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Abstract

Neuroscience studies are often carried out in animal models for the purpose of understanding 

specific aspects of the human condition. However, the translation of findings across species 

remains a significant challenge. Network science approaches can enhance the translational impact 

of cross-species studies by providing a means of mapping small-scale cellular processes identified 

in animal model studies to larger-scale interregional circuits observed in humans. In this Review, 

we highlight the contributions of network science approaches to the development of cross-species 

translational research in neuroscience. We lay the foundation for our discussion by exploring the 

objectives of cross-species translational models. We then discuss how the development of new 

tools that enable the acquisition of whole-brain data in animal models with cellular resolution 

provides unprecedented opportunity for cross-species applications of network science approaches 

for understanding large-scale brain networks. We describe how these tools may support the 

translation of findings across species and imaging modalities and highlight future opportunities. 

Our overarching goal is to illustrate how the application of network science tools across human 

and animal model studies could deepen insight into the neurobiology that underlies phenomena 
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observed with noninvasive neuroimaging methods and could simultaneously further our ability to 

translate findings across species.

Introduction

Through translational studies in animal models, we endeavour to understand aspects of 

disease that remain inaccessible through noninvasive studies of the human brain. The 

behavioural, genetic, molecular and neuroanatomical similarities between humans and 

many other species1–4, including non-human primates, rodents, zebrafish, the nematode 

Caenorhabditis elegans, and others, make these animals suitable for modelling aspects of 

the human condition. Like humans, each of these organisms engages in observable forms 

of navigation5, information-seeking6,7 and social interaction8,9. Nonetheless, establishing 

environmental conditions and approaches to studying the brain that are analogous across 

species remains a significant challenge for effective cross-species translation. To address this 

latter point, we propose that network science approaches are of great benefit.

In its most basic form, a network science approach to studying the brain entails representing 

the brain as a system or graph composed of nodes and edges10. Nodes may represent 

interacting entities ranging in scale from molecules to whole brain regions11,12. Edges 

that connect nodes are often structural or functional. Structural edges represent anatomical 

connectivity between nodes, such as white matter tracts, and functional edges represent 

statistical dependencies in neural activity between nodes13. Network models of the brain are 

often characterized using metrics from the subfield of mathematics known as graph theory 

(BOX 1). These metrics can define local, mesoscale or global properties of the network14,15, 

which are particularly useful for descriptive (not causal) characterizations. More recently, 

network control theory (NCT) has been used to identify causal processes underlying 

changes in whole-brain state16–18 and graph neural network models constructed from whole-

brain datasets have been used to demonstrate how network connectivity supports neural 

computations19. Detailed explanations of available tools for understanding network models 

of the brain are provided in other recent reviews12,20,21.

As the data acquired through studies of the nervous system becomes increasingly complex, 

network models have gained significant traction owing to their capacity to distill meaningful 

structure from large, intricate datasets. Network measures have been applied extensively to 

data from functional MRI (fMRI) and structural MRI studies in humans, and connectivity-

based measures derived via network analysis of human neuroimaging data have informed 

our understanding of cognition22,23 and the relationship between structure and function24. 

They also show promise as biomarkers for disease risk, diagnosis and the prediction of 

treatment outcomes25,26. The application of network approaches to studies in preclinical 

animal models, in which environmental and genetic variables are tractable, can facilitate the 

identification and translation of such biomarkers.

The use of network models for cross-species translation is supported by work in the field 

of cross-species connectomics, which has identified common elements of brain network 

architecture across species27–30. Work in this area has primarily used graph theory metrics 

to identify topological features common to the structural connectomes of species ranging 
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from C. elegans to humans, including community structure and small-world properties29. 

Important differences have also been investigated28. For instance, comparative studies 

across primate species have identified scaling principles that account for differences in 

the proportion of white matter connectivity31. These studies support the notion that cross-

species network models of the brain could be used to translate findings from animal models 

of disease to humans.

Network models are particularly useful in the context of cross-species studies because 

they balance abstraction and specificity. Cross-species studies must acknowledge species 

differences while also excavating species similarities. Simple models that engage a level of 

abstraction can remain agnostic to species differences, whereas simple models that engage 

specificity can embrace species similarities. Network models are simple models that provide 

a balance between these two objectives and hence offer promise in cross-species analysis.

In this Review, we begin by discussing the goals of cross-species translational research in 

neuroscience. We illustrate the kinds of questions that animal models have enabled us to 

address about the networked architecture of the brain. We then review studies in the areas 

of neurodevelopment, neuromodulation, neuropsychiatric disorders and neurodegeneration 

that exemplify the translational potential of cross-species network models. We discuss 

opportunities for future work that would further our ability to translate neuroscientific 

findings across species and scales. Finally, we conclude by summarizing the contributions of 

network science tools in cross-species investigations and the role of network science tools 

in further developing translational models. Given that a summary of this nature has not been 

put together previously, our overarching goal is to clarify the state of the field and stimulate 

effective use of network models to support the future goals of translational neuroscience.

Translational models in neuroscience

The long-term goals of translational research in neuroscience are to identify causal processes 

that underlie cognitive and behavioural phenomena observed in humans, and to transform 

basic science findings into approaches that may be used to treat disorders of the nervous 

system (FIG. 1). Many high-level cognitive processes can only be studied in humans, while 

in vivo cellular and molecular characterizations may only be carried out in non-human 

animals. To fill gaps in our understanding of how cellular processes give rise to cognition 

in health and disease states, cross-species translational research aims to relate insights about 

the structure and function of the non-human animal brain to the human brain.

Early neuroscience studies carried out in animals provided fundamental insights into 

properties of neurons, synapses and neural activity, thereby critically expanding our 

understanding of the brain’s structure and function. These observations were made possible 

by the capacity to directly record neuronal activity, measure neurotransmitter release and 

study the structure of the nervous system at high resolution32. These approaches also 

contributed to the development of a variety of animal models of CNS disorders.

Whereas animal models have enabled fundamental discoveries about the nature of the 

brain’s architecture and provided a testbed for examining cellular mechanisms of CNS 
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disorders, the development of noninvasive imaging techniques has enabled the study of 

whole-brain network dynamics in humans. The first application of positron emission 

tomography (PET) for mapping brain activity measured changes in cerebral blood flow 

while participants were presented with visual stimuli33. Subsequently, early fMRI studies 

mapped cerebral blood volume in participants viewing visual stimuli34 and measured 

changes in blood oxygenation in the primary visual and motor cortices in response to both 

motor commands and images35. These studies built on earlier work that linked alterations in 

neuronal activity, metabolism and cerebral blood flow36 and provided initial demonstrations 

of the utility of MRI for studying brain activity during a task. Ultimately, these noninvasive 

neuroimaging tools have given rise to the field of human brain mapping, which has shaped 

and significantly deepened our understanding of the neural bases of human cognition37 and 

has further contributed to the identification of circuit-level biomarkers for CNS disorders38.

Historically, differences in the tools used to study the brains of humans and other animals 

have supported two distinct conceptions of the brain. In the first, the brain is treated as 

a complex, networked system composed of interacting elements, whereas in the second, 

individual brain regions, projections or small circuits are treated as distinct entities. Though 

early studies of correlations in interregional or inter-neuronal activity were carried out 

in both humans39 and non-human primates40,41, the application of connectivity-based 

approaches in non-human species has remained considerably less widespread. This may be 

attributable to the fact that whole-brain, noninvasive imaging approaches that are typically 

employed in human studies naturally lend themselves to network-level approaches to 

understanding the brain, whereas studies in animal models often focus on microscale neural 

dynamics within a particular brain region. Network science approaches to analyzing human 

neuroimaging data have provided insight into the contributions of individual brain regions 

to whole-brain dynamics, but the relationship between cellular and regional dynamics is 

not always clear. This lack of clarity presents a challenge in the translation of findings 

from animals to humans: how does one place single-region processes in the context of a 

networked system?

The development of new tools that enable the collection of whole-brain data across 

species offers an unprecedented opportunity to understand the network organization of 

the brain across scales ranging from single-cell firing activity to regional changes in 

metabolic activity. Network models have the potential to facilitate cross-species translation 

in two major ways: first, by enabling the identification of similarities and differences in 

connectome organization across species29,42, and second, by contributing to more readily 

translatable models of human disease. In the following sections, we discuss studies that 

illustrate the utility of network models across species, first by reviewing studies in animal 

models that have contributed to the development of network science tools, and then by 

providing examples of translational studies in animal models that have effectively leveraged 

network approaches.

Insights into the brain’s networked architecture

Studies carried out in C. elegans, macaques and cats have identified fundamental network 

properties of neural systems, including their short average path lengths and clustering 
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characteristics27,43,44. Network science has since revolutionized the field of human 

neuroimaging by providing a mathematical language and associated statistical approaches 

to characterize large-scale brain networks and to probe neural processes that underlie 

cognition in health and disease. The application of these tools in animal models has lagged 

behind their widespread adoption in human studies, arguably owing to differences in how 

investigators approach the study of the brain in these different species. As the repertoire of 

available tools for measuring whole-brain structural connectivity, gene expression and neural 

activity expands, so do opportunities to align theoretical models with large-scale biological 

processes. In this section, we begin by discussing approaches that enable whole-brain 

assessments of brain structure and function across scales. We then explore how network 

analyses of whole-brain datasets acquired using different imaging modalities across species 

have furthered our understanding of the brain’s architecture, including the causal relations 

among gene expression, structure, and function. Finally, we discuss how studies in animal 

models can be used to assess the validity of theoretical principles underlying network 

models of the CNS.

Tools for studying connectivity across species and scales

Advances in imaging techniques have begun to enable analysis of whole-brain structure 

and function throughout diverse species and across many levels of spatial and temporal 

resolution (FIG. 2). fMRI in animal models enables whole-brain imaging at the mesoscale 

and has produced results that are comparable to those obtained from human fMRI studies. 

For example, a conserved functional network, the default mode network (DMN), has been 

identified. Among the functional subnetworks of the brain that have been widely studied in 

humans, the DMN is a system of brain regions that exhibit coordinated activity during rest. 

In addition to humans, the DMN has now been identified in mice45, rats46,47 and multiple 

non-human primate species, including marmosets48 and macaques49. The consistency of 

the DMN’s anatomy and function suggests that it is an evolutionarily conserved system, 

although small variations in DMN topology also point to modest differences in regional 

contributions to cognition across species50. Direct imaging of neuronal activity (DIANA), 

the nascent approach for acquiring fMRI with high temporal precision in rodents, holds the 

potential to afford further insights into the relations between neuronal and metabolic activity 

in the brain51.

Advances in microscopy and tissue clearing have enabled measurements with cellular 

resolution at the whole-brain scale. Examples include measurement of immediate early 

genes52, amyloid β (Aβ) plaques53 or vasculature54 across the entire rodent brain and 

automated registration to a whole-brain atlas. As an alternative to tissue clearing, block-

face serial microscopy tomography (FAST) can be used to image sectioned tissue and 

obtain high-resolution, three-dimensional renderings of whole-brain immunostaining for 

neural markers55,56. Multiplex immunofluorescence can be used in combination with deep 

learning to perform automated cell phenotyping across the entire rodent brain57. Whole-

brain imaging of neuronal activity in an awake, behaving state can also be performed in 

some species, including C. elegans58 and larval zebrafish59, and in mice, recent advances 

have enabled imaging of the entire cortical mantle60. Collectively, these approaches afford 
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profiling of cell type-specific activity and simultaneous measurements of whole-brain 

cellular activity and behaviour.

Linking network structure, function and gene expression

The ability to perform whole-brain network analysis in animal models enables the 

identification and assessment of biological principles that support connectivity and 

synchronization in human studies. Animal models are amenable to genetic manipulation 

and stimulation or inhibition of neuronal activity in brain regions that have been identified 

as essential for function at the network level. For example, a series of recent studies used 

chemogenetic approaches to demonstrate the impact of silencing or stimulating activity 

in a particular region on whole-brain functional network topology61–63 or system-wide 

functional connectivity64,65. Notably, chemogenetically activating the locus coeruleus, the 

brain’s primary source of norepinephrine, shifted whole-brain connectivity patterns61 and 

strengthened functional connections in the DMN65. By contrast, suppressing activity in the 

anterior cingulate cortex decreased DMN connectivity64. These studies established causal 

roles for specific regions in modulating network connectivity.

In addition to assessments of causality in functional networks, animal models have afforded 

key insights into the properties of the brain’s structural architecture. Tract-tracing of the 

structural connectome has been performed in mice66, rats67, cats68 and several non-human 

primate species30,69. Importantly, anatomical connectivity has been mapped in animal 

models at a resolution that is not possible in humans. Diffusion MRI (dMRI) in humans 

has been used to reveal the density of interregional structural connections and the degree of 

myelination, but dMRI cannot provide information regarding the directionality of axonal 

projections. Since major white matter connections are conserved across many species, 

directionality of connectivity in animal models can guide inferences about directionality 

in studies of the human brain, in which such information is lacking. Knowledge of 

directionality is critical for understanding and predicting the propagation of information 

through the brain’s structural network.

Axonal connections can be visualized in animal models by virally expressing fluorophores 

that illuminate axons in an anterograde (from cell body to synapse) direction or cross 

synapses in a retrograde (from synaptic terminal to cell body) manner, thus providing 

information about the direction of interregional connections66,70,71. Connectivity assessment 

can also be confined to a subclass of neurons by conditional expression under a specific 

promoter72,73, or single neurons can be traced74,75, providing high-resolution information 

about regional connectivity. Using these strategies, the whole mouse brain anatomical 

connectome has been mapped at the mesoscale66. A recent study developed a connectivity 

blueprint for translating structural connectivity maps across primate species76. This 

framework could allow for structural changes identified in non-human primate studies to 

be mapped on to the human brain, enabling translational predictions.

To understand how structural and functional networks are biologically related, several 

studies in animal models have investigated the relationship between gene expression and 

whole-brain structural and functional connectivity. These studies have yielded insights 

into the molecular underpinnings of the brain’s structural topology and coordinated 
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neural activity77–79. One study integrated structural, functional and gene expression data 

to demonstrate that both axonal connectivity between regions and similarities in gene 

expression give rise to functional connectivity measured with fMRI. In mice, both structural 

and functional connectivity are primarily associated with a subset of genes involved 

in synaptic activity, including genes that encode ion channels and synaptic membrane 

proteins77,79.

Tools for genetic manipulation in rodents and other species allow for causally linking 

changes in gene expression with changes in connectivity. In one recent investigation, 

deletion of the mu opioid receptor-encoding gene was found to alter functional connectivity 

between brain regions implicated in reward and aversion, while minimally impacting 

structural connectivity78. This finding suggests that genetic alterations can change the 

relationship between structure and function in the brain. Though a number of studies have 

linked gene expression and connectivity in the human brain80, these studies are correlative 

in nature. Recent work that has performed cross-species analysis of gene expression in the 

mouse and human brain81 has the potential to facilitate the translation of findings from 

causal studies in animal models to humans.

The application of network science approaches to data from animal models can also be 

used to directly test theoretical principles that underlie network science approaches to 

conceptualizing the brain. For example, NCT offers a powerful set of approaches for 

causally relating brain structure and function and for predicting the impact of perturbing 

activity in a particular region on whole-brain activity states. In human studies, NCT has 

been used to identify brain regions or systems that drive transitions in brain states associated 

with health and disease21,82–85. NCT applications depend on the assumption that a system 

can be driven toward a desired state by administering control signals to a defined set of 

input nodes86. In C. elegans, NCT-derived predictions about the role of specific neurons 

in behavioural responses to touch were validated by ablating these neurons and observing 

the impact on locomotor activity87. This endeavour was made possible by the tractability 

of mapping the C. elegans nervous system in its entirety at the cellular level, and by the 

animal’s well-defined repertoire of behavioural responses to stimuli.

In summary, studies of the brain’s networked architecture across species have identified 

genetic and regional drivers of network connectivity and enabled validation of predictions 

made by theoretical models. The use of these approaches across species has also identified 

important differences in the organization of the brain in humans and other animals, 

potentially enabling us to account for these differences when translating findings across 

species.

Enhancing the translational potential of animal model research

In this section, we discuss how cross-species applications of network science tools have 

contributed to the development of translational models for understanding the impact of 

causal manipulations on large-scale brain networks in the context of neurodevelopment, 

neuromodulation, neuropsychiatric disorders and neurodegeneration (FIG. 3).
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Neurodevelopment

During development, the brain undergoes periods of marked growth in which neural 

pathways are shaped and reshaped. Though the precise timing of developmental processes 

varies across species, major developmental events are largely conserved88,89. In humans, the 

formation of synapses (synaptogenesis) and myelination of axonal connections commences 

during the prenatal period. Synaptic pruning and refinement begin during early childhood 

and continue into adulthood88,90. Together, these processes underlie the growth and 

plasticity of whole-brain network connectivity91,92 (FIG. 3). Studies of neurodevelopment 

seek to define changes in the brain over the course of development, and often do 

so by identifying factors that may contribute to an individual’s risk for developing 

neuropsychiatric or neurological disorders93. Network approaches are well-suited to two 

key efforts: (i) characterizing large-scale changes associated with brain maturation and (ii) 

investigating the genesis of circuit-level dysfunction associated with neurodevelopmental 

disorders94,95. We discuss both in turn below.

Studies in animal models have charted adaptations in the topology of the brain over the 

course of development. Functional and structural MRI studies in non-human primates have 

revealed how connectivity evolves during infancy and how it is impacted by environmental 

influences96–98. In macaques, changes in functional connectivity in visual cortical pathways 

have been found to proceed in a region-specific manner, such that anterior regions develop 

before posterior regions97. Other studies have identified specific nutrients that are critical for 

the development of mature patterns of connectivity in the brain’s functional subnetworks98 

and modularity in the cortex96. At the cellular level, network science approaches have 

been used to identify changes in the modular structure of the nervous system over the 

course of development in C. elegans99. This work identified both consistent and dynamic 

connections in the network, the latter of which contribute to an increase in modularity across 

maturation. Importantly, this study identified features of early neurons, such as the extent of 

their physical contact with other cells and their number of connections, that correlate with 

the likelihood that they will form new connections during development99 and provides a 

template that can be used to assess whether this principle is maintained across other species.

Network approaches have also been applied to models of neurodevelopmental disorders. 

In a rabbit model of intrauterine growth restriction (IUGR) — a prevalent risk factor 

for neurodevelopmental disorders — characterization with graph theory metrics identified 

lower average degree and global efficiency in the brain’s structural network100. Importantly, 

this work built on a prior study of IUGR in human infants that had also identified 

altered structural network topology and lower global efficiency, suggesting impaired 

communication between brain regions101. The similarity of findings across species 

highlights the potential utility of the rabbit IUGR model for identifying biomarkers of 

neurodevelopmental disorders. Taken together, the studies discussed in this section illustrate 

the utility of network approaches for modelling the impact of environmental conditions on 

developmental trajectories.
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Neuromodulation

In the context of this Review, we broadly define neuromodulation as the manipulation 

of neural activity via interventions such as targeted stimulation or drug exposure. The 

resulting change in whole-brain activity state may be accompanied by altered cognition 

or behaviour102. In this section, we focus on pharmacological forms of neuromodulation 

because of their relevance to modelling neuropsychiatric disorders such as addiction and to 

treating CNS disorders via pharmaceutical approaches. We provide examples of studies in 

this area that have been informed by network approaches to modeling data acquired from 

multiple modalities, including (i) fMRI and (ii) single-cell immediate early gene activity 

markers.

Human neuroimaging studies suggest that substance use disorders may be effectively 

characterized by large-scale changes in relations between brain regions, rather than a 

pathology of any one region or system103,104. In animal models of drug dependence, 

network approaches have been used to examine the modulatory effects of substances 

of abuse on network connectivity. Longitudinal studies using fMRI have probed circuit-

level biomarkers in a rat model of nicotine dependence105,106. In this work, whole-brain 

modularity analysis was used to partition the naïve rat brain into five functional subnetworks 

(modules). Connectivity of an insular–frontal cortex module with other modules was 

found to predict the severity of nicotine dependence following chronic exposure105. 

Subsequently, innate differences in insular-frontal and insular-striatal connectivity observed 

prior to nicotine exposure were found to moderate the strength of an inverse relationship 

between cingulate–striatal connectivity and nicotine dependence observed following chronic 

exposure106. Functional connectivity strength between the cingulate and striatum was 

previously found to correlate with addiction severity in human cigarette smokers, such 

that weaker connectivity was associated with greater nicotine dependence107,108. In addition 

to highlighting the consistent role of cingulate–striatal connectivity in nicotine dependence 

across species, the rodent studies determined that dysfunction of this circuit is a result of 

nicotine dependence rather than a predispositional risk factor106. More broadly, this work 

underscores how the application of network approaches to analogous datasets from different 

species can facilitate the translation of findings.

Network models have also been used to characterize cellular-level changes in functional 

responses to drug stimuli. Specifically, a number of recent studies have used protein 

expression levels of the immediate early gene Fos as a surrogate for brain-wide activity 

mapping with cellular resolution in mouse models of drug exposure109–112. In these 

studies, neural activity is inferred from quantification of FOS-expressing cells following 

administration of a stimulus. Within network representations of these data, edges represent 

correlations in neural activity across animals at a given time point. In one such 

study, pharmacologically increasing or decreasing dopamine was found to reduce whole-

brain functional connectivity, suggesting that modulating dopaminergic function in either 

direction disrupts interregional communication109. Network science tools, including graph 

theory and network control theory metrics, have also been used to characterize network-

level changes in the brain following chronic exposure to alcohol, morphine, nicotine, 

cocaine and methamphetamine110–112. These studies have identified altered modularity 
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during withdrawal from psychostimulants and alcohol110,111 and have pinpointed regional 

differences in the control energy required to drive the brain between opioid-naive, 

dependent, and protracted withdrawal states112. Collectively, this work has begun to 

bridge the gap between characterizations of state-specific neural activity patterns that are 

commonly assessed using FOS and systems-level conceptions of brain states in response to 

drug stimuli.

Neuropsychiatric disorders

It is increasingly appreciated that many neuropsychiatric conditions are associated with 

altered whole-brain network dynamics rather than localized dysfunction113. In this section 

we focus on network studies of major depressive disorder (MDD), which has been 

characterized and modelled in a range of species.

Studies in animal models are uniquely suited to identifying factors that promote 

vulnerability to MDD and other neuropsychiatric conditions. In a mouse model, network 

analysis of low-frequency potentials recorded from multiple cortical and subcortical regions 

identified distinct connectivity profiles that predict resilience or susceptibility to depression 

following social defeat stress114. Subsequently, work in zebrafish has identified a role for the 

habenula in coping behaviour during a stress-inducing behavioural challenge115.Although 

network-level biomarkers of depression vulnerability have not yet been identified in 

humans116, several studies have identified changes in connectivity that are associated with 

MDD. For instance, functional connectivity networks that characterize distinct depression 

subtypes have been identified117. Work in animal models could potentially assess whether 

these connectivity profiles are associated with susceptibility to or result from depressive 

phenotypes.

In general, the field has begun to recognize neuropsychiatric disorders as occurring along 

a spectrum rather than falling neatly in distinct diagnostic categories. Recent work has 

identified connectivity–symptom relationships that cross diagnostic boundaries118 and has 

used machine learning to predict treatment outcomes among patients who have been 

diagnosed with different conditions but show overlap in their symptomatology119. As human 

studies in this area continue to progress, work in animal models has the capacity to advance 

our understanding of the neurobiology underlying transdiagnostic connectivity profiles.

Neurodegeneration

Network studies of neurodegeneration seek to capture large-scale changes associated 

with disease-induced neuronal atrophy and identify mechanisms by which neuronal loss 

may be slowed or halted. Neurodegenerative disorders including Parkinson disease and 

Alzheimer disease are characterized pathologically by the accumulation of misfolded 

proteins in specific brain circuits120. Neurodegenerative disease symptoms are progressive, 

and postmortem staging studies have found that symptom severity is associated with 

progressive accumulation of pathological proteins in an increasing number of brain regions. 

This progressive accumulation of pathology has led to the hypothesis that pathology spreads 

through interconnected regions of the brain120–125. This hypothesis has been difficult to 

test, however, given the heterogeneous nature of disease presentation in patients, and 
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the limited availability to examine pathological processes during life. PET imaging has 

shown promise for the assessment of Aβ pathology, which is a hallmark of Alzheimer 

disease126, and tau pathology, which is associated with both Alzheimer disease and 

Parkinson disease127,128. However, PET ligands for Aβ and tau have only recently become 

available. Further, the ability to longitudinally image using these ligands is limited and the 

resolution of signal is low compared with histological methods. Finally, imaging ligands 

for ɑ-synuclein pathology, which is implicated in Parkinson disease and other Lewy body 

diseases129, and TDP-43 pathology, which is associated with amyotrophic lateral sclerosis 

and frontotemporal dementia130, are not currently available. It is therefore generally not 

possible to pinpoint sites of early pathology development or to examine the causal processes 

underlying their progression using available tools in human studies.

Animal models allow for precise spatial and temporal control of pathology progression. 

Misfolded tau protein seeding models are particularly appropriate as they do not rely on 

transgenic overexpression of protein, but instead use a small amount of misfolded protein 

to seed pathology in a defined injection site131 (FIG. 3). The formation of pathological tau 

aggregates in these models is progressive and relies on the endogenous factors present in the 

animal model brain. Initial studies suggested that the progression of pathology was related to 

anatomical projection to the injection site, and later to secondary connections132. However, 

it was not possible to attribute progression quantitatively to connectivity or gene expression. 

Recent work using network models has begun to overcome this limitation.

In recent studies, network science approaches have been used to identify factors that 

contribute to the spread of α-synuclein and tau pathology in animal models133–139. 

These studies have found that pathology progression can be well explained by spread 

through neuroanatomic connections, mostly in the retrograde direction. Further, unexplained 

variance in the network model predictions appears related to regional gene expression 

patterns137. These animal model studies suggest that anatomical connectivity is a major 

constraint on pathology progression in neurodegenerative diseases. However, are these 

findings translatable to human disease? Human brain imaging studies of Parkinson disease, 

Alzheimer disease, behavioural variant frontotemporal dementia and semantic variant 

primary progressive aphasia have found that similar network models are able to predict 

brain atrophy140–144 or PET-imaged brain pathology145, suggesting that disease progression 

may be best understood, and treated, on a network level.

As our molecular understanding of disease grows, so does our ability to interpret molecular 

findings in a network context using mathematical models146. For example, previous studies 

have found that microglia, especially reactive microglia, contribute to the spread of tau 

pathology147–150. A recent study used an in silico model to assess the modulatory effects 

of the microglia-associated gene Trem2 on pathology spread, determining that Trem2 gene 

expression inhibits local accumulation of tau protein but increases its transmission to other 

brain regions139. This work thereby links a molecular finding (reactive microglia facilitate 

the propagation of tau pathology) with a network level explanation and demonstrates that 

the predictive power of connectivity-based spread models can be enhanced by accounting for 

molecular factors139.
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Future challenges and opportunities

In the previous section, we provided examples to illustrate how network science approaches 

can contribute to translationally relevant animal models in the areas of neurodevelopment, 

neuromodulation, neuropsychiatric disorders and neurodegeneration. While not the focus of 

this Review, animal models of nervous system disorders are also challenged by the fact 

that the full extent of a human condition is unlikely to be reproducible in another animal, 

and that there is not often a one-to-one mapping of symptoms between humans and other 

species151. In addition to benefiting data translation, network approaches can highlight 

differences in the organization of the brain across species50,152, contributing to judicious use 

of animal models in neuroscience research. In this final section of our Review, we discuss 

some of the challenges we could overcome and questions we could address in the future 

with cross-species network models.

Despite their promise, network models of the brain are not without limitations. 

Translating mathematical concepts across datasets presents distinct challenges. For example, 

correlations in protein expression levels across individuals and correlations in the blood-

oxygen-level-dependent (BOLD) signal across time can both be used to construct edges 

in a functional network, but each represent coordinated neural activity in ways that are 

not clearly related. Further, network models provide simplified representations of brain 

connectivity that may not reflect underlying biology in its entirety. Lack of comparable 

datasets across species can also limit the utility of cross-species network models. We devote 

the remainder of this section to discussing opportunities for further development that could 

help overcome these limitations.

Although network science tools have the capacity to provide analogous models of the brain 

across species, the translation of findings across different imaging modalities remains a 

significant challenge. Given the unique and important insights offered by each type of 

imaging, the long-term goal of relating findings from one species to another may be best 

served by developing tools that would enable translation of findings across neural signals 

derived from distinct imaging modalities. The application of network science tools across 

species could further our understanding of how cellular dynamics contribute to activity 

patterns across brain regions, which would enable predictions about how perturbations at 

the cellular level might lead to changes in regional or brain-wide dynamics. This capacity 

could aid the development of targeted therapeutic interventions by enabling investigators 

to extrapolate from animal studies knowledge of where to apply cell type specific 

neuromodulation, for example, or predict the effect of a pharmacotherapy on cognition. 

It could also contribute to the development of biomarkers for disease in model species and 

further our ability to effectively translate findings to humans.

Several studies in animal models have made progress toward translating neural signals 

across different modalities. In rats implanted with an electrode in the striatum, low-

frequency potentials were recorded during fMRI scans to identify specific frequency bands 

underlying the BOLD signal153. Other studies in rats and mice have performed simultaneous 

recordings of calcium signals and fMRI154,155. One study determined that neuronal 

coupling between the DMN and salience network regions measured with fiber photometry 
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is analogous to that previously identified with fMRI154, and another demonstrated that 

the calcium signal predicts the BOLD signal155. This work represents an important step 

toward translating between cell-type specific and nonspecific signals. Finally, simultaneous 

recordings of neuronal spiking activity and calcium imaging data from the same population 

of neurons have led to the development of tools that can be used to generate synthetic 

calcium imaging data from electrophysiological data156 and to infer neuronal spiking 

rate from calcium imaging data157,158. Collectively, these studies have begun to lay 

the groundwork for translating whole-brain neural signals ranging in scale from direct 

measurements of cells firing to metabolic signals representing regional neuron population 

dynamics.

Network science approaches could be used to develop tools for translating whole-brain 

neural data across different modalities. Using data from simultaneous recordings like those 

described in the previous paragraph, we could construct multiscale, multilayer network 

models to represent neuronal activity across different levels of spatial resolution and 

imaging modalities. In such a representation, intralayer edges would represent correlations 

in neural activity recorded by a given modality, and interlayer edges would represent the 

relationship between each pair of signals for every region (FIG. 4). The development of 

network frameworks for inferring one type of signal from another could enable us to relate 

electrophysiological recordings to calcium imaging to metabolic signals such as BOLD, 

while accounting for interregional differences in the relationship between these signals. By 

integrating cell-type specificity with coarser signals, these approaches could also enable us 

to draw inferences about the properties of cell types or connections observed via noninvasive 

imaging methods. Given knowledge of cell phenotypes or the valence of projections (that 

is, whether they are excitatory or inhibitory), one could gain a better understanding of how 

these features of the brain relate to the BOLD signal.

Graph neural network (GNN) models represent another promising approach for translating 

signals across species and modalities. GNNs are a class of deep learning model that preserve 

their graph topology while learning to perform tasks159. In recent years, these models have 

been used to predict large-scale neuronal dynamics across time and across individuals160,161. 

In the field of genomics, neural networks have been used to accurately predict transcription 

factor binding sites across species (mouse and human)162. Specifically, this strategy involves 

implementing a neural network comprised of two subnetworks, one of which is trained 

using data from one species, and the second of which aims to predict the species from 

which randomly selected datasets are derived. These two subnetworks share a convolutional 

layer that learns to effectively translate findings from one species to another by minimizing 

discriminative features across species162. Such an approach could be usefully applied to 

translating neural data across species by overcoming differences in neuroanatomy or signal 

resolution that serve as barriers to cross-species interpretability.

Tools for translating neural data across signals could be integrated with existing biophysical 

models to generate cross-species simulations. The development of platforms that enable 

brain simulations in primates163 and mice164 are useful for predicting changes in the brain 

in response to perturbation. Such models enable individual-specific predictions by linking 

brain structure and function with variability in behavior165. By further developing these 
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models for cross-species applications, conditions simulated in one species could readily be 

translated to another.

Using network approaches for translating signals across species, we could more readily 

develop novel therapeutics. For example, neuromodulation via targeted stimulation of the 

brain represents an emerging and promising approach to treating severe neurological and 

neuropsychiatric diseases. Optogenetics, which has been successfully used to treat human 

retinal degeneration166, could potentially be usefully applied to treat other conditions via 

cell type-specific neuromodulation167. Optogenetics has recently been applied to human 

neocortical and hippocampal tissue, providing proof of principle for its potential utility 

as a therapeutic tool168. Translating network-level data from animal models could enable 

us to effectively predict where this stimulation should occur for therapeutic benefit. By 

contrast, the ‘reverse translation’ of findings from humans to animal models could further 

our understanding of causal processes that contribute to the efficacy of emerging therapeutic 

approaches, such as transcranial magnetic stimulation. This would also open the door to 

developing novel treatments by uncovering processes that could be targeted by other types of 

therapeutic interventions.

Conclusions

In this Review, we illustrated the utility of network science approaches for translationally 

relevant, cross-species investigations in neuroscience. The advent of tools that enable 

whole-brain recording with cellular resolution presents new opportunities to apply network 

science approaches to understanding cellular and molecular dynamics and relating 

them to interregional dynamics. We reviewed literature that has integrated molecular, 

structural, and functional connectivity in the brain, leading to a deeper understanding 

of the neurophysiological bases of phenomena observed with noninvasive neuroimaging 

methods. By providing an overview of studies in animal models of neurodevelopment, 

neuromodulation, neuropsychiatric disorders, and neurodegeneration, we highlighted the 

contributions of network approaches to the identification of biomarkers and treatments for 

human nervous system disorders. Finally, we discussed how network science approaches 

can be used to further efforts toward translating neural signals across modalities and across 

species, leading to the development of novel therapeutic approaches. Our key take-home 

message is that the field is now well-positioned to leverage network models in studies that 

bridge species and scales, enabling more effective translational research. Ultimately, we 

hope that this work will stimulate interactions between investigators conducting studies in 

humans and other animals, setting the stage for a future in which making connections across 

species and scales towards a more cohesive understanding of the brain is possible.
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such papers in the field169–177. Here we sought to proactively consider choosing references 

that reflect the diversity of the intellectual contributions made in the areas covered in this 

review in thought, form of contribution, gender, race, ethnicity and other factors. First, 

we obtained the predicted gender of the first and last author of each reference by using 

databases that store the probability of a first name being carried by a woman173,178. By this 

measure and excluding self-citations to the first and last authors of our current paper), our 

references contain 5.84% woman(first)/woman(last), 8.94% man/woman, 19.15% woman/

man, and 66.08% man/man. This method is limited in that a) names, pronouns, and social 

media profiles used to construct the databases may not, in every case, be indicative of gender 

identity and b) it cannot account for intersex, non-binary, or transgender people. Second, 

we obtained predicted racial/ethnic category of the first and last author of each reference by 

databases that store the probability of a first and last name being carried by an author of 

colour179,180. By this measure (and excluding self-citations), our references contain 18.98% 

author of color (first)/author of color(last), 18.90% white author/author of color, 20.98% 

author of color/white author, and 41.14% white author/white author. This method is limited 

in that a) names and Florida Voter Data to make the predictions may not be indicative of 

racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race authors, or 

those who may face differential biases due to the ambiguous racialization or ethnicization of 

their names. We look forward to future work that could help us to better understand how to 

support equitable practices in science.

Glossary

Average path lengths The average number of edges that connect each pair of 

nodes in a network.

Modularity A measure of how readily a network can be partitioned into 

subgroups of nodes that are more strongly connected to one 

another than to the rest of the network.

Degree The sum of connections to a given node.

Global efficiency A measure of the efficiency of long-range communication 

in a network.

Control energy The magnitude of input required to drive the brain from 

one activity state to another while accounting for its 

structural topology, time and the number of nodes into 

which input is given.

Multilayer network A graph structure in which nodes are organized into 

multiple layers; intralayer edges represent relations 

between nodes within a layer, and interlayer edges 

represent relations between nodes in different layers.
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A brief overview of network models.

Graph theory

Graph theory is a branch of mathematics that provides descriptive tools for understanding 

properties of brain networks. Graph theory metrics are broadly categorized as local, 

mesoscale or global14,15. Local metrics provide insight into node-level properties of a 

network; for example, degree reflects the sum of connections to a given node. Mesoscale 

metrics describe clustering characteristics; for example, community structure refers to the 

presence of subgroups of nodes that are more strongly connected to one another than 

to the rest of the network. Finally, global metrics describe network-wide features; for 

example, global efficiency is a measure of the efficiency of long-range communication 

within a network. In cross-species studies, graph theory metrics have been used to 

identify similarities and differences in the brain’s topology across species29 (see the 

figure, part a).

Network control theory

Network control theory (NCT) is a systems engineering approach that can be used to 

model the relationship between structure and function in the brain16,18. Within an NCT 

framework, brain states are defined as neural activity across brain regions. These activity 

states are constrained by the brain’s structural network16. Brain states may be represented 

as peaks and valleys in an energy landscape (see the figure, part b), in which x(0) and x(f) 
represent the initial and final brain states, respectively, and the distance between states 

represents the cost of transitioning between them. NCT has been used to identify ‘control 

points’ in the brain that are particularly influential in driving brain state transitions185,186. 

In cross-species studies, NCT may be useful for the translation of therapeutic targets 

from one species to another because it enables predictions about the brain’s response to 

perturbation after accounting for its anatomical connectivity.

Graph neural networks

Graph neural networks are a type of deep learning model that can derive inferences 

from graph structures187. These models are thus well suited to modelling brain networks, 

including interactions between brain structure and function188,189. Graph neural networks 

enable predictions about the behaviour of the whole network, its constituent nodes or 

edges. Graph neural networks have previously shown utility for predicting cell types190 

and transcription factor binding sites162 across species, suggesting that they might also 

prove useful in the cross-species translation of neural data (see the figure, part c).

Brain images in parts a and c based on data in the Scalable Brain Atlas182. Mouse brain 

images in parts a and c based on data from ref.184. Macaque brain image in part a 
based on data from ref.183. Human brain images in parts a and c based on data from 

refs.191–194.
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Figure 1. Cross-species translational research workflow.
Schematic illustrating the interplay between studies in humans and animal models in 

translational research. Each box represents an area of research focus. Movement from top 

to bottom represents progress in the field of translational neuroscience, from identifying 

appropriate model species to predicting treatment outcomes. Arrows between boxes 

represent the flow of information between studies in different species. Shading indicates 

the categories of model assessment that each of these processes rely on. Descriptive validity 

refers to the extent to which an animal model mirrors the processes it is intended to model 

in humans and may be evaluated in terms of cross-species homology of the brain and 

behaviour. The development of animal models that recapitulate human states and enable the 

assessment of their underlying causes rely on explanatory validity. The predictive validity 

of an animal model is demonstrated by its utility for identifying biomarkers and therapeutic 

interventions that show efficacy in humans.
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Figure 2. Measuring large-scale neural activity across species and scales.
The application of network science tools to datasets acquired using different neural 

activity markers enables network-level inferences across scales ranging from cells to 

brain regions. This figure represents the types of signals that may be used to infer 

large-scale neural dynamics, including action potentials (measurable at large scale via 

Neuropixels181), intracellular calcium flux (measurable via calcium imaging), expression 

of FOS (the protein product of the immediate early gene Fos), electrical activity measured 

via electroencephalography (EEG), hemodynamic response measured via blood-oxygen-

level-dependent (BOLD) functional MRI (fMRI), and intracellular voltage flux measured 

via direct imaging of neuronal activity (DIANA) fMRI. Temporal precision refers to the 

relative temporal proximity of the signal to neuronal activity. Spatial resolution ranges from 

individual cells to coarse brain regions. Species are ordered according to the number of 

neurons present in their nervous systems. Each type of neural signal is represented as a 

point on the graph, where the x coordinate represents spatial resolution and the y coordinate 

represents temporal precision. The species from which a given signal may be acquired are 

represented as symbols within each point and comprise C. elegans, Drosophila, zebrafish, 

rodents, non-human primates and humans.
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Figure 3. Translational models in the areas of neurodevelopment, neuromodulation and 
neurodegeneration.
In translational studies of neurodevelopment, network models can be used to chart changes 

in the brain’s architecture over the course of development and to determine how genetic 

and environmental factors influence developmental outcomes. a | Illustration showing how 

developmental divergence during adolescence can result in differences in the network 

architecture of the adult brain. Studies of neuromodulation assess the brain’s response to 

stimuli under different conditions. b | Network models of drug dependence can identify 

differences in coordinated activity in response to drug stimuli. c | In seeding studies of 

neurodegeneration, pathological proteins are injected into specific regions of the brain. 

Network models can then be used to model the spread of pathology along the brain’s 

structural tracts and to predict disease progression. Brain images based on data in the 

Brynildsen et al. Page 28

Nat Rev Neurosci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scalable Brain Atlas182. Brain images in part a based on data from ref.183. Brain images in 

part c based on data from ref.184.
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Figure 4. A multilayer network conception of neural signals across modalities in the mouse 
brain.
In this multilayer network, each layer represents neural activity inferred from one of three 

modalities: functional MRI (fMRI) blood-oxygen-level-dependent (BOLD) signal, calcium 

imaging and electrophysiology (using Neuropixels probes). In layer 1, the fMRI BOLD 

signal represents the coarse-grained dynamics of the two neuron populations illustrated in 

layers 2 and 3. In layer 2, intralayer edges between cells represent correlations in calcium 

signal, which are derived from fluorescence intensity. In layer 3, intralayer edges represent 

correlations in electrophysiological signal recorded from these population of cells. Interlayer 

edges represent the relations between each pair of signals. Brain image based on data in the 

Scalable Brain Atlas182. Brain image based on data from ref.184.
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