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BACKGROUND: Atrtificial intelligence (Al) methods and Al-enabled metrics hold tremendous
potential to advance surgical education. Our objective was to generate consensus guidance on
specific needs for Al methods and Al-enabled metrics for surgical education.

STUDY DESIGN: The study included a systematic literature search, a virtual conference, and a
3-round Delphi survey of 40 representative multidisciplinary stakeholders with domain expertise
selected through purposeful sampling. The accelerated Delphi process was completed within 10
days. The survey covered overall utility, anticipated future (10-year time horizon), and applications
for surgical training, assessment, and feedback. Consensus was agreement among 80% or more
respondents. We coded survey questions into 11 themes and descriptively analyzed the responses.

RESULTS: The respondents included surgeons (40%), engineers (15%), affiliates of industry
(27.5%), professional societies (7.5%), regulatory agencies (7.5%), and a lawyer (2.5%). The
survey included 155 questions; consensus was achieved on 136 (87.7%). The panel listed 6
deliverables each for Al-enhanced learning curve analytics and surgical skill assessment. For
feedback, the panel identified 10 priority deliverables spanning 2-year (n = 2), 5-year (n = 4),
and 10-year (n = 4) timeframes. Within 2 years, the panel expects development of methods to
recognize anatomy in images of the surgical field and to provide surgeons with performance
feedback immediately after an operation. The panel also identified 5 essential that should be
included in operative performance reports for surgeons.

CONCLUSIONS: The Delphi panel consensus provides a specific, bold, and forward-looking
roadmap for Al methods and Al-enabled metrics for surgical education.

Surgical education is undergoing major change with training models that include objective
assessments of performance and outcomes based on specific standards.2 This evolution
imposes new demands on training programs such as the need for multiple reliable and
valid assessment tools and validated objective performance standards. The evolutionary
changes in surgical education provide immense challenges and opportunities to define
performance standards and to advance assessments of learners using assessment models
that demonstrate strong evidence of reliability and validity. Within this context, there is
tremendous potential for advancing sensor technologies that generate complex data and
analytical methods. Surgical data science is a rapidly emerging domain that integrates
engineering and quantitative disciplines to enable discovery and technological solutions
for surgery using complex multi-modal data.3-® In particular, artificial intelligence (Al)
methods and Al-enabled metrics allow analysis of data from multimodal sensors on
cognitive, technical, physiological, and functional correlates of surgical performance and
development of products that advance surgical education.3- Translating products developed
using Al methods and Al-enabled metrics into training curricula is nontrivial. In addition
to generalizable methods, there are important considerations related to data privacy,
transparency, and biases.® Therefore, translation of Al methods and Al-enabled metrics is
facilitated best when the development is informed by needs of the stakeholders in surgical
education including surgeons (educators, practitioners, and learners), professional societies
and certifying boards, other regulators, and scientists in the analytical disciplines (eg
engineers, statisticians). Our objective was to generate consensus among multidisciplinary
stakeholders on the utility, anticipated key applications, and challenges in translating Al and
metrics for surgical education.
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Systematic literature search

We systematically searched PubMed and Inspec to capture biomedical and engineering
literature using index terms and keywords. The Supplemental Digital Content (http://
links.lww.com/JACS/A52) shows details of the search in each database and eligibility
criteria to identify relevant literature. Briefly, we included original research articles on
machine learning, deep learning, and other statistical methods to compute and/or validate
novel metrics or methods for surgical education (training, assessment, and feedback), in
addition to studies on crowdsourcing and relevant consensus statements. We limited our
search to articles published since 2016 given a past review that synthesized literature until
then.” Two individuals independently reviewed each title and abstract from the literature
search, followed by full-text review. A third author resolved disagreements in full-text
review.

Didactics and moderated discussion

The workshop, held during 2 days, included presentations from 7 leading academic
research groups on Al methods and Al-enabled metrics for surgical education (listed

in the Supplemental Digital Content, http://links.lww.com/JACS/A52). In addition, the
workshop included plenary presentations that shared technical/engineering perspectives and
a presentation on a professional society’s perspective on Al in surgery. Subsequently,
breakout groups engaged in discussion on 1 of 3 topics for surgical education—training
and education, assessment, and feedback—which was moderated by 2 panel members with
surgical and engineering expertise. The breakout groups were allowed to add statements to
the Delphi survey.

Delphi survey

We purposefully sampled invitations for the workshop to include domain expertise in
surgery, engineering and data science, regulatory compliance, industry, and professional
surgical societies, all of whom were eligible to participate in the Delphi survey.

An accelerated Delphi survey was conducted in 3 rounds spanning 4 days.® The

Delphi statements were developed based on current literature with additional statements
extracted from moderated discussion among the Delphi panel, and internally piloted by

a subcommittee of 5 investigators with surgical and engineering expertise. We captured
participant responses using Google Forms. The survey included 5 sections: overall

utility, and anticipated future during a 10-year time horizon, followed by sections on
applications for surgical education and training, assessment, and feedback (Supplemental
Digital Content, http://links.lww.com/JACS/A52). An 80% agreement among respondents
was considered consensus.8® New questions based on respondents’ comments in the first
round were introduced in the second round of the survey. To summarize findings and
consensus, we categorized findings to address the themes shown in Table 1. Two authors
independently assigned each question to a theme and resolved disagreements through
discussion. We descriptively analyzed data to provide a qualitative summary of consensus
among respondents.
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RESULTS

Summary of literature search

A summary of our literature search to inform the survey is shown in Figure 1 (citations
listed in the Supplemental Digital Content, http://links.lww.com/JACS/A52). The studies
were conducted using data from simulation and the operating room, and spanned open,
minimally invasive, endoscopic, and microscopic surgical techniques. The majority of
included studies involved objective assessment of technical skill using different data
modalities such as instrument motion, videos, neuroimaging, and so forth. Several studies
focused on conventional motion metrics, both global and procedure-specific metrics, but
only a few analyzed their association with patient outcomes and clinically relevant metrics
in simulation.10-11 Studies on skill assessment using machine learning mostly used deep
learning methods in a black box fashion, ie without clarification about why a method yields
a certain output for a given input. On the other hand, a study on feedback using machine
learning incorporated domain knowledge into algorithms.12 A few studies evaluated the
effectiveness of providing metrics and other feedback derived from machine learning
methods on surgical performance and learning.13.14 Finally, several studies evaluated
crowdsourcing to assess surgical skill in simulation and the operating room, and to evaluate
the critical view of safety in laparoscopic cholecystectomy.1®

Survey and characteristics of Delphi panel

The survey included a total of 155 unique questions, with 123, 46, and 24 questions

in the first, second, and third rounds, respectively (Fig. 2). The Delphi panel included

40 participants. Among the 40 participants, 17 (42.5%) were surgeons, 11 (27.5%) were
engineers or individuals with technical expertise in machine learning/Al, 3 (7.5%) were with
the FDA, 1 (2.5%) was a lawyer, and 8 (20%) were educators and affiliates of the Society

of American Gastrointestinal and Endoscopic Surgeons, American College of Surgeons,

and the American College of Obstetricians and Gynecologists. Surgeons on the panel
represented general surgery (47%), bariatric surgery (2.5%), urology (7.5%), gynecology
(10%), and thoracic surgery (2.5%). Participants were from the US (95%) and the United
Kingdom (5%). We analyzed responses from 100% of panel members in all 3 survey rounds.

Summary of panel consensus

Consensus was achieved on 136 of 155 (87.74%) questions: 102 in the first round, 23 in

the second round, and 11 in the third round. Of the 19 of 155 (12.26%) questions for

which consensus was not achieved, the majority were about perceived risk/benefit (6 of 19;
31.58%) and techniques for evaluating validity of Al methods and Al-enabled metrics (5

of 19; 26.32%). Agreement among the panel for questions by each theme is summarized

in Table 2 (additional data in the Supplemental Digital Content, http://links.lww.com/JACS/
A52).

Perceived risks/benefits with Al and metrics for surgical education

There was consensus that Al methods and Al-enabled metrics have the potential to benefit
surgical education, including training (100%), assessment (97.5%), and feedback (100%).
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For risks with Al and metrics, the panel only approached consensus on loss of privacy (75%)
and the impact of human biases on Al (70%). Notably, there was no consensus that failure
to be interpretable (57.5%) and actionable (62.5%) are potential risks with Al for surgical
education.

Anticipated applications: General application areas

The eventual goal for surgical education is to enable surgeons to perform a procedure with
minimal error (agreement: 97.5%) and not simply to secure operating privileges (90%).
Consensus was reached that Al methods and Al-enabled metrics for surgical education
should be used to assess proficiency of skill acquisition and to analyze novel data sources to
define evaluation measures of surgeons’ performance and to provide meaningful actionable
feedback.

For high-stakes assessment of surgeons, eg initial certification or maintenance of
certification, consensus on using Al methods and Al-enabled metrics was achieved only
when the following criteria were met: (1) there was a high degree of evidence in favor of

Al and metrics for this purpose; (2) assessments were explainable; and (3) the methods were
noninferior to certified human raters. The panel agreed that Al methods and Al-enabled
metrics may be used either as a screening tool before assessment by certified human raters,
or to inform or supplement human assessment. For lowstakes assessment of surgeons, eg
during training, the panel reached consensus that Al methods and Al-enabled metrics should
supplement human assessments (97.5%), and not substitute human assessment (77.5%).

The panel agreed that Al-enhanced feedback for surgeons should include a detailed
summary of their performance in the operating room and close the loop between
performance in simulation settings and in the operating room by diagnosing skill deficits in
the operating room, recommending personalized remediation in simulation, and monitoring
learning in simulation and transfer of improved skill to the operating room.

Specific priority deliverables

Learning curves—There was unanimous agreement that Al can lead to new
methodologies to analyze surgeons’ learning curves, and it should be used to augment
current standards for surgical proficiency. Specific deliverables on which the panel reached
consensus are shown in Table 3.

Feedback for surgeons—The panel unanimously opined that Al should make it easier
to deliver reliable and personalized feedback to surgical trainees and discover new metrics
to ascertain when to give feedback. More broadly, the panel agreed that Al should enable
active participation of the learner-surgeon in personalizing their training curricula (97.5%),
for example, to help surgeons specify their learning goals. In the simulation context, Al
should also enable active learning through haptic guidance in simulation.1® Specific details
of feedback that Al should provide to surgeons are shown in Table 3.
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Anticipated future (10-year time horizon)

During a 10-year time horizon, there was consensus that Al methods and Al-enabled metrics
can support surgical educators, for example, through detection of salient errors. The panel
agreed that Al can be used to enable self-learning for surgeons, for example, through
technology to guide them through personalized training curricula and to identify when
feedback from an expert is needed. In addition, the panel reached consensus on several
specific deliverables (Table 4).

Translating products based on Al and metrics to surgical education

Feasibility of developing products—The panel reached consensus that it was feasible
to use Al methods and Al-enabled metrics to better analyze performance in simulation to
predict performance in live surgery; to provide feedback on how to improve in simulation,
ie close the loop between simulation and live surgery; to develop simulation models that are
well mapped to live surgery; and to augment simulation with clinically relevant data.

Adoption of products—There was more than 95% agreement that Al for surgical
education should be usable with interpretable output (eg provide an explanation on which
aspects of input data influenced why/how the algorithm reached a certain prediction) and
delivered via user-friendly interfaces. There was 80% agreement among the panel that the
community should engage in appropriate branding (90%) and marketing (82.5%) to facilitate
their adoption, and in protecting credit for innovations using Al outputs (87.5%). Finally,
90% of the panel agreed that Al should be used to provide feedback for surgeons on actions
during the operation that may not necessarily affect patient outcomes, eg minor mishaps that
may not necessarily cause adverse outcomes.

Standardization of development and application (including regulation)—The
panel agreed that it is necessary to standardize how Al methods and Al-enabled metrics

are used for surgical education, which currently is not standardized. In particular, 95% or
more of the panel members agreed that benchmarks for performance of Al and metrics to
assess surgical skill and the manner in which they are incorporated into routine practice
should be standardized. Finally, the panel was unanimous that a universal annotation lexicon
is a necessary step to allow adequate interoperability of Al methods and Al-enabled metrics
developed using different datasets.

Al and metrics should be held accountable through regulation along the lines of FDA
regulation of marketing of drugs and devices (85%), with different pathways for algorithms
to be used in simulation and clinical decision support (87.5%). Al methods and Al-enabled
metrics developed using simulation should be certified by an authority before they are
applied in live surgery training (82.5%). Although there was 82.5% agreement that existing
models can be followed to regulate Al products, our survey did not include questions

on specific models. Finally, there was 95% consensus that Al should be used to inform
regulation, eg by analyzing how surgeons use devices in the operating room with the intent
to responsibly report events such as “near misses” or incorrect use for regulatory purposes
and for designing better instruments.
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Data requirements—The panel agreed that open-source, annotated datasets should be
developed to facilitate and accelerate development of products using Al methods and
Al-enabled metrics for surgical education. Al methods should be developed to automate
annotation of datasets for subsequent use in development of methods for specific surgical
applications. There should be adequate protections (including federal protections) and
incentives to ease data sharing. However, the panel only approached consensus (72.5%)
that datasets for Al and metrics for surgical skills assessment should be obtained through
crowdsourcing.

Evaluating validity of solutions for surgical education that use Al and metrics
—The panel agreed (90% or greater) that Al methods and Al-enabled metrics (1) should
have strong evidence of validity to facilitate adoption by surgeons; (2) must be robust to
accommodate variations in data capture, eg quality of video of the surgical field when used
to assess surgical skill; and (3) should yield products that are objective, such that they are
not impacted by cognitive biases that are characteristic of subjective human opinions.

The panel reached consensus that Al methods and Al-enabled metrics should be as effective
(85%), and not less effective (92.5%) when compared with the current standard method for
a given application. However, the panel only approached consensus that Al should be more
effective than the standard method (77.5%). In fact, subsequent questions to explore this
opinion revealed no consensus on this question for the simulation (62.5%) and operating
room settings (70%).

The panel reached consensus on nearly all items on the ground truth against which to
benchmark Al and metrics for skill assessment, feedback, learning curves, and personalized
curricula (Table 5). To validate Al and metrics for surgical skill assessment, the panel
reached consensus that the ground truth benchmarks for both skill assessment and feedback
should be provided by expert surgeons (90%). However, benchmarking against expert
assessments is susceptible to biases inherent in subjective human opinions (85%). On the
other hand, effectiveness of feedback using Al and metrics should be evaluated against
expert feedback on learners’ performance in the operating room (100%).

Finally, the panel addressed the role of simulation in validating Al methods and Al-enabled
metrics for surgical education. The panel agreed (87.5%) that methods for application in
live surgery should be tested in a controlled simulation setting that allows standardization
of confounders. Specifically, they reached consensus (95%) that new products using Al
methods and Al-enabled metrics to inform surgical decisions must be evaluated in high-
fidelity simulations before their use in the operating room, but only approached consensus
(77.5%) on products using Al and metrics to predict patient outcomes.

DISCUSSION

Our findings provide a specific roadmap for how Al methods and Al-enabled metrics can
be used to advance surgical education. Surgical data science offers innovative methods,

including Al methods and Al-enabled metrics, to analyze surgical performance. However,
advances in technology for surgical education have been constrained by lack of consensus
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on clinical priorities. Our survey identified specific applications and priority deliverables,
which reflect consensus among a broad range of stakeholders, including surgeons, educators,
engineers, and experts affiliated with professional surgical societies and regulatory agencies.
Therefore, our findings capture the surgical education community’s expectations of how Al
methods and Al-enabled metrics can be used to translate research in surgical data science
into products that benefit surgical education.

The ultimate goal of surgical education is to develop surgeons’ psychomotor and cognitive
skills to effectively perform operations with the best possible outcomes for patients. Training
in the operating room is irreplaceable, but it should be provided while optimizing patient
care and safety. This may be achieved in many ways, pre-, intra-, and postoperatively,
including maximizing skills that can be acquired through simulation before the operating
room, objective screening assessments for participation in the operating room, intraoperative
coaching and guidance using real-time performance data, early warning systems to detect
impending errors, objective postprocedure assessments, and feedback to enable deliberate
practice. For the educators, professional societies, and certifying bodies, objective measures
of trainee surgeons’ skill may be available in an accessible and interpretable form (eg a
surgical portfolio) that allows reproducible comparative analytics across surgeons. Although
the preceding narrative describes a transformative vision of surgical education compared
with traditional training models,1’ the consensus achieved by the Delphi panel indicates its
current relevance and feasibility through Al methods and Al-enabled metrics.

Despite perceived feasibility of surgical education enhanced by Al methods and Al-enabled
metrics, many technical solutions that enable priority deliverables (Table 4) must be
developed for it to become reality. These solutions address a wide range of problems
including assessment, surgical scene analysis (object recognition, semantic segmentation,

ie delineating semantic structures in data), and process or workflow analysis. Although

the current literature shows an emphasis on methods for skill assessment, surgical scene
analysis is a foundational technology that enables several priority deliverables.1819 For
example, object recognition and segmentation of objects in video images are necessary to
discover patterns in data that are useful to provide feedback to surgeons. Despite much
research on recognizing objects in surgical video images,29-26 it may not yet be considered
a solved problem because of limited proof of generalizability.2® Whereas past research on
semantic segmentation in surgical videos was limited to instruments, recent studies reported
methods to segment anatomy and instruments.18:25.27.28 Similarly, recognition of steps in
surgical procedures is a widely tackled problem using videos. Although most studies report
algorithms developed and validated with the same dataset, ie internal validation,23-25.27.28
evidence on external validity of the algorithms is lacking. Generalizable methods for
detailed analysis of data on the surgical process are necessary to achieve some of the priority
deliverables identified by the panel in the near term.

Although assessment of surgeons is a potential utility of Al methods, current evidence
shows that the technology is not ready for routine use. The panel consensus cited a high
degree of evidence, explainability, and noninferiority to certified human raters as criteria
for Al to be useful for high-stakes assessment of surgeons. Currently, there is limited
evidence of external validity of Al methods to assess skills using instrument motion, video,
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and eye tracking data.”10.11.29-33 Ajthough research in simulation settings has explored
explainability of assessments from Al methods,33 they are not well developed, and similar
findings using operating room data are lacking. Finally, validity of Al methods must be
demonstrated using unbiased datasets that are representative and that support adequately
powered analyses.

Some priority deliverables identified by the panel require interaction between Al
technologies and the surgeon, eg intraoperative navigation, and guidance on next steps

after an error or on optimal use of instruments. These high-value deliverables require
advances in multiple areas of data analysis that complement each other and that are possible
through mechanisms for sustained research funding. Applications that require interaction
between technology and the surgeon should be evaluated for safety and effectiveness before
they are adopted in routine patient care. Although randomized controlled trials are useful
for evaluating Al-enhanced technologies,* simulation can also play an important role in
evaluation and translation of Al technologies for surgical education. The role of simulation
for this purpose should be clarified in future research. Lack of consensus among the panel
on some items clarifies current expectations from Al methods and Al-enabled metrics
within the surgical education community. For instance, the panel did not reach consensus on
whether Al and metrics should surpass the accuracy of human raters for skill assessment.
This is unlike clinicians’ expectations for other applications such as Al-assisted radiologic
diagnosis.3# We also anticipate that expectations of the surgical education community may
evolve with emerging evidence. For example, the panel did not reach consensus that grading
procedure difficulty is a priority deliverable for Al methods and Al-enabled metrics. In fact,
there is minimal research on accuracy of Al to predict procedure difficulty grading, although
a recent study evaluated algorithms to detect the critical view of safety in cholecystectomy
procedures in patients with different grades of disease severity.3° Evidence of the association
between disease severity and procedure difficulty may inform revised priorities for Al
methods and Al-enabled metrics in surgical education.3¢ Although our findings present a
unique insight and a specific roadmap for advances in Al methods and Al-enabled metrics
for surgical education, our study has limitations. For example, we did not explore all

items on which the panel did not reach consensus. Specifically, the panel only approached
consensus on crowdsourcing for assessment of proficiency in skill acquisition. We did not
follow up with questions on different settings in which these assessments are performed and
used, eg low stakes vs high stakes, simulation vs operating room, and basic skills vs full
procedures. However, recent literature provides some insights into the surgical community’s
concerns about crowdsourcing, especially for high-stakes assessments.36 We did not explore
how the surgical community can lead the innovation. However, a past consensus statement
from a multinational group of stakeholders, with a greater representation from engineers
than surgeons, opined that surgical data science must be developed as a career path for both
independent scientists and surgeon-scientists.3# In fact, none of the participants practicing
surgery had advanced training in computer science. Integrating surgical data science into
the medical student or surgical training curricula should be further explored with relevant
stakeholders.

Our survey makes it abundantly clear how Al methods and Al-enabled metrics can
lead to innovations that spur progress in surgical education. There is increasing societal
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commitment to the role of technology in education throughout surgeons’ careers. For
example, the surgical community is actively exploring ways to integrate video-based
assessments of surgeons during training, and for purposes of initial certification and
maintenance of certification.3” There is a vibrant engineering research community willing
to engage with surgeons and advance surgical data science.3# The missing ingredients are
data, annotations, funding streams, and translation of research. Free access to well-annotated
data are critical to achieve the deliverables identified in this study through Al methods and
Al-enabled metrics. In fact, access to annotated data may be the most important determinant
of whether and to what extent Al methods and Al-enabled metrics can have a transformative
impact on surgical education. Efforts by the Society of American Gastrointestinal and
Endoscopic Surgeons Al Task Force are addressing the data and annotation challenges
through consensus building and multicenter research initiatives.3® However, these initiatives
represent major but early steps that should be supplemented by efforts by individual
researchers and collaborative consortia.

CONCLUSIONS

As data on surgical performance become ubiquitously available through sensing
technologies and simulation, Al methods and Al-enabled metrics are positioned to play

a pivotal role in the future of surgical education. Consensus among the Delphi panel in this
study lays out a bold and forward-looking roadmap of expectations of how Al methods and
Al-enabled metrics can drive progress in surgical-education with specific deliverables that
include measuring learning curves, assessment of skill, and technology to provide surgeons
with feedback.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Titles / Abstracts Retrieved = 2229
Pubmed: 2025
Inspec: 204

—————— Duplicates = 18

Titles / Abstracts Screened = 2211

Not eligible = 1926

Full-text Articles Screened = 285

—————— Not eligible = 224

Included = 61

Figure 1.
Results of literature search.
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Round 1 Round 2 rRound 3
N =123 N =46 L N =24

New Questions New Questions
N =30 N=2

Figure 2.
Flow of questions across 3 rounds of the survey. *Count includes 5 questions with no

consensus that were omitted and replaced with new questions. **Count includes 1 question
with no consensus that was omitted and replaced with a new question.
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Table 1

Theme Questions Used to Summarize Consensus from the Delphi Panel

Theme question

1. What are the perceived risks/benefits with Al and metric s for surgical education?

2. What are the anticipated applications/future for Al and metrics for surgical education?

a. General application areas

b. Specific priority deliverables

c. Anticipated future (10-year time horizon)

3. What will it take to translate products based on Al and metrics into surgical education?

a. Feasibility of developing products

b. Adoption of products

c. Standardization ofdevelopment pathway (including regulation)

d. Data requirements to develop products (using simulation, using crowdsourcing, and data sharing)

e. Evaluating validity ofproducts for surgical education that use Al and metrics

Al, artificial intelligence.
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Table 3

Deliverables for Artificial Intelligence and Metrics for Surgical Education with Panel Consensus

Deliverable; metric

Learning curve (panel agreement 80% or more)

1. Predict where along the learning curve individual surgeons fall at any time within a curriculum, including at the start and end of learning

2. Predict lack ofprogress along the learning curve (i.e., arrested learning)

3. Recommend effective alterations in curriculum to pre-empt failure to progress and to remediate arrested learning

4. Personalize predictions through analysis ofpatterns across large numbers of surgeons

5. Standardize measures of learning curves applicable to categories of similar procedures (e.g., reconstructive or ablative procedures)

6. Identify metrics to include in a surgeon’s portfolio, which captures longitudinal measures ofprespecified metrics.

a. Metrics that have greatest impact on surgical performance because they are associated with a clinical outcome or training in simulation
to improve on them is associated with better clinical outcomes

b. Metrics that accurately predict the end point (i.e., competency level) ofthe learning curve

Surgical skill assessment (panel agreement 90% or more)

1. Assess skill at end-of-rotation and end-of-year within training curricula

2. Assess each procedure surgeons perform during training

3. Assess technical skill in simulation and operating room in real-time (as data are captured) and offline (analyze recorded data after
operation is performed)

4. Assess technical skill at more granularity than for a procedure (e.g., steps)

5. Deconstruct surgical activities to facilitate granular skill assessment

6. Assess nontechnical skills in the operating room offline but not in real time (77.5% agreement)

Feedback for surgeons in the operating room (panel agreement 87.5% or more)

1. Provide summary report on operation with the following information:

a. Avoidance of “near misses” based on artificial intelligence to identify anatomical structures, e.g., prevent unintended injury to
underlying structures

b. Detection of error (minor and major)

c. lllustration of possible actions for the surgeon to recover from an error

d. Assessment of identification of critical portions of the operation, e.g., identify critical view of safety in laparoscopic cholecystectomy

e. F eedback on how surgeons can best use devices/instruments

2. Formative feedback in real-time
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Table 4

Specific Priority Deliverables Related to Feedback That Artificial Intelligence Methods and Artificial
Intelligence—Enabled Metrics for Surgical Education Should Meet During the Next 10 Years

Priority deliverable

Short-term (2-year time frame)

1. Recognize anatomy in images from videos of the surgical field (97.5%)

2. Provide performance feedback to surgeon immediately after the operation (85%)

Mid-term (5-year time frame)

3. Identify parts of the operation on which the surgeon needs feedback (82.5%)

4. Overlay images to display surrounding anatomy (90%)

5. Guide surgeons on expo sure of the surgical field (e.g., artificial intelligence-guided cardiac ultrasound for noncardiologists) (82.5%)

6. Guide surgeons on optimal use of instruments/devices (85%)

Long-term (10-year time frame)

7. Enable intraoperative navigability using video, kinematics, and other imaging data for multiple procedures (eg navigation in sinus surgery
using CT imaging) (85%)

8. Detect intraoperative error (82.5%)

9. Provide guidance on the next best step to address an intraoperative error or complication (87.5%)

10 Grade difficulty of surgical procedure (65%; no consensus)

Panel agreement shown in parentheses.
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Table 5

Variables That Can Be Used as Ground Truth to Validate Artificial Intelligence Methods and Artificial
Intelligence— Enabled Metrics for Learning Curves and Personalized Curricula

Variable

Skill assessment

1. Skill category (eg expert/novice/intermediate; 85%)

2. Standardized structured rating scales (95%)

3. Patient outcomes (90%)

Learning curve

1. Specific operative process measures, such as blood loss, ischemia time, and so forth (90%), but not operative time (77.5%)

2. Measures of procedure-specific surgical success, such as continence or nonconversion (87.5%)

3. Postoperative outcomes such as complication; length ofhospital stay (92.5%)

4. Oncologic outcomes such as surgical margins, number of lymph nodes, and so forth (95%)

5. Patient-specific outcomes such as survival, patient-reported outcomes such as quality of life, satisfaction, and so forth (82.5%)

Personalized curricula

1. Standardized milestones such as achieving a certain level of skill (100%)

2. Surgeon perception of whether learner can be entrusted with specific aspects of care (80%)

3. Performance in the operating room (100%)

4. Surgical outcomes in patients (95%)

5. Error in performing the operation (100%)

Panel agreement shown in parentheses.
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