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BACKGROUND: Artificial intelligence (AI) methods and AI-enabled metrics hold tremendous 

potential to advance surgical education. Our objective was to generate consensus guidance on 

specific needs for AI methods and AI-enabled metrics for surgical education.

STUDY DESIGN: The study included a systematic literature search, a virtual conference, and a 

3-round Delphi survey of 40 representative multidisciplinary stakeholders with domain expertise 

selected through purposeful sampling. The accelerated Delphi process was completed within 10 

days. The survey covered overall utility, anticipated future (10-year time horizon), and applications 

for surgical training, assessment, and feedback. Consensus was agreement among 80% or more 

respondents. We coded survey questions into 11 themes and descriptively analyzed the responses.

RESULTS: The respondents included surgeons (40%), engineers (15%), affiliates of industry 

(27.5%), professional societies (7.5%), regulatory agencies (7.5%), and a lawyer (2.5%). The 

survey included 155 questions; consensus was achieved on 136 (87.7%). The panel listed 6 

deliverables each for AI-enhanced learning curve analytics and surgical skill assessment. For 

feedback, the panel identified 10 priority deliverables spanning 2-year (n = 2), 5-year (n = 4), 

and 10-year (n = 4) timeframes. Within 2 years, the panel expects development of methods to 

recognize anatomy in images of the surgical field and to provide surgeons with performance 

feedback immediately after an operation. The panel also identified 5 essential that should be 

included in operative performance reports for surgeons.

CONCLUSIONS: The Delphi panel consensus provides a specific, bold, and forward-looking 

roadmap for AI methods and AI-enabled metrics for surgical education.

Surgical education is undergoing major change with training models that include objective 

assessments of performance and outcomes based on specific standards.1,2 This evolution 

imposes new demands on training programs such as the need for multiple reliable and 

valid assessment tools and validated objective performance standards. The evolutionary 

changes in surgical education provide immense challenges and opportunities to define 

performance standards and to advance assessments of learners using assessment models 

that demonstrate strong evidence of reliability and validity. Within this context, there is 

tremendous potential for advancing sensor technologies that generate complex data and 

analytical methods. Surgical data science is a rapidly emerging domain that integrates 

engineering and quantitative disciplines to enable discovery and technological solutions 

for surgery using complex multi-modal data.3–5 In particular, artificial intelligence (AI) 

methods and AI-enabled metrics allow analysis of data from multimodal sensors on 

cognitive, technical, physiological, and functional correlates of surgical performance and 

development of products that advance surgical education.3–5 Translating products developed 

using AI methods and AI-enabled metrics into training curricula is nontrivial. In addition 

to generalizable methods, there are important considerations related to data privacy, 

transparency, and biases.6 Therefore, translation of AI methods and AI-enabled metrics is 

facilitated best when the development is informed by needs of the stakeholders in surgical 

education including surgeons (educators, practitioners, and learners), professional societies 

and certifying boards, other regulators, and scientists in the analytical disciplines (eg 

engineers, statisticians). Our objective was to generate consensus among multidisciplinary 

stakeholders on the utility, anticipated key applications, and challenges in translating AI and 

metrics for surgical education.
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METHOD

Systematic literature search

We systematically searched PubMed and Inspec to capture biomedical and engineering 

literature using index terms and keywords. The Supplemental Digital Content (http://

links.lww.com/JACS/A52) shows details of the search in each database and eligibility 

criteria to identify relevant literature. Briefly, we included original research articles on 

machine learning, deep learning, and other statistical methods to compute and/or validate 

novel metrics or methods for surgical education (training, assessment, and feedback), in 

addition to studies on crowdsourcing and relevant consensus statements. We limited our 

search to articles published since 2016 given a past review that synthesized literature until 

then.7 Two individuals independently reviewed each title and abstract from the literature 

search, followed by full-text review. A third author resolved disagreements in full-text 

review.

Didactics and moderated discussion

The workshop, held during 2 days, included presentations from 7 leading academic 

research groups on AI methods and AI-enabled metrics for surgical education (listed 

in the Supplemental Digital Content, http://links.lww.com/JACS/A52). In addition, the 

workshop included plenary presentations that shared technical/engineering perspectives and 

a presentation on a professional society’s perspective on AI in surgery. Subsequently, 

breakout groups engaged in discussion on 1 of 3 topics for surgical education—training 

and education, assessment, and feedback—which was moderated by 2 panel members with 

surgical and engineering expertise. The breakout groups were allowed to add statements to 

the Delphi survey.

Delphi survey

We purposefully sampled invitations for the workshop to include domain expertise in 

surgery, engineering and data science, regulatory compliance, industry, and professional 

surgical societies, all of whom were eligible to participate in the Delphi survey. 

An accelerated Delphi survey was conducted in 3 rounds spanning 4 days.6 The 

Delphi statements were developed based on current literature with additional statements 

extracted from moderated discussion among the Delphi panel, and internally piloted by 

a subcommittee of 5 investigators with surgical and engineering expertise. We captured 

participant responses using Google Forms. The survey included 5 sections: overall 

utility, and anticipated future during a 10-year time horizon, followed by sections on 

applications for surgical education and training, assessment, and feedback (Supplemental 

Digital Content, http://links.lww.com/JACS/A52). An 80% agreement among respondents 

was considered consensus.8,9 New questions based on respondents’ comments in the first 

round were introduced in the second round of the survey. To summarize findings and 

consensus, we categorized findings to address the themes shown in Table 1. Two authors 

independently assigned each question to a theme and resolved disagreements through 

discussion. We descriptively analyzed data to provide a qualitative summary of consensus 

among respondents.
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RESULTS

Summary of literature search

A summary of our literature search to inform the survey is shown in Figure 1 (citations 

listed in the Supplemental Digital Content, http://links.lww.com/JACS/A52). The studies 

were conducted using data from simulation and the operating room, and spanned open, 

minimally invasive, endoscopic, and microscopic surgical techniques. The majority of 

included studies involved objective assessment of technical skill using different data 

modalities such as instrument motion, videos, neuroimaging, and so forth. Several studies 

focused on conventional motion metrics, both global and procedure-specific metrics, but 

only a few analyzed their association with patient outcomes and clinically relevant metrics 

in simulation.10,11 Studies on skill assessment using machine learning mostly used deep 

learning methods in a black box fashion, ie without clarification about why a method yields 

a certain output for a given input. On the other hand, a study on feedback using machine 

learning incorporated domain knowledge into algorithms.12 A few studies evaluated the 

effectiveness of providing metrics and other feedback derived from machine learning 

methods on surgical performance and learning.13,14 Finally, several studies evaluated 

crowdsourcing to assess surgical skill in simulation and the operating room, and to evaluate 

the critical view of safety in laparoscopic cholecystectomy.15

Survey and characteristics of Delphi panel

The survey included a total of 155 unique questions, with 123, 46, and 24 questions 

in the first, second, and third rounds, respectively (Fig. 2). The Delphi panel included 

40 participants. Among the 40 participants, 17 (42.5%) were surgeons, 11 (27.5%) were 

engineers or individuals with technical expertise in machine learning/AI, 3 (7.5%) were with 

the FDA, 1 (2.5%) was a lawyer, and 8 (20%) were educators and affiliates of the Society 

of American Gastrointestinal and Endoscopic Surgeons, American College of Surgeons, 

and the American College of Obstetricians and Gynecologists. Surgeons on the panel 

represented general surgery (47%), bariatric surgery (2.5%), urology (7.5%), gynecology 

(10%), and thoracic surgery (2.5%). Participants were from the US (95%) and the United 

Kingdom (5%). We analyzed responses from 100% of panel members in all 3 survey rounds.

Summary of panel consensus

Consensus was achieved on 136 of 155 (87.74%) questions: 102 in the first round, 23 in 

the second round, and 11 in the third round. Of the 19 of 155 (12.26%) questions for 

which consensus was not achieved, the majority were about perceived risk/benefit (6 of 19; 

31.58%) and techniques for evaluating validity of AI methods and AI-enabled metrics (5 

of 19; 26.32%). Agreement among the panel for questions by each theme is summarized 

in Table 2 (additional data in the Supplemental Digital Content, http://links.lww.com/JACS/

A52).

Perceived risks/benefits with AI and metrics for surgical education

There was consensus that AI methods and AI-enabled metrics have the potential to benefit 

surgical education, including training (100%), assessment (97.5%), and feedback (100%). 
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For risks with AI and metrics, the panel only approached consensus on loss of privacy (75%) 

and the impact of human biases on AI (70%). Notably, there was no consensus that failure 

to be interpretable (57.5%) and actionable (62.5%) are potential risks with AI for surgical 

education.

Anticipated applications: General application areas

The eventual goal for surgical education is to enable surgeons to perform a procedure with 

minimal error (agreement: 97.5%) and not simply to secure operating privileges (90%). 

Consensus was reached that AI methods and AI-enabled metrics for surgical education 

should be used to assess proficiency of skill acquisition and to analyze novel data sources to 

define evaluation measures of surgeons’ performance and to provide meaningful actionable 

feedback.

For high-stakes assessment of surgeons, eg initial certification or maintenance of 

certification, consensus on using AI methods and AI-enabled metrics was achieved only 

when the following criteria were met: (1) there was a high degree of evidence in favor of 

AI and metrics for this purpose; (2) assessments were explainable; and (3) the methods were 

noninferior to certified human raters. The panel agreed that AI methods and AI-enabled 

metrics may be used either as a screening tool before assessment by certified human raters, 

or to inform or supplement human assessment. For lowstakes assessment of surgeons, eg 

during training, the panel reached consensus that AI methods and AI-enabled metrics should 

supplement human assessments (97.5%), and not substitute human assessment (77.5%).

The panel agreed that AI-enhanced feedback for surgeons should include a detailed 

summary of their performance in the operating room and close the loop between 

performance in simulation settings and in the operating room by diagnosing skill deficits in 

the operating room, recommending personalized remediation in simulation, and monitoring 

learning in simulation and transfer of improved skill to the operating room.

Specific priority deliverables

Learning curves—There was unanimous agreement that AI can lead to new 

methodologies to analyze surgeons’ learning curves, and it should be used to augment 

current standards for surgical proficiency. Specific deliverables on which the panel reached 

consensus are shown in Table 3.

Feedback for surgeons—The panel unanimously opined that AI should make it easier 

to deliver reliable and personalized feedback to surgical trainees and discover new metrics 

to ascertain when to give feedback. More broadly, the panel agreed that AI should enable 

active participation of the learner-surgeon in personalizing their training curricula (97.5%), 

for example, to help surgeons specify their learning goals. In the simulation context, AI 

should also enable active learning through haptic guidance in simulation.16 Specific details 

of feedback that AI should provide to surgeons are shown in Table 3.
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Anticipated future (10-year time horizon)

During a 10-year time horizon, there was consensus that AI methods and AI-enabled metrics 

can support surgical educators, for example, through detection of salient errors. The panel 

agreed that AI can be used to enable self-learning for surgeons, for example, through 

technology to guide them through personalized training curricula and to identify when 

feedback from an expert is needed. In addition, the panel reached consensus on several 

specific deliverables (Table 4).

Translating products based on AI and metrics to surgical education

Feasibility of developing products—The panel reached consensus that it was feasible 

to use AI methods and AI-enabled metrics to better analyze performance in simulation to 

predict performance in live surgery; to provide feedback on how to improve in simulation, 

ie close the loop between simulation and live surgery; to develop simulation models that are 

well mapped to live surgery; and to augment simulation with clinically relevant data.

Adoption of products—There was more than 95% agreement that AI for surgical 

education should be usable with interpretable output (eg provide an explanation on which 

aspects of input data influenced why/how the algorithm reached a certain prediction) and 

delivered via user-friendly interfaces. There was 80% agreement among the panel that the 

community should engage in appropriate branding (90%) and marketing (82.5%) to facilitate 

their adoption, and in protecting credit for innovations using AI outputs (87.5%). Finally, 

90% of the panel agreed that AI should be used to provide feedback for surgeons on actions 

during the operation that may not necessarily affect patient outcomes, eg minor mishaps that 

may not necessarily cause adverse outcomes.

Standardization of development and application (including regulation)—The 

panel agreed that it is necessary to standardize how AI methods and AI-enabled metrics 

are used for surgical education, which currently is not standardized. In particular, 95% or 

more of the panel members agreed that benchmarks for performance of AI and metrics to 

assess surgical skill and the manner in which they are incorporated into routine practice 

should be standardized. Finally, the panel was unanimous that a universal annotation lexicon 

is a necessary step to allow adequate interoperability of AI methods and AI-enabled metrics 

developed using different datasets.

AI and metrics should be held accountable through regulation along the lines of FDA 

regulation of marketing of drugs and devices (85%), with different pathways for algorithms 

to be used in simulation and clinical decision support (87.5%). AI methods and AI-enabled 

metrics developed using simulation should be certified by an authority before they are 

applied in live surgery training (82.5%). Although there was 82.5% agreement that existing 

models can be followed to regulate AI products, our survey did not include questions 

on specific models. Finally, there was 95% consensus that AI should be used to inform 

regulation, eg by analyzing how surgeons use devices in the operating room with the intent 

to responsibly report events such as “near misses” or incorrect use for regulatory purposes 

and for designing better instruments.
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Data requirements—The panel agreed that open-source, annotated datasets should be 

developed to facilitate and accelerate development of products using AI methods and 

AI-enabled metrics for surgical education. AI methods should be developed to automate 

annotation of datasets for subsequent use in development of methods for specific surgical 

applications. There should be adequate protections (including federal protections) and 

incentives to ease data sharing. However, the panel only approached consensus (72.5%) 

that datasets for AI and metrics for surgical skills assessment should be obtained through 

crowdsourcing.

Evaluating validity of solutions for surgical education that use AI and metrics
—The panel agreed (90% or greater) that AI methods and AI-enabled metrics (1) should 

have strong evidence of validity to facilitate adoption by surgeons; (2) must be robust to 

accommodate variations in data capture, eg quality of video of the surgical field when used 

to assess surgical skill; and (3) should yield products that are objective, such that they are 

not impacted by cognitive biases that are characteristic of subjective human opinions.

The panel reached consensus that AI methods and AI-enabled metrics should be as effective 

(85%), and not less effective (92.5%) when compared with the current standard method for 

a given application. However, the panel only approached consensus that AI should be more 

effective than the standard method (77.5%). In fact, subsequent questions to explore this 

opinion revealed no consensus on this question for the simulation (62.5%) and operating 

room settings (70%).

The panel reached consensus on nearly all items on the ground truth against which to 

benchmark AI and metrics for skill assessment, feedback, learning curves, and personalized 

curricula (Table 5). To validate AI and metrics for surgical skill assessment, the panel 

reached consensus that the ground truth benchmarks for both skill assessment and feedback 

should be provided by expert surgeons (90%). However, benchmarking against expert 

assessments is susceptible to biases inherent in subjective human opinions (85%). On the 

other hand, effectiveness of feedback using AI and metrics should be evaluated against 

expert feedback on learners’ performance in the operating room (100%).

Finally, the panel addressed the role of simulation in validating AI methods and AI-enabled 

metrics for surgical education. The panel agreed (87.5%) that methods for application in 

live surgery should be tested in a controlled simulation setting that allows standardization 

of confounders. Specifically, they reached consensus (95%) that new products using AI 

methods and AI-enabled metrics to inform surgical decisions must be evaluated in high-

fidelity simulations before their use in the operating room, but only approached consensus 

(77.5%) on products using AI and metrics to predict patient outcomes.

DISCUSSION

Our findings provide a specific roadmap for how AI methods and AI-enabled metrics can 

be used to advance surgical education. Surgical data science offers innovative methods, 

including AI methods and AI-enabled metrics, to analyze surgical performance. However, 

advances in technology for surgical education have been constrained by lack of consensus 
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on clinical priorities. Our survey identified specific applications and priority deliverables, 

which reflect consensus among a broad range of stakeholders, including surgeons, educators, 

engineers, and experts affiliated with professional surgical societies and regulatory agencies. 

Therefore, our findings capture the surgical education community’s expectations of how AI 

methods and AI-enabled metrics can be used to translate research in surgical data science 

into products that benefit surgical education.

The ultimate goal of surgical education is to develop surgeons’ psychomotor and cognitive 

skills to effectively perform operations with the best possible outcomes for patients. Training 

in the operating room is irreplaceable, but it should be provided while optimizing patient 

care and safety. This may be achieved in many ways, pre-, intra-, and postoperatively, 

including maximizing skills that can be acquired through simulation before the operating 

room, objective screening assessments for participation in the operating room, intraoperative 

coaching and guidance using real-time performance data, early warning systems to detect 

impending errors, objective postprocedure assessments, and feedback to enable deliberate 

practice. For the educators, professional societies, and certifying bodies, objective measures 

of trainee surgeons’ skill may be available in an accessible and interpretable form (eg a 

surgical portfolio) that allows reproducible comparative analytics across surgeons. Although 

the preceding narrative describes a transformative vision of surgical education compared 

with traditional training models,17 the consensus achieved by the Delphi panel indicates its 

current relevance and feasibility through AI methods and AI-enabled metrics.

Despite perceived feasibility of surgical education enhanced by AI methods and AI-enabled 

metrics, many technical solutions that enable priority deliverables (Table 4) must be 

developed for it to become reality. These solutions address a wide range of problems 

including assessment, surgical scene analysis (object recognition, semantic segmentation, 

ie delineating semantic structures in data), and process or workflow analysis. Although 

the current literature shows an emphasis on methods for skill assessment, surgical scene 

analysis is a foundational technology that enables several priority deliverables.18,19 For 

example, object recognition and segmentation of objects in video images are necessary to 

discover patterns in data that are useful to provide feedback to surgeons. Despite much 

research on recognizing objects in surgical video images,20–26 it may not yet be considered 

a solved problem because of limited proof of generalizability.26 Whereas past research on 

semantic segmentation in surgical videos was limited to instruments, recent studies reported 

methods to segment anatomy and instruments.18,25,27,28 Similarly, recognition of steps in 

surgical procedures is a widely tackled problem using videos. Although most studies report 

algorithms developed and validated with the same dataset, ie internal validation,23–25,27,28 

evidence on external validity of the algorithms is lacking. Generalizable methods for 

detailed analysis of data on the surgical process are necessary to achieve some of the priority 

deliverables identified by the panel in the near term.

Although assessment of surgeons is a potential utility of AI methods, current evidence 

shows that the technology is not ready for routine use. The panel consensus cited a high 

degree of evidence, explainability, and noninferiority to certified human raters as criteria 

for AI to be useful for high-stakes assessment of surgeons. Currently, there is limited 

evidence of external validity of AI methods to assess skills using instrument motion, video, 
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and eye tracking data.7,10,11,29–33 Although research in simulation settings has explored 

explainability of assessments from AI methods,33 they are not well developed, and similar 

findings using operating room data are lacking. Finally, validity of AI methods must be 

demonstrated using unbiased datasets that are representative and that support adequately 

powered analyses.

Some priority deliverables identified by the panel require interaction between AI 

technologies and the surgeon, eg intraoperative navigation, and guidance on next steps 

after an error or on optimal use of instruments. These high-value deliverables require 

advances in multiple areas of data analysis that complement each other and that are possible 

through mechanisms for sustained research funding. Applications that require interaction 

between technology and the surgeon should be evaluated for safety and effectiveness before 

they are adopted in routine patient care. Although randomized controlled trials are useful 

for evaluating AI-enhanced technologies,14 simulation can also play an important role in 

evaluation and translation of AI technologies for surgical education. The role of simulation 

for this purpose should be clarified in future research. Lack of consensus among the panel 

on some items clarifies current expectations from AI methods and AI-enabled metrics 

within the surgical education community. For instance, the panel did not reach consensus on 

whether AI and metrics should surpass the accuracy of human raters for skill assessment. 

This is unlike clinicians’ expectations for other applications such as AI-assisted radiologic 

diagnosis.34 We also anticipate that expectations of the surgical education community may 

evolve with emerging evidence. For example, the panel did not reach consensus that grading 

procedure difficulty is a priority deliverable for AI methods and AI-enabled metrics. In fact, 

there is minimal research on accuracy of AI to predict procedure difficulty grading, although 

a recent study evaluated algorithms to detect the critical view of safety in cholecystectomy 

procedures in patients with different grades of disease severity.35 Evidence of the association 

between disease severity and procedure difficulty may inform revised priorities for AI 

methods and AI-enabled metrics in surgical education.36 Although our findings present a 

unique insight and a specific roadmap for advances in AI methods and AI-enabled metrics 

for surgical education, our study has limitations. For example, we did not explore all 

items on which the panel did not reach consensus. Specifically, the panel only approached 

consensus on crowdsourcing for assessment of proficiency in skill acquisition. We did not 

follow up with questions on different settings in which these assessments are performed and 

used, eg low stakes vs high stakes, simulation vs operating room, and basic skills vs full 

procedures. However, recent literature provides some insights into the surgical community’s 

concerns about crowdsourcing, especially for high-stakes assessments.36 We did not explore 

how the surgical community can lead the innovation. However, a past consensus statement 

from a multinational group of stakeholders, with a greater representation from engineers 

than surgeons, opined that surgical data science must be developed as a career path for both 

independent scientists and surgeon-scientists.3,4 In fact, none of the participants practicing 

surgery had advanced training in computer science. Integrating surgical data science into 

the medical student or surgical training curricula should be further explored with relevant 

stakeholders.

Our survey makes it abundantly clear how AI methods and AI-enabled metrics can 

lead to innovations that spur progress in surgical education. There is increasing societal 
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commitment to the role of technology in education throughout surgeons’ careers. For 

example, the surgical community is actively exploring ways to integrate video-based 

assessments of surgeons during training, and for purposes of initial certification and 

maintenance of certification.37 There is a vibrant engineering research community willing 

to engage with surgeons and advance surgical data science.3,4 The missing ingredients are 

data, annotations, funding streams, and translation of research. Free access to well-annotated 

data are critical to achieve the deliverables identified in this study through AI methods and 

AI-enabled metrics. In fact, access to annotated data may be the most important determinant 

of whether and to what extent AI methods and AI-enabled metrics can have a transformative 

impact on surgical education. Efforts by the Society of American Gastrointestinal and 

Endoscopic Surgeons AI Task Force are addressing the data and annotation challenges 

through consensus building and multicenter research initiatives.38 However, these initiatives 

represent major but early steps that should be supplemented by efforts by individual 

researchers and collaborative consortia.

CONCLUSIONS

As data on surgical performance become ubiquitously available through sensing 

technologies and simulation, AI methods and AI-enabled metrics are positioned to play 

a pivotal role in the future of surgical education. Consensus among the Delphi panel in this 

study lays out a bold and forward-looking roadmap of expectations of how AI methods and 

AI-enabled metrics can drive progress in surgical-education with specific deliverables that 

include measuring learning curves, assessment of skill, and technology to provide surgeons 

with feedback.

Supplementary Material
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Figure 1. 
Results of literature search.
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Figure 2. 
Flow of questions across 3 rounds of the survey. *Count includes 5 questions with no 

consensus that were omitted and replaced with new questions. **Count includes 1 question 

with no consensus that was omitted and replaced with a new question.
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Table 1

Theme Questions Used to Summarize Consensus from the Delphi Panel

Theme question

1. What are the perceived risks/benefits with AI and metric s for surgical education?

2. What are the anticipated applications/future for AI and metrics for surgical education?

  a. General application areas

  b. Specific priority deliverables

  c. Anticipated future (10-year time horizon)

3. What will it take to translate products based on AI and metrics into surgical education?

  a. Feasibility of developing products

  b. Adoption of products

  c. Standardization ofdevelopment pathway (including regulation)

  d. Data requirements to develop products (using simulation, using crowdsourcing, and data sharing)

  e. Evaluating validity ofproducts for surgical education that use AI and metrics

AI, artificial intelligence.
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Table 3

Deliverables for Artificial Intelligence and Metrics for Surgical Education with Panel Consensus

Deliverable; metric

Learning curve (panel agreement 80% or more)

 1. Predict where along the learning curve individual surgeons fall at any time within a curriculum, including at the start and end of learning

 2. Predict lack ofprogress along the learning curve (i.e., arrested learning)

 3. Recommend effective alterations in curriculum to pre-empt failure to progress and to remediate arrested learning

 4. Personalize predictions through analysis ofpatterns across large numbers of surgeons

 5. Standardize measures of learning curves applicable to categories of similar procedures (e.g., reconstructive or ablative procedures)

 6. Identify metrics to include in a surgeon’s portfolio, which captures longitudinal measures ofprespecified metrics.

  a. Metrics that have greatest impact on surgical performance because they are associated with a clinical outcome or training in simulation 
to improve on them is associated with better clinical outcomes

  b. Metrics that accurately predict the end point (i.e., competency level) ofthe learning curve

Surgical skill assessment (panel agreement 90% or more)

 1. Assess skill at end-of-rotation and end-of-year within training curricula

 2. Assess each procedure surgeons perform during training

 3. Assess technical skill in simulation and operating room in real-time (as data are captured) and offline (analyze recorded data after 
operation is performed)

 4. Assess technical skill at more granularity than for a procedure (e.g., steps)

 5. Deconstruct surgical activities to facilitate granular skill assessment

 6. Assess nontechnical skills in the operating room offline but not in real time (77.5% agreement)

Feedback for surgeons in the operating room (panel agreement 87.5% or more)

 1. Provide summary report on operation with the following information:

  a. Avoidance of “near misses” based on artificial intelligence to identify anatomical structures, e.g., prevent unintended injury to 
underlying structures

  b. Detection of error (minor and major)

  c. Illustration of possible actions for the surgeon to recover from an error

  d. Assessment of identification of critical portions of the operation, e.g., identify critical view of safety in laparoscopic cholecystectomy

  e. F eedback on how surgeons can best use devices/instruments

 2. Formative feedback in real-time
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Table 4

Specific Priority Deliverables Related to Feedback That Artificial Intelligence Methods and Artificial 

Intelligence—Enabled Metrics for Surgical Education Should Meet During the Next 10 Years

Priority deliverable

Short-term (2-year time frame)

 1. Recognize anatomy in images from videos of the surgical field (97.5%)

 2. Provide performance feedback to surgeon immediately after the operation (85%)

Mid-term (5-year time frame)

 3. Identify parts of the operation on which the surgeon needs feedback (82.5%)

 4. Overlay images to display surrounding anatomy (90%)

 5. Guide surgeons on expo sure of the surgical field (e.g., artificial intelligence-guided cardiac ultrasound for noncardiologists) (82.5%)

 6. Guide surgeons on optimal use of instruments/devices (85%)

Long-term (10-year time frame)

 7. Enable intraoperative navigability using video, kinematics, and other imaging data for multiple procedures (eg navigation in sinus surgery 
using CT imaging) (85%)

 8. Detect intraoperative error (82.5%)

 9. Provide guidance on the next best step to address an intraoperative error or complication (87.5%)

 10 Grade difficulty of surgical procedure (65%; no consensus)

Panel agreement shown in parentheses.
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Table 5

Variables That Can Be Used as Ground Truth to Validate Artificial Intelligence Methods and Artificial 

Intelligence— Enabled Metrics for Learning Curves and Personalized Curricula

Variable

Skill assessment

 1. Skill category (eg expert/novice/intermediate; 85%)

 2. Standardized structured rating scales (95%)

 3. Patient outcomes (90%)

Learning curve

 1. Specific operative process measures, such as blood loss, ischemia time, and so forth (90%), but not operative time (77.5%)

 2. Measures of procedure-specific surgical success, such as continence or nonconversion (87.5%)

 3. Postoperative outcomes such as complication; length ofhospital stay (92.5%)

 4. Oncologic outcomes such as surgical margins, number of lymph nodes, and so forth (95%)

 5. Patient-specific outcomes such as survival, patient-reported outcomes such as quality of life, satisfaction, and so forth (82.5%)

Personalized curricula

 1. Standardized milestones such as achieving a certain level of skill (100%)

 2. Surgeon perception of whether learner can be entrusted with specific aspects of care (80%)

 3. Performance in the operating room (100%)

 4. Surgical outcomes in patients (95%)

 5. Error in performing the operation (100%)

Panel agreement shown in parentheses.
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