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Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. 
Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function 
is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of 
enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typi-
cally exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive 
response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a 
decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark 
of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes 
during ischemia–reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine 
pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive 
for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and 
some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role 
in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the 
glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructoki-
nase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate 
dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) 
and possible emerging therapeutic targets.
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Introduction

Cardiovascular disease (CVD) is one of the major causes 
of the global disease burden, and it is important to develop 
effective and timely strategies to address the challenges 
of the CVD epidemic. Risk factors associated with CVD 
include obesity, lack of physical activity, poor diet, diabe-
tes, smoking, etc. [1, 2]. Therapeutic strategies for CVD are 
categorized into approaches that lower LDL, lower triglyc-
erides, lower Lp(a), and elevated HDL [3]. These involve 

drugs such as antiplatelet agents, statins, beta-blockers, and 
angiotensin-converting enzyme inhibitors, the use of which 
has become the cornerstone of treatment for CVD. sig-
nificant reductions in CVD events and mortality have been 
observed [3, 4]. These drugs can significantly reduce the 
risk of adverse cardiovascular events in patients [5], which 
is important for improving patient prognosis. However, with 
the progressive increase in the prevalence and mortality of 
CVD, an urgent search for therapeutic means to address the 
disease beyond conventional approaches is important to alle-
viate medical stress. In recent years, glycolytic dysregula-
tion has been noted in many pathological processes of CVD, 
and the exploration of glycolytic pathways has provided 
many new potential therapeutic directions for the treatment 
of CVD. Nevertheless, the relevant molecules as well as 
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pathways involved in the role of glycolytic reprogramming 
are not well understood [6]. Therefore, continued explora-
tion of the glycolytic pathway is necessary.

Glycolysis, which occurs in the cytoplasm, is the process 
of breaking down glucose to produce pyruvate, and it is the 
most critical pathway of glucose metabolism in the body 
[7], involving the linkage of energy metabolism, homeo-
stasis, and various physiological functions, such as muscle 
movement, development, and neurotransmission [8]. It is 
also capable of producing pyruvate and limited adenosine 
triphosphate (ATP) to meet the energy demands. Glycolytic 
pathway is achieved through the oxygen non-dependent 
activity of ten metabolic enzymes and involves three rate-
limiting enzymes, including hexokinase 2 (HK2), phosphof-
ructokinase 1 (PFK1) and pyruvate kinase type M2 (PKM2) 
[9]. The process can be divided into three phases, which are 
the initiation phase (1 molecule of glucose to 1 molecule 
of F-1,6-2P), the cleavage phase (1 molecule of F-1,6-2P 
cleaved to 1 molecule of DHAP(Dihydroxyacetone phos-
phate) and 1 molecule of PGAL(3-phosphoglyceraldehyde) 
and the redox phase (2 molecules of PGAL reduced to 2 
molecules of pyruvate). Under aerobic conditions, pyruvate 
enters the mitochondria and participates in the tricarboxylic 
acid cycle, where it is oxidized to CO2 and H2O. When 
mitochondrial oxidative respiration is impaired, pyruvate is 
then reduced to lactate by NADH, which is subsequently 
taken up by most tissues of the body for recycling and 
metabolism to pyruvate and downstream TCA intermedi-
ates [10].

Furthermore, glycolysis not only serves as a source of 
energy for cellular metabolism but also generates metabo-
lites that play a crucial role in cellular function [11]. In car-
diomyocytes, glucose is first converted to glucose-6-phos-
phate (G6P) by hexokinase, and can subsequently undergo 
various metabolic pathways, such as glycolysis, pentose 
phosphate pathway (PPP), hexosamine synthesis pathway 
(HBP), and serine biosynthesis pathway [12]. Excessive 
glucose flux through these pathways is associated with oxi-
dative stress as well as the development of cardiovascular 
complications [13].

In HF, the compensatory response to the decrease in mito-
chondrial oxidative metabolism and ATP production is a rise 
in the glycolytic response. In this process, the expression 
of the glycolytic intermediate GLUT1 glucose transporter 
protein increases, as does the activity of PFK-1 and glyco-
lytic flux. However, the slightly elevated energy produced 
by glycolysis was not able to completely rescue the cardiac 
dysfunction caused by energy failure, but instead was able 
to exacerbate HF by activating metabolic pathways branch-
ing off from glycolysis (e.g., polyol and hexosamine bio-
synthesis pathways) leading to myocardial remodeling [14, 
15]. Therefore, it is important to assess glycolysis from the 
perspective of glycolytic intermediates as well as glycolytic 

branching pathways (rather than the overall glycolysis) per-
spective it may be more valuable to assess the impact of 
altered glycolytic pathway activity on CVD.

Glycolysis‑related enzymes 
and cardiovascular disease

Hexokinase

Hexokinases (HKs) catalyze the first step in glucose metab-
olism, phosphorylating glucose to glucose-6-phosphate 
(G6P). HKs are composed of four families of isoforms of 
which HK1 and HK2 are the most abundant.HK1 (“brain 
HK”) is ubiquitous in HK1 (“brain HK”) is ubiquitous in 
most tissues, especially the brain and erythrocytes. HK2 
(“muscle HK”) is found mainly in insulin-sensitive tissues, 
such as adipocytes, adult skeletal muscle, and cardiac mus-
cle [16]. The coordination of glucose’s catabolic and ana-
bolic utilization is facilitated by HKs. Both HKI and HK2 
contain hydrophobic amino-terminal mitochondrial-binding 
motifs, and HKI binds more strongly to mitochondria and 
promotes glucose metabolism. HK2, however, has a more 
complex role. When located in the cytoplasm, HK2 is able to 
direct G6P to the glycogen and pentose phosphate pathways 
in the cytoplasm, and when bound to mitochondria, it is 
preferentially used for glycolysis and oxidative phosphoryla-
tion [17]. HK3 and HK4 are present in the cytoplasm, lack 
mitochondrial binding motifs, and perform primarily ana-
bolic functions. HK4 also can shuttle to the nucleus and may 
play a role in gene transcription/new protein synthesis [16]. 
HK1 is the predominant isoform in the embryonic, fetal, and 
neonatal heart and promotes glycolysis. After birth, glyco-
lysis is diminished as the diet shifts from a glucose-sugar-
based diet to a mixed carbohydrate-fat oral diet, conferring 
a preference for fatty acids, lactate, and ketone bodies in 
the adult heart. This preference switch has resulted in the 
predominance of insulin-regulated hexokinase II in the adult 
heart. insulin-regulated hexokinase II is predominant in the 
adult heart [18].

Myocardial infarction

The findings revealed that reduced HK2 levels were able 
to lead to increased cell death and increased myocardial 
fibrosis in mice after I/R injury [19]. Myocardial infarction 
(MI) is best treated by timely reperfusion, but reperfusion 
will further damage myocardial ischemia/reperfusion. An 
increase in glucose oxidation occurs during this process, 
leading to an abnormal accumulation of glycolytic interme-
diates that drive mitochondrial dysfunction and increased 
reactive oxygen species (ROS) formation [17, 20]. This 
condition known as metabolic overload, and the metabolic 
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overload cell vulnerable to the damaging effects of hypergly-
cemia [21]. Hyperglycemia is a state of stress during acute 
myocardial infarction. Hyperglycemia increases cytoplasmic 
ROS concentrations by activating NADPH oxidase 2 and 
reduces HK2 binding to mitochondria by increasing cellular 
G6P levels [22]. During ischemia–reperfusion, as the metab-
olism of the myocardium shifts from oxidative phosphoryla-
tion to aerobic glycolysis, the G6P concentration increases 
three to tenfold [22]. The high concentration of G6P with 
acidosis is the trigger for HK2 dissociation from voltage-
dependent anion channel (VDAC) [21, 23, 24]. This is an 
important cause of apoptosis and necrosis of cardiomyocytes 
in the ischemic heart. In parallel, reduced tissue oxygen and 
nutrients and increased ROS have also been found in the 
ischemic heart, all of which can further lead to apoptosis in 
cardiac myocytes [25]. The above results suggest that HK2 
dissociates from cardiac mitochondria during ischemia and 
that the degree of its dissociation is an important influence 
on infarct size [26, 27].

It has been found that the N-terminal structural domain of 
HK2 binds to VDAC on the outer mitochondrial membrane 
(OMM), obtains ATP from the OMM, and phosphorylates 
glucose to G6P [23]. As mediators of the first enzymatic 
step of glucose metabolism, HKs are also able to coordinate 
various catabolic and anabolic uses of glucose and have a 
very important role in the treatment of myocardial infarction 
[24]. Mitochondrial permeability transition pore (mPTP) is a 
Ca2+-dependent channel formed between the inner and outer 
mitochondrial membranes. Sustained mPTP opening induces 
mitochondrial swelling and ATP depletion, ultimately lead-
ing to cell death [16, 28, 29]. When HK2 interacts directly 
with VDAC on OMM, it can prevent mPTP opening and 
thus exert anti-apoptotic effects [16, 30].

In the treatment of myocardial infarction, ischemic pre-
conditioning slows the rate of ATP depletion during subse-
quent ischemic episodes and can benefit the myocardium 
by preventing large accumulation of metabolic breakdown 
products such as lactate and protons. This treatment is called 
Ischemic Preconditioning (IPC) [31]. It has been reported 
that IPC can phosphorylate HK2 at Thr-473 via the Akt- 
glycogen synthase kinase-3 (GSK3β) signaling pathway [23, 
32], enhance the translocation of GLUT4 transporter protein 
to the cell membrane, and the translocation of HK2 from 
the cytoplasm to the mitochondria, and increase the bind-
ing of HK2 to the mitochondria [33, 34], thereby improving 
myocardial resistance to mPTP opening and cell death after 
reperfusion [16, 35]. The Akt-GSK3β pathway mentioned 
therein is an important pathway that regulates cardiomyo-
cyte growth and survival. GSK3β can induce apoptosis by 
stimulating transcription factors, and GSK3β phosphoryla-
tion by Akt results in inhibition of mPTP opening, ultimately 
enhancing myocardial survival [36]. Hypothermia is widely 
used in coronary artery bypass grafting. Which activates the 

Akt signaling pathway by increasing the phosphorylation 
of Akt, promoting the binding of HK2 to mitochondria, and 
simultaneously decreasing cytochrome c release. In this way, 
it preserves mitochondrial and cardiac function, reduces car-
diac energy demand, and exerts cardioprotective effects like 
those of IPC [37].

I/R is also able to induce VDAC1 oligomerization by 
activating power-related protein 1 (Drp1)-dependent mito-
chondrial fission to reduce VDAC1-HK2 interactions and 
promote mPTP opening, ultimately leading to mitochon-
drial autophagy-mediated cell death. This Drp1-dependent 
mitochondrial fission was found to be blunted by AMPKα, 
and melatonin was able to inhibit the mitochondrial fission-
VDAC1-HK2- mPTP-mitochondrial autophagy axis and 
protect the cardiac microvascular system from IR by activat-
ing AMPKα [38]. Not only that, but some researchers also 
claim that mitochondrial exposure to peroxynitrite (ONOO-) 
leads to tyrosine nitration of adenine nucleotide transferase 
(ANT) and VDAC1 and induces VDAC1 oligomerization, 
leading to the separation of HK2 from VDAC1 and ulti-
mately to increased mitochondrial dysfunction and severity 
of myocardial infarction [39]. MCGR (an antioxidant mix-
ture) was found to be cardioprotective against I/R injury by 
preserving the binding of HK2 to mitochondria. In addition, 
a cell-permeable peptide TAT-HK2 (TAT peptide GRK-
KRRQRRRPQ, a trans-activator from HIV transcription) 
containing an HK2 mitochondrial binding motif was also 
found to induce HK2 translocation from mitochondria and 
exacerbate cardiac reperfusion injury [40, 41]. Overall, pre-
vention of HK2 during ischemia–reperfusion dissociation 
from mitochondria could rescue cardiomyocyte apoptosis, 
which may be an important direction to reduce cardiac I/R 
injury in the future [35, 37].

Mitochondrial autophagy, a type of mitochondria-spe-
cific autophagy that eliminates damaged mitochondria, is 
an essential mechanism for controlling mitochondrial health 
in cardiomyocytes in both physiological and pathophysi-
ological settings [42]. It has been claimed that moderate 
activation of autophagy during I/R has cardioprotective 
effects [43]. This activation requires the involvement of a 
multisubunit protein kinase complex, rapamycin complex 1 
(mTORC1). Activation of mTORC1 promotes the biosyn-
thesis of macromolecules (including proteins, lipids, and 
nucleic acids) while inhibiting catabolic processes [44]. 
Under nutrient-rich conditions, mTORC1 inhibits autophagy 
by phosphorylating unc-51-like kinase 1 (ULK1). mTORC1 
activity is inhibited when cellular energy is low, while ULK1 
is activated, thereby inducing autophagy [43, 45]. It has 
been shown that HK2 can inhibit mTORC1 activity during 
reperfusion by directly interacting with PPTOR, a compo-
nent of mTORC1, through its TOS motif (mTOR signaling 
motif), promoting autophagy in response to glucose depriva-
tion (HK substrate deprivation) to protect cardiomyocytes. 
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However, this binding is inhibited by G6P generated by the 
catalytic activity of HK2 [45, 46]. Therefore, regulating the 
intracellular localization of HK2 and promoting its bind-
ing to mTORC1 may be a novel approach to regulate mito-
chondrial autophagy to prevent ischemic stress-induced cell 
death.

When glucose metabolism required to maintain cellular 
and tissue processes increases or decreases, it is regulated 
primarily through four key steps: glucose uptake, hexoki-
nase, phosphofructokinase (PFK), and the import and export 
of lactate to meet metabolic needs, during which G6P(A 
glycolytic by-product) concentrations are tightly controlled 
and do not increase or decrease significantly. This process 
is known as scheduled glycolysis [21]. Recently, glycolytic 
overload has been found to exacerbate the progression of I/R 
in ischemia–reperfusion injury [47]. Ischemia–reperfusion 
injury is a disease associated with high concentrations of 
G6P. It is known that during ischemia, glycogen is rapidly 
broken down. And the concentration of G6P in the myocar-
dium was significantly increased. This results in dissocia-
tion of HK2 from mitochondria and impaired ATP produc-
tion, as well as mitochondrial membrane hyperpolarization, 
mitochondrial dysfunction, and increased formation of ROS, 
exacerbating the progression of I/R injury [21]. Naila Rab-
bani et al. showed that increasing G6PD expression in cardi-
omyocytes can shunt G6P to the pentose phosphate pathway, 
reduce G6P accumulation in the myocardium, and attenuate 
myocardial I/R injury [21].

Heart failure

In a failing heart, the predominant feature is a decreased 
mitochondrial oxidative capacity resulting in an inadequate 
energy supply. Although partially compensated by the 
increased production of ATP by glycolysis, it is still insuf-
ficient to maintain the normal activity of the cardiac tissue 
[14]. According to the current study, HK1 is more closely 
associated with HF. It has been reported that endothelial cell 
(EC) dysfunction may be an important driver of heart fail-
ure with preserved ejection fraction (HFpEF), and that pro-
moting HK1 binding to mitochondria is a new therapeutic 
direction to improve heart failure. Therefore, promoting the 
binding of HK1 to mitochondria is a new therapeutic direc-
tion to improve heart failure. In addition, it has been claimed 
that long-term use of non-steroidal anti-inflammatory drugs 
(NSAIDs) that selectively inhibit COX2 increases the risk 
of heart failure, which may be associated with dysregulation 
of cardiac metabolism, and a significant increase in HK1 
expression was found in the hearts of COX2-deficient rats, 
speculating that HK1 may be associated with altered cardiac 
energy metabolism during heart failure. However, the exact 
mechanism involved is unclear [48]. Therefore, it is essen-
tial to continue to explore the role of HK1 in altered energy 

metabolism in heart failure, which will provide potential 
therapeutic strategies for the treatment of HF.

In addition to HK1, the link between HK2 and cardiac 
hypertrophy is equally important. It has been shown that 
cardiac hypertrophy is associated with the accumulation 
of ROS and that reducing their accumulation can achieve 
attenuation of cardiac hypertrophy. It has been shown that 
in vitro overexpression of HK2 can increase the flux of the 
pentose phosphate pathway by increasing G6PDH activ-
ity within the pentose phosphate pathway. This was able to 
significantly reduce ROS accumulation and prevent ROS-
induced cardiomyocyte death, with an anti-hypertrophic 
effect [49]. In addition, with the accumulation of ROS dur-
ing cardiac hypertrophy, the level of HK2 in cardiomyocytes 
decreases and its dislocation from mitochondria increases. 
This increased dislocation may reduce angiogenesis and 
vascular endothelial growth factor (VEGF) levels through 
HIF-dependent pathways and lead to an increase in cardio-
myocyte size, which in turn induces a decrease in cardio-
myocyte contractility [19, 50]. In summary, stimulating an 
increase in HK2 levels and increasing its binding level to 
mitochondria may be an effective measure to alleviate myo-
cardial hypertrophy.Several findings have been made for the 
use of HK in the treatment of heart failure. Current research 
has identified a protein phosphatase called PHLPP, which 
is rich in leucine and can inhibit Akt signaling by dephos-
phorylating it, reducing the level of HK2 bound to cardiac 
mitochondria and thus promoting a process associated with 
physiological hypertrophy, which may be beneficial in slow-
ing down the development of pathological hypertrophy [51]. 
Qiangxin recipe, a well-known herbal medicine, promotes 
the activation of a transcription factor called Krüppel-like 
factor 5 (KLF5) and increases the activity of the HK2 gene 
promoter, which induces glucose metabolism and inhibits 
cardiomyocyte apoptosis, providing a novel targeted therapy 
for the treatment of congestive heart failure [52]. Heart fail-
ure also involves the development of vascular inflammation, 
and the sodium-glucose cotransporter 2 (SGLT2) inhibitor 
Canagliflozin (Cana) can reduce inflammation in endothelial 
cells via HK2 reductions, revealing that Cana has a novel 
anti-inflammatory mechanism via HK2 [53]. In conclusion, 
HKs play an important role in the development of HF, and 
studying its specific mechanisms and regulation may be a 
rewarding research direction for the treatment of HF.

Phosphoglucose isomerase (PGI)

Phosphoglucose isomerase (PGI) is an enzyme of the sec-
ond reaction step of glycolysis that reversibly isomerizes 
glucose-6-phosphate to fructose-6-phosphate and is widely 
distributed in a variety of human tissues [54]. PGI has three 
manifestations in cells, monomers, dimers, and tetram-
ers. Monomers have no enzymatic activity and are usually 
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involved in various biological pathways as cytokines. The 
dimer is the form of the enzyme that primarily exercises cat-
alytic activity and consists of one large and one small struc-
tural domain, with the binding site for the glucose located 
at the junction between these two domains. Although the 
tetrameric form of PGI is also observed in vivo and in vitro, 
its specific function is unclear [55].

Heart failure

Previous studies have shown that metabolic and structural 
remodeling is a hallmark of heart failure and that this remod-
eling involves the activation of the mTOR signaling path-
way. A study in adult mouse ventricular cardiomyocytes 
(AMVM) found that sustained inhibition of PGI induced 
G6P accumulation and increased G6PDH activity, redi-
rected carbon to the pentose phosphate pathway (PPP), and 
led to an increase in mTOR phosphorylation and activa-
tion, ultimately contributing to increased protein synthesis 
in AMVM [56]. This study demonstrates that decreasing 
PGI activity modulates activation of the mTOR pathway, 
which directly affects cardiomyocyte growth. Not only that, 
changes in metabolic levels induced by persistent activation 
of mTORC1 such as reduced rates of glucose uptake and 
oxidation, reduced PGI activity, and increased intracellu-
lar levels of G6P were also found to precede hypertrophy 
[57]. In summary, heart failure and cardiac hypertrophy is 
associated with activation of the mTOR signaling pathway, 
which can be modulated by reduced PGI activity. Therefore, 
targeting PGI and increasing its activity may be a potential 
treatment for mTORC1-induced cardiac hypertrophy as well 
as heart failure.

Coronary heart disease

Glucose-6-phosphate isomerase deficiency has been shown 
to have a protective effect against coronary artery disease 
[58]. Zhang et al. found that the G6PI as a novel autoantigen 
was significantly increased in patients with coronary heart 
disease compared with healthy controls [59]. In rheumatoid 
arthritis, G6PI is an autoantigen that is widely present on the 
synovial lining surface and the small artery endothelial cell 
surface60. There is enough evidence to support the notion 
that CHD has an autoimmunity property. Currently, G6PI is 
being researched as an autoantigen for coronary heart dis-
ease, which differs from its glycolysis function and maybe 
a new indicator for the prediction of coronary heart disease.

Phosphofructokinase‑1 (PFK‑1)

Phosphofructokinase 1 (PFK-1) is an important rate-
limiting enzyme in glycolytic metabolism, responsible 
for the conversion of fructose-6-phosphate and ATP to 

fructose-1,6-bisphosphate and ADP. This is the third step in 
glycolytic metabolism. PFK-1 is a tetrameric enzyme, with 
three different isoforms in the human body, namely platelet 
isoform (PFKP), liver isoform (PFKL), and muscle isoform 
(PFKM). The different isoforms are mainly dependent on the 
cell type in which they are found [61]. PFK-1 expression is 
regulated intracellularly by a variety of substances, the most 
potent of which is fructose-2,6-bisphosphate (F-2,6-BP). In 
turn, the level of F-2,6-BP is regulated by fructose-2,6-bi-
sphosphatase (PFKFB) [62]. Thus, modulation of PFKFB 
activity can influence PFK-1 expression through F-2,6-BP, 
which in turn affects metabolic fluxes of glycolysis.

Myocardial Infarction

Glucose metabolism accounts for only a small fraction of the 
energy supply in the healthy heart, but plays an important 
role in cardiac pathology, especially in ischemic hearts. In 
chronic hypoxic heart disease, elevated glycolysis leads to 
chronic myocardial hypertrophy. It has been found that a 
long-term steady increase in F-2,6-BP levels in the mouse 
heart can protect cardiomyocytes from hypoxic damage by 
increasing glycolysis. The chronically elevated levels of 
glycolysis may be responsible for myocardial damage in 
failing hearts by promoting both myocardial hypertrophy 
and myocardial fibrosis [63]. However, in acute hypoxic 
heart disease, a short period of elevated glycolysis induced 
by F-2,6-BP can be beneficial in reducing stress overload-
induced cardiac hypertrophy. In one study, F-2,6-BP levels 
were significantly increased in the hearts of control mice 
after transverse aortic constriction (TAC) surgery, and pres-
sure overload-induced cardiac hypertrophy, dysfunction, and 
fibrosis were alleviated. However, more severe hypertrophy 
and more severe fibrosis occurred in the hearts of transgenic 
mice with suppressed expression of F-2,6-BP levels [64]. 
The above findings suggest that PFK-2 stimulation and ele-
vation of F-2,6-BP are critical adaptive responses to cardiac 
pressure overload.

MI is a hypoxia-associated myocardial injury capable 
of causing severe myocardial injury and cardiomyocyte 
apoptosis. It was found that hypoxia treatment was able to 
alleviate hypoxia-induced cardiomyocyte apoptosis by sig-
nificantly upregulating PFKFB2 expression and activation in 
MI cardiomyocytes through activation of the HIF-1 / AKT 
axis [65]. This provides a potential therapeutic target for 
hypoxia-associated myocardial injury. In addition, cardiac 
remodeling after MI is an important cause of death, which 
is associated with inflammation and oxidative stress. Jaboti-
caba, a fruit native to Brazil, has been reported to improve 
the remodeling process after MI by combating inflammation 
and reducing oxidative stress. This process involves altera-
tions in energy metabolism, which attenuates the activity of 
glycolysis-related enzymes such as LDH and PFK at higher 
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levels resulting from MI and may in this way improve mito-
chondrial function [66]. In summary, increasing PFK expres-
sion and activation in the acute phase can alleviate hypoxia-
induced myocardial injury, whereas attenuating PFK activity 
after myocardial infarction improves the remodeling process 
after myocardial infarction, which is of positive significance 
in the treatment of myocardial infarction.

Heart failure

An important feature of heart failure is the increased rate of 
glucose uptake and glycolysis, and glycolytic metabolism 
in endothelial cells (CM) is important for angiogenesis and 
pathological remodeling of the heart [67]. In a recent study, 
by analyzing gene expression profiles of hypertrophic car-
diomyocytes, the mRNA expression level of PFKP, but not 
muscle isoform PFKM and liver isoform PFKL, was found 
to be significantly elevated in pathologically remodeled 
CM. Inhibition of PFKP was able to block the expression 
of Nppb, a marker of CM remodeling and heart failure [68]. 
This suggests that PFKP is involved in the stress response in 
CM and is a new heart failure-inducible gene. Not only that, 
the increase in PFK activity also further increases glycolytic 
flux, resulting in the accumulation of pyruvate and lactate, 
which leads to cardiac contractile dysfunction. In summary, 
elevated PKFP activity and expression are important fac-
tors contributing to heart failure, and inhibition of PFKP 
alleviates the stress response of CM and attenuates cardiac 
rational remodeling.

In addition, p53-induced knockdown of the regulator 
of glycolysis and apoptosis (TIGAR) improves endothe-
lial angiogenesis by increasing glycolytic flux in the CM, 
leading to increased coronary capillary density and vascu-
lar function, as well as amelioration of heart failure [69]. 
In TIGAR KO subjected to TAC, the activity and level of 
the key glycolytic enzyme PFK-1 were found to be signifi-
cantly increased, and pressure overload-induced diastolic 
dysfunction and interstitial fibrosis were ameliorated [70]. 
Similarly, upregulation of PFK-1 activity was found in mice 
with acetylation-deficient p53 4KR [71]. It has previously 
been shown that p53 4KR improves EC glycolytic function 
and mitochondrial respiration and can delay the progression 
of heart failure [71]. However, the protective role of PFK-1 
in diastolic heart failure is not known. It is speculated that 
increasing the activity of PFK-1 may be a new target for the 
treatment of diastolic heart failure.

Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is a disease caused by 
disruption of the fatty acid/glucose balance due to a rise in 
lipid metabolism and a fall in glucose metabolism in cardio-
myocytes. Under normal conditions, after feeding, insulin 

signaling can phosphorylate PFK-2 through the Akt and/or 
PKA signaling pathways, increasing the concentration of 
F-2,6-BP in cardiomyocytes. In this way, it promotes PFK-1 
activity, increases glycolysis, and maintains the dynamic bal-
ance of fatty acid/glucose metabolism. However, in diabetic 
patients, glucose uptake is reduced due to a lack of insulin 
signaling, and PFK-2 is lysosomal-mediated degraded in 
the absence of insulin signaling [72]. Inhibition of PFK-1 
activity and decreased glucose use derive the heart’s energy 
almost exclusively from lipids, which causes myocardial 
lipid accumulation, lipotoxicity, and mitochondrial dysfunc-
tion, ultimately leading to diabetic cardiomyopathy [72]. Not 
only that but it has also been found in diabetic patients that 
inhibition of PFK-1 activity is followed by upregulation 
of its upstream glycolytic intermediates. These included 
G6P and F6P, whose concentrations increased twofold and 
threefold, respectively. G6P is a direct substrate for glyco-
gen synthesis, and its increase correspondingly increased the 
amount of glycogen in cardiomyocytes. F6P, on the other 
hand, is the first substrate of the hexosamine pathway, which 
also directly contributes to the rise in hexosamine pathway 
flux, resulting in a twofold increase in its end product, UDP-
GlcNAc. The elevated UDP-GlcNAc may further contribute 
to the development of insulin resistance (IR) [73]. IR is a 
risk factor for type 2 diabetes mellitus (T2DM), and IR in 
hyperinsulinemia, hypertension, and hyperlipidemia can 
lead to T2DM. There are multiple and complex associations 
between IR and dyslipidemia, hypertension, and atheroscle-
rosis, which can significantly increase the risk of developing 
cardiovascular disease [74]. Low-intensity exercise has been 
reported to prevent cardiac IR induced by a fructose-rich 
diet. The report, in the course of studies in male and ovariec-
tomized rats, found that low-intensity exercise prevented the 
reduction of GSK-3β phosphorylation levels and enhanced 
GLUT4 expression in fructose-rich diet-induced hearts of 
males and prevented the reduction of PFK-2 phosphoryla-
tion in ovariectomized female rats. These effects favored 
glucose use by cardiomyocytes [75]. In summary, the pres-
ence of insulin signaling is necessary for this process, and 
increasing the expression and activity of PFK-1 and PFK-2 
increases glucose utilization and improves cardiac function 
in cardiomyocytes from DCM patients.

Aldolase

Aldolase A (ALDOA) is a reactive enzyme in the fourth 
step of glycolysis that breaks and converts fructose-1,6-bi-
sphosphate (F-1,6-BP) to glyceraldehyde-3-phosphate 
(G3P) and dihydroxyacetone phosphate (DHAP). In verte-
brates, there are three isoforms of members of the aldolase 
family involved in metabolism and glycolysis: aldolase A 
(ALDOA), the muscle and erythrocyte isoforms; aldolase 
B (ALDOB), the liver, kidney, and intestine isoforms; and 
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aldolase C (ALDOC), the brain and nervous system iso-
forms [76]. ALDOA and ALDOC are primarily involved in 
glycolysis, whereas ALODB is involved in glycolysis and 
gluconeogenesis. Shortly after birth, the aldolase A gene 
(pM) is expressed primarily induced by the glycolysis of 
fast muscles (also known as type II fibers, which are the 
fibers responsible for explosive movements) in the muscles 
of the adult body. Later in development, pM is specifically 
upregulated in body muscles [77].

In addition to its involvement in carbohydrate metabo-
lism, aldolase can function as a non-glycolytic enzyme in 
combination with a variety of proteins (cytoskeletal proteins, 
F-actin, α-microtubulin, etc.). The nuclear localization of 
ALDOA may influence the rate of cell proliferative activity 
by entering the S phase of the cell cycle, and its binding to 
skeletal muscle cytoskeletal proteins may be involved in the 
coordination of peripheral membrane transport and cytoskel-
etal dynamics [78, 79].

Myocardial infarction

MI is a myocardial necrotic disease due to persistent 
ischemia and hypoxia, and the occurrence of oxidative 
stress exacerbates this myocardial necrotic apoptosis. Some 
researchers claimed that low levels of ALDOA expression 
were found in blood samples from MI patients and hypoxia/
reperfusion (H/R)-induced H9c2, and that overexpression of 
ALDOA slowed H/R-induced oxidative stress and apoptosis. 
The study noted that overexpression of ALDOA triggered 
the Notch 1 pathway by upregulating VEGF. Activation of 
this pathway reduces the accumulation of ROS, malondi-
aldehyde in cardiomyocytes and decreases superoxide dis-
mutase (SOD) activity, thereby protecting cardiomyocytes 
from H/R-induced apoptosis and oxidative stress [80]. This 
suggests that increasing the expression level of ALDOA dur-
ing MI and promoting the upregulation of the VEGF/Notch 
1/Jagg1 pathway by ALDOA is beneficial for the treatment 
of MI.

Heart failure and cardiac hypertrophy

During HF, cardiomyocyte metabolism shifts from fatty 
acid oxidation to glycolysis [81]. During this period, the 
glycolysis-associated enzyme ALDOA is overexpressed in 
cardiomyocytes and inhibits the activation of AMP-depend-
ent protein kinase (AMPK) signaling in both a liver kinase 
B1 (LKB1)-dependent and an AMP-independent manner. 
Inhibition of AMPK signaling is a key mechanism of iso-
prenaline-induced cardiac hypertrophy [82]. Metformin and 
AICAR were able to block this effect of ALDOA. Therefore, 
blocking the AMPK inhibitory effect of ALDOA during 
cardiac hypertrophy would be beneficial in mitigating the 
progression of cardiac hypertrophy.

Arrhythmia

The sinus node (SAN), a tissue formed by pacemaker car-
diomyocytes (PCs) wrapped around a large number of 
fibroblasts and heterogeneous neoplastic connective tissue, 
is an important structure that generates rhythmic electrical 
impulses to maintain the heartbeat. Its dysfunction can lead 
to adverse consequences such as arrhythmia, inadequate 
blood supply, and even cardiac arrest. A study in SAN with 
rhythm failure found that almost all metabolites related to 
the glycolytic process were reduced and that the reduction 
in ALDOC expression was a key factor in the decrease in 
glycolytic levels in SAN [83]. This study indicates that 
fibroblasts can interact with PCs through integrin-depend-
ent MAPK-E2F1 signaling, drive PC-specific expression of 
ALDOC, and maintain aerobic glycolysis inherent in PCs to 
regulate pacemaker rhythm [83]. In conclusion, the above 
findings suggest that energy supplementation provided by 
promoting ALDOC expression may restore SAN dysfunc-
tion, which provides an effective therapeutic option for the 
treatment of arrhythmias.

In addition, atrial fibrillation (AF) is the most common 
of cardiac arrhythmias, and it is the leading cause of death 
from heart failure, stroke, and thrombotic tethering events. 
The search for valuable biomarkers is important for the man-
agement of AF. Zhong et al. studied peripheral plasma sam-
ples from selected patients with nonvalvular AF and control 
patients and found that PF4V1, THBS1, PBP, and ALODA 
were upregulated in plasma expression in patients with AF 
by proteomic and bioinformatics analysis [84]. ALDOA may 
be a candidate biomarker for the identification and manage-
ment of AF.

Serum marker

Hypertrophic cardiomyopathy (HCM) is a common inher-
ited heart disease characterized pathologically by left ven-
tricular hypertrophy (LVH). Clinical assessment of disease 
progression in HCM is imperfect, such that a large number 
of high-risk cases remain undetected until sudden cardiac 
death (SCD) occurs. Using proteomic analysis, a study 
identified six protein-based peptides, including the ALDOA 
peptide, that were significantly elevated in the plasma of 
patients with LVH + HCM and demonstrated that these six 
protein-based peptides can be used as plasma biomarkers 
of HCM that correlate with an estimated degree of risk 
for the development of SCD [85]. Another study also per-
formed a proteomic analysis in myocardial samples from 
HCM patients. The results of this study indicated that the 
metabolism-related enzymes ALDOA, creatine kinase type 
M, and acid-glycerate translocase had decreased expression 
in cardiomyocytes from patients with HCM, accompanied 
by an increase in the expression of structural proteins. This 
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suggests the presence of metabolic and structural dysregu-
lation in HCM [86]. Therefore, we can conclude that the 
downregulation of ALDOA in HCM cardiomyocytes may be 
involved in the development of HCM and that it can be used 
as a plasma biomarker to assess the degree of disease risk.

Congenital heart disease (CHD) is the leading cause of 
death in 1-year-old infants worldwide, accounting for 25% 
of all congenital anomalies. Ventricular septal defect (VSD) 
is one of the important disease categories. A study found 
that platelet activation and fructose and mannose metabo-
lism maybe two relevant pathways in VSD. The study iden-
tified significant changes in the concentrations of 10 pro-
teins, including aldolase B (ALDOB), pre-myosin α-4 chain 
(TPM4), and thymosin β-4 (T4), in patients with VSD by 
proteomic and bioinformatic analyses, which were validated 
and evaluated by ELISA analysis. Among them, the concen-
trations of ALDOB and TPM4 increased 1.5–1.7-fold rela-
tive to the healthy group. These significantly altered proteins 
are involved in glucose metabolism and blood coagulation 
pathways, which are closely linked to the development of 
VSD. Among these all identified proteins, ALDOB and T4 
recognized VSD with the best sensitivity, and specificity and 
are potential biomarkers for VSD [87]. In summary, ALDOB 
may play a role in the disease progression of VSD through 
the glucose metabolic pathway. Because of its high sensitiv-
ity and specificity, it can be a potential biomarker for VSD, 
which is important for screening and recognizing VSD.

Cardiogenic shock (CS) is a state of low cardiac output 
with end-organ under perfusion caused by left ventricular, 
right ventricular, or biventricular dysfunction, with a mortal-
ity rate of up to 50%. Common causes are acute myocardial 
infarction (AMI), myocarditis, and acute decompensation 
of heart failure (HF). Both glucose and lactate have been 
commonly used clinically to detect CS for a century. How-
ever, they do not very much in peripheral circulating lev-
els and do not truly aid in the diagnosis and prognosis of 
CS. CS4P is a newly developed proteomic risk score that 
incorporates hepatic fatty acid-binding protein (L-FABP), 
β-2-microglobulin (B2M), fructose-bisphosphate aldolase 
B (ALDOB), and SerpinG1 (IC1), which better refines the 
prediction and stratification of CS risk and is useful in the 
development of a risk profile for CS. and stratification [88]. 
ALDOB, as a newly discovered serum marker, is an impor-
tant reference for the development of individualized thera-
peutic regimens for CS patients (Fig. 1).

Phosphoglycerate mutase (PGAM)

Phosphoglycerol metathesis (PGAM) is a glycolytic catalase 
that catalyzes a reversible reaction between 3-phosphoglyc-
erate (3-PGA) and 2-phosphoglycerate (2-PGA). During the 
neonatal period, the main source of energy required for car-
diac metabolism gradually changes from glycolysis to fatty 

acid oxidation, during which PGAM expression gradually 
declines [89]. PGAM is a dimeric enzyme with two iso-
forms in mammals, the non-muscle isoform (type B) and the 
muscle-specific isoform (type M) [90]. Three isoforms can 
be composed: MM-PGAM, MB-PGAM, and BB-PGAM. 
BB-PGAM, named PGAM1, was originally isolated from 
the brain and is highly expressed primarily in the brain, kid-
ney, and liver [90]. MM-PGAM, named PGAM2, is a mus-
cle-specific form that is highly expressed mainly in skeletal 
muscle and heart. Its activity is regulated by several post-
translational modifications. Among them, sumoylization is 
an important mechanism for regulating PGAM2 activity. 
The two main SUMO receptor sites are K49 and K176, and 
mutations in these key sites may be associated with glyco-
gen storage disease X (GSDX) or other mutation-associated 
diseases [91]. MB-PGAM is predominantly expressed in the 
heart. The heart is the only tissue that contains all three 
forms of PGAM [92, 93]. In addition, PGAM5 is a specific 
mitochondrial serine/threonine protein phosphatase, local-
ized to the mitochondrial membrane, which does not exert 
the glycolytic activity of PGAM. It plays an important role 
in the regulation of cell death and mitochondrial dynamics 
[94].

Ischemia–reperfusion and myocardial infarction

The current study demonstrated that necroptosis is one of the 
modes of death in cardiac injury under I/R conditions [95]. 
The major signaling pathways involved include the typical 
pathway RIP3-MLKL pathway as well as the atypical path-
ways RIP3-CaMKII-mPTP pathway, RIP3-PGAM5-Drp1-
mitochondrial pathway, and RIP3-JNK-BNIP3 pathway [95]. 
The aim of studying these pathways is to identify the critical 
nodes involved in the development of I/R to help us target 
these sites to restore or at least minimize the myocardial 
damage caused by I/R. Indeed, the RIP3-MLKL pathway is 
the most studied mode of necroptosis induction in necrop-
tosis, however, other atypical pathways such as the RIP3-
PGAM5-Drp-1 axis are also receiving increasing attention 
[96]. It has been reported that a protein complex containing 
RIP1 and RIP3 is formed after necroptosis induction, and 
one of the components of this complex is PGAM5. PGAM5 
has two spliceosomes, PGAM5L (long form) and PGAM5S 
(short form), and both play roles in the necroptosis pathway 
[97]. When RIP3 translocates to mitochondria, PGAM5 
expression is elevated, and PGAM5S recruits the mitochon-
drial fission factor Drp1. It also promotes dephosphorylation 
of Ser637 on Drp-1, which in turn leads to mitochondrial 
fission, elevated ROS, and ultimately cell death. Meanwhile, 
PGAM5 inhibition has been shown to attenuate necropto-
sis and apoptosis in I/R-treated rat hearts via inhibition of 
Drp1, improving cardiac function and reducing inflamma-
tory responses in an acute model of myocardial I/R [97–99]. 
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Some researchers have claimed that while inhibition of RIP3 
prevents plasma membrane rupture early during reperfusion, 
it does not appear to rescue cardiac dysfunction by affect-
ing these types of necroptosis signaling but is more likely 
to be related to mitochondrial oxidative stress regulated by 
RIP3 via xanthin oxidase (XO) and manganese superoxide 
dismutase (MnSOD) [95]. At the subcellular level, inhibi-
tion of PGAM5 increased mitochondrial DNA copy number 
and transcription level, inhibited mitochondrial ROS produc-
tion, and prevented aberrant opening of mPTP during I/R 
to achieve cardioprotective effects [100]. Taken together, 
PGAM5 can serve as a novel inducer of necroptosis, pro-
viding new possibilities for the treatment of myocardial 

infarction. In addition, since RIP3 is the confluence of these 
signaling pathways, reducing the nuclear translocation of 
RIP3 is also a new idea [95, 98]. Thus, this atypical necrop-
tosis signaling appears to be more complex and requires 
further study.

Heart failure

A growing body of research suggests that metabolic repro-
gramming is an early alteration in heart failure and correlates 
with the severity of HF [14]. PGAM2 has the second highest 
level of activity in the heart after skeletal muscle [91]. An 
earlier study observed an approximately fivefold increase in 

Fig. 1   HK2 enhances NF-kB phosphorylation, promotes IL-6 produc-
tion and increases vascular inflammation, ultimately leading to heart 
failure.G6P to accumulation can cause ROS accumulation via NOX2, 
promoting the separation of HK2 from VDAC.The rise of HK2 can 
inhibit the accumulation of ROS through the activation of the PPP 
bypass pathway by G6PD.The rise of HK2 can inhibit ROS accumu-
lation through the activation of the PPP bypass pathway by G6PD. 
Inhibition of glycolytic flux through inhibition of PGI can promote 
activation of the mTOR pathway, which directly affects cardiomyo-
cyte growth and causes myocardial hypertrophy. IPC phosphorylates 
HK2 at Thr-473 through the Akt signaling pathway, which increases 
HK2 binding to mitochondria, thereby increasing myocardial resist-

ance to mPTP opening and cell death after reperfusion. Aldolase pro-
motes ISO-induced cardiomyocyte hypertrophy by inhibiting AMPK 
activation, a process that is inhibited by metformin. Overexpression 
of aldolase upregulates VEGF and triggers the Notch 1 pathway to 
reduce ROS in cardiomyocytes.In the presence of insulin signaling, 
insulin signaling maintains fatty acid/metabolic homeostasis by phos-
phorylating PFK-2 via the Akt and/or PKA signaling pathways. The 
absence of insulin signaling in diabetic patients leads to disruption of 
this mechanism, ultimately leading to diabetic cardiomyopathy.Disso-
ciation of HK2 from VDAC leads to opening of mPTP and release of 
cytochrome C into the cytoplasm, causing apoptosis
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PGAM2 protein expression in a canine model of tachycar-
dia-induced heart failure [101]. Similarly, Li et al. detected 
elevated PGAM2 expression in the serum of HF patients. It 
also illustrates that PGAM2 is a new biomarker for assess-
ing the severity of HF with an accuracy comparable to BNP 
[102]. A recent report states that sustained overexpression of 
PGAM2 can alter the levels of metabolites in glycolysis and 
the TCA cycle and may alter fatty acid and mitochondrial 
metabolism, which may disrupt mitochondrial function and 
increase cardiac stress sensitivity [103]. This predisposes the 
heart to severe myocardial fibrosis [64], ultimately resulting 
in heart failure. However, this study has not yet illustrated 
the mechanism by which PGAM2 overexpression affects 
mitochondria, which needs to be further explored. In addi-
tion, ZIKV infection significantly upregulates the expression 
levels of enzymes related to the glycolytic pathway, includ-
ing PGAM1, and promotes cardiac fibrosis by impairing car-
diac hypertrophy-associated proteins (e.g., RGS5, a GTPase 
activator), causing cardiac hypertrophy, which may lead to 
heart failure in infected patients [104].

Enolase (ENO)

ENO is a dimeric enzyme in the glycolytic pathway that 
catalyzes the interconversion between 2-phosphoglycerate 
and phosphoenolpyruvate. Three ENO isoenzymes have 
been identified in higher vertebrates: α-enolase (ENO-1), 
β-enolase (ENO-3), and γ-enolase (ENO-2), all of which are 
composed of homodimers. Of these, α-enolase is universally 
expressed in most tissues, β-enolase is specifically expressed 
in muscle tissue, and γ-enolase is found mainly in neural 
tissue [105–107]. During development, the accumulation 
of these specific isoforms is often accompanied by the dif-
ferentiation of two tissues with high energy requirements: 
αγ, γγ in the brain and αβ, ββ in the rhabdomyosarcoma 
[108]. γ-enolase, also called neuron-specific enolase (NSE), 
is expressed in neuronal tissues and neuronal tissues as an 
inhibitor in a wide variety of diseases (including Neuroendo-
crine Tumor (NET), Small Cell Lung Cancer (SCLC), Gas-
troenteropancreatic (GEP)-NET, etc.) biomarkers. γ-enolase 
also can predict adverse neurologic outcomes in comatose 
patients after cardiopulmonary resuscitation [109]. During 
cardiac development, the expression of α-enolase is sig-
nificantly decreased, and the gene expression of β-enolase 
accounts for the second largest amount of total enolase.

In addition to its catalytic activity, ENO is involved in 
other physiological pathways such as growth regulation and 
hypoxia tolerance [107, 110]. These non-catalytic activities 
of ENO-1 are related to its cellular and extracellular localiza-
tion. Association of ENO-1 with mitochondrial membranes 
is critical for mitochondrial membrane stability, whereas 
chelation of ENO-1 at the cell surface is essential for fibrino-
lytic enzyme-mediated hydrolysis of periplasmic proteins by 

a yet unknown mechanism [107]. As the underlying mecha-
nisms of ENO multitasking are unclear, ENO-1-targeted 
therapeutic approaches need to be carefully considered in 
the future to avoid unwanted side effects on normal cells.

Myocardial infarction

Post- MI fibrosis is extremely detrimental to post-infarction 
repair of the heart and is an important trigger for HF. Rec-
ognition of biomarkers released from the heart in the early 
stages of acute myocardial infarction (AMI) is important for 
diagnosing myocardial ischemia and rescuing dead cardio-
myocytes. The specific markers that have been applied are 
creatine kinase isoenzyme MB (CK-MB), cardiac troponin 
T (cTnT), cardiac troponin I (cTnI), and myoglobin, but 
they are released from the myocardium at a later stage of 
AMI occurrence and do not allow early ischemia diagnosis 
[111, 112]. To explore more valuable early biomarkers, Kurt 
D. Marshall et al. used H2O2 to induce necrosis in cardio-
myocytes and analyzed the proteins released histologically. 
They found a relative increase in the number of 147 proteins 
including enolase αβ [113]. This has important implications 
for the diagnosis of ischemia–reperfusion injury. Not only 
that, but in a recent study it was also suggested that the 
serum concentration of β-enolase was significantly elevated 
in AMI and that the rate of rise and fall in its concentration 
was faster and steeper than that of CK-MB, with a higher 
sensitivity [114]. These findings suggest that beta-enolase 
is likely to be a more effective marker of early myocardial 
infarction.

Among the various triggers of HF, fibrosis after myocar-
dial infarction (MI) is an important aspect. Previous studies 
have confirmed that TGF-β-Smad2/3 signaling in fibroblasts 
is a major mediator of the fibrotic response [115]. ENO was 
able to mediate the fibrogenic effects of TGF-β1, volatile 
TGF-β1-independent fibrogenesis [116]. Activation of this 
process is highly detrimental to remodeling after cardiac 
injury. To further explore the relationship between ENO and 
myocardial fibrosis, Jing-jing Ji et al. inhibited the transcrip-
tional activation of ENO-1 by regulating the acetylation of 
Nr4a1, an acetylated protein, using tissue kinin-releasing 
enzyme binding protein (KS/Serpina3c). Overactivation of 
glycolysis during MI was found to be inhibited and fibro-
sis after MI was attenuated. This may be because ENO-1 
inhibition antagonized the promotional effect of Serpina3c 
on CFs proliferation 117. In another study, inhibition of 
the FAK/Ras/c-myc/ENO1 pathway effectively suppressed 
aerobic glycolysis and ameliorated liver fibrosis [118]. The 
above findings suggest that the overactivation of ENO-1 has 
a fibrosis-promoting effect and that cardiomyocyte activa-
tion and myocardial fibrosis after MI can be alleviated by 
inhibiting ENO-1 [119].
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Heart failure

Adriamycin (Dox) is one of the most effective chemothera-
peutic agents against many types of cancer (e.g., acute 
leukemia, sarcoma). However, clinical use of Dox leads to 
cardiomyocyte apoptosis, decreases cardiac contractile func-
tion, and causes irreversible cardiac damage and dysfunc-
tion, which is highly correlated with mitochondrial damage 
[120–122]. ENO-1 is a regulator of cardiac mitochondria, 
which is partially located in the mitochondria of rat cardio-
myocytes. When co-localized with the mitochondrial mem-
brane, α-enolase has a stabilizing effect on the mitochon-
drial membrane by preventing Ca2+-induced mitochondrial 
transmembrane potential, matrix swelling, and cytochrome 
C release. This process is associated with VDAC1. In addi-
tion, because VDAC1 is a key regulator of the cell death 
pathway, alpha-enolase also has the potential to regulate 
apoptosis in cardiomyocytes [123]. In Dox-induced car-
diomyopathy, α-enolase dissociates from mitochondria and 
Dox replaces α-enolase on the outer mitochondrial mem-
brane, which results in mitochondrial dysfunction and acti-
vation of the cell death pathway [123]. Not only that, but in 
another study a rise in mRNA expression of α-enolase was 
observed, accompanied by an increase in AMPK dephospho-
rylation. This study also demonstrated that genetic silencing 
of α-enolase was able to attenuate Dox-induced apoptosis 
and mitochondrial dysfunction by inhibiting the release of 
mitochondrial CtyC into the cytoplasm, attenuating a series 
of Dox-induced reactions such as rapid loss of the mito-
chondrial electrochemical gradient and Caspase3 activa-
tion [124]. The above study illustrates that α-enolase has an 
independent catalytic role in inducing apoptosis and mito-
chondrial dysfunction in cardiomyocytes and may have some 
ATP deprivation effects. Promoting its binding to the outer 
mitochondrial membrane and inhibiting the overexpression 
of α-enolase could attenuate Dox-induced myocardial injury.

In addition, the role of ENO in cardiac hypertrophy has 
been demonstrated. During cardiac hypertrophy, compensa-
tory elevation of α-enolase protects cardiomyocytes from 
pathological hypertrophy [125]. Excessive elevation of 
α-enolase, however, leads to an elevated ratio of α-enolase 
to β-enolase concentrations, and this dysregulation of the 
ratio may be associated with contractile dysfunction during 
cardiac hypertrophy [126, 127].

Diabetic cardiomyopathy

In the pathogenesis of diabetes, oxidation, and nitration 
of proteins are important contributors to diabetes [128]. 
Researchers found significantly elevated expression and 
nitration levels of α-enolase in the hearts of diabetic rats, 
but no significant changes in activity or oxidation levels. The 
study further confirmed that α-enolase is most susceptible to 

nitration at two sites, Tyr 257 and Tyr 131. Nitrated alpha-
enolase activity is significantly decreased, which results 
in reduced myocardial energy stores and is an important 
contributor to the abnormal energy metabolism associated 
with diabetic cardiomyopathy, and thus secondary to dia-
betic cardiomyopathy [129]. Meanwhile, the upregulation 
of α-enolase expression may neutralize the oxidative stress 
caused by hyperglycemia, which is a protective mechanism 
for the cells [129].

Pyruvate kinase (PK)

Pyruvate kinase (PK) is another rate-limiting enzyme in the 
glycolytic pathway that catalyzes the irreversible conver-
sion of acid-enol pyruvate (PEP) to pyruvate while trans-
ferring the high-energy phosphate bond of PEP to ADP to 
generate ATP. In mammals, there are four isoforms of pyru-
vate kinase: the L-type, the R-type, the M1-type, and the 
M2-type. Of these, PKL is found mainly in gluconeogenic 
tissues, especially the liver; PKR is found mainly in eryth-
rocytes and hematopoietic tissues.PKM1 is highly expressed 
as a tetramer in cardiac, skeletal muscle, and brain tissues; 
PKM2 is expressed as a monomer, dimer, or tetramer in 
the lungs, spleen, kidneys, and testes [130–132]; in mature 
differentiated cells, PKM1 predominates, while PKM2 is 
highly expressed in cancer cells and embryos [133, 134]. In 
addition to its glycolytic catalytic role, PKM2 can act as a 
transcriptional regulator or protein kinase following nuclear 
translocation to regulate a variety of pathways such as apop-
tosis, mitosis, and tumor cell growth [130, 133].

Myocardial infarction

After MI injury, the repair process of the heart includes three 
coordinated phases of remodeling of extracellular mecha-
nisms, neoangiogenesis, and cardiomyocyte (CM) prolifera-
tion [135]. Over the past two decades, many studies have 
attempted to explore the regulatory mechanisms of the CM 
cell cycle to induce CM proliferation [135, 136]. It was found 
that after ischemic injury, the sustained expression of HIF-1 
was able to make PKM2 expression superior to that of nor-
mally expressed PKM1 and modify PKM2 through signaling 
proteins and post-translational modifications, which may be 
beneficial to cardiomyocyte proliferation [134]. Research-
ers have also engaged in a lively discussion about the spe-
cific mechanisms of PKM2 in regulating the cardiomyocyte 
cycle. On the one hand, Ludger Hauck et al. claimed that 
Pkm2 can directly interact with β-connexin (Ctnnb1) in the 
cytoplasm of cardiomyocytes (CM), inhibit the phospho-
rylation of Ctnnb1 via Akt at Ser552 and Try333, prevent 
Ctnnb1 from translocating to the nucleus, and then inhibit 
the transcription of proliferation-associated target genes 
(such as Myc and Cyclin D1) transcription, which adversely 
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affects cardiac repair after myocardial infarction [137]. Inter-
estingly, however, when PKM2 translocates to the nucleus, 
it can interact directly with Ctnnb1 in the nucleus of cardio-
myocytes and the complex cooperates with T-cell factor 4 
(TCF4) to up-regulate its downstream targets, Cyclin-D1 
and C-Myc, to transcriptionally induce genes encoding anti-
apoptotic proteins. PKM2 was also positively regulated by 
C-Myc, suggesting the existence of a positive feedback 
loop between PKM2 and c-Myc, which contributes to the 
cardiomyocyte cycle and cardiac regeneration [133, 136]. 
Procatecholaldehyde (PCA) is one that greatly attenuates 
cardiac injury and protects cardiomyocytes from apoptosis 
through the β-linker protein/TCF4 signaling cascade [133]. 
The above two different studies illustrate that the role of 
PKM2 in cardiac repair may be related to its intracellular 
localization and that PKM2's nuclear translocation may be 
a key factor in the treatment of myocardial infarction. On 
the other hand, PKM2 has an enzymatic function to enhance 
G6pd and redirect glucose carbon flow into the PPP anabolic 
pathway. Elevated PPP leads to reduced ROS production and 
oxidative DNA damage, thereby inhibiting postnatal cardio-
myocyte cycle arrest [136]. Therefore, further investigation 
of the regulators in the two key pathways of PKM2-induced 
CM proliferation may be a potential therapeutic approach.

In addition, inflammation is a key factor in MI injury. 
In the hearts of patients with non-ST-segment elevation 
myocardial infarction myocardial infarction, nuclear trans-
location of PKM2 acts as a transcriptional regulator of pro-
inflammatory genes and promotes transcription of cellular 
pro-inflammatory factors (e.g., IL6, IL-1β, and IFNγ), which 
cause myocardial injury [138]. Iminostilbene can target 
PKM2 to reduce macrophage inflammation, thereby signifi-
cantly attenuating MI/R injury [139]. Overall, the intracel-
lular localization of PKM2 is a key factor in its differential 
effects. Using PKM2 as a therapeutic target to promote the 
transcription of proliferative genes and inhibit the release 
of pro-inflammatory factors is an important strategy for the 
treatment of myocardial infarction.

Heart failure

Normally, the adult heart exhibits high levels of PKM1 and 
low levels of PKM2.PKM1 plays a critical role in maintain-
ing the cardiac homeostatic response to hemodynamic stress 
[140]. PKM1 is reduced and PKM2 is elevated during the 
onset of heart failure. PKM1 deficiency inhibits pyruvate 
dehydrogenase (PDH) activity by reducing the production of 
its product, pyruvate, which reduces TCA flux and impairs 
mitochondrial energy production, and exacerbates pressure 
overload-induced cardiac insufficiency and fibrosis, whereas 
induced PKM1 overexpression protects the heart from sys-
tolic dysfunction and is critical for maintaining glucose 

uptake and glycolysis for ATP production and macromo-
lecular biosynthesis [140].

In contrast to PKM1's protective effect on the heart, 
PKM2 is a deleterious factor in pathological cardiac remod-
eling. Myocardial fibrosis is an important pathological pro-
cess in hypertension-induced cardiac remodeling. Among 
them, the TGF-β / Smad2 / 3 pathway and the Jak2 / Stat3 
signaling pathway are the main pathways for fibrogenesis 
[141]. It has been demonstrated that PKM2 can exacerbate 
cardiac fibrosis by activating these two pathways. In addi-
tion, PKM2 also exacerbates Ang II-induced cardiac fibro-
sis by stimulating oxidative stress [142], and inhibition of 
PKM2 significantly reduced cardiac fibroblast proliferation, 
migration, and collagen synthesis in vitro [142]. Therefore, 
we can conclude that negative regulation of PKM2 may 
improve cardiac remodeling in hypertension by inhibiting 
cardiac fibrosis.

In addition, right ventricular fibrosis in patients with type 
2 pulmonary hypertension (PH) leads to right ventricular 
(RV) failure, which is the most common cause of death in 
patients with PH [143]. The pathophysiologic basis of RV 
failure is complex and multifactorial, in which CM dysfunc-
tion is a major determinant of RV failure [144]. Overacti-
vated poly (ADP-ribose) polymerase 1 (PARP1) promotes 
PKM2 expression and nuclear translocation, increases gly-
colytic gene expression, nuclear translocation of NF-kB, and 
expression of proinflammatory factors, resulting in CM dys-
function [144]. Elevated PKM2 expression is also associated 
with impaired right ventricular function and the develop-
ment of right ventricular fibrosis [145]. Inhibition of PKM2 
and restoration of a normal PKM2/PKM1 ratio effectively 
reduces PH [146]. Taken together, PKM2 has pleiotropic 
effects targeting the RV and pulmonary vascular system, and 
the inhibition of PKM2 expression and nuclear translocation 
may be an effective strategy for the treatment of RV failure.

Many chemotherapeutic agents (including anthracyclines, 
such as doxorubicin) can promote heart failure by non-spe-
cifically inducing the pro-apoptotic transcription factor p53 
in the heart [147]. In the failing heart, tetrameric PKM2 
binds directly to p53, inhibiting p53 transcriptional activity 
and apoptosis in the high oxidized state, but enhancing in 
the low oxidized state, where the redox state of cysteine-423 
of tetrameric PKM2 is critical for the differential regula-
tion of p53 transcriptional activity [147]. Based on existing 
reports, the small molecules TEPP-46 and 2-DG can pro-
mote the formation of stable tetramers with high pyruvate 
kinase activity [148], providing new ideas for the treatment 
of chemotherapeutic drug-induced heart failure.

To date, heart transplantation is the most effective treat-
ment for end-stage heart failure. However, chronic and acute 
rejection is the greatest cause of postoperative mortality in 
patients. In a study, PKM2 was found to be widely expressed 
in post-transplant cardiac tissues but not in T cells and other 
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immune response cells [149]. Suggests that PKM2 may reg-
ulate cardiomyocyte survival in acute rejection.

Cardiomyopathy

PKM2 is usually absent in healthy adult cardiomyocytes but 
elevated in cardiomyopathies, where PKM2 is usually pre-
sent in the heart as an inactive dimer. Tang et al. found that 
Jmjd4 interacts with Hsp70 to mediate the degradation of 
PKM2, which is dependent on hydroxylation of the PKM2 
K62 site by Jmjd4. In idiopathic and familial DCM, Jmjd4 
expression is significantly reduced in the hearts of patients, 
leading to PKM2 accumulation [150]. Tang et al. used the 
small molecule activator TEPP-46 to convert PKM2 dimers 
to enzymatically active PKM2 tetramers and found that this 
was able to reduce TCA-induced metabolic impairments and 
rescue the metabolic dysfunction and cardiac hypertrophy 
induced by knockdown of Jmjd4. The function of PKM2 in 
cardiomyocytes has not yet been thoroughly analyzed but 
this study at least partially finds the positive role of elevated 
PKM2 tetramers in DCM.

Sepsis is a systemic inflammatory response syndrome 
caused by gram-negative bacteria, often accompanied by 
multiple organ dysfunctions. Sepsis-induced cardiomyopa-
thy (SIC) is one of the most serious complications, capable 
of inducing adverse cardiomyocyte apoptosis, mitochondrial 
abnormalities, and oxidative stress, which ultimately impairs 
myocardial function [151]. PKM2 deficiency exacerbates 
calcium homeostasis by impairing sarcoplasmic/endoplas-
mic reticulum calcium ATPase 2a (SERCA2a) expression, 
resulting in lipopolysaccharide (LPS)-induced cardiac 
dysfunction [151]. PKM2 plays a critical role in Gram-
negative sepsis-induced cardiomyopathy and provides an 
attractive target for the prevention and treatment of septic 
cardiomyopathy.

Dagliflozin (DAPA) is a drug for the treatment of dia-
betes, and studies claim that it is also protective against 
cardiomyopathy caused by cardiorenal syndrome (CRS). In 
the context of CRS, PKM2 expression is reduced, and mito-
chondrial structure is damaged and dysfunctional.DAPA 
can complement PKM2 expression and allows it to interact 
directly with protein kinase 1 (PP1) and FUNDC1, activat-
ing FUNDC1 in a dephosphorylated manner. It promotes 
FUNDC1-dependent mitochondrial autophagy and attenu-
ates mitochondrial damage and defects, resulting in protect-
ing myocardial structure and cardiac function [152].

Atherosclerosis

PKM2 has been demonstrated to be upregulated in mono-
cytes/macrophages from patients with atherosclerotic coro-
nary artery disease153, enhancing macrophage accumulation 

in atherosclerotic lesions primarily by promoting foam cell 
formation and exacerbating inflammatory responses [154]. 
Genetic deletion of PKM2 or restriction of its nuclear trans-
location in macrophages was found to alleviate the athero-
sclerotic lesions by inhibiting inflammation and enhancing 
erythropoiesis [155]. Unexpectedly, deletion of PKM2 in 
macrophages increased the expression of LRP (LDLR-
related protein)-1, which may mitigate the progression of 
atherosclerosis by modulating the macrophage inflammatory 
response in the microenvironment of atherosclerotic lesions 
[155]. However, the exact mechanism of how PKM2 regu-
lates LRP-1 is unclear and will remain an area for future 
research. In addition, nuclear PKM2 can activate STAT3 
and drive the transcription of pro-inflammatory genes IL-6 
and IL-1β in a pSTAT3-dependent manner, exacerbating the 
inflammatory response [156]. Not only that, but PKM2 is 
also able to mediate the activation of the NLRP3 inflamma-
tory vesicle/stress granule design in macrophages and the 
subsequent release of pro-inflammatory mediators, such as 
IL-18 and IL-1β [148], induces vascular smooth muscle cell 
proliferation and migration and increases plaque vulnerabil-
ity and through upregulation of PKM2-dependent glycolysis 
[157]. The above findings suggest that the glucose-ROS-
PKM2-STAT3 axis and the search for PKM2 inhibitors are 
new directions for anti-inflammatory interventions in car-
diovascular disease.

Lactatedehydrogenase (LD or LDH)

Lactate dehydrogenase (LD or LDH) is a tetrameric enzyme 
that catalyzes the redox reaction between pyruvate and 
L-lactate and is one of the key enzymes of glycolysis. In 
mammals, LDH has three subunits, LDHA, LDHB, and 
LDHC, which can constitute six tetrameric isoenzymes. 
Of these, LDHA is found mainly in skeletal muscle and 
liver, and is also known as the M subunit; LDHB is found 
mainly in the myocardium, brain, kidney, and erythrocytes 
[158]. LDHA and LDHB can form homo- or heterotetram-
ers LDH1-5 (LDH1, LDH2, LDH3, LDH4, and LDH5), 
which are expressed predominantly in the cytoplasm [159]. 
Different isoenzymes have different catalytic roles. LDHA 
catalyzes the conversion of pyruvate to lactate, while LDHB 
catalyzes the conversion of lactate to pyruvate [159]. LDH6 
is composed of homologous LDHC (LDH-C4), which is 
found primarily in human testes and spermatozoa and is 
associated with male fertility [159].

Myocardial infarction

Control of metabolic conversion is an important factor in 
cardiac repair after myocardial infarction and can effectively 
mitigate the loss of regenerative capacity in the mammalian 
heart [160]. One study found that overexpression of LDHA 
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induced metabolic reprogramming, stimulating CM prolif-
eration by alleviating ROS and inducing M2 macrophage 
polarization [160], facilitating cardiac remodeling, suggest-
ing that LDHA may be an effective target to promote cardiac 
repair after myocardial infarction [160].

Heart failure

Cardiac hypertrophy is an enlargement of the myocardium 
due to overload stress and is a major cause of heart failure 
[161]. Metabolic remodeling is an early event in this pro-
cess [57, 162]. Cardiac pressure overload can significantly 
upregulate LDHA expression in the heart, and LDHA 
deficiency in cardiomyocytes can lead to defective cardiac 
hypertrophy and heart failure. In contrast, lactate can stimu-
late ERK (extracellular signal-regulated kinase) expression 
by stabilizing NDRG3 (N-myc downstream-regulated gene 
3) to rescue growth defects caused by LDHA knockdown 
[162]. The above findings emphasize the importance of the 
LDHA/lactate/NNDRG3 axis in the heart in controlling car-
diac hypertrophic growth induced by elevated blood pressure 
[162]. Furthermore, LDHB plays an important role in the 
treatment of Ang II-induced cardiomyocyte hypertrophy. 
A miR-375-3p inhibitor has been found to inhibit Ang II-
induced cardiomyocyte hypertrophy by promoting LDHB 
expression [161]. Yamaguchi et al. found that serum LDH 
may also be an important predictor of 90-, 180- and 365-day 
all-cause mortality in patients with acute decompensated 
heart failure, suggesting that serum LDH has important 
prognostic value in acute decompensated heart failure [163].

Aortic constriction

Aortic dissection (AD) is a disease with a high mortality 
rate and a lack of effective drug therapy. Recent studies have 
suggested that AD progression may be closely linked to glu-
cose metabolism. LDHA is a key enzyme in the glycolytic 
pathway, and researchers have found that in the presence of 
hyperglycemia, increased LDHA promotes the production 
of MMP2/9, stimulates extracellular matrix (ECM) degrada-
tion, and facilitates the transition of human aortic vascular 
smooth muscle cells from contractile to synthetic phenotype 
to attenuate AD progression. At the same time, the upregula-
tion of lactate, a product of LDHA, was also able to stabilize 
and promote the growth and phenotypic transformation of 
cardiomyocytes and VSMC [164]. Therefore, we hypoth-
esized that LDHA and its product lactate may be therapeutic 
targets for AD (Fig. 2) (Table 1). 

Glycolytic bypass pathway 
and cardiovascular disease

Polyol pathway

The polyol pathway is the process of oxidative reduction of 
glucose to fructose, which involves two key enzymes, aldose 
reductase (AR) and sorbitol dehydrogenase (SDH). Of these, 
AR reduces glucose to sorbitol while its cofactor, NADPH, 
is oxidized to NADP.SDH oxidizes sorbitol to fructose while 
reducing NAD to NADH [12, 165]. This pathway is thought 
to be strongly implicated in diabetic and nondiabetic myo-
cardial ischemic injury, primarily by causing cellular oxida-
tive stress and late AGEs (end products of glycosylation) 
formation to exacerbate ischemic myocardial injury [166, 
167]. Under normal conditions, only about 3% of glucose 
enters the polyol pathway, whereas in hyperglycemia, the 
glucose entering the polyol pathway rises to more than 30% 
[168]. Activation of the polyol pathway during I/R induces 
oxidative stress through three main pathways. First, elevated 
ROS levels during ischemia increase AR activity, leading to 
an increase in the cytoplasmic NADH / NAD + ratio, which 
further induces the expression of HIF-1α and the transcrip-
tion of the transferrin receptor (TfR) gene, triggering ATP 
depletion and tissue damage [169]. In addition, the clear-
ance of ROS requires the involvement of reduced glutathione 
(GSH), a cofactor of glutathione reductase (GR), and its 
depletion leads to a decrease in the level of reduced GSH, 
which prevents the clearance of ROS and exacerbates the 
oxidative stress injury [165]. Oxidative stress may further 
lead to the inactivation of SERCA, allowing for reduced 
Ca2+ reuptake in the sarcoplasmic reticulum and myocardial 
contractile dysfunction [170]. Second, overactivation of the 
polyol pathway accumulates excess NADH in the second 
step, which is a substrate for NADH oxidase and can lead 
to the production of more superoxide anions [168]. Finally, 
fructose produced by the polyol pathway can be further 
metabolized into fructose-3-phosphate and 3-deoxygluco-
sone, increasing the formation of AGEs [168]. Therefore, the 
novel therapy of protection against ischemic cardiomyopa-
thy through the inhibitory effect of polyol or aldose reduc-
tase pathways has attracted interest. Several studies have 
demonstrated that the inhibitory effect of increased NADH/
NAD + ratio and oxidative stress injury in the heart through 
AR-induced increases in polyol pathway flux protects both 
diabetic and nondiabetic myocardium from ischemia–rep-
erfusion injury [169, 171–174]. In addition, recent studies 
have found that elevated myocardial fructose and SDH may 
be associated with diabetic patients with diastolic dysfunc-
tion. Fructose exacerbates the lipotoxicity of diabetic car-
diomyopathy by promoting the formation of cytoplasmic 
lipid inclusion bodies in cardiomyocytes, and the inhibition 
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of SDH protects the ischemic myocardium and alleviates 
diastolic dysfunction [167, 175].

Hexosamine biosynthetic pathway (HBP)

The hexosamine biosynthesis pathway (HBP) is another 
ancillary pathway of glycolysis capable of converting fruc-
tose-6-phosphate (F-6-P) and glutamine to glucosamine-
6-phosphate (GlcN-6P) via glutamine-fructose-6-phosphate 
transaminase (GFPT), and ultimately synthesizing riboside 
diphosphate N-acetylglucosamine (UDP-GlcNAc). There 
are two isoforms in humans, GFPT1 and GFPT2, with 
GFPT2 being the main type in the heart [176]. UDP-GlcNAc 
is a substrate for a variety of biosynthetic pathways such as 
proteoglycans, hyaluronic acid, and glycolipids [12]. It also 
serves as a substrate for O-GlcNAc transferase (OGT) to 
O-GlcNAcylate proteins, which regulates cellular functions 
such as cell survival, signaling, and protein stability, and is 
thought to prevent cell death in response to stress [176–178]. 
It has been found that increased post-translational O-GlcNA 
acylation due to HBP activation may be associated with 
systolic and diastolic dysfunction in diabetic cardiomyo-
pathy [179]. In addition, oxidative stress is an important 
risk factor in a variety of cardiovascular diseases, including 
diabetic cardiomyopathy, myocardial infarction, and heart 
failure. Oxidative stress has been reported to inhibit catalytic 
enzymes of the upstream pathway of glycolysis, including 
hexokinase, glyceraldehyde-3-phosphate dehydrogenase, 
and PFK, resulting in the accumulation of upstream inter-
mediates (e.g., F-6-P) and shunting of glucose-carbon fluxes 
to the HBP [180]. Increased fluxes of HBP play a dual role. 
Acute upregulation of HBP is cardioprotective. Zhang et al. 
found that nuclear Tisp40, a membrane-resident transmem-
brane protein enriched in cardiomyocytes that is cleaved and 
released into the nucleus in response to ER stress, promotes 
HBP flux and protein O-GlcNAcylation by binding to the 
promoter of GFPT1, and is capable of attenuating myocar-
dial injury in the ischemic heart [176]. Chronic activation, 
however, can cause protein dysfunction through sustained 
elevation of protein O-GlcNAcylation, which ultimately 
leads to cardiovascular diseases such as diabetic cardiomyo-
pathy, cardiac hypertrophy, ischemic cardiomyopathy, and 
heart failure [180]. Tran et al. found that GFPT1 overexpres-
sion under hemodynamic stress caused upregulation of HBP, 
which subsequently induced heart failure and cardiac remod-
eling through persistent chronic activation of mTOR [181]. 
U Rajamani et al. found that in diabetic patients, hypergly-
cemia activates HBP and leads to reduced BAD phospho-
rylation and BAD-Bcl2 dimer formation and accumulation, 
which mediates HBP-induced cardiomyocyte apoptosis and 
may be associated with myocardial contractile dysfunction 
during episodes of type 2 diabetes [182].

Pentose phosphate pathway (PPP) 
and single‑carbon metabolic pathways

The single-carbon metabolic pathway and the PPP pathway 
are the two main pathways for NADPH production in vivo. 
The activity of glucose-6-phosphate dehydrogenase (G6PD 
or G6PDH), the key rate-limiting enzyme of the PPP path-
way, increases in response to oxidative stress stimulation, 
and the PPP pathway is up-regulated in response to stress 
overload, with some compensatory effects in early life 
[183, 184]. In a study, it was noted that in the case of pres-
sure overload-induced heart failure, there is a significant 
elevation of cardiac ROS, depletion of antioxidant defense 
mechanisms, and a decrease in the levels of NADPH (the 
major antioxidant cofactor) and GSH production [184]. It 
also indicates that ATF4 (a transcription factor) can main-
tain NADPH homeostasis and cardiac function by directly 
controlling the expression of genes in the single-carbon 
metabolic pathway and the PPP, and has cardioprotective 
effects [184]. In addition, Takao Kato et al. demonstrated 
that dichloroacetate improved CHF by increasing NADPH 
and GSH levels by activating the PPP and enhancing G6PD 
activity [183]. In conclusion, activation of the PPP path-
way and the single-carbon metabolic pathway attenuates 
oxidative stress in the myocardium and contributes to the 
improvement of HF.

In ischemic heart disease, G6PD is required to maintain 
cellular GSH levels and prevent ischemia–reperfusion-
induced myocardial injury [185]. HBP and PPP can be 
tightly coupled through the O-GlcNAcylation of G6PD. 
Ou et al. found that hypoxic adaptation can further activate 
G6PD by using relevant inflammatory cytokines (IL-6、IL-
1β) to increase O-GlcNAcylation in the heart and activate 
the HBP pathway. This improves the PPP pathway enhances 
redox homeostasis and attenuates cardiac I/R injury [186]. 
Thus, O-GlcNA acylation of G6PD is promising as a new 
therapeutic target for ischemic heart disease. In addition, 
the PPP pathway was also found to be active during acute 
episodes of cardiac ischemia–reperfusion, and inhibition 
of PPP oxidation by ischemic preconditioning was able to 
reduce creatine kinase release and protect the heart from 
ischemic injury [187].

PPP may also be involved in processes such as myocardial 
repair in patients with coronary heart disease and diabetes 
[188, 189]. Recently, a study has found that PPP can act as 
a novel oxygen sensor and regulate hypoxic coronary artery 
diastole by modulating the activity of the SERCA to reduce 
intracellular calcium concentration. However, whether 
this novel function works under various physiological and 
pathological conditions needs further investigation [189]. 
In addition, the researchers found from cardiac progenitor 
cells (CPCs) of diabetic mice that key activities of the PPP 
pathway, G6PD, or transketolase were reduced and apoptosis 
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was activated. Re-PPP pathway using benfotiamine was able 
to rescue these CPCs [188]. This indicates that the PPP path-
way's activation may be a new therapeutic target to promote 
myocardial repair in diabetic patients.

Glycogen metabolism

Glycogen, an important endogenous storage form of glu-
cose in the body, contributes significantly to overall cardiac 
energy production, accounting for 41% of ATP production 
from glucose metabolism [190]. In normal and hypertro-
phied hearts, glucose from glycogen is preferentially oxi-
dized relative to exogenous glucose. This maximizes ATP 

production, reduces H+ production, and decreases Ca2+ 
overload [190–192]. Calcium overload may be an early 
event in LV dysfunction during reperfusion [192]. Previ-
ous studies demonstrated that fasting protects the heart from 
ischemic injury by increasing glycogen utilization during 
ischemia [193]. More recently, Mohamed et al. found that 
inhibition of GSK-3 during reperfusion partially allocates 
glucose-6-phosphate to the glycogen synthesis pathway, 
decreases the rate of glycolysis, reduces H+ production 
and intracellular acidosis, and decreases Ca2+ overload. 
This limits LV dysfunction in early reperfusion injury, 
contributes to improved mitochondrial function and cell 
viability, and reduces infarct size [192]. Similarly, ischemic 

Fig. 2   KS/Serpina3c inhibits transcriptional activation of ENO1 
by regulating the acetylation of Nr4a1, thereby reducing glycolytic 
overactivation to prevent fibrosis after ischemia/reperfusion injury. 
In the failing heart, PKM2 tetramers bind directly to p53 and inhibit 
p53 transcriptional activity and apoptosis in the high oxidative state, 
thereby alleviating the progression of heart failure. However, they are 
enhanced in the low-oxidized state, and the small molecules TEPP-
46 and 2-DG can promote PKM2 tetramer formation. When RIP3 
translocates to mitochondria, it induces elevated PGAM5S expres-
sion, promotes Ser637 dephosphorylation on Drp-1, and facilitates 
mitochondrial fission. Inhibition of the FAK / Ras / c-myc / ENO1 
pathway effectively suppressed aerobic glycolysis and ameliorated 

hepatic fibrosis.Pkm2 directly interacts with β-linker protein (Ctnnb1) 
in the cytoplasm of cardiomyocytes (CM), preventing translocation 
of Ctnnb1 to the nucleus, and subsequently repressing proliferation-
related target genes, such as Myc and Cyclin D1). When Pkm2 trans-
locates to the nucleus, it can directly interact with Ctnnb1 in the 
nucleus of cardiomyocytes to form a complex that cooperates with 
T-cell factor 4 (TCF4), up-regulates its downstream targets Cy-clin-
D1 and C-Myc, and transcriptionally induces genes encoding anti-
apoptotic proteins.PKM2 exacerbates proliferation-related genes 
through activation of the TGF-β / Smad2 / 3 pathway and the Jak2 / 
Stat3 signaling pathways to exacerbate fibrosis
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preconditioning ameliorates myocardial ischemia by reduc-
ing the accumulation of glycolytic catabolic products by 
inhibiting glycogenolysis during sustained ischemia [194].

Glycogen metabolism also has an important role in car-
diac hypertrophy. It has been found that the overall rate of 
myocardial glycolysis increases in hypertrophied hearts 
during aerobic perfusion, but not during low-flow ischemia 
[195]. Glycogen is an important source of glucose during 
low-flow ischemia, accounting for a significant percentage 
of the total rate of glycolysis. Not only that but the rate of 
glycogen renewal (simultaneous synthesis and degradation) 
is accelerated during severe low-flow ischemia [195, 196]. 
D Mancini et al. showed that increasing the proportion of 

carbohydrates in the diet of patients with CHF exhaustion 
slowed the utilization of glycogen stores and improved exer-
cise tolerance in CHF patients [197].

Serine biosynthetic pathway

The serine biosynthesis pathway is an auxiliary branch of 
the glycolytic pathway that allows for the de novo synthesis 
of serine using the glycolytic intermediate glyceraldehyde 
3-phosphate (G3P) and its eventual conversion to glycine, 
which provides the carbon unit for single-carbon metabolism 
[198]. The process involves three enzymes, phosphoglycer-
ate dehydrogenase (PHGDH), phosphoserine transaminase 

Fig. 3   Under hyperglycemic conditions, AR is activated and glu-
cose metabolism is diverted to the Polyol bypass pathway. This leads 
to a rise in NADPH, a fall in NADH, and an accumulation of ROS, 
which may further lead to inactivation of SERCA in the sarcoplasm 
and impaired Ca2 + reuptake, which is associated with myocardial dys-
function.Activation of the PPP bypass pathway and the single-carbon 
pathway of metabolism increases the concentrations of NADPH and 
GSH, which maintain intracellular redox homeostasis and protect 
the heart.Acute activation of the HBP pathway has a cardioprotec-
tive effect, and long-term chronic activation of the HBP pathway has 
a damaging effect on the heart; by inhibiting GSK-1, the HBP path-

way is activated, and by inhibiting GSK-1, the HBP pathway is acti-
vated. activation of the HBP pathway has a cardioprotective effect, 
and long-term chronic activation of the HBP pathway has a damag-
ing effect on the heart. Inhibition of G-6-P partitioning by GSK-3 into 
the glycogen synthesis pathway reduces H production, intracellular 
acidosis, and calcium overload. Improves mitochondrial function and 
protects the heart. Serine biosynthesis pathway is associated with the 
development of DCM. Specific activation of ATF4 using SMKI is 
able to activate the serine biosynthesis pathway through the activation 
of PHGDH and attenuate contractile dysfunction in DCM
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(PSAT1), and phosphoserine phosphorylase (PSPH). Serine 
is an important nonessential amino acid involved in a vari-
ety of physiological processes and pathways. For example, 
serine is a precursor to glycine and cysteine, and glycine 
is in turn a biosynthetic precursor to porphyrins. Serine is 
also involved in purine synthesis, sphingolipid, and phos-
pholipid composition, and is essential for the biosynthesis 
of macromolecules required for cell proliferation [12, 199]. 
As a result, the serine biosynthesis pathway has received 
much attention in the field of cancer research. However, how 
this pathway functions in cardiovascular disease have not 
been addressed. Recently, the serine biosynthetic pathway 
is associated with the onset and progression of hereditary 
dilated cardiomyopathy [198]. This study found that acti-
vation of the ATF4-dependent serine biosynthesis pathway 
and TRIB4 kinase signaling using a specific combination of 
small molecule kinase inhibitors (SMKIs) was able to atten-
uate the dilated cardiomyopathy phenotype in iPSC-CMs by 
establishing a screening model for dilated cardiomyopathy 
iPSC-CMs, whereas inhibition of the serine biosynthesis 
biosynthetic pathway or PHGDH exacerbated contractile 
dysfunction in dilated cardiomyopathy iPSC-CMs. suggest-
ing that the serine biosynthesis pathway may have a cardio-
protective role in dilated cardiomyopathy, but its specific 
link to dilated cardiomyopathy pathogenesis requires fur-
ther investigation [198]. In addition, Laura Padrón-Barthe 
et al. found that CnAβ1 was able to induce ATP synthesis 
and antioxidant metabolite production through activation of 
the sericinic acid pathway, resulting in a reduction of GSH 
production after pressure overload, with beneficial effects 
on reducing myocardial hypertrophy and improving cardiac 
function [200]. Overall, activation of the serine biosynthesis 
pathway appears to be a favorable process for both cardiac 
physiology and pathophysiology and may serve as an impor-
tant therapeutic target for cardiovascular disease in the future 
(Fig. 3).

Summary and outlook

Cardiovascular disease (CVD) has a high prevalence world-
wide and is the leading cause of death in China. With the 
prevalence of CVD, there is an urgent need to develop 
unconventional therapeutic tools to continuously improve 
the level of diagnosis and treatment of CVD. Over the past 
decades, it has been gradually discovered that glycolytic 
metabolism plays an indispensable role in several common 
CVD types (e.g., myocardial infarction, heart failure), and 
therefore it is crucial to explore the mechanisms of action 
and therapeutic targets between glycolysis-related enzymes 
and CVD. Although some of the mechanisms, including 
how glycolysis-related enzymes protect cardiac structure 
and function by regulating apoptosis in cardiomyocytes and 

inducing inducible mitochondrial autophagy, have been 
reported, the specific functions related to their multiple 
biological processes remain poorly defined. In this review, 
we explored the relationship between glycolysis-related 
enzymes and CVD as much as possible. Among the ten 
enzymes related to glycolysis, HK is involved in myocardial 
ischemia–reperfusion and heart failure, PGI is involved in 
heart failure, PFK is involved in diastolic heart failure, dia-
betic cardiomyopathy, and coronary artery disease, ALDOA 
is involved in heart failure, myocardial infarction, arrhyth-
mia, hypertrophic cardiomyopathy, and congenital heart 
disease and can be used as a serum marker for cardiogenic 
shock, PGAM is involved in heart failure, ischemia–reperfu-
sion injury, and myocardial infarction, ENO is involved in 
heart failure, myocardial infarction, diabetic cardiomyopa-
thy and Dox-induced myocardial injury, PKM is involved 
in myocardial infarction, heart failure, cardiomyopathy and 
atherosclerosis, and LDH is involved in post-infarction car-
diac repair, heart failure and aortic dissection. It is uncer-
tain whether 3-phosphoglyceraldehyde dehydrogenase and 
phosphoglycerate kinase are involved in CVD. The auxiliary 
pathways of glycolysis polyol pathway, pentose phosphate 
pathway, single-carbon metabolism, hexosamine biosynthe-
sis pathway, glycogen metabolism, and serine biosynthesis 
pathway also play important roles in CVD.

Mechanisms that have been demonstrated in stud-
ies of glycolysis-related enzymes include that binding 
of HK2 to VDAC on the outer mitochondrial membrane 
inhibits the opening of mPTP and reduces cell death, 
and that mTORC1-mediated modulation of mitochon-
drial autophagy promotes mitochondrial homeosta-
sis and reduces the extent of myocardial injury during 
ischemia–reperfusion. Inhibition of the RIP3-PGAM5-
Drp1-mitochondrial pathway was able to achieve myocar-
dial protection by inhibiting necrotic apoptosis. Inhibition 
of transcriptional activation of ENO1 was able to reduce 
glycolysis and prevent myocardial fibrosis after MI, among 
others. It is important to note that most of the signaling 
pathways and mechanisms identified in these studies were 
performed in mouse and cellular models, and it is uncertain 
whether they are equally applicable to human patient tis-
sues. Similarly, activators and inhibitors of the relevant tar-
gets have not been tested in clinical trials, and more work is 
needed to apply basic research findings to clinical settings.
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