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Abstract

Spatial omics has emerged as a rapidly growing and fruitful field
with hundreds of publications presenting novel methods for
obtaining spatially resolved information for any omics data type
on spatial scales ranging from subcellular to organismal. From a
technology development perspective, spatial omics is a highly
interdisciplinary field that integrates imaging and omics, spatial
and molecular analyses, sequencing and mass spectrometry, and
image analysis and bioinformatics. The emergence of this field has
not only opened a window into spatial biology, but also created
multiple novel opportunities, questions, and challenges for method
developers. Here, we provide the perspective of technology devel-
opers on what makes the spatial omics field unique. After provid-
ing a brief overview of the state of the art, we discuss
technological enablers and challenges and present our vision
about the future applications and impact of this melting pot.
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Introduction

Biology is driven by interactions of molecules and cells with each

other. Gaining insights into the intricate yet robust spatial regulation

of biological processes, at the scales of organelles, cells, tissues,

organs, and organisms, is key to understanding fundamental mecha-

nisms of life. Furthermore, understanding the spatial context of the

alterations of molecular and cellular programs during disease in

situ, in toto, and in vivo is critical for diagnostics, developing novel

and safe drugs, and discovering therapies for currently uncurable

diseases.

The field of omics holds great potential to provide information-

rich readouts of molecular programs across all levels of the central

dogma. It is currently undergoing an explosion with respect to spatial

methods development, with the most prominent example being spa-

tial transcriptomics, which was recognized as “the method of the

year 2020” (Larsson et al, 2021; Marx, 2021; Zhuang, 2021). This

rapid technological progress is notable across various omics modali-

ties: genomics, epigenomics, proteomics, metabolomics, and fluxo-

mics. The emerging field of spatial omics is now at a tipping point as

the technology steps outside the technology developers’ laboratories

and spreads rapidly and widely, finding many applications in biology

and molecular medicine.

In this Perspective, we discuss the origins and developments, the

current drivers and challenges as well as the future potential of spa-

tial omics from a viewpoint of experimental and computational

technology developers. We do not aim to provide a comprehensive

review of the state of the art of technologies and approaches in the

field, for which we point the reader to recent excellent reviews (Rao

et al, 2021; Moffitt et al, 2022; Moses & Pachter, 2022; Palla

et al, 2022a; Vandereyken et al, 2023), but rather to highlight

unique interdisciplinary aspects of the field and stimulate further

cross-fertilization.

Where do spatial omics stand? An overview of the
available technologies

Spatial omics methods are evolving at the intersection of two emerg-

ing directions: (i) in situ approaches that build on highly multiplex

fluorescence microscopy or imaging mass spectrometry and (ii) ex

situ approaches based on either next-generation sequencing or mass

spectrometry (Fig 1).

In situ approaches
Transcriptomics, proteomics, genomics, epigenomics using highly multi-

plex fluorescence microscopy

Fluorescence microscopy has been for decades a go-to approach in

cell biology, for observing target biomolecules with high resolution
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in live and fixed cells. Fluorescence can be used for spatial mapping

of gene expression (e.g., by RNA-FISH) as well as localization of

proteins (e.g., by immunofluorescence) and metabolites (e.g., using

fluorescent metabolite sensors) in subcellular compartments, cells,

tissues, and even whole organisms. The wish to increase the num-

ber of targeted molecules has been clashing with the limits of the

spectral overlap. This limitation led to exploring various methods of

in situ labeling to increase multiplexing, including: (i) hyperspectral

imaging that utilizes a broader spectrum from fluorescence to

Raman signatures (Wei et al, 2017; Du et al, 2020) particularly for

spatial metabolomics or spectral unmixing in which spectral over-

laps can be minimized or are resolved computationally (Gerner et al,

2012; Mehta et al, 2018; Seo et al, 2022; Lin et al, 2023), or (ii) cyclic

labeling or cyclic imaging. For protein detection, traditional immuno-

fluorescence methods were expanded by applying antibodies in

cycles of staining and bleaching/elution (Gerdes et al, 2013; Lin et al,

2015, 2018; Gut et al, 2018). Furthermore, the use of nucleic acids

offered multiplexing options through orthogonal DNA barcodes

(Schueder et al, 2020), allowing simultaneous application of many

antibodies and fast detection cycles with programmed hybridization/

dehybridization of fluorescent oligos (Wang et al, 2012, 2017; Jung-

mann et al, 2014; Agasti et al, 2017; Schueder et al, 2017; Saka

et al, 2019; Sch€urch et al, 2020).

These probe–erase–relabel approaches were better suited for line-

arly increasing the multiplexed detection of proteins, which show com-

plex and overlapping spatial localizations and high dynamic range of

expression. On the contrary, the more discrete spotty localization of

RNAs allowed exponentially increasing the multiplicity of target detec-

tion through combinatorial barcoding. Combining RNA-FISH with sim-

ilar iterative detection cycles facilitated scaling multiplexing to 1000s of

targets with methods such as SeqFISH and MERFISH (Lubeck

et al, 2014; Chen et al, 2015; Moffitt et al, 2016; Eng et al, 2019; Xia

et al, 2019b), and performing various approaches of cyclic decoding or

in situ sequencing (Ke et al, 2013; Lee et al, 2014, 2022; Wang

et al, 2018b; Gyllborg et al, 2020; Sountoulidis et al, 2020; Borm

et al, 2023). Similar linear and exponential strategies were also applied

in combination with DNA-FISH to reveal new insights into spatial orga-

nization of chromatin and nuclear architecture (Beliveau et al, 2015;

Wang et al, 2016; Nir et al, 2018; Mateo et al, 2019; Nguyen

et al, 2020; Su et al, 2020; Takei et al, 2021b, 2021a, preprint: Takei

et al, 2023). Moreover, incorporating combinatorial barcoding into a

CUT&TAG-like strategy (Bartlett et al, 2021), where epigenetic modifi-

cations of interest are labeled with antibodies and the associated geno-

mics loci are detected by MERFISH after in situ transcription, allowed

the spatial epigenomic profiling of hundreds of enhancers and pro-

moters (Lu et al, 2022).
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Figure 1. Evolutionary path of spatial omics technologies: unraveling the convergence.

Core capabilities stemming from fields of traditional omics, microscopy and mass spectrometry have led to emergence of diverse methods for spatial omics. Initially

focused on only one molecular component, many of these approaches are increasingly getting combined to expanded repertoire of methods into multi-omics domains.
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Proteomics, metabolomics, and lipidomics by using imaging mass

spectrometry

In parallel, imaging mass spectrometry, where for a raster of pixels,

a small amount of material from every pixel is desorbed, simulta-

neously ionized, and analyzed by mass spectrometry, has emerged

as an indispensable and promising technology for in situ spatial

mapping of proteins, peptides, metabolites, lipids, and glycans

(Alexandrov, 2020). The most common approach in imaging mass

spectrometry is matrix-assisted laser desorption ionization (MALDI)

imaging (Palmer et al, 2016). Numerous other approaches are avail-

able that do not use laser (Tak�ats et al, 2004). For spatial metabolo-

mics applications, the current focus of imaging mass spectrometry is

predominantly tissue cryosections, allowing for analyses of sections

up to the size of a whole animal (Khatib-Shahidi et al, 2006). The

latest methods even demonstrate subcellular resolution (Niehaus

et al, 2019; Pareek et al, 2020; Rovira-Clav�e et al, 2021). Untargeted

detection of proteins in tissue sections with imaging mass spectrom-

etry was demonstrated as early as 2001 (Stoeckli et al, 2001), with

further improvements in resolution and speed over the years (Sprag-

gins et al, 2016). Using imaging mass spectrometry in conjunction

with metal-tagged antibodies allowed reaching single-cell level reso-

lution for highly multiplexed targeted spatial proteomics (Angelo

et al, 2014; Giesen et al, 2014). In parallel, using imaging mass spec-

trometry for metabolomics was boosted in the 2000s with the intro-

duction of high-resolution mass spectrometry analyzers. Imaging

mass spectrometry is often used for detecting lipids due to the ease

of sample preparation and detection of molecules of this class (Bow-

man et al, 2019). Recently, spatially resolved detection of N-linked

glycans attached to asparagine residues in proteins became possible,

enabling spatial glycomics (McDowell et al, 2023). Imaging mass

spectrometry was demonstrated to be an enabling method for spa-

tial isotope tracing to spatially map metabolic activities as early as

2012 (Steinhauser et al, 2012; Louie et al, 2013). Later on,

organismal-scale fluxomics analyses using mass spectrometry

revealed circulating lactate as an important energy source (Hui

et al, 2017). And recently, imaging mass spectrometry was applied for

high-resolution spatial isotope tracing for cell-type-specific dynamics

andmetabolic activity in tissues (Wang et al, 2022a, 2022b).

Ex situ approaches
Spatially resolved sequencing

Ex situ spatial sequencing methods are increasing in both numbers

and diversity. In transcriptomics, the emergence of single-cell RNA

sequencing through droplet-based separation of individual cells cre-

ated opportunities for profiling cells by next-generation sequencing

(Klein et al, 2015; Macosko et al, 2015). Yet, these analyses were

inherently unable to capture the spatial context of cells and to

directly investigate cell–cell interactions (although indirect methods

have been proposed, Armingol et al, 2021). This limitation led to a

parallel exploration of ways to link spatial information with the

sequencing data that are obtained ex situ when analyzing tissue sec-

tions. Several approaches were developed such as capturing RNA

molecules on spatially barcoded arrays (St�ahl et al, 2016; Rodriques

et al, 2019; Vickovic et al, 2019; Cho et al, 2021; Fu et al, 2022; Chen

et al, 2022b), constructing positional DNA barcodes in situ by micro-

fluidic delivery (Dbit-Seq, Liu et al, 2020), photocrosslinking (Light-

Seq, Kishi et al, 2022) or photouncaging of spatial index oligos (Zip-

Seq, Hu et al, 2020), spatially confined collection of biomolecules or

probes by microregion sequencing using light-based cleavage for

Digital Spatial Profiling (GeoMx, Merritt et al, 2020), and microdis-

section (LCM-Seq (Nichterwitz et al, 2016), Image-Seq (Haase et al,

2022)), mechanical isolation (Pick-Seq, Maliga et al, 2021), or even

extracting RNA from living cells by fluid force microscopy (Chen

et al, 2022a).

Although most of these methods were initially applied to spatial

transcriptomics, the majority could also be leveraged for spatial pro-

teomics by incorporating readouts for DNA-barcoded antibody

libraries. Examples include the studies by Vickovic et al (2022), Liu

et al (2023) and Ben-Chetrit et al (2023). A subset of these ex situ

strategies have been combined with in situ transposition to incorpo-

rate sequencing adapters into fixed genomic DNA, using Tn5 trans-

posase similarly to ATAC-Seq (Buenrostro et al, 2013) so that native

spatial positions of accessible genomic DNA are preserved, enabling

studies of spatial (epi)genomics (Chen et al, 2016b; Payne

et al, 2020; Deng et al, 2022; Mangiameli et al, 2023).

Particularly for spatial transcriptomics, the parallel development

in situ imaging or ex situ sequencing-based methods, and novel com-

binations of workflows in these domains was critical for the quick

expansion and success of the field (Larsson et al, 2021; Zhuang,

2021). It minimized risks, cross-stimulated developments, and

helped engage research groups with diverse backgrounds ranging

from DNA biotechnology, microfluidics, sequencing, and microscopy

to image analysis, and bioinformatics. Recently, these two branches

began converging. On one hand, the resolution and sensitivity of the

sequencing-derived approaches are catching up with imaging

(Vickovic et al, 2019; Cho et al, 2021; Stickels et al, 2021; Fu

et al, 2022; Chen et al, 2022b). On the other hand, the multiplexing

depth and throughput of imaging gets closer to omics level, including

the latest FISH-based techniques that can image the expression of

1000s of genes (Eng et al, 2019; Su et al, 2020; Takei et al, 2021b,

2021a). We foresee the FISH-like targeted probe design strategies get-

ting increasingly used to improve the sensitivity of sequencing-based

approaches, as an alternative to the more standard polyA-capture,

especially for more challenging samples such as FFPE preparations

(for example, 10X Genomics Visium FFPE kit or Xenium system, or

Nanostring GeoMx or CosMx systems).

Ex situ mass spectrometry

Although, as previously discussed, mass spectrometry is currently

more popular for in situ analyses by means of imaging mass spec-

trometry, there are several notable ex situ approaches. Among them,

laser-capture microdissection is commonly used for extracting indi-

vidual cells or small regions of interest from a tissue section for sub-

sequent mass spectrometry analysis, as demonstrated for spatial

proteomics (Zhu et al, 2018a,b; Mund et al, 2022) and spatial meta-

bolomics already as early as in 2005 (Schad et al, 2005). Another

group of ex situ methods often referred as spatial metabolomics is

the proteome profiling of purified organelles or other cell compart-

ments followed by mass spectrometry (Dunkley et al, 2004). Such

methods enabled creating a subcellular map of the human proteome

(Mulvey et al, 2017; Thul et al, 2017) and led to a proximity-based

mapping of the proteome of a human cell (Go et al, 2021). Lately,

metabolomics was also applied for purified organelles (Chen

et al, 2016a; Zhu et al, 2021). On another, opposite end of the spa-

tial scales, spatial sampling followed by mass spectrometry was

used for creating 3D molecular cartography maps at the organismal
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and supra-organismal scales (Bouslimani et al, 2015; Petras

et al, 2017).

Spatial omics is empowered by bespoke computational methods
These technological developments have been accompanied by a

rapid evolution of computational methods (Fig 2). On one hand,

image processing and high-dimensional analysis approaches have

brought handling of highly multiplex fluorescence microscopy data

closer to omics data. Image data typically offer single-cell or subcel-

lular resolution. Cell segmentation was substantially improved with

the incorporation of powerful deep learning approaches focused

on highly multiplexed imaging (Greenwald et al, 2021; Yapp

et al, 2022) to further incorporate information about the

localization of cells and their neighbors in the tissue. Alternatively,

segmentation-free methods provide a different approach for dealing

with images where cells are hard to segment. These approaches can

assign molecules to cells based on the likelihood of particular tran-

scriptional compositions and cell morphology by incorporating prior

knowledge of cell types obtained from scRNA-seq (Park et al, 2021;

Petukhov et al, 2021).

Different methods have been developed that can identify spatial

patterns in the expression of genes or correlations across genes,

based on the resulting processed data (Edsg€ard et al, 2018; Svensson

et al, 2018; Ghazanfar et al, 2020; Sun et al, 2020). Numerous

approaches for spatial data analyses have been developed, focused

on different aspects: revealing interactions between the markers

across different spatial contexts, investigating the distribution of

identified cell types in the neighborhood of each cell (Schapiro

et al, 2017; Goltsev et al, 2018; Keren et al, 2018), or decomposing

the effect among markers at the cellular intrinsic, extrinsic, and

intercellular levels (Arnol et al, 2019; Tanevski et al, 2022). Another

emerging direction is the computational integration with single-cell

omics data. In transcriptomics, this helped tackle some limitations

of spatial transcriptomics: first, by deconvolving cosampled cell

types in spatially resolved sequencing with spot sizes encompassing

5–100 cells (Andersson et al, 2020; preprint: Kleshchevnikov

et al, 2020; Cable et al, 2021; Elosua-Bayes et al, 2021; Li

et al, 2022) and second, by imputing unmeasured transcripts in

targeted multiplex measurements (Biancalani et al, 2021; preprint:

Rahimi et al, 2023). In parallel, computational approaches can esti-

mate the location of single cells dissociated from the tissue (Bageritz

et al, 2019; Nitzan et al, 2019; preprint: Biancalani et al, 2020) or

map them via fiducial genes (Achim et al, 2015; Satija et al, 2015;

Tanevski et al, 2020). Furthermore, methods have been developed

to identify spatial domains with common molecular profiles and

neighborhood structures (Hu et al, 2021; Zhao et al, 2021), and to

study cell–cell interactions (Cang & Nie, 2020; Yuan & Bar-

Joseph, 2020; Garcia-Alonso et al, 2022; Tanevski et al, 2022; Cang

et al, 2023; Fischer et al, 2023).

Several software frameworks are available for analyzing spatially

resolved data, such as Squidpy (Palla et al, 2022b), SpatialExperi-

ment (Righelli et al, 2022), Giotto (Dries et al, 2021), and Seurat

(preprint: Hao et al, 2022), which are primarily focused on spatial

transcriptomics data, and MCMICRO (Schapiro et al, 2022a) for

multiplexed protein data. These frameworks, which are continu-

ously evolving, provide integrated suits that facilitate the application

of state of the art methods (Heumos et al, 2023) for users without

advanced computational skills.
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Figure 2. Unveiling new insights with spatial omics.
An overview of the data sources and knowledge inputs, computational approaches employed for data analysis, and pivotal questions central to spatial omics. The
illustration outlines the individual omics layers, each providing a complementary view of the cellular programs.
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Enablers and challenges

Looking back at the recent history of spatial omics from our point of

view as technology developers, we asked what were the key

enablers that jump-started technological developments in spatial

omics at the fast pace, that was key for establishing this field and

for contributing to its success.

Pushing the technical limitations
When spatial omics started emerging, cyclic imaging paved the way

to deepen the information content of microscopy experiments. The

exploration and development of protocols that go beyond conven-

tional fluorescent staining and imaging, and allow reprobing the

same sample were crucial for imaging-based multiplexing both for

protein and RNA detection. For proteins, the use of direct primary

antibody conjugations with fluorophores and alternative tags such

as metals or DNA facilitated the creation of bigger panels. This also

created a demand for sourcing of primary antibodies in formats that

are more amenable to direct conjugation and creating kits for

increasing the accessibility of the different protocols, as well as a

higher scrutiny for antibody qualifications (Hickey et al, 2021).

For RNA and DNA detection, easy and cheaper access to syn-

thetic oligos and the development of high-fidelity FISH protocols uti-

lizing probe tiling as in single molecule FISH (Femino et al, 1998;

Orjalo et al, 2011; Beliveau et al, 2012) was important to attain a

good signal-to-noise ratio while offering flexibility with probe

design. Other in situ amplification approaches that have been trans-

forming in situ RNA, DNA, and protein labeling include reactive

probe deposition (Kerstens et al, 1995), DNA branching (Player

et al, 2001; Wang et al, 2012; Kishi et al, 2019; Saka et al, 2019; Xia

et al, 2019a), in situ polymerization (by rolling circle amplification

(Lizardi et al, 1998; Lee et al, 2014; Nagendran & Riordan, 2018;

Wang et al, 2018b; Liu et al, 2021), hybridization chain reaction

(Dirks & Pierce, 2004; Choi et al, 2010, 2014, 2018; Shah et al, 2016;

preprint: Wang et al, 2020)), or chemical ligation (Rouhanifard

et al, 2018; Dardani et al, 2022).

Technical limitations in resolution, sensitivity, and throughput

still constitute important barriers. In addition to signal amplifica-

tion, the integration of super-resolution (Jacquemet et al, 2020) and

expansion microscopy approaches (Wen et al, 2023) with spatial

omics methods start to provide valuable improvements in resolution

and sensitivity for imaging-based spatial omics (for example (Shah

et al, 2017; Nir et al, 2018; Wang et al, 2018a; Eng et al, 2019; Saka

et al, 2019; Nguyen et al, 2020; Su et al, 2020; Alon et al, 2021)).

For methods that rely on DNA barcodes, advances in DNA

barcoding protocols (both for reagents such as antibodies and cellu-

lar molecules) and barcoded array generation methods that can sup-

port even higher densities and smaller spots at lower costs will be

important to improve the resolution and sensitivity (Cho et al, 2021;

Chen et al, 2022b).

By now, DNA has become a go-to barcoding molecule that

helped bridge imaging and sequencing-based approaches for spatial

genomics, epigenomics, transcriptomics, and proteomics (Schueder

et al, 2020). This success has been largely enabled by cost-effective

and reliable oligo synthesis (Hughes & Ellington, 2017) and the

accumulated knowledge in DNA nanotechnology and computational

tools and databases that improved our ability to in silico design

nucleic acid probes with predictable kinetics (Zadeh et al, 2011;

Beliveau et al, 2018; Mengwei et al, 2020; Passaro et al, 2020). It is

foreseeable that more cost-effective options for sequencing and

DNA synthesis will further drive the progress and wider adoption of

spatial omics in the future.

A large subset of spatial omics methods are not directly applicable

for imaging larger volumes. Hence, performing spatial omics in 3D

often requires serial sectioning with consecutive sections analyzed

separately (Palmer & Alexandrov, 2015). Considering that the thick-

ness of such sections can exceed the cell size, especially when

performed on frozen tissue, this leads to discrepancies between sec-

tions that cannot be compensated. Methods that enable 3D spatial

omics in thick samples (organoids, tissues, whole organs, and organ-

isms), including tissue clearing and embedding approaches, reagent

delivery and fluidics, new fast optical systems and image processing

methods, hold great potential to be integrated with spatial omics.

Some examples of interesting approaches in this direction include:

Chung & Deisseroth (2013), Murray et al (2015), Pan et al (2016), Ku

et al (2016), Wang et al (2018b), Park et al (2018), preprint: Choi

et al (2019), Perens et al (2020) and Bhatia et al (2022).

The introduction of high-resolution mass spectrometry (HRMS)

was a key enabler for spatial metabolomics, lipidomics, and glyco-

mics, which predominantly use imaging mass spectrometry (Palmer

et al, 2016). The high spectral resolution enabled metabolite assign-

ment with a substantially higher confidence even without the need

for MS/MS fragmentation that is often impractical in spatial applica-

tions. Over the past years, all major imaging mass spectrometry ven-

dors have introduced HRMS-based instrumentation for spatial

metabolomics analyses. We expect the use of imaging HRMS to con-

tinue supporting a rapid evolution of spatial metabolomics, lipido-

mics, and fluxomics. Nevertheless, the field still faces challenges

including sensitivity, unwanted metabolite degradation and fragmen-

tation, metabolite identification, and data interpretation that will

likely drive future experimental and computational developments.

Reproducibility and commercialization
Within the rapidly growing field of spatial omics with multiple tech-

nologies still being in the early phases of development, a key practi-

cal challenge is to increase the reproducibility and fidelity of the

results. Minor differences in sample handling, probe preparations,

staining protocols, and instrumentation can introduce unwanted

variations in the results, particularly when it comes to coverage,

background, and sensitivity. Standardizing protocols and performing

comparative analyses is complicated, due to, for example, the

wide range of possible parameters for protocol optimization (includ-

ing sample fixation/preservation, permeabilization, oligo probe

sequences, choice of MALDI mass spectrometry matrices, and ion

polarity mode) and the unique alterations that may be necessary to

get the best results for specific tissues or custom instrumental setups.

The importance of such optimizations is revealed by the typically iter-

ative method development process, with newer and significantly

improved versions being developed as a result of seemingly small

adjustments to the protocols (e.g., slide-seq v1 vs. v2, SeqFISH vs.

SeqFISH+, and MALDI vs. MALDI-2). Compared with more mature

omics approaches, spatial omics can be still considered at its infancy,

meaning that most methods and protocols are at a relatively nascent

state and are expected to be substantially improved as they become

more widely used. Increasing access to automation, streamlining of

advanced multistep technological workflows and a growing
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popularity of microfluidics, barcoding technologies, and imaging

mass spectrometry have been improving the scalability and reproduc-

ibility of the methods and is expected to drive the field forward. Reli-

able and compact automation systems that can help screening of

sample preparation conditions with custom protocols, while

supporting different sample formats and delivering high reproducibil-

ity constitutes a high unmet need.

Commercialization of methods developed in academic laborato-

ries has been a major driver of high-pace method popularization and

helped lower the entry barrier for new users who would like to use

these methods for their research questions. In the last decade, we

have witnessed a rapid adoption of methods where commercial end-

to-end automation (e.g., Akoya CODEX platform, Nanostring GeoMx

and COSMx systems, 10X Genomics Visium and Xenium, Resolve

Biosciences Molecular Cartography, Fluidigm Hyperion Imaging Sys-

tem, IONpath MIBIScope, VIZGEN MERScope, Militenyi MACSima,

Lunaphore COMET), optimized protocols and reagent kits (e.g.,

RNAscope), integrated microscopy and mass spectrometry instru-

mentation (e.g., Shimadzu iMScope) and data processing tools were

made available. Importantly, this could not be have been achieved

without academic feedback fueling constant improvement of the

products and methods. Many new startups are currently entering the

market with reagent kits, automated hardware solutions, software

tools, AI/ML platforms, and service models that will create numer-

ous future possibilities in establishing novel assays, data acquisition,

and analysis. In a market that is getting increasingly competitive but

still at an early stage in terms of scientific capabilities, it will be

important to not lose this diversity of technologies (which, most

often than not, offer complementary information) due to IP conflicts

and lawsuits will be important to keep the field moving forward with

the same speed and creative freedom and allow careful vetting and

maturation of technologies and services by the scientific community.

From the academic standpoint, there would be some other criti-

cal concerns related to relying only on industrial development. From

one hand, using end-to-end approaches and commercial reagents

does in principle improve reproducibility and facilitates access to

novel technologies. However, the need for using proprietary

reagents, algorithms, workflows, formats, and closed-box systems

might in turn create barriers. Foremost, proprietary systems and

reagents create a paywall that may cut off the wider scientific com-

munity from reproducing the data or utilizing it. Second, this barrier

impedes noncommercial development, improvement and combina-

tion of the spatial omics methods. For example, lacking the knowl-

edge of original barcodes or probe sequences in commercial kits

may prevent scientists from creating new workflows that incorpo-

rate complementary methods for multi-omics analysis. Similarly,

the use of proprietary data formats prevents interoperability and

locks users in the limited software ecosystem offered by a vendor,

thus inhibiting uptake in the long term. Moreover, the overlapping

development time line of similar methods in both academic and

commercial setups may create a version confusion in which emerg-

ing data may be attributed to previously published versions of the

methods and protocols. These may be different from the commercial

workflow and expectedly modified during conversion of early aca-

demic intellectual property to marketable products, making it hard

to trace data-protocol links. This may constrain the systematic accu-

mulation of the new knowledge and create reproducibility issues.

Finally, the risk of monopoly creation and price inflation may

contribute to increasing the already high prices of spatial omics

methods and thus hamper their accessibility. In summary, although

commercialization can drive broader adoption, increased access,

utility, and reproducibility of these methods, it is important for the

field to create and value a rich ecosystem of technologies and ven-

dors, and to support the open and free exchange of protocols and

software whenever possible.

Going forward, and to ensure a sustainable growth of the field, it

will be critical to empower open science while fostering academic-

industry collaborations. This can help address the major practical

challenges, including the cost and throughput of the approaches sig-

nificantly limiting the scalability, and thus ensure wide-spread

access and translation of the spatial omics approaches.

Data handling and computation
The development and application of high-accuracy image segmenta-

tion methods as well as the adaptation of analysis tools originally

utilized in single-cell omics for spatial omics data have been instru-

mental during the early stages of the field. However, spatial omics

data pose distinct computational challenges (H�erich�e et al, 2019;

Alexandrov, 2020; L€ahnemann et al, 2020) due to the added dimen-

sions and increased data size, and the special nature of the data,

which is often different to the bulk omics with respect to coverage,

sensitivity, level of noise, and overall amount of represented infor-

mation. Single-cell-focused tools also offer limited utility for leverag-

ing new opportunities provided by the spatial content of the data.

The large size of spatial datasets imposes heavy requirements on

data handling, infrastructure, and computational performance.

Moreover, the unique aspects of spatial data including the spatial

information, need for custom visualization, and often custom data

formats require novel data frameworks and repositories focused on

spatial omics data. Previously generated datasets and atlases such as

Human Protein Atlas (Uhlén et al, 2015; Thul et al, 2017) or Allen

Brain Atlases (Ortiz et al, 2020; Viana et al, 2023) have become very

useful as references and frameworks for the spatial omics data to

build on. Creating new repositories that can support deposition of

both the raw and processed data will not only provide reference plat-

forms but also enable benchmarking and data reprocessing and anal-

ysis with future computational tools. Ideally such spatial omics

repositories shall embed advanced annotation, and analysis tools to

collectively provide broader insights, as demonstrated by the META-

SPACE platform for spatial metabolomics (preprint: Alexandrov

et al, 2019). For this a future-proof implementation of unified

nonproprietary data formats, annotations and metadata structures

will be crucial. Importantly, increasing data size and complexity will

likely require next-generation data formats (Moore et al, 2023) and

approaches for data management and analysis (such as preprint:

Marconato et al, 2023; Walter et al, 2023).

Another challenge is the integration of multiple datasets from the

same spatial omics technologies. The integration of sequencing-

based data into meta-studies is a common practice. The integration

of single-cell transcriptomics data has been successfully demon-

strated (Luecken et al, 2022; Argelaguet et al, 2021), as has been the

combination of single-cell atlases and spatially resolved datasets

(Lohoff et al, 2022). However, the integration has been challenging

for spatial omics datasets. The integration of image-based data

requires appropriate methods of registration and normalization, and

the continuous nature of imaging data has to be taken into account.
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Another critical component is to have anchors that can link datasets,

such as mapping one image to the other to be able to perform meta-

analyses. However, there are not yet established anchor points that

can be used for normalizing, analyzing and comparing samples, lim-

iting the utility of the data that are available in databases. The chal-

lenge is exacerbated if different data modalities are to be integrated

—even if one measures the protein and transcript levels for the same

genes, given the limited protein-transcript correlation. We anticipate

that addressing this challenge will be an active area of method devel-

opment in the next few years. In this context, it will be essential to

have adequate data and metadata standards (Schapiro et al, 2022b)

as well as benchmarks (L€ahnemann et al, 2020) to rigorously assess

strengths and weaknesses of each method. As a means to leverage

such benchmarks to accelerate the development of methods in an

unbiased way, crowdsourced competitions (Tanevski et al, 2020)

should be considered, complemented by a broader acceptance in

funding benchmarking efforts.

Spatial omics research taps into a broad range of disciplines,

which requires a higher level of interdisciplinarity and broader

expertise. This creates a need for coordinated large-scale efforts not

only to generate and interpret the data but also to improve the tech-

nologies and make both the methods and the data more accessible

and reproducible. In this regard, the attention of public and private

funding bodies such as European Commission, National Institutes of

Health, Chan Zuckerberg Initiative or Knut and Alice Wallenberg

Foundation to create large consortia for developing and applying spa-

tial omics approaches is critical. These consortia, including the

Human Cell Atlas (HCA; Aviv et al, 2017), Human Biomolecular

Atlas Program (HuBMAP; Aviv et al, 2017; HuBMAP Consor-

tium, 2019), HTAN (Rozenblatt-Rosen et al, 2020), KPMP (de Boer

et al, 2021), LungMAP (Ardini-Poleske et al, 2017), 4D nucleome

(Dekker et al, 2017), and LifeTime (Rajewsky et al, 2020), have been

instrumental in creating frameworks, standards, data repositories,

analysis, and visualization tools as well as building a community of

developers and users of spatial omics methods. Going forward,

expanding such coordinated efforts and spreading them globally will

tremendously improve the utility and accessibility of these methods.

Such efforts will be critical to create the reference datasets and the

infrastructure necessary to push spatial omics to the next level.

The future evolution and impact of spatial omics

The spatial omics field is currently a melting pot in which contri-

butions from various disciplines are explored, evaluated, inte-

grated, and implemented, to create methods that offer higher

resolution and sensitivity, and multiple omics layers and sources

of molecular knowledge, while being cost-efficient and robust. The

future and promise of spatial omics are indisputably bright and

bold. Here, we look beyond this field and hypothesize how spatial

omics will enable other areas, from a high-level technological

perspective.

Further technology development
Spatial omics is currently pushing technology development in other

fields and, assuming its increased adoption and popularity, it is

expected to have an even bigger and broader impact in related tech-

nological fields. It has already created an increased demand in

barcoding approaches, microfluidics, and sequencing. Sequencing-

based approaches are often prohibitively expensive when applied to

every pixel or spatial location, which will likely create further pres-

sure to develop more cost-effective sequencing methods. Further-

more, in single-cell omics experiments, the choice of the specimen

for single-cell interrogation is often limited by the sampling method

or specimen’s anatomy. This bias does not necessarily provide a

representative sample capturing the required heterogeneity, cell

types, cell states, and phenotypes of interest. Here, spatial omics,

once made accessible, can be a useful as a common preceding

approach (much like flow cytometry enrichment of cell of interest

before scRNA-Seq) to provide guidance for more representative and

informative selection of the samples (i.e., regions and cells of inter-

est) for omics-level analysis with NGS and mass spectrometry and

in particular can enable interrogation of rare cell types and states.

Similar to biomarker-based presorting of the cells of interest for

deeper sequencing, spatial omics could also be applied selectively

only to regions/cells of interest to reduce the experimental costs and

to enable classifying the cells at much higher depth, as shown by

recent for spatially directed omics applications (Nichterwitz et al,

2016; Buczak et al, 2020; Hu et al, 2020; Merritt et al, 2020; pre-

print: Maliga et al, 2021; Kishi et al, 2022; Mund et al, 2022). Here,

the development of novel barcoding technologies, integrated physi-

cal, or contextual spatial dissection capabilities, as well as

microscopy-driven mass spectrometry approaches can make

performing such selection attainable at the single-cell level and

beyond.

Mass spectrometry

In mass spectrometry, the rise of spatial omics greatly stimulated

the development of desorption approaches (MALDI, SIMS and DESI)

that previously had a much narrower scope of applications. We will

likely see more imaging mass spectrometry developments specifi-

cally focused on spatial omics applications to address the demand

for higher mass resolution, sensitivity, and speed. Among key devel-

opments in this field are the transmission-based MALDI desorption

allowing for subcellular resolution (Niehaus et al, 2019), the

increased use of fast analyzers such as QTOF, introduced ion mobil-

ity separation (IMS) for higher specificity and enhanced molecular

identification, and modifications of ultrahigh-resolution SIMS imag-

ing mass spectrometry aiming to reduce unwanted fragmentation

and allowing for detection of biomolecules (Pareek et al, 2020;

Ganesh et al, 2021). Finally, the increase of sensitivity stimulated by

the emerging single-cell mass spectrometry capabilities by improv-

ing sample preparation, chromatography, mass spectrometry, and

computational approaches will likely have a positive impact on spa-

tial omics for ex situ but also for in situ approaches.

Sequencing-based

Future adaptations of 3D chromatin conformation capture methods

(3C, 4C, 5C, Hi-C, Micro-C, SPRITE and many more; Grob & Cavalli,

2018) that would go beyond the short and long-range interactions

and reveal the absolute or relative 3D spatial location of genetic

sequences inside the nucleus down to single-cell level would com-

plement the multiplexed and combinatorial imaging-based spatial

genomics approaches (Payne et al, 2020; preprint: Takei et al, 2023)

and greatly enhance our understanding of nuclear organization and

gene regulation. Although still at its infancy, DNA microscopy
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and proximity detection approaches are also poised to create new

capabilities in converting nanoscale spatial information into

sequencable readouts (Schaus et al, 2017; Hoffecker et al, 2019;

Weinstein et al, 2019; preprint: Gopalkrishnan et al, 2020).

Spatial multi-omics

Beyond combining spatial location of cells and their neighborhoods

with the cell types and states as typically defined by transcriptomics

approaches, spatial omics is poised to integrate many more layers of

information. As opposed to single-cell approaches that operate on

dissociated cells that are typically lysed/desorbed/consumed in the

process, spatial omics approaches can more easily support spatial

multi-omics by applying different modalities on the same cells

(Vickovic et al, 2022; Liu et al, 2023; preprint: Takei et al, 2023;

Vandereyken et al, 2023; Zhang et al, 2023). For many of the

existing approaches, it is a matter of optimization of the sample

preparation conditions to copreserve the molecular composition and

detection access for multiple components (RNA, protein, and DNA)

simultaneously and more combinations will no doubt be increas-

ingly utilized for high-throughput experiments (Baysoy et al, 2023).

Mass spectrometry also provides multiple capabilities. In general,

small molecules, lipids, glycans, and small peptides can be detected

by employing broad mass range mass spectrometry, although this

comes at the disadvantage of reduced sensitivity. Future combina-

tions of multiplexed imaging-based methods with mass spectrome-

try detection will create new capabilities for multimodal analysis.

For example, targeted detection of transcripts using RNA-FISH on

the same tissue section after imaging mass spectrometry analyses

helped resolve host–microbe interactions (Geier et al, 2020). Such

applications open an avenue to combine label-free spatial metabolo-

mics or proteomics with other spatial omics approaches with more

reports emerging (preprint: Vicari et al, 2023). In parallel, spatial

multi-omics for proteins and small molecules or lipids was demon-

strated by a MALDI-IHC approach for targeted detection of proteins

by means of photocleavable mass-tags conjugated to antibody

probes, and another round of imaging mass spectrometry for high-

plex detection of peptide tag in situ (Lim et al, 2023).

A key future area of is subcellular spatial multi-omics (Park et al,

2022), where integration of morphological cell features from micros-

copy, highly-multiplexed subcellular detection of gene and protein

expression, and metabolite and lipid localizations would be needed.

While microscopy-based approaches for spatial profiling of gene

and protein expression are typically the most straightforward for

achieving higher resolution without sacrificing sensitivity, further

complementation with emerging subcellular technologies for spatial

barcoding and subcellular MALDI-imaging approaches in spatial

metabolomics, lipidomics, and soon glycomics can provide interest-

ing new dimensions.

Artificial intelligence and machine learning
Currently, spatial omics benefits from the rapidly growing computa-

tional developments in particular in Artificial Intelligence and

Machine Learning (AI/ML), including via bespoke methods, as

outlined above. It is easy to imagine a situation in the future in

which, in return, spatial omics will enable novel developments

in computational biology. Indeed, predicting complex biological sys-

tems needs big, diverse, and representative data properly annotated

with a desired class, state, or phenotype especially when using

machine learning. Here, spatial omics can be a game changer by

providing more data than what is possible to collect by bulk omics

and with the native context information, and potentially in an eas-

ier, cheaper, or faster manner from a large number of cells as com-

pared to the matching single-cell omics. Taking into account the

ongoing revolution of generative machine learning models (Lopez

et al, 2020; preprint: Cui et al, 2023), spatial omics combining loca-

tion and molecular profiles can serve as a perfect source of large

data to train future generative machine learning models predicting

cell images, phenotypes, and states.

Modeling
Besides providing data for future AI/ML, we expect spatial omics to

become a major enabler for dynamic mechanistic modeling.

Bottom-up, mechanistic modeling of intracellular processes already

benefits from the availability of bulk and, as of recently, single-cell

data (Garrido-Rodriguez et al, 2022; Hrovatin et al, 2022). At the

same time, top-down models describing the physiology of organisms

at a macroscopic level typically lack molecular characterization with

spatial resolution. Here, spatial omics have the potential to provide

the missing molecular data to bridge top-down and bottom-up

modeling approaches, providing valuable information about subcel-

lular compartmentalization, cell–cell interactions, and molecular

factors controlling these interactions, molecular tissue architecture,

and chemical microenvironment. This will enable building models

that span across biological scales, and integrate intracellular pro-

cesses and physiological responses. These models could then be

used to simulate the effect of molecular interventions, such as a

mutation or a drug treatment. The large size of this data and the

need to account for spatial dimensions in modeling will likely

require using high-performance computing and thus, availability of

the next-generation computing resources for life scientists. These

models will probably be first applicable to simpler systems (orga-

noids, organs-on-a-chip, 3D printed organs, and xenografts) that can

be used as proxies of complex organs. Expanding spatial omics into

3D to support these complex models will provide new ways to char-

acterize them better and improve their accuracy. It will also offer

the possibility to perform extensive manipulation of the system

under controlled conditions, potentially transforming drug screening

and personalized therapy development. Thereby, spatial omics will

be critical to develop a virtual cell representing a real biological cell

in its full complexity and heterogeneity and encompassing possible

cellular and molecular programs is a long-demanded yet ambitious

future aim, and on the long term, virtual tissues, virtual organs, vir-

tual organisms (including digital twins in medicine), and virtual

ecosystems. Spatial omics datasets and atlases that are being gener-

ated, in particular from major systematic efforts, can provide infor-

mation for creating such virtual biological systems as well as for

validating their ability to mimic real systems. We further expect that

efforts such as Allen Cell Explorer (Viana et al, 2023) and Human

Protein Atlas (Uhl�en et al 2015) would be important contributions

to populate virtual cells with subcellular organizational details and

to explore this information in 3D.

Clinical and beyond
From a clinical perspective, spatial omics provides molecular data

that can revolutionize histology and pathology, which currently

exploits conventional stainings (e.g., hematoxylin and eosin; H&E)
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or individual markers stained with immunohistochemistry followed

by microscopy and statistical and machine learning. This is particu-

larly demanding since the conventional staining and microscopy

approaches can lack resolution in the disease stages or types. On the

contrary, multiple large-scale characterization studies by spatial

omics revealed the depths of spatial and cell heterogeneity in vari-

ous indications including cancer (Lewis et al, 2021) and human

myocardial infarction (Kuppe et al, 2022). Moreover, spatial omics

already helped pinpointing specific tissue architecture, cell composi-

tion, and functional states of cells associated with the therapy

response (Zhao et al, 2019; Helmink et al, 2020). Thus, using rich

molecular information far exceeding that provided by cytochemistry

and histochemistry staining can enable an improved classification

and stratification of patients and eventually lead to an improvement

of treatments and enable precision medicine. Although it is still

early days for such approaches, the first projects following this strat-

egy have already provided promising preliminary results (Irmisch

et al, 2021). At the same time, machine learning models can predict

spatially resolved single-cell profiles from H&E images, strengthen-

ing the link between the phenotype and omics profiles (preprint:

Comiter et al, 2023). However, it remains to be seen which cellular

programs, or intensities of genes, proteins, or metabolites can be

predicted and how this information can be used in applications.

Furthermore, spatial transcriptomics and histology can be merged

using deep learning to combine the molecular coverage of the for-

mer with the spatial resolution of the later (Bergenstr�ahle

et al, 2022). Overall, spatial omics carry promise for addressing

clinical questions already in these early days while the technolo-

gies are still maturing (Liu et al, 2022; Zhang et al, 2022). The

search is open for finding the best-fitting applications and for

improving technologies with respect to their scalability, cost, and

robustness.

Spatial omics methods are also poised to reveal novel insights

into the role and regulation of the microbiome and the human eco-

systems by allowing in situ omics investigation of hosts and

microbes and microbial communities (Tropini et al, 2017; preprint:

Lötstedt et al, 2022; preprint: Saarenp€a€a et al, 2022). Similarly, toxi-

cology, infection biology, and microbial pathogenesis fields would

benefit greatly from spatial omics approaches, especially at a high

resolution (Rendeiro et al, 2021; Lempke et al, 2023). Although the

initial applications were largely focused on tissue samples from

mouse models and human donors en route to clinical implementa-

tions, we expect that spatial omics methods will be increasingly used

for environmental samples and nonmodel organisms, and offer new

insights for planetary biology and ecosystems (Liang et al, 2018; Cao

et al, 2023).

Conclusions

With this multifold promise of spatial omics addressing the growing

demand for investigating biology in its spatial context, and fueled

by the recent technological progress and breakthroughs, the rapid

progress of technological developments in this cutting-edge field is

gathering steam. Similar to the ongoing merging of imaging-focused

and sequencing-focused efforts in spatial transcriptomics, one can

imagine spatial omics getting more closely integrated into the

broader field of omics. A further convergence will likely be

happening between spatial and single-cell omics with the continuing

increase of the spatial resolution across all spatial omics. This can

lead to a scenario where the instrumentation and methodological

differences between spatial vs. single-cell vs. bulk omics are blurred

or even nonexisting. This would create better opportunities for

investigating biology and addressing medical challenges with future

“omics” encompassing spatial, single-cell, and subcellular capacities

where even using the term “spatial omics” would sound as strange

as “spatial microscopy.”
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