diagnoses and enable personalized medicine1. Despite 
intense interest in both the genetic relationships between distinct 
diseases2–11 and the genetic relationships between biological subtypes 
of disease12–15, there has been limited progress on classifying disease 
phenotypes into groups of diseases with frequent co-occurrences 
(comorbidities) and leveraging comorbidities to identify disease sub-
types. Low-rank modeling has appealing theoretical properties16,17 and 
has produced promising applications18–24 to infer meaningful repre-
sentations of high-dimensional data. In particular, low-rank repre-
sentation is an appealing way to summarize data across hundreds of 
distinct diseases25–27, providing the potential to identify patient-level 

comorbidity patterns and distinguish disease subtypes. The biological 
differentiation of disease subtypes inferred from EHR data could be 
validated by comparing genetic profiles across subtypes, which is pos-
sible with emerging datasets that link genetic data with EHR data28–31.

Previous studies have used low-rank representation to identify 
shared genetic components25–27 across multiple distinct diseases, 
identifying relationships between diseases and generating valuable 
biological insights. However, age at diagnosis information in longitu-
dinal EHR data has the potential to improve such efforts. For example, 
a recent study used longitudinal disease trajectories to identify disease 
pairs with statistically significant directionality32, suggesting that age 
information could be leveraged to infer comorbidity profiles that 
capture temporal information. In addition, patient-level comorbidity 
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‘topic weights’ for several ‘disease topics’. Each disease topic reflects 
a set of diseases that tend to co-occur as a function of age, quanti-
fied by age-dependent ‘topic loadings’ for each disease. The model 
assumes that, for each disease diagnosis, a topic is sampled based on 
the individual’s topic weights (which sum to 1 across topics, for a given 
individual), and a disease is sampled based on the individual’s age and 
the age-dependent topic loadings (which sum to 1 across diseases, 
for a given topic at a given age). The model generalizes the latent Dir-
ichlet allocation (LDA) model37,38 by allowing topic loadings for each 
topic to vary with age (Supplementary Note and Extended Data Fig. 1).

We developed a method to fit this model that addresses several 
challenges inherent to large EHR datasets. The method estimates topic 
weights for each individual, topic loadings for each disease and poste-
rior diagnosis-specific topic probabilities for each disease diagnosis. 
First, we derived a scalable deterministic method that uses numeri-
cal approximation approaches to fit the parameters of the model, 
addressing the challenge of computational cost. Second, we used the 
prediction odds ratio39 to compare model structures (for example, 
number of topics and parametric form of topic loadings as a function 
of age), addressing the challenge of appropriate model selection; 
roughly, the prediction odds ratio quantifies the accuracy of correctly 
predicting disease diagnoses in held-out individuals using comorbidity 

information could potentially be leveraged to identify biological sub-
types of the disease, complementing its application to increase power 
for identifying genetic associations12 and to cluster disease-associated 
variants into biological pathways8; disease subtypes are fundamental 
to disease etiology14,33–36.

Here we propose an age-dependent topic modeling (ATM) method 
to provide a low-rank representation of longitudinal disease records. 
ATM learns, and assigns to each individual, topic weights for several 
disease topics, each of which reflects a set of diseases that tend to 
co-occur within individuals as a function of age. We applied ATM to 
1.7 million disease diagnoses spanning 348 diseases in the UK Biobank, 
inferring ten disease topics; we validated ATM in All of Us. We identified 
52 diseases with heterogeneous comorbidity profiles that enabled us 
to define disease subtypes. We used genetic data to validate the disease 
subtypes, showing that they exhibit differential genome-wide and 
locus-specific genetic risk profiles.

Results
Overview of methods
We propose an ATM model, which provides a low-rank representa-
tion of longitudinal records of hundreds of distinct diseases in large 
EHR datasets (Fig. 1; Methods). The model assigns to each individual 
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Fig. 1 | ATM provides an efficient way to represent longitudinal comorbidity data. Top left, input consists of disease diagnoses as a function of age. Top right, ATM 
assigns a topic weight to each patient. Bottom, ATM infers age-dependent topic loadings.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | November 2023 | 1854–1865 1856

Article https://doi.org/10.1038/s41588-023-01522-8

information, compared to a predictor based only on prevalence (Meth-
ods; Supplementary Table 1). Third, we used collapsed variational infer-
ence40, addressing the challenge of sparsity in the data (for example, in 
UK Biobank data, the average patient has diagnoses for 6 of 348 diseases 
analyzed); collapsed variational inference outperformed mean-field 
variational inference37 in empirical data. Further details are provided 

in the Methods and Supplementary Note; we have publicly released 
open-source software implementing the method (Code availability).

We applied ATM to longitudinal records of UK Biobank29 (282,957 
individuals with 1,726,144 disease diagnoses spanning 348 diseases; the 
targeted individuals are those diagnosed with at least two of the 348 
diseases studied) and All of Us30 (211,908 individuals with 3,098,771 
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95% confidence intervals. a, Twenty-year difference in age at diagnosis for the  
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disease diagnoses spanning 233 of the 348 diseases). Each disease 
diagnosis has an associated age-at-diagnosis, defined as the earliest 
age of reported diagnosis of the disease in that individual; we caution 
that age at diagnosis may differ from age at disease onset (Discussion). 
ATM does not use genetic data, but we used genetic data to validate the 
inferred topics (Methods).

Simulations
We performed simulations to compare ATM with LDA37,38, a simpler topic 
modeling approach that does not model age. Choices of simulation 
parameters that resemble real data are described in Supplementary 
Note. We assigned each disease diagnosis to one of two subtypes for the 
target disease based on age and other subtype differences, considering 
high, medium or low age-dependent effects by specifying an average 
difference of 20, 10 or 5 years, respectively, in age at diagnosis for the 
two subtypes. For each level of age-dependent effects, we varied the 
proportion of diagnoses belonging to the first subtype (that is, the 
subtype that has an earlier average age-at-diagnosis) from 10% to 50%. 
Our primary metric for evaluating the LDA and ATM methods is the area 
under the precision–recall curve (AUPRC)41 metric, where precision is 
defined as the proportion of disease diagnoses that a given method 
assigned to the first subtype that was assigned correctly, and recall is 
defined as the proportion of disease diagnoses truly belonging to the 
first subtype that was assigned correctly. We discretized the subtype 
assigned to each disease diagnosis by a given method by assigning 
the subtype with higher inferred probability. We used AUPRC (instead 
of prediction odds ratio) in our simulations because the underlying 
truth is known. Further details and justifications of metrics used in 
this study are provided in the Methods, Supplementary Note and Sup-
plementary Table 1.

In simulations with high age-dependent effects, ATM attained 
much higher AUPRC than LDA across all values of subtype sample size 
proportion (AUPRC difference: 24–42%), with both methods perform-
ing better at more balanced ratios (Fig. 2 and Supplementary Table 2).  
Accordingly, ATM attained both higher precision and higher recall 
than LDA (Supplementary Fig. 1). Results were qualitatively similar 
when using the second subtype as the classification target (Supple-
mentary Fig. 2). In simulations with medium or low age-dependent 

effects, ATM continued to outperform LDA, but with smaller differ-
ences between the methods. In simulations without age-dependent 
effects, ATM slightly underperformed LDA (Supplementary Fig. 3a). 
Three secondary analyses are described in the Supplementary Note 
and Supplementary Figs. 3 and 4.

We conclude that ATM (which models age) assigns disease diagno-
ses to subtypes with higher accuracy than LDA (which does not model 
age) in simulations with age-dependent effects. We caution that our 
simulations largely represent a best-case scenario for ATM given that 
the generative model and inference model are very similar (although 
there are some differences, for example, topic loadings were generated 
using a model different from the inference model), thus it is important 
to analyze empirical data to validate the method.

Age-dependent comorbidity profiles in the UK Biobank
We applied ATM to longitudinal hospital records of 282,957 individuals 
from the UK Biobank with an average record span of 28.6 years29. We 
used Phecode42 to define 1,726,144 disease diagnoses spanning 348 
diseases with at least 1,000 diagnoses each. The average individual had 
6.1 disease diagnoses, and the average disease had a s.d. of 8.5 years in 
age at diagnosis. The optimal inferred ATM model structure has ten 
topics and models age-dependent topic loadings for each disease as 
a spline function with one knot, based on optimizing prediction odds 
ratio (see below). We assigned names (and corresponding acronyms) to 
each of the ten inferred topics based on the Phecode systems42 assigned 
to diseases with high topic loadings (aggregated across ages) for that 
topic (Table 1 and Supplementary Table 3).

Age-dependent topic loadings across all ten topics and 348 dis-
eases (stratified into Phecode systems), summarized as averages across 
age <60 years and age ≥60 years, are reported in Fig. 3, Extended Data 
Fig. 2 and Supplementary Table 4. Some topics such as neoplasms, 
respiratory, infectious diseases (NRI) span diseases across the majority 
of Phecode systems, while other topics such as arthropathy-related dis-
ease (ARP) are concentrated in a single Phecode system. Conversely, a 
single Phecode system may be split across multiple topics, for example, 
diseases of the digestive system are split across upper gastrointestinal 
disease (UGI), lower gastrointestinal disease (LGI) and musculoskeletal, 
digestive, symptoms (MDS). We note that topic loadings in diseases that 

Table 1 | Summary of ten inferred disease topics in the UK Biobank

Acronyms Disease systems Representative diseases Number of associated 
diseases

NRI Neoplasms, respiratory, infectious diseases Secondary malignancy of lymph nodes; pneumococcal 
pneumonia; bacterial infection NOS

53

CER Circulatory system, endocrine/metabolic, 
respiratory

Type 2 diabetes; obesity; chronic airway obstruction 41

SRD Sense organs, respiratory, dermatologic Cataract; septal deviations/turbinate hypertrophy; benign 
neoplasm of skin

38

CVD Cardiovascular disease Hypercholesterolemia; coronary atherosclerosis; myocardial 
infarction

27

UGI Upper gastrointestinal disease Diaphragmatic hernia; benign neoplasm of other parts of 
digestive system; gastritis and duodenitis

22

LGI Lower gastrointestinal disease Irritable bowel syndrome; benign neoplasm of colon; anal and 
rectal polyp

13

FGND Female genitourinary, neoplasms, digestive Uterine leiomyoma; malignant neoplasm of female breast; 
hypothyroidism NOS

34

MGND Male genitourinary, neoplasms, digestive Urinary tract infection; cancer of prostate; other disorders of 
bladder

33

MDS Musculoskeletal, digestive, symptoms Back pain; cholelithiasis; other disorders of soft tissues 29

ARP Arthropathy-related disease Arthropathy NOS; rheumatoid arthritis; enthesopathy 26

For each topic, we list its three-letter acronym, disease systems, representative diseases and number of associated diseases (defined as diseases with average diagnosis-specific topic 
probability >50% for that topic). Topics are ordered by the Phecode system (Fig. 3). In total, 316 of 348 diseases analyzed are associated with a topic; the remaining 32 diseases do not have a 
topic with average diagnosis-specific topic probability >50%. NOS, not otherwise specified.
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span multiple topics are heavily age-dependent. For example, patients 
with type 2 diabetes assigned to the cardiovascular disease (CVD) topic 
are associated with early onset of type 2 diabetes, whereas patients 
with type 2 diabetes assigned to the male genitourinary, neoplasms, 
digestive (MGND) topic are associated with late onset of type 2 diabetes.

We performed seven secondary analyses to validate the integrity 
and reproducibility of inferred comorbidity topics. First, we fit ATM 
models with different model structures using 80% training data and 
computed their prediction odds ratios using 20% testing data. The 
ATM model structure with ten topics and age-dependent topic loadings 
modeled as a spline function performed optimally (Supplementary 
Fig. 5; Methods). Second, we confirmed that ATM (which models age) 
attained higher prediction odds ratios than LDA (which does not model 
age) across different values of the number of topics (Extended Data 
Fig. 3). For the optimal model with ten topics, ATM attained an aver-
age prediction odds ratio of 1.71, compared to a prediction odds ratio 
of 1.58 for LDA. Third, we compared the topic loadings by repeating 
the inference on female-only or male-only populations and observed 
no major discrepancies, except for genitourinary topics MGND and 
female genitourinary, neoplasms, digestive (FGND; topic loading R2 
(female versus all) = 0.788, topic loading R2 (male versus all) = 0.773; 
Extended Data Fig. 4). Fourth, we verified that body mass index (BMI), 

sex, Townsend deprivation index and birth year explained very little of 
the information in the inferred topics (Supplementary Table 3). Three 
additional secondary analyses are described in the Supplementary 
Note, Supplementary Figs. 6–8 and Supplementary Table 1.

Disease topics capture known biology and the age-dependency 
of comorbidities for the same diseases. For example, the early onset 
of essential hypertension is associated with the CVD topic43, which 
captures the established connection between lipid dysfunction (hyper-
cholesterolemia) and CVDs44, whereas the later onset of essential hyper-
tension is associated with the circulatory system, endocrine/metabolic, 
respiratory (CER) topic, which pertains to type 2 diabetes, obesity and 
chronic obstructive pulmonary disease (COPD) (Fig. 4a). Continuously 
varying age-dependent topic loadings for all ten topics, restricted to 
diseases with high topic loadings, are reported in Supplementary Fig. 9  
and Supplementary Table 5. We note that most diseases have their 
topic loadings concentrated into a single topic (Fig. 4b, Supplementary  
Fig. 10a and Supplementary Table 4) and that most individuals have 
their topic weights concentrated into 1–2 topics (Fig. 4c and Supple-
mentary Fig. 10b). For diseases spanning multiple topics (Extended 
Data Fig. 2 and Supplementary Table 4), the assignment of patients  
with type 2 diabetes to the CVD topic is consistent with known  
pathophysiology and epidemiology45,46 and has been shown in other 
comorbidity clustering studies, for example, with the β cell and  
lipodystrophy subtypes described in ref. 35 and the severe insulin- 
deficient diabetes subtype described in ref. 14, which are character-
ized by early onset of type 2 diabetes and have multiple morbidities 
including hypercholesterolemia, hyperlipidemia, and cardiovascular 
diseases47. In addition, early-onset breast cancer and late-onset breast 
cancer are associated with different topics, for example, NRI and FGND, 
consistent with known treatment effects for patients with breast cancer 
that increase susceptibility to infections, especially bacterial pneumo-
nias48 and hypothyroidism49. We conclude that ATM identifies latent 
disease topics that robustly compress age-dependent comorbidity 
profiles and capture disease comorbidities both within and across 
Phecode systems.

Age-dependent comorbidity profiles in All of Us
To assess the transferability of inferred topics between cohorts, we 
applied ATM to longitudinal data from 211,908 All of Us samples30. 
We analyzed 3,098,771 diagnoses spanning 233 of the 348 diseases 
analyzed in UK Biobank for which data were available. The average 
individual had 14.6 disease diagnoses, and an average disease had a 
standard deviation of 14.0 years in age at diagnosis. The optimal model 
for All of Us included 13 topics (Supplementary Figs. 11 and 12a,b and 
Supplementary Table 6). Most diseases have their topic loadings con-
centrated into a single topic, and most individuals have their topic 
weights concentrated into 1–4 topics (Supplementary Fig. 13).

We assessed the concordance between each UK Biobank topic and 
each All of Us topic by computing the correlation between the respec-
tive topic loadings across the 233 diseases analyzed in both datasets 
(Fig. 5a,b, Supplementary Fig. 14 and Supplementary Table 7). The 
median correlation between the ten UK Biobank topics and the most 
similar All of Us topic was 0.54, confirming the qualitative alignment 
of topic loadings between All of Us and UK Biobank. For example, the 
topic loadings of CVD and CER topics were qualitatively similar to the 
most similar All of Us topics (Fig. 5a versus Figure 4a), even though 
disease prevalences differ between the two cohorts (Supplementary 
Table 8). When using the optimal All of Us model (13 topics) to predict 
diagnoses in UK Biobank, we obtained a prediction odds ratio that was 
significantly larger than 1 (mean = 1.32; jackknife s.e. = 0.0027; Supple-
mentary Fig. 12c). Key differences between All of Us and UK Biobank 
data are described in the Supplementary Note.

For each of the 233 diseases, we assessed the concordance between 
UK Biobank and All of Us topic assignments for that disease by com-
puting the correlation between UK Biobank topic assignments and 
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All of Us topic assignments that were mapped to UK Biobank topics 
(by weighting by correlations between topics; Methods). The average 
correlation between UK Biobank and All of Us topic assignments for the 
same disease was 0.70 (versus average correlation of 0.02 for different 
diseases; Fig. 5c, Extended Data Fig. 5 and Supplementary Table 9). We 
conclude that ATM identifies latent disease topics from the All of Us 
cohort that align with topics from the UK Biobank.

Comorbidity-based subtypes are genetically heterogeneous
We sought to define disease subtypes in UK Biobank data based on the 
topic weights of each patient and diagnosis-specific topic probabilities 
of each disease diagnosis. In some analyses, we used ‘continuous-valued 
topic weights’ to model disease subtypes. In analyses that require dis-
crete subtypes, we assigned a discrete topic assignment to each disease 
diagnosis based on its maximum diagnosis-specific topic probability 

and inferred the ‘comorbidity-derived subtype’ of each disease diag-
nosis based on the discrete topic assignment; we note that discretizing 
continuous data loses information (Discussion). We restricted our 
disease subtype analyses to 52 diseases with at least 500 diagnoses 
assigned to each of two discrete subtypes; the average correlation 
between UK Biobank and All of Us disease subtypes (see above; same 
metric as Fig. 5c) was 0.64 for the 41 (of 52) diseases that were shared 
between the two cohorts (Methods; Extended Data Fig. 2, Supplemen-
tary Fig. 12d and Supplementary Tables 10 and 11).

Age-dependent distributions of comorbidity-derived subtypes 
for four diseases (type 2 diabetes, asthma, hypercholesterolemia and 
essential hypertension) are reported in Fig. 6a and Supplementary 
Table 12; results for all 52 diseases are reported in Supplementary  
Fig. 16 and Supplementary Table 12, and age-dependent distributions 
for the same four diseases in All of Us are reported in Supplementary 
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Fig. 17. The number of subtypes can be large, for example, six sub-
types for essential hypertension. Subtypes are often age-dependent, 
for example, for the CVD and MGND subtypes of type 2 diabetes14,35 
(discussed above).

ATM and the resulting subtype assignments do not make use 
of genetic data. However, we used genetic data to assess genetic 
heterogeneity across inferred subtypes of each disease. We used 
continuous-valued topic weights in this analysis. We first assessed 
whether polygenic risk score (PRS) for overall disease risk varied 
with continuous-valued topic weights for each disease; PRS were 
computed using BOLT-LMM with fivefold cross-validation50,51 (Meth-
ods and Code availability). Results for four diseases (from Fig. 6a) 
are reported in Fig. 6b and Supplementary Table 13; results for all 
ten well-powered diseases (10 of 52 diseases with highest z-scores 
for nonzero SNP-heritability) are reported in Extended Data Fig. 6 
and Supplementary Table 13. We identified 18 disease–topic pairs 

(of 10 × 10 = 100 disease–topic pairs analyzed) for which PRS val-
ues in disease cases vary with patient topic weight. For example, for 
essential hypertension, hypercholesterolemia and type 2 diabetes, 
patients assigned to the CVD subtype had significantly higher PRS 
values than patients assigned to other subtypes. For essential hyper-
tension, patients assigned to the CER subtype had significantly higher 
PRS values; for type 2 diabetes, patients assigned to the CER subtype 
had lower PRS values than the CVD subtype, even though the major-
ity of type 2 diabetes diagnoses are assigned to the CER subtype. We 
further verified that most of the variation in PRS values with disease 
subtype could not be explained by age52 or differences in subtype 
sample size (Supplementary Fig. 18). These associations between sub-
types (defined using comorbidity data) and PRS (defined using genetic 
data) imply that disease subtypes identified through comorbidity 
are genetically heterogeneous, consistent with phenomenological 
differences in disease etiology.
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We further investigated whether subtype assignments (defined 
using comorbidity data) revealed subtype-specific excess genetic corre-
lations. We used discrete subtypes in this analysis. We estimated excess 
genetic correlations between disease–subtype and subtype–subtype 
pairs (relative to genetic correlations between the underlying diseases). 
Excess pairwise genetic correlations for 15 diseases and disease sub-
types (spanning 11 diseases and three topics: CER, MGND and CVD) 
are reported in Fig. 7a and Supplementary Table 14 (relative to genetic 
correlations between the underlying diseases; Fig. 7b), and excess pair-
wise genetic correlations for all 89 well-powered diseases and disease 
subtypes (89 of 378 diseases and disease subtypes with z-score >4 for 
nonzero SNP-heritability; 378 = 348 diseases + 30 disease subtypes) are 
reported in Supplementary Fig. 19 and Supplementary Table 14. Genetic 
correlations between pairs of subtypes involving the same disease were 
significantly less than 1 (false discovery rate (FDR) < 0.1) for hyperten-
sion (CER versus CVD: ρ = 0.86 ± 0.04, P = 0.0004; MGND versus CVD: 
ρ = 0.74 ± 0.05, P = 3 × 10−8) and type 2 diabetes (CER versus MGND: 
ρ = 0.64 ± 0.09, P = 8 × 10−5; Fig. 7a and Supplementary Table 14). In addi-
tion, we observed significant excess genetic correlations (FDR < 0.1) for 
eight disease–subtype and subtype–subtype pairs involving different 
diseases (Fig. 7a and Supplementary Table 14). Additional secondary 
analyses are described in the Supplementary Note, Supplementary Fig. 
20 and Supplementary Table 15.

Finally, we used the population genetic parameter FST (refs. 53,54)  
to quantify genome-wide differences in allele frequency between 
two subtypes of the same disease. We used discrete subtypes in this 
analysis. We wished to avoid inferring genetic differences between 
subtypes that were due to partitions of the cohort that are unrelated 
to the disease (for example, we expect a nonzero FST between tall 
versus short type 2 diabetes cases). Thus, we assessed the statistical 
significance of nonzero FST estimates by comparing the observed 
FST estimates (between two subtypes of the same disease) to the 
expected FST based on matched topic weights (that is, FST estimates 
between two sets of healthy controls with topic weight distributions 
matched to the respective disease subtypes; excess FST; Methods). 
We determined that 63 of 104 pairs of disease subtypes involving the 
same disease (spanning 29 of 49 diseases, excluding three diseases 
that did not have enough controls with matched topic weights) had 
significant excess FST estimates (FDR < 0.1; Extended Data Fig. 7 and 
Supplementary Table 16). For example, the CVD, CER and MGND 
subtypes of type 2 diabetes had significant excess FST estimates 
(F-statistic = 0.0003, P = 0.001 based on 1,000 matched control sets). 
This provides further evidence that disease subtypes as determined 
by comorbidity have different molecular and physiological etiolo-
gies. We conclude that disease subtypes defined by distinct topics 
are genetically heterogeneous.
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Disease-associated SNPs have subtype-dependent effects
We hypothesized that disease genes and pathways might differen-
tially impact the disease subtypes identified by ATM. We investigated 
the genetic heterogeneity between disease subtypes at the level of 
individual disease-associated variants. We used continuous-valued 
topic weights in this analysis. We used a statistical test that tests for 
SNP × topic interaction effects on disease phenotype in the pres-
ence of separate SNP and topic effects (Methods). We verified via 
simulations that this statistical test is well calibrated under a broad 
range of scenarios with no true interaction, including direct effect 
of topic on disease, direct effect of disease on topic, pleiotropic SNP 
effects on disease and topic, and nonlinear effects (Supplementary 
Fig. 21). We also assessed the power to detect true interactions (Sup-
plementary Fig. 22). To limit the number of hypotheses tested, we 
applied this test to independent SNPs with genome-wide significant 
main effects on disease (Methods). We thus performed 2,530 statis-
tical tests spanning 888 disease-associated SNPs, 14 diseases and 35 
disease subtypes (Supplementary Table 17). We assessed statistical 
significance using global FDR < 0.1 across the 2,530 statistical tests. 
We also computed main SNP effects specific to each quartile of topic 
weights across individuals and tested for different odds ratios in top 
versus bottom quartiles, as an alternative way to represent SNP × topic 
interactions; the top/bottom quartile test is more intuitive, but less 
powerful in most cases.

We identified 43 SNP × topic interactions at FDR < 0.1 (Extended Data 
Fig. 8, Supplementary Fig. 23 and Supplementary Tables 18 and 19). Here 
we highlight a series of examples. First, the type 2 diabetes-associated SNP 
rs1042725 in the HMGA2 locus has a higher odds ratio in the top quartile 
of CVD topic weight (1.18 ± 0.02) than in the bottom quartile (1.00 ± 0.02; 
P = 3 × 10−4 for interaction test (FDR = 0.04 < 0.1); P = 3 × 10−7 for top/bot-
tom quartile test (FDR = 0.0002 < 0.1)). HMGA2 is associated with type 
2 diabetes55 and is reported to have functions in cardiac remodeling56, 
suggesting that shared pathways underlie the observed SNP × topic 
interaction. Second, the asthma-associated SNP rs1837253 in the TSLP 
locus has a higher odds ratio in the top quartile of SRD (sense organs, 
respiratory, dermatologic) topic weight (1.17 ± 0.02) than in the bottom 
quartile (1.05 ± 0.02; P = 6 × 10−6 for interaction test (FDR = 0.004 < 0.1); 
P = 1 × 10-3 for top/bottom quartile test (FDR = 0.08 < 0.1)). TSLP has an 
important role in promoting TH2 cellular responses and is considered 
a potential therapeutic target, which is consistent with assignment of 
asthma and atopic/contact dermatitis57 to the SRD topic (Supplementary 
Table 4). Two other examples are described in the Supplementary Note. 
To verify correct calibration, we performed control SNP × topic interac-
tion tests using the same 888 disease-associated SNPs together with ran-
dom topics that did not correspond to disease subtypes and confirmed 
that these control tests were well calibrated (Supplementary Fig. 24b).  
We conclude that genetic heterogeneity between disease subtypes can 
be detected at the level of individual disease-associated variants.
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Discussion
We have introduced an ATM method to provide a low-rank representa-
tion of longitudinal disease records, leveraging age-dependent comor-
bidity profiles to identify and validate biological subtypes of disease. 
Our study builds on previous studies on topic modeling37,38,40,58, genetic 
subtype identification13–15 and low-rank modeling of multiple diseases 
to identify shared genetic components25–27. We highlight three specific 
contributions of our study. First, we incorporated age at diagnosis 
information into our low-rank representation, complementing the 
use of age information in other contexts32,52,59; we showed that age 
information is highly informative for our inferred comorbidity profiles 
in both simulated and empirical data, emphasizing the importance of 
accounting for age in efforts to classify disease diagnoses. Second, we 
identified 52 diseases with heterogeneous comorbidity profiles that we 
used to define disease subtypes, many of which had not previously been 
identified (Supplementary Table 20); comorbidity-derived disease 
subtypes were consistent between UK Biobank and All of Us, despite 
key differences between these cohorts. Third, we used genetic data 
(including PRS, genetic correlation and FST analyses) to validate these 
disease subtypes, confirming that the inferred subtypes reflect true 
differences in disease etiology.

We emphasize three downstream implications of our findings. 
First, it is of interest to perform disease subtype-specific genome-wide 
association studies (GWAS) on the disease subtypes that we have iden-
tified here, analogous to GWAS of previously identified disease sub-
types13–15. Second, our findings motivate efforts to understand the 
functional biology underlying the disease subtypes that we identi-
fied; the recent availability of functional data that are linked to EHR 
is likely to aid this endeavor29,60. Third, the efficient inference of ATM 
permits identifying age-dependent comorbidity profiles and disease 
subtypes in much larger EHR datasets61, although we acknowledge that 
establishing comprehensive representations of disease topics that are 
transferable and robust across different healthcare systems and data 
sources represents a major future challenge.

Our findings reflect a growing understanding of the importance of 
context, such as age, sex, socioeconomic status and previous medical 
history, in genetic risk52,62,63. To maximize power and ensure accurate 
calibration, context information needs to be integrated into clinical risk 
prediction tools that combine genetic information (such as PRSs1,64) 
and nongenetic risk factors. Our work focuses on age, but motivates 
further investigation of other contexts. We note that aspects of context 
are themselves influenced by genetic risk factors; hence, there is an 
open and important challenge in determining how best to combine 
medical history and/or causal biomarker measurements with genetic 
risk to predict future events65.

We note several limitations of our work. First, age at diagnosis 
information in EHR data may be an imperfect proxy for true age at onset, 
particularly for less severe diseases that may be detected as secondary 
diagnoses; although perfectly accurate age at onset information would 
be ideal, our study shows that that imperfect age at diagnosis information 
is sufficient to draw meaningful conclusions. Second, raw EHR data may 
be inaccurate and/or difficult to parse1; again, although perfectly accu-
rate EHR data would be ideal, our study shows that imperfect EHR data 
are sufficient to draw meaningful conclusions. Third, our ATM approach 
incurs substantial computational cost (Supplementary Table 21);  
however, analyses of biobank-scale datasets are computationally 
tractable, with our main analysis requiring only 4.7 h of running time. 
Additional limitations are described in the Supplementary Note. 
Despite these limitations, ATM is a powerful approach for identifying 
age-dependent comorbidity profiles and disease subtypes.
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Methods
Ethics statement
This study analyzed publicly available datasets and hence did not 
require ethical approval.

ATM
Our ATM is a Bayesian hierarchical model to infer latent risk profiles 
for common diseases. The model assumes that each individual pos-
sesses several age-evolving disease profiles (‘topic loadings’), which 
summarize the risk over age for multiple diseases that tend to co-occur 
within an individual’s lifetime, namely the age-specific multi-morbidity 
profiles. At each disease diagnosis, one of the disease profiles is first 
chosen based on individual weights of profile composition (‘topic 
weights’); the disease is then sampled from this profile conditional on 
the age of the incidence.

We constructed a Bayesian hierarchical model to infer K latent 
risk profiles for D distinct common diseases. Each latent risk profile 
(comorbidity topics) is age-evolving and contains risk trajectories for 
all D diseases considered. Each individual might have a different num-
ber of diseases, while the disease risk is determined by the weighted 
combination of latent risk topics. We use the following indices:

•	 s = 1,… ,M;
•	 n = 1,… ,Ns;
•	 i = 1,… ,K ;
•	 j = 1,…,D;

where M is the number of participants, Ns is the number of diseases 
within sth participant, K is the number of topics and D is the total number 
of diseases we are interested in. The plate notation of the generative 
model is summarized in Extended Data Fig. 1:

•	 θ ∈ RM×K  is the topic weight for all participants (referred to as 
‘topic weights’), each row of which (θs ∈ RK) is assumed to be 
sampled from a Dirichlet distribution with parameter α. α is set 
as a hyperparameter: θs ∼ Dir(α). We used topic weights to assign 
‘continuous values for disease subtypes’ in PRS and SNP × topic 
analyses.

•	 z ∈ {1, 2,… ,K}ΣsNs (referred to as ‘diagnosis-specific topic 
probability’) is the topic assignment for each diagnosis 
w ∈ {1, 2,… ,D}ΣsNs. The total number of diagnoses across all 
patients are ∑s Ns. The topic assignment for each diagnosis is 
generated from a categorical distribution with parameters equal 
to sth individual topic weight: zsn ~ Multi (θs). We used 
diagnosis-specific topic probability to define ‘discrete disease 
subtypes’ in excess genetic correlation and excess FST analyses.

•	 β(t) ∈ F(t)K×D is the topic loading that is K × D functions of age t. 
F(t) is the class of functions of t. At each plausible t, the following 
is satisfied: ∑jβij(t) = 1. In practice, we ensure the above is true 
and add smoothness by constrain F(t) to be a softmax of spline 

or polynomial functions: βij(t) =
exp(pTijϕ(t))

∑D
j=1 exp(p

T
ijϕ(t))

, where pTijϕ(t) is 

polynomial and spline functions of t; pij = {pijd};d = 1, 2,… ,P;  
P is the degree of freedom that controls the smoothness; ϕ (t) is 
polynomial and spline basis for age t.

•	 w ∈ {1, 2,… ,D}ΣsNs are observed disease diagnoses. The nth 
diagnosis of sth participant wsn is sampled from the topic 
βzsn (t) ∈ F(t)

D (chosen by zsn):wsn ∼ Multi(βzsn (tsn)), where tsn is the 
the observed age at diagnosis of wsn.

The variables of interest are disease topics β(t), individual(patient)- 
level topic weight θ and diagnosis-specific topic probability z. The 
innovative element in our model is age-evolving risk profiles, which 
are achieved by modeling the comorbidity trajectories β(t) ∈ F(t)K×D as 
functions of age. We parameterized functionals F(t) as linear, quadratic, 
cubic polynomials, and cubic splines with one, two and three knots. 
We use prediction odds ratio to decide the optimal model structure 

including the function forms and the number of topics; we use evidence 
lower bound (ELBO) to choose the optimal inference results (with 
random parameter initialization) for the same model structure (Sup-
plementary Table 1).

Inference of ATM
The variables of interest are global topic parameter β(t), individual 
(patient)-level topic weight θ and diagnosis-specific topic probability 
z of each diagnosis. We adopt an EM strategy, where in the E-step we 
estimate posterior distribution of θ and z, and then in the M-step we 
estimate β that maximizes the ELBO. For the E-step, we used a collapsed 
variational inference; for the M-step, we used local variational inference 
(details are described in the Supplementary Note).

We extract topic weights at the patient level and diagnosis level 
from the posterior distribution q(z), which is a categorical distribu-
tion (equation 8 of Supplementary Note). Our model has the desired 
property that both patients and diagnoses are assigned to comorbidity 
topics. We listed the following definitions in the paper that are derived 
from q(z):

•	 Each diagnosis has a ‘diagnosis-specific topic probability’, which 
is computed as Eq{zn}.

•	 Each patient has a posterior ‘topic weight’ θs, which is a Dirichlet 
distribution θs ∼ Dir(a +∑Ns

n=1Eq{zn}). The topic weights of each 
patient are defined as the mode of this Dirichlet distribution 

∑Ns
n=1Eq{zn}

∑K
i=1∑

Ns
n=1Eq{zni}

 (we used α = 1, which puts a noninformative prior on 

the topic weights). Topic weight is the low-rank representation 
of disease history, which is used in excess PRS and SNP × topic 
interaction analyses.

•	 The average topic assignments of disease j are the mean overall 
incidences Eq{zsn∈{wsn=j}} . This metric is used to measure which 
comorbidity topic a disease is associated with (Fig. 4b), and it is 
equivalent to a weighted average of topic loadings (equation 5 in 
Supplementary Note shows the link between diagnosis-specific 
topic probability and topic loading). A disease assigned to 
multiple topics is considered to have comorbidity subtypes.

•	 A hard assignment of a patient diagnosis to a 
comorbidity-derived subtype is based on the maximum value  
of the vector Eq{zn}. The incident disease is assigned to topic 
argmax i(Eq{zni}).

Metrics for evaluating ATM
ATM is evaluated for different purposes, which require different metrics 
(Supplementary Table 1). Here we list the details of the four metrics 
considered: prediction odds ratio, evidence lower bound (ELBO), the 
area under the precision-recall curve (AUPRC)66 and co-occurrence 
odds ratio.

Prediction odds ratio. We used prediction odds ratio to compare 
models of different topic numbers and configuration of age profiles. 
Briefly, prediction odds ratio is defined on 20% held-out test data as the 
odds that the true diseases are within the top 1% of diseases predicted 
by ATM (trained on 80% of the training set and uses earlier diagnoses 
as input), divided by the odds that the true diseases are within the top 
1% of diseases ranked by prevalence. Details of computing prediction 
odds ratio for each patient are described in the Supplementary Note.

Evidence lower bound (ELBO). ELBO evaluated the accuracy of the 
variational inference method on a specific dataset39. The mathematical 
expression of ELBO for ATM is equation 9 in the Supplementary Note. 
We computed ELBO when fitting ATM to UK Biobank with 19 choices 
of the number of topics (5–20, 25, 30 and 50) and six choices of age 
profile configuration (linear, quadratic polynomial, cubic polynomial 
and splines with one, two and three knots). Each model is run ten times 
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with random initializations. We choose the model that has the highest 
ELBO after converging.

AURPC. To evaluate whether a model could capture the comorbid-
ity subtypes in simulation analysis, we compute the precision, recall 
and AUPRC to correctly assign disease diagnosis to the true topic. 
The topic of each diagnosis is determined by diagnosis-specific topic 
probability. Note we could only evaluate AUPRC in simulations where 
the truth is known.

Co-occurrence odds ratio. To verify that the comorbidity profiles 
are capturing diseases that are more likely to co-occur within the same 
individual, we estimate the odds ratio of the disease duo, trio, quartet 
and quintet that are captured by the topic versus that of random com-
binations. Details of computing co-occurrence odds ratio for each 
model are described in the Supplementary Note.

Simulations of ATM method
To test whether the algorithm could assign disease diagnosis to cor-
rect comorbidity profiles, we simulated diseases using the following 
parameters:

•	 M = 10,000;
•	 ̄Ns = 6.1;
•	 Ns ∼ exp{ ̄Ns};
•	 D = 20;
•	 K = 2;

where M is the number of individuals in the population, Ns  is the aver-
age number of diseases for each individual, D is the total number of 
diseases and K is the number of comorbidity topics. The distribution 
of disease number per-individual Ns is sampled from an exponential 
distribution, which matches those from UK Biobank data (Supple
mentary Fig. 25). According to equation 3.1 in ref. 67, whether the  
topic model could capture the true latent structure is determined  
by the signal-to-noise ratio and could be evaluated with limits 
M→∞;D→∞; D

M
→ δ , where δ is a constant. Therefore, we choose D  

and M that make D
M

 similar to those of the UK Biobank dataset (samples 
size = 282,957; distinct disease number = 349).

Details of topic loadings (Supplementary Fig. 26) and topic 
weights used in simulations are described in the Supplementary Note.

We simulated diseases with distinct comorbidity subtypes by 
combining diseases from distinct topics and labeling them as a single 
disease, using the parameters described above. We consider the fol-
lowing two scenarios: (1) the subtypes of diseases have the same age 
at diagnosis distribution; (2) the subtypes of disease have distinct age 
at diagnosis distribution. We first chose one disease (disease A) and 
then sampled a proportion of a second disease (disease B) to label as 
disease A. The proportion is varied to create a different sample size ratio 
of the two subtypes. In scenario one, disease B is a disease that has the 
exact same age distribution as disease A but from the other topic. In 
scenario two, disease B is from the other topic and has a different age 
distribution (age at diagnosis moves up for 20 years, 10 years or 5 years, 
respectively) than disease A. After changing the labels of disease B to 
be the same as disease A, we use ATM/LDA to infer diagnosis-specific 
topic probability to assign diagnoses to the topics.

To evaluate whether a model could capture the comorbidity sub-
types, we compute the precision, recall, and AUPRC of correctly clas-
sifying incident disease B to be from the correct topic. The topic of each 
diagnosis is determined by diagnosis-specific topic probability. We use 
other diseases from the same topic of disease B to benchmark the topic 
label. Topic modeling on the simulated data is performed with both 
ATM and LDA (both implemented using collapsed variational inference 
for fair comparison) to compare the performances.

We evaluate the subtype classification with varying values of 
the following four parameters: ratio of sample sizes between the two 

subtypes, simulated population size, number of distinct diseases and 
difference of age distribution (details are described in the Supple-
mentary Note).

UK Biobank comorbidity data
We analyzed comorbidity data from 282,957 UK Biobank samples with 
diagnoses for at least two of the 348 focal diseases that we studied (see 
next paragraph). We use the hospital episode statistics (HES) data 
within the UK Biobank dataset, which uses the ICD-10/ICD-10CM cod-
ing system; the average record span of HES data is 28.6 years. Codes 
starting with letters from A to N are kept as they correspond to disease 
codes (as opposed to procedure codes). The disease records were 
mapped from ICD-10/ICD-10-CM codes to Phecodes using a three-step 
procedure (details are described in the Supplementary Note), and the 
method is implemented in ATM software.

The mapped Phecodes are filtered to keep only the first diagnosis 
for the recurrent diseases within a patient. The age at diagnosis for each 
disease is computed as the difference between the month of birth to 
the episode starting date. We then computed the occurrence of each 
disease in the UK Biobank and kept 348 that have more than 1,000 
occurrences (Supplementary Table 4). Starting with all 488,377 UK 
Biobank participants (including both European and non-European 
ancestries), we filtered the patients to keep only those who have at 
least two distinct diseases from the 348 focal diseases, as we are most 
interested in the comorbidity information. We treated death as an 
additional disease (8,666 records) to evaluate if certain comorbidities 
are more likely to lead to fatal events. The procedure leaves us 1,726,144 
distinct records across 282,957 patients.

To name the topics inferred from the UK Biobank, we take the sum 
of ‘average topic assignments’ (Inference of ATM) over diseases for 
each Phecode system and extract the three most common Phecode 
disease systems. The following six topics are named using the three 
most common Phecode disease systems: NRI (neoplasms, respiratory, 
infectious diseases), CER (cardiovascular, endocrine/metabolic, res-
piratory), SRD (sense organs, respiratory, dermatologic), FGND (female 
genitourinary, neoplasms, digestive), MGND (male genitourinary, neo-
plasmas, digestive) and MDS (musculoskeletal, digestive, symptoms). 
For four topics that are predominantly associated with one system, we 
name them based on their top associated Phecode system: LGI (lower 
gastrointestinal), UGI (upper gastrointestinal), CVD (cardiovascular) 
and ARP (arthropathy).

We present focal diseases by selecting diseases with the highest 
average topic loading between ages 30 and 81 years. We chose the top 
seven diseases for visualization, as we found more diseases would be 
harder to read on a plot.

To compare the comorbidity heterogeneity between age groups, 
we group the incidences for each disease to the following two age 
groups: young group (<60 years of age) and old group (≥60 years 
of age). We compute the average topic assignment of each group as 
described in the section ‘Inference of ATM.’ Additionally, we inferred 
topics for male (984,554 records in 156,366 individuals) and female 
(741,590 records in 126,591 individuals) populations, respectively, using 
ATM with ten topics and spline function with one knot. We extract the 
average topic assignment for each disease and use Pearson’s correla-
tion to match the topics for both sexes to the topics inferred on the 
entire population.

We assigned diagnoses to discrete subtypes using maximum 
diagnosis-specific topic probability. We focus our genetic heteroge-
neity analysis on 52 diseases that have at least 500 incidences assigned 
to a secondary topic.

All of Us comorbidity data
We analyzed EHR data collected in the EHR domain of All of Us samples, 
which includes both primary care and secondary care data. The aver-
age distance between the first and last diagnoses is 7.9 years (versus 
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7.0 years in UK Biobank); the average record span period is unknown, 
but we hypothesized that it is likely to be considerably larger than 
7.9 years (versus 28.6 years in UK Biobank). Disease codes in the All 
of Us EHR domain are coded in SNOMED CT. Details of mapping from 
SNOMED CT to Phecode are described in the Supplementary Note and 
implemented in ATM software. We kept 233 Phecodes that overlap with 
the 348 diseases analyzed in the UK Biobank. We kept the first diagnosis 
for recurrent diseases in each patient. After mapping, we are left with 
3,098,771 diagnoses spanning 211,908 All of Us samples. We run ATM 
with topic numbers from 5 to 20 and age functions configured as splines 
with two knots (degree of freedom = 5) on the All of Us comorbidity data 
and computed prediction odds ratio (using fivefold cross-validation) 
and ELBO (on all 211,908 samples).

Comparing disease topics between UK Biobank and All of Us
We compared the optimal models from UK Biobank (ten topics, degree 
of freedom = 5) and All of Us (13 topics, degree of freedom = 5). We 
constrained our analyses on 233 of the 348 diseases that are shared 
between the two datasets. We performed three analyses to compare 
the comorbidity patterns from the two datasets.

First, we computed the correlation of topic loadings from two 
datasets. Because the topic loadings are functions of age, we com-
puted their correlations using four different ways to summarize age 
information—topic loadings averaged across age and topic loadings 
at ages 50, 60 and 70 years. For each UK Biobank topic, we found its 
most similar All of Us topic that has a maximum correlation of topic 
loadings (averaged across age).

Second, we computed the cross-population prediction odds ratio, 
using the All of Us topics to predict comorbidity patterns in UK Biobank 
data. We divided the UK Biobank samples into ten jackknife blocks 
and computed prediction odds ratios on each leave-one-out sample.

Third, we compared the correlation of comorbidity profiles (meas-
ured by average topic assignments; see Methods for definition) for 
233 diseases that are shared between the two populations. We define 
correlations between topic assignments as the correlation between UK 
Biobank average topic assignments and All of Us average topic assign-
ments mapped to UK Biobank topic space (details are described in the 
Supplementary Note).

UK Biobank genotype data
For genetic correlation analysis, FST and SNP × topic interaction analyses, 
we used genetic data from 488,377 UK Biobank participants (before 
restricting to 282,957 samples with at least two of the 348 diseases stud-
ied). For PRS and heritability estimation of the ten topics, we constrained 
our analysis to 409,694 British Isle ancestry individuals to adjust for 
population structure. We choose different sets of SNPs that are practi-
cal for each method (details are described in the Supplementary Note).

Polygenic risk scores analysis
Although population stratification cannot be excluded68, to adjust 
for and minimize the impact of population stratification, we applied 
mixed-effect association model to samples of the British Isle ancestry 
group (n = 409,694) to compute PRS for ten heritable diseases that 
have the highest heritability z-scores. We used BOLT-LMM to construct 
genome-wide PRS50. Details of creating balanced case–control and 
SNP selection are described in the Supplementary Note. For each dis-
ease, we used fivefold cross-validation to estimate effect sizes using 
BOLT-LMM and computed the PRS on the held-out testing set. We used 
linear regression between continuous-valued topic weights and PRS 
to compute the excess PRS over different topics.

We compute the subtype-specific relative risk for each percentile 
of PRS using the following formula:

RRpt,s =
npt,s × 100

ns
,

where RRpt,s is the relative risk of s subtype for the ptth PRS percentile 
(computed for the entire population), npt,s is the number of cases in s 
subtype that has PRS within the ptth percentile and ns is the number of 
cases in the s subtype.

Genetic correlation analysis
We used discrete subtypes in genetic correlation analysis (differ-
ent from the PRS analysis above). For each disease and disease sub-
type, we used a case–control matching strategy to construct data 
to estimate coefficients for genetic correlation analysis. We used 
a one-to-four case–control ratio, matching sex, BMI, year of birth 
and 40 genetic principal components. We used PLINK 1.9 (ref. 69) 
to perform logistic regression with sex and the top ten principal 
components as covariates. We used linkage disequilibrium score 
regression (LDSC)2 and summary statistics from the logistic regres-
sion to estimate the heritability for each disease or disease subtype 
that has more than 1,000 incidences (378 = 30 disease subtypes + 348 
diseases). We focus on 71 diseases and 18 disease subtypes of the 378 
disease subtypes and diseases that have heritability z-score above 4 
for genetic correlation analysis.

We used LDSC and summary statistics from the logistic regression 
to compute genetic correlation for each pair of disease–disease, dis-
ease–subtype and subtype–subtype. We report the estimate of genetic 
correlation and z-scores. Additionally, for pairs that involve subtypes 
(disease–subtype or subtype–subtype), we compute the excess genetic 
correlation, defined as the difference between the genetic correlation 
involving subtypes (disease–subtype and subtype–subtype) and the 
genetic correlation involving all disease diagnoses (disease–disease). 
For example, the genetic correlation between type 2 diabetes–CER and 
hypertension–CVD is compared to the genetic correlation between 
all type 2 diabetes and all hypertension. We note that genetic corre-
lations between subtypes of the same disease are compared to 1. We 
only reported P-values of excess genetic correlation when both genetic 
correlation estimation has s.e. < 0.1 and at least one of the genetic cor-
relations has |z-score| > 4.

To avoid potential collider effects where subtypes are defined by 
topic components that are independent of the diseases, we performed 
the same genetic correlation analyses but match cases in each subtype 
with controls with similar topic loadings (details are described in the 
Supplementary Note).

FST analysis
We used discrete subtypes in FST analysis (same as genetic correlation 
analysis above; different from the PRS analysis). To evaluate the genetic 
heterogeneity between disease subtypes, we estimated the FST across 
subtypes for 52 diseases that have at least 500 incidences assigned to a 
secondary topic. To test the statistical significance of FST, we adopted a 
permutation strategy by sampling controls with matched topic weights 
and sample size for each disease subtype and computed FST across the 
subtype-matched control groups (details are described in the Sup-
plementary Note). The FSTs are computed using PLINK 1.9’s weighted 
mean across all genotyped SNPs.

We obtained 1,000 permutation samples and reported the per-
mutation P-value for each disease. Under the assumption that causal 
and noncausal variants have similar allele frequency differences across 
the subtypes, FST is a measure of causal genetic effect heterogeneity 
across subtypes.

SNP × topic interaction test
We used continuous-valued topic weights in the SNP × topic interaction 
analysis (same as the PRS analysis; different from the genetic correla-
tion and FST analyses). We focus on 14 diseases that have heritability 
z-score above 4. We fit following a logistic regression model:

logit(p) = β0 + β1 × T + β2 × T2 + β3 × G + β4 × G × T,
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where T is individual topic weights for a specified topic, G is the geno-
type and p is the probability of getting the disease. We computed the 
test statistics under the null that β4 = 0.

Simulations (below) showed that the interaction test is underpow-
ered when the variant effects are small; we focused on the set of GWAS 
SNPs that reach genome-wide significance level. We used LD-clumping 
at R2 > 0.6 to keep moderately independent variants. We computed the 
test statistics using the model above (for testing β4 = 0) and computed 
study-wise FDR across 2,530 disease–topic pairs. We used QQ plots to 
check that interaction test statistics computed using all nonsubtype 
topics for each disease (which are expected to be null) were well cali-
brated (Supplementary Fig. 24b).

As an alternative way to verify the interactions, we divided cases 
into quartiles based on topic weights (which define disease subtypes 
continuously) for each disease–topic pair and randomly sampled two 
controls that match the topic weights for each case. We estimated the 
main effect sizes for all GWAS SNPs within each quartile of topic weight 
and compared the effects between the top and bottom quartiles of 
topic weights. For visualization, we used GWAS SNPs that have no 
interaction effect (above, P > 0.05) as background SNPs.

Simulations of SNP × topic interaction
We simulated comorbidity with genetics to test the interaction between 
genetic and comorbidity topics. We simulated 100 independent variants 
with minor allele frequency (MAF) randomly sampled from the MAF of 
888 independent disease-associated SNPs. We assumed an additive model 
and simulated genotypes for the population using Hardy–Weinberg 
equilibrium. We simulated three types of genetic effects on topic and dis-
eases, based on the simulation framework described in the Simulations of 
ATM method (genetics–topic, genetic–disease–topic and genetic–topic 
interaction; details are described in the Supplementary Note).

We simulated with varying disease–topic or topic–disease causal 
effects with 50 repetitions at each causal effect size. The simulated data 
are fed to the ATM to infer the topic weights for interaction testing.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
UK Biobank data are publicly available at https://www.ukbiobank.
ac.uk/ (application number 12788). All of Us data are publicly available 
at https://allofus.nih.gov. LD-scores and HAPMAP3 SNP list are available 
at https://data.broadinstitute.org/alkesgroup/LDSCORE.

Code availability
Open-source software implementing the ATM method is available 
at https://github.com/Xilin-Jiang/ATM. BOLT-LMM 2.3 is available at 
https://alkesgroup.broadinstitute.org/BOLT-LMM/. Heritability and 
genetic correlation analysis were performed using LDSC, which is avail-
able at https://github.com/bulik/ldsc. PLINK v1.9, which was used for 
FST and association tests, is available at https://www.cog-genomics.org/
plink/. All codes generated in this study are available at https://zenodo.
org/record/8304651 (https://doi.org/10.5281/zenodo.8304651).
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Extended Data Fig. 1 | Plate notation of ATM generative model. M is the 
number of subjects; Ns is the number of records within sth subject. All plates 
(circles) are variables in the generative process, where the plates with shade w is 
the observed variable and plates without shade are unobserved variables to be 

inferred; β is the topic weight; z is diagnosis-specific topic probability; t is the age 
at diagnosis for each diagnosis; β is the topic loadings, which are functions of  
age t; α is the (non-informative) hyperparameter of the prior distribution of θ. 
The generative process is described in the Methods and Supplementary Note.
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Extended Data Fig. 2 | Posterior topic distributions are different between age groups for diseases that have subtypes. The figure has the same legends as 
Fig. 3 but focusing on 52 diseases that have a subtype with at least 500 incidences. Distribution of average topic assignment for these 52 diseases is reported in 
Supplementary Fig. 15.
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Extended Data Fig. 3 | Comparison of prediction odds ratio between LDA 
and ATM. Each dot represents results from running either ATM or LDA on the 
same random training and testing split. The models were run with different topic 
numbers, and we chose a cubic spline with one knot for configuring ATM topic 
loadings. The prediction odds ratios are computed on the testing data using 
topic loadings inferred from the training data and topic weights inferred using 
previous diseases of testing individuals. The odds ratios are between the odds 

that target diseases are within model-predicted top percentile disease set versus 
the odds that target diseases are within the prevalence-ordered top percentile 
disease set. For the optimal model with 10 topics, ATM has an average prediction 
odds ratio 1.71 (across 10 random training-testing splits); LDA has an average 
prediction odds ratio 1.58 (across 10 random training-testing splits). Box plots 
show the distributions of the dots; center, box bounds, and whisker ends denote 
median, quartiles, and minima/maxima.
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Extended Data Fig. 4 | Posterior topic distributions of female and male populations. The figure is the same as Fig. 3 but comparing the topics that are inferred from 
female and male populations separately.
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Extended Data Fig. 5 | Subtype correlations between UK Biobank and All of Us 
for 41 diseases that are presented in both datasets and have subtypes in UK 
Biobank. Each box of the heatmap shows the correlation of average diagnosis-
specific topic probability between a disease from All of Us and the other disease 

from UK Biobank. The diagnosis-specific topic probabilities from All of Us were 
mapped to UK Biobank based on proportional variance between the two topic 
spaces (Methods).
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Extended Data Fig. 6 | Excess PRS analysis for all topics across 10 diseases 
(selected by heritability z-score). The bar plot shows the estimated changes in 
s.d. of PRS per unit changes in the patient topic weight in disease cases. The PRS 

is estimated using all the cases in British Isle Ancestry. Error bars denote the 95% 
confidence interval. The stars show disease-topic pairs that are significant at 
FDR = 0.05. Numerical results are reported in Supplementary Table 13.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Excess FST of disease subtypes compared with controls 
with matched topic weights. P-values are for testing case-FST significantly 
higher than control-FST of similar topic weight distribution. The permutation 
controls are sampled for 1,000 times with the same topic weights distribution 
and sample size to the disease subtypes. We focus on 49 of the 52 diseases 
that have more than one subgroup of at least 500 cases. Subtypes are defined 

based on the maximum value of the diagnosis-specific topic probability. 
Three diseases (‘hypertension’, ‘hypercholesterolemia’, and ‘arthropathy’) are 
excluded as there are not enough controls that match the topic weights of cases. 
The color shows the value of FST across subtypes. Exact P-values are reported in 
Supplementary Table 16.
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Extended Data Fig. 8 | Examples of SNP × topic interaction effects on disease 
phenotypes. For each example, we report main SNP effects (log odds ratios) 
specific to each quartile of topic weights across individuals, for both the focal 
SNP (blue dots) and background SNPs for that disease and topic (genome-
wide significant main effect (P < 5 × 10−8) but non-significant SNP × topic 
interaction effect (P > 0.05); gray dots). Dashed red lines denote aggregate 
main SNP effects for each focal SNP. Error bars denote 95% confidence intervals. 

Gray lines denote linear regression of gray dots, with gray shading denoting 
corresponding 95% confidence intervals. P-values for interaction are for testing 
the interaction regression coefficients; P-values for top/bottom differences 
are for two-sided t-test. Panels A–D are examples for type 2 diabetes, asthma, 
hypertension and hypothyroidism, respectively. Numerical results are 
reported in Supplementary Table 18.
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