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ABSTRACT: Many analytical methods used in gut microbiome
research focus on either single bacterial taxa or the whole microbiome,
ignoring multibacteria relationships (microbial cliques). We present a
novel analytical approach to identify microbial cliques within the gut
microbiome of children at 9−11 years associated with prenatal lead
(Pb) exposure. Data came from a subset of participants (n = 123) in the
Programming Research in Obesity, Growth, Environment and Social
Stressors cohort. Pb concentrations were measured in maternal whole
blood from the second and third trimesters of pregnancy. Stool samples
collected at 9−11 years old underwent metagenomic sequencing to
assess the gut microbiome. Using a novel analytical approach, Microbial
Co-occurrence Analysis (MiCA), we paired a machine learning
algorithm with randomization-based inference to first identify microbial
cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial
clique abundance. With second-trimester Pb exposure, we identified a two-taxa microbial clique that included Bif idobacterium
adolescentis and Ruminococcus callidus and a three-taxa clique that also included Prevotella clara. Increasing second-trimester Pb
exposure was associated with significantly increased odds of having the two-taxa microbial clique below the median relative
abundance (odds ratio (OR) = 1.03, 95% confidence interval (CI) [1.01−1.05]). Using a novel combination of machine learning
and causal inference, MiCA identified a significant association between second-trimester Pb exposure and the reduced abundance of
a probiotic microbial clique within the gut microbiome in late childhood.
KEYWORDS: Metal exposure, Gut microbiome, Machine learning, Causal inference, Microbial co-occurrence, Exposome, Probiotic

■ INTRODUCTION
Human metal exposure has been long recognized as a public
health threat, and recent studies suggest that one potential
mechanism for its adverse health effects is through the gut
microbiome.1,2 A growing body of animal and human studies
have shown that exposure to heavy metals (e.g., As, Cd, and Pb)
can alter the gut microbiome composition and metabolic
function, reduce diversity, and select for antibiotic resistance.2−8

Human Pb exposure has been linked to shifts in the microbiome
throughout the life course.9,10 Sitarik et al. found that prenatal
Pb exposure measured in baby teeth was associated with
decreased abundance of several Bacteroides species and an
increased abundance of the pro-inflammatory genus Collinsella
in the gut microbiome at 1 and 6months old.11 Likewise, Shen et
al. found that prenatal Pb exposure measured in maternal blood
was associated with an increased abundance of Fusobacteriota in

the gut microbiome of children 6−7 years old.12 A study out of
our group (Eggers et al.) also found that Pb exposure in the
second and third trimesters of pregnancy was associated with
decreased abundance of several short-chain fatty-acid-producing
bacteria in children 9−11 years of age.13 Taken together, these
studies indicate that the prenatal period may be a particularly
critical window of Pb exposure on the development of the
human gut microbiome in childhood. Moreover, the link
between prenatal Pb exposure and increased abundance of pro-

Received: June 6, 2023
Revised: September 8, 2023
Accepted: September 11, 2023
Published: October 25, 2023

Articlepubs.acs.org/est

© 2023 The Authors. Published by
American Chemical Society

16800
https://doi.org/10.1021/acs.est.3c04346

Environ. Sci. Technol. 2023, 57, 16800−16810

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/page/virtual-collections.html?journal=esthag&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vishal+Midya"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jamil+M.+Lane"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+Gennings"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Libni+A.+Torres-Olascoaga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jill+K.+Gregory"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+O.+Wright"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+O.+Wright"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Manish+Arora"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martha+Maria+Te%CC%81llez-Rojo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shoshannah+Eggers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.3c04346&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04346?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04346?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04346?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04346?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04346?fig=agr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/44?ref=pdf
https://pubs.acs.org/toc/esthag/57/44?ref=pdf
https://pubs.acs.org/toc/esthag/57/44?ref=pdf
https://pubs.acs.org/toc/esthag/57/44?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.3c04346?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


inflammatory and potentially pathogenic bacteria and decreased
abundance of probiotic bacteria suggests that these prenatal Pb
exposures may lead to poor health outcomes later in childhood
via these alterations to the gut microbiome. This associationmay
be due to changes in the maternal gut microbiome or
programming of the immune system during development.
However, further investigation is needed to clarify the
underlying biological mechanisms.
Each of these highlighted studies and the vast majority of

epidemiological microbiome studies have used a whole
microbiome and/or single taxa approach for investigation.
They identified single taxa or the whole microbiome, as
measured using diversity as an indicator associated with a
specific exposure or outcome of interest. However, current
literature from microbial ecology shows that bacteria (and other
microbiome members) biochemically interact with one another
and their host organisms at levels between 1-on-1 and the whole
microbiome, i.e., groups. For instance, many gut microbes are
unable to be cultured in the lab without other bacteria in
coculture.14 In most cases, these bacteria do not need to be
cocultured with everything from the gut microbiome, just one or
two others. This group of bacteria within the microbiome, or as
we call it, a "microbial clique", is overlooked by conventional
microbiome epidemiology methods. There are studies of the
human microbiome that use network analysis to investigate co-
occurring microbes within the human microbiome;15,16

however, they are based on correlations and can be difficult to
use inside of an epidemiologic framework to understand
associations and account for confounding variables. Further-
more, the results of network analyses are often difficult to
interpret. Unsupervised clustering analyses are used to identify
clusters based on relative abundances.17 However, as the size of
the clusters increases, interpretations of the clusters and
understanding of the interrelation between the taxa become
difficult; therefore, deriving any biological plausibility becomes
challenging.
The ability to assess associations between exposures or

outcomes of epidemiologic interest and microbial cliques within
the human microbiome is an important gap in the field.
However, finding microbial cliques associated with an outcome
of interest is challenging because of (1) considerable computa-
tional complexity as the number of taxa increases and (2)
limitations of the sample size in most human microbiome
studies. Multiple methods exist where multiordered microbial
cliques can be prespecified or hard-coded in the models;
however, such strategies might ignore many plausible and
informative combinations and could be underpowered due to
restrictions on sample size.18−20 On the other hand, microbial
cliques can be potentially discovered using projection-based
dimensionality reduction techniques. However, the interpreta-
tions of the final products can be challenging to interpret and are
often qualitative.21,22 Microbial cliques can be constructed
through threshold-based relative abundance, which might aid in
interpretation. Such threshold-based construction carries
considerable similarity with toxicological threshold-based
interactions.23−25 Tree-based machine learning models can
provide a natural and computationally efficient solution to such
construction.20 Even with a substantial number of taxa, these
models can create multiple threshold-based combinations of
taxa predictive of the outcome of interest. Still, the challenge
remains in interpretability since most machine learning models
are generally black-box, creating a tension between prediction
quality and meaningful interpretability. Moreover, a highly

predictive machine learningmodel may not be ideal for assessing
associations.26 Thus, there is a need for methods that can
investigate novel microbial cliques while reducing data
dimensionality and assessing associations in an interpretable
way.
In this study, we aim to identify microbial cliques within the

gut microbiome of children 9−11 years old, in association with
prenatal Pb exposure. To accomplish this, we used a novel
statistical approach called Microbial Co-occurrence Analysis
(MiCA), which combined interpretable machine learning and
causal inference frameworks to first identify microbial cliques
and then test their associations with prenatal Pb exposure.

■ METHODS
Study Design. Data came from the PROGRESS cohort,

based in Mexico City, Mexico. The study enrolled 948 pregnant
women who gave birth through the Mexican Social Security
System. Pregnant women completed study visits in the second
trimester (2T) and the third trimester (3T) and at birth. The
offspring were followed and completed study visits every 6
months during infancy and every two years after that. Surveys,
physical exams, and psychological and behavioral assessments
were conducted during each study visit. Biological specimens,
including blood, were also collected. In addition, stool samples
were collected for microbiome analysis from a subset of
participants (n = 123) at ages 9−11 years old. The study
protocol for PROGRESS was reviewed and approved by the
Institutional Review Board (IRB) at the Icahn School of
Medicine at Mount Sinai (ISMMS), and all three committees
(Research, Ethics in Research, and Biosafety) were included in
the IRB at the National Institute of Public Health in Cuernavaca,
Mexico.
Pb Exposure Measurement. Maternal whole blood was

drawn during 2T and 3T, and Pb exposure analysis was
performed as previously described.27 Pb concentration was
measured using inductively coupled plasma mass spectrometry
(ICP-MS) at the trace metals laboratory at ISMMS.
Gut Microbiome Sample Collection and Processing.

Microbiome sample collection was conducted as previously
described.13 Briefly, whole stool samples were collected at home
by participants and stored in the refrigerator until they were
picked up by the PROGRESS field team and delivered to ABC
Hospital in Mexico City for aliquoting, following the FAST
protocol.28 Aliquots were stored at −70 °C and shipped to the
Microbiome Translational Center at ISMMS, where they
underwent DNA extraction and library prep in two separate
batches (n = 50 and n = 73). Shotgun metagenomic sequencing
was performed for each batch separately using an Illumina
HiSeq. Sequencing reads were trimmed for quality using
Trimmomatic,29 and bowtie230 was used to remove human
reads. MetaPhlAn231 and StrainPhlAn32 were then used to
determine microbial taxonomy, and HUMAnN233 was used
with MetaCyc34 to profile microbial gene pathways.
Covariates. Several relevant covariates were considered in

this analysis, including child sex, child age at the time of stool
sample collection, maternal socioeconomic status (SES) during
pregnancy, maternal age at birth, maternal body mass index
(BMI) during pregnancy, and microbiome analysis batch.
Maternal height and weight were measured at 2T and were
used to calculate BMI. Maternal SES during pregnancy was
assessed based on the 1994 Mexican Association of Intelligence
Agencies Market and Opinion (AMAI) rule 13*6, where
families were categorized into six levels of SES based on 13
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questions about household characteristics. Most families in
PROGRESS were low to middle SES; therefore, the six levels
were condensed into three: lower, middle, and higher.35

Statistical Analysis. All analyses were conducted in R
version 4.0.3; the false discovery rate was implemented to
correct the raw p-values from multiple comparison errors. Any
two-tailed p-value less than 0.05 was considered statistically
significant.
Data Processing. Pb concentrations were log2 transformed to

better meet distributional assumptions. Microbiome count data
were converted to relative abundances for all analyses. The
analysis included only those taxa with at least 5% relative
abundance in both batches to account for analytical batch
effects. The relative abundance data were not rescaled to reflect
the contribution of the original distribution of the whole taxa.
Further, all models were controlled for a batch indicator variable.
Further modeling approaches to correct batch effects are
described in the following subsection.
Microbiome Co-occurrence Analysis (MiCA). MiCA was

conducted in two stages to identify microbial cliques associated
with prenatal Pb exposures. The first part of this algorithm used a
machine learning-based prediction framework to discover
microbial cliques predictive of Pb exposure. The next stage
restored the directionality and estimated the association
between Pb exposure and the joint-relative abundance of the
discovered cliques using a causal inference (or simply a classical
association-based) framework.
The microbial cliques were searched using repeated hold-out

signed iterated random forest (rh-SiRF), where the outcomewas
prenatal Pb exposure and the predictors were relative
abundances of the selected taxa. The SiRF (signed iterative
random forest) algorithm combined a state-of-the-art predictive
tool called “Iterative Random Forests” with Random Inter-
section Trees (RIT) to search for combinations of taxa
predictive of Pb exposure.36−38 Instead of searching for all
possible combinations, SiRF can tease out the most prevalent
taxa combinations on the decision path. The algorithm begins
with a simple random forest (RF) and then sequentially
reweighs the predictive taxa to fit the iterative RFs. From the
reweighed RF, decision rules are extracted and fed into a
generalization of the RIT to discover microbial cliques from the
decision paths. This algorithm introduces a bagging step to
assess the “stability” of the discovered cliques estimated through
many bootstrapped iterations. Therefore, the higher the stability
of a discovered clique, the better. On top of the SIRF algorithm,
we introduced a repeated hold-out step that randomly partitions
the data in training and testing sets for better generalizability.39

The whole rh-SiRF algorithm is repeated 1000 times, although
iterating more than 100 times should suffice.
The rh-SiRF discovers microbial cliques through decision

paths, representing a collective form associated with the
outcome rather than a particular functional form. Thus, the
discovered cliques include information about directionality and
relative abundance thresholds. Microbial cliques can include
taxa with abundance thresholds in opposite directions and can
include multiple (more than two) taxa. We fitted the SiRF
algorithm in three ways: (1) trained the model on one batch and
then tested it on another batch, (2) trained the model on
randomly chosen 60% of the data and then tested it on the
remaining 40%, and finally (3) repeated the rh-SiRF algorithm
over 300 times with training and test data partitioning 60−40%
irrespective of the batches. Microbial cliques were chosen based
on having a stability of more than 75%, having a prevalence of

more than 10%, being common to all data partitioning strategies,
and having a higher than random chance of occurrence among
the 300 repeated holdouts (i.e., the relative frequency of
occurrence was more than 1%). While fitting the SiRF algorithm
on the first two data partitioning strategies (i.e., training on one
batch and testing on another and 60−40% data splitting), we
calculated the exposure co-occurrence list to find the important
cliques based onmutual co-occurrence. The idea of exposure co-
occurrence list follows from the heuristics of distributed word
representations (popularly known as word embedding) and is
widely applied in tasks related to Natural Language Process-
ing.40,41

For the next stage of association analysis, the discovered
microbial cliques were extracted as indicator functions with
respect to their median relative abundances. For example, a
microbial clique of A and B, denoted by A-B-, implies that a
lower relative abundance of A and B is predictive of prenatal Pb
exposure, whereas A+B+means that a higher relative abundance
of A and B is predictive of prenatal Pb exposure. For ease of
interpretation and generalizability, we converted A-B- to an
indicator function with respect to their median relative
abundances; i.e., for an individual, the indicator would be
nonzero if both the taxa A and B had below median relative
abundance. Otherwise, it would be zero. Note that microbial
cliques discovered through this algorithm might have different
directionalities (A+B- or A-B+). Further, the number of taxa in a
clique can be more than two.
We implemented a randomization-based inference built upon

the Rubin causal model to estimate the association between
prenatal Pb exposure and the odds of microbial clique
abundance below the median. First, a matched-sampling
strategy was utilized to obtain similar covariate distributions
between the binarized clique, below and above median relative
abundance. Given the covariates, we assumed that this approach
of covariate-balancing42 could create potential “exchangeable”
groups so that the clique was hypothetically and randomly
assigned to each individual, and those covariates did not
confound the clique assignment. Next, due to the small sample
size and to prevent discarding a large number of samples, a
subclass matching with the propensity score43 was used to
construct similar groups of microbial cliques with above and
below median relative abundance. Finally, love plots of the
differences in standardized means in covariates were used to
examine the extent of covariate balancing (setting the threshold
for the standardized mean difference to 0.1).44,45 We used
logistic regression withmatchedmicrobial clique as the outcome
and prenatal Pb concentration as the exposure after adjusting for
covariates. Moreover, without relying on asymptotic arguments,
we conducted randomization-based inference to construct the
null randomization distribution of the test statistic by
considering 105 possible exposure assignments and estimated
the randomization-based p-value. We also estimated 95% Fisher
Confidence Intervals (CIs) based on the randomized p-value
under this framework.46 A schematic of theMiCA algorithm and
codes with illustration on a simulated data set is provided on
GitHub through a vignette(https://github.com/vishalmidya/
MiCA-Microbial-Co-occurrence-Analysis/blob/main/MiCA-
vignette.md).
In addition to the previously described steps to eliminate

batch effects (5% relative abundance in both batches and
multiple SiRF training and testing approaches), we also included
the batch indicator in covariate balancing, as well as a covariate
in all models. Any missing data in the covariates or exposures
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were imputed using the predictive mean matching implementa-
tion of the MICE package in R.47

Policy Relevant Pb Concentration Analysis. We conducted
an exploratory analysis using policy-relevant Pb concentration
thresholds to estimate the odds of having a below median
relative abundance of the microbial clique at Pb concentrations
that was easily interpretable. We dichotomized the sample at the
United States guideline level for child Pb poisoning (3.5 μg/
dL),48 the Mexican guideline for child Pb poisoning (5 μg/
dL),49 and the study median of prenatal Pb exposure. Odds
ratios were estimated for having a below median relative
abundance of each member of the microbial clique with respect
to dichotomized Pb exposure (above vs below the policy-
relevant thresholds). Like previous analyses, odds ratios were
estimated by using logistic regressions after covariate-balancing
through subclass-based matching. Since this is an exploratory
analysis, we estimated the 95% CIs based on distributional
asymptotic arguments. All models were further adjusted by
covariates.
Gene Pathway Analysis.To interpret the functionality of the

cliques, we studied the gene pathways associated (1) with each
individual clique member and (2) shared by all clique members
using Venn diagrams. We extracted the gene pathways to
understand their joint functionality.
Sensitivity Analyses. We conducted multiple sensitivity

analyses. First, we repeated the association analyses (1) without
the randomization-based causal inference framework (i.e.,
without any covariate balancing or matching) and (2) without
imputing any missing covariate data. Second, the random-
ization-based causal inference framework was repeated using
separate thresholds (25th and 40th percentile) for microbial
clique abundance rather than the 50th percentile for each clique
member. Third, the models were further adjusted for postnatal
child Pb exposure at 12 and 24months. Fourth, we estimated the
Pearson correlations for the taxa within cliques to understand
whether relative abundances of the taxa were associated with
clique formation. Fifth, similar to the policy-relevant Pb
Concentration analysis, we conducted an exploratory study
using Pb concentration thresholds to identify the quantile with
the highest odds with respect to the indicator of microbial clique
abundance. Finally, we dichotomized the sample with gradually
increasing percentile thresholds of prenatal Pb exposure,
considering all exposures at or above the threshold vs below
the threshold, and sequentially estimated the associations with
microbial clique relative abundance all below the median.

■ RESULTS
Study Population. The study population comprised 49

females and 74 males with an average age of 9.7 years. The 5th
and 95th percentiles of observed Pb concentration for 2T and
3T were 10.86 μg/L to 89.18 μg/L and 11.78 μg/L to 77.06 μg/
L, respectively. The mean Pb concentration at 2T was 33.6 μg/L
and 34.9 μg/L at 3T. Mothers with lower SES during pregnancy
were more likely to have higher blood Pb concentrations in both
trimesters. Further, the number of children above the United
States guideline for child Pb poisoning (≥3.5 μg/dL)48,50 based
on second-trimester Pb exposure was 42 (34.1%). In contrast, it
was 18 (14.6%) based on the Mexican guideline for child Pb
poisoning (≥5 μg/dL).49 The descriptive statistics of Pb
exposure and covariates from the study population are provided
in Table 1.
MiCA. In the first stage of MiCA, the rh-SiRF identified three

separate 2-taxa cliques predictive of Pb concentration in 2T,

which included (1) Bif idobacterium adolescentis and Rumino-
coccus callidus, (2) B. adolescentis and Paraprevotella clara, and
(3) R. callidus and P. clara. All three cliques had a stability of
more than 75% and a prevalence of more than 10% and were
common to all three data partitioning techniques. Next, using
the exposure co-occurrence list, we scored howmany times each
of the taxa occurred within the sets of detected cliques (1) when
the model was trained on one batch and then tested on another
batch and (2) when the model was trained on randomly chosen
60% of the data and then tested on the remaining 40%. In the
first case, B. adolescentis occurred six times, whereas R. callidus
occurred four times, forming a clique with a co-occurrence score
of 6/4. At the same time, the score was 6/5 for the second case.
Finally, among these three cliques, the clique of B. adolescentis
and R. callidus had the highest score (6/4 and 6/5) in the
exposure co-occurrence list, and therefore, we denoted it as the
primary clique (Supplementary Table 1).
Further, based on the commutativity of three cliques, we

hypothesized a 3-taxa clique comprising B. adolescentis, P. clara,
and R. callidus (Figure 1). However, for 3T, no clique was

common to all three data partitionings (Supplementary Table
2). In the sections below, we studied the primary 2-taxa clique of
B. adolescentis and R. callidus and the 3-taxa clique of
B. adolescentis, P. clara, and R. callidus. Lower relative abundance
of all taxa in both the cliques was predictive of 2T Pb
concentrations, implying that having both or all three of the

Table 1. Descriptive Statistics of Pb Exposure and Covariates
from the Study Population

total

Exposure N = 123
Second trimester Pb (μg/L) median (IQR) 25.9 (21.6)
Third trimester Pb (μg/L) median (IQR) 27.6 (25.7)

Covariates
Child sex N = 123

Male n (%) 74 (60.2)
Female n (%) 49 (39.8)

Maternal SES in pregnancy
Lower n (%) 66 (53.6)
Medium n (%) 45 (36.6)
Higher n (%) 12 (9.8)

Maternal age at birth (years) mean (SE) 28.5 (0.5)
Maternal BMI in pregnancy (kg/m2) mean (SE) 27.2 (0.4)
Child age at gut microbial sample collection (years) mean (SE) 9.7 (0.7)

Figure 1. Visual representation of the bacterial taxa in the microbial
cliques identified using Microbiome Co-occurrence Analysis (MiCA).
The width of the arrows represents the relative frequency of occurrence
of the corresponding 2-taxa clique.
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bacteria co-occur at low or no abundance is predictive of higher
2T Pb concentration. No microbial cliques were identified as
predictive of 3T Pb concentration. The details from the data

partitioning for 2T Pb and 3T Pb are presented in
Supplementary Tables 1 and 2.

Figure 2. Adjusted odds ratios for below median abundance (reduced probiotic protection) of all members in 2-taxa (red) and 3-taxa (teal) microbial
cliques with a one-unit increase in second-trimester prenatal Pb concentration.

Figure 3.Odds (95%CI) of having belowmedian relative abundance (reduced probiotic protection) of bothmembers of the 2-taxa clique with respect
to 2T Pb concentration above vs below the cutoff. Pb concentration cutoffs shown are at the study median (2.6 μg/dL), the current United States
guideline for child Pb poisoning (3.5 μg/dL), and the current Mexico guideline for child Pb poisoning (5 μg/dL).
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In the second stage of MiCA, using a causal inference
framework, we found significantly increased odds (odds ratio
(OR) = 1.03, 95% Fisher Confidence Interval (FCIs): [1.01,
1.05], and randomization-based p-value = 0.02) of having both
R. callidus and B. adolescentis below median relative abundance
with increasing Pb concentration in 2T (Figure 2). We also
found increased odds (OR = 1.02, 95% FCIs: [0.99, 1.04], and
randomization-based p-value = 0.16) of all bacteria in the 3-taxa
clique (P. clara, R. callidus, and B. adolescentis) having below
median relative abundance with increasing 2T Pb concentration,
although not statistically significant. Note that covariates were
balanced and adjusted in both models. The distribution of
propensity scores and the love plot of covariate balancing after
subclass matching are presented in Supplementary Figures 1 and
2. Finally, we used the false discovery rate to correct the
randomization-based p-values of multiple comparison errors.
The adjusted p-values for the 2-taxa and 3-taxa cliques were 0.04
and 0.16, respectively.
Pb Concentration Thresholds. In an exploratory analysis

(Figure 3), we found that those with higher 2T Pb concentration
(≥2.6 μg/dL, i.e., the study median) had higher odds (OR =
2.61, 95% CIs: [1.06, 6.45]) of having a below median relative
abundance of the 2-taxa clique (B. adolescentis and R. callidus).
Similarly, those with 2T Pb concentration at or above the United
States guideline for child Pb poisoning (≥3.5 μg/dL) and the
Mexican guideline (≥5 μg/dL) had higher odds (OR = 3.36,
95% CIs: [1.32, 8.51] and OR = 6.11, 95% CIs: [1.87, 19.93],
respectively) of having a belowmedian relative abundance of the

same 2-taxa clique. There is an increasing trend in the odds of
below median relative abundance of the two-taxa clique, as the
2T Pb concentration cutoff threshold increases. In other words,
children whose mothers had increased 2T Pb concentration,
including levels below the US andMexico guidelines for child Pb
poisoning, have increased odds of having a low abundance of the
2-taxa clique late in childhood.
Gene Pathways. In an analysis of the gene pathways

belonging to the members of the 2-taxa and 3-taxa microbial
cliques identified by MiCA, we examined the gene pathways
from each bacterium (Figure 4). The pathways that are highly
abundant in both B. adolescentis and R. callidus were related to
nucleic acid biosynthesis and coenzyme A biosynthesis, essential
functions of cellular life. On the other hand, the pathways that
were not common between B. adolescentis and R. callidus in the
2-taxa clique were related more to amino acid biosynthesis and
energy metabolism. Similar trends were present when
considering P. clara as part of the 3-taxa clique. The gene
pathways from each taxon is in Supplementary Table 3.
Exploratory and Sensitivity Analyses. We repeated the

association analysis without the causal inference framework and
any imputations. The effect sizes did not alter more than 5%, and
the model-based asymptotic p-values remained reasonably
similar to the randomization-based p-values (Supplementary
Table 4). Further, estimates remained practically unchanged
(<5%) after repeating the analysis without imputing any missing
covariate (Supplementary Table 5). Under the causal inference
framework, the directionality of the associations (ORs) for

Figure 4. Venn diagrams depicting gene pathways from each taxon within the 2- and 3-taxa microbial cliques. The gene pathways were noted in
rectangular boxes. For the 3-taxa microbial clique, numbers in circles denote the number of pathways in that particular subset.
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having both 2-taxa and 3-taxa cliques below the 25th or 40th
percentile relative abundance remained positively associated
with increasing Pb concentration in 2T, although it was not
statistically significant (Supplementary Table 6). After adjust-
ment for child Pb exposure at 12 and 24 months, the estimated
associations did not change by more than 5% (Supplementary
Table 7). The estimated Spearman correlation coefficients
between the taxa were very small (−0.06 to 0.1), implying
relative abundance of the taxa may not be a factor in forming the
cliques (similar results were obtained for Pearson correlation as
well). Lastly, in an exploratory analysis of 2T Pb concentration,
we found that the odds of the 2-taxa clique with below median
relative abundance were highest for those with Pb concen-
trations in the 50−75th percentile or above (overall aggregated
OR = 2.76, 95% CI: [1.13, 6.75]). Likewise, the same Pb
concentrations were associated with the highest odds of below
median relative abundance for the 3-taxa clique, although the
aggregated odds were not statistically significant (mean OR =
1.95, 95% CI: [0.73, 5.21]). For 2- and 3-taxa cliques, there was
an increasing trend in the odds of below median relative
abundance as the cutoff threshold of 2T Pb concentration
gradually increased (Supplementary Figure 3).

■ DISCUSSION
This study presents a novel approach in microbiome analysis
that detects microbial clique(s) predictive of an outcome of
interest and estimates the association between that outcome and
the clique(s). We used MiCA to identify 2-taxa and 3-taxa
microbial cliques in the gut microbiome of children 9−11 years
of age, which were negatively causally associated with prenatal
Pb exposure. We further explored policy-relevant thresholds for
2T Pb exposure and found significantly increased odds of having
below median relative abundance (reduced probiotic protec-
tion) of the 2-taxa microbial clique at and below the current
child Pb poisoning guidelines for the United States and Mexico.
We also investigated the gene function pathways within the
cliques to shed light on their potentially interactive functions.
The microbial clique members, B. adolescentis, R. callidus, and

P. clara, play various beneficial roles in the human gut
microbiome. P. clara is the most recently identified, with
comparatively little known about its health benefits;51 however,
a recent study in dialysis patients found that increased
abundance of P. clara was associated with reduced constipa-
tion.52 R. callidus is a short-chain fatty-acid-producing bacteria
with anti-inflammatory function.53−55 Low abundance of
R. callidus has been associated with Parkinson’s disease,56 colitis
and Crohn’s disease,54,57,58 liver disease,55 and obesity.15

B. adolescentis is a crucial human gut microbe that acts as a
starch degrader and Gamma-aminobutyric acid (GABA)
producer and helps enhance the intestinal barrier.59−63

B. adolescentis is commonly used as a probiotic supplement
and has been linked to the prevention and alleviation of many
detrimental health conditions, including liver disease,61,64

colitis,65,66 viral infection,67,68 arthritis,69 type 2 diabetes,62

anxiety, depression, and other mental health disorders.66,70

Additionally, B. adolescentis is known to modify the overall
composition of the gut microbiome, perhaps its most relevant
feature for this analysis, increasing the abundance of other
probiotic or beneficial bacteria within the microbiome and
amplifying its beneficial effects.61−63 Thus, our finding of
B. adolescentis as a member of both the 2-taxa and 3-taxa
microbial clique, in combination with other potentially
beneficial bacterial taxa, is highly consistent with previous

literature.61−63 When considering the findings of our analysis in
the context of this previous evidence, it is clear that prenatal Pb
exposure, particularly in the second trimester of pregnancy, has
the potential to lead to several detrimental health outcomes via
alterations in the gut microbiome, specifically by reducing the
abundance of these 2-taxa and 3-taxa microbial cliques.
The reduced abundance of these probiotic microbial cliques

happens not only above the guideline for blood Pb
concentrations for child Pb poisoning in both Mexico and the
United States but also below that at the study median of 2.6 μg/
dL. Occupational Pb exposure guidelines in the United States
only require medical monitoring of employees with blood Pb
concentrations above 40 μg/dL,71 more than 10× the
concentrations observed in this study. Children of mothers
with blood Pb levels below the child Pb poisoning guidelines
during the second trimester of pregnancy are less likely to have
these beneficial gut bacteria in late childhood, and mothers with
occupational Pb exposure are likely at an even greater risk.
Because a reduced abundance of B. adolescentis and R. callidus
has been associated with IBD, liver disease, and reductions in
mental health55,57,61,65,70 the current United States and Mexico
guidelines for Pb exposure, while better than past guidelines and
procedures, are insufficient to protect against these detrimental
health outcomes.
To better understand the potential roles of each taxon within

the microbial cliques, we examined the top 20 most abundant
gene pathways from each taxon within the cliques. Approx-
imately half of the gene pathways for each taxon were shared
with the other cliquemembers, and the other half were unique to
that specific taxon. In general, the redundant genes within the
clique were key pathways needed for all cellular life, and the
unique gene pathways included functions that were more
specific to each taxa’s metabolism. This indicates that each
member of the microbial group provides unique and potentially
complementary functions. Moreover, these taxa are included in
the clique not because they are redundant in function and
potentially fill the same niche with regard to their association
with prenatal Pb exposure but because they are different.
MiCA provides several statistical advantages over other, more

traditional microbiome analysis methods (results previously
shown using the same data13). The amalgamation of
interpretable machine learning algorithms with causal inference
tools serves as both predictive and associative models. Searching
for cliques is difficult when the number of taxa is high (which is
the usual scenario); therefore, the usage of machine learning
algorithms significantly reduces the computational complexity
and the associative regression models provide interpretability.
MiCA does not rely heavily on highly abundant or prevalent taxa
within the study samples. As demonstrated in this analysis,
MiCA can identify associations with bacteria in low abundance
together. MiCA also does not rely on correlations between
clique members; thus, cliques can be discovered in association
with exposure or an outcome of interest even when the taxa
within the cliques are not highly correlated within the study
sample as a whole. MiCA can also detect cliques in multiple
directions with respect to the threshold in a single rh-SiRF
analysis. The rh-SiRF step also serves as a major tool for higher
prediction accuracy and therefore selects only a few key cliques.
Hence, the association tests are highly focused on only a few
relationships, reducing the need to correct for multiple
comparisons. However, the most significant advantage of
MiCA is that it analyzes the gut microbiome using a different
biological framework than any other epidemiologic analytical
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tool we know of, i.e., cliques instead of single taxa or the whole
microbiome.
While this study presents a novel analytic approach and adds

new information about the relationship between Pb exposure
and the human gut microbiome, there are some limitations to
consider. Limitations of this analysis include using a relatively
small sample size with samples processed in multiple batches.
However, we took various precautions to reduce batch effects in
our estimates and still found statistical significance with a small
sample size and conservative estimates. Another limitation of
this analysis is that we used maternal blood concentration to
estimate prenatal Pb exposure in children, which is not a direct
exposure estimate. Thus, it is possible that themechanism of this
association may work through maternal exposure rather than
prenatal child exposure. For instance, it may be that thematernal
Pb exposures alter the maternal gut microbiome during
pregnancy, which is then vertically transferred to the offspring
at birth rather than prenatal child Pb exposure priming the child
microbiome composition later in childhood. It may also be the
case that maternal and child Pb exposures are correlated
throughout childhood, and maternal transmission continues to
influence the microbiome of the child during childhood. This
study is limited in understanding the underlying biochemical
mechanism between Pb exposure and the co-occurring bacteria.
Further investigation is needed in vitro and animal models to
better elucidate these mechanisms.
Future analyses could include other biological matrices to

estimate Pb exposure, for instance, baby teeth, which can
measure direct prenatal exposure starting in the second trimester
of pregnancy. As a potential future direction, we hope to develop
MiCA further to include multiple metal exposures and other
potential predictors that may influence the microbiome,
including diet and other biological and microbial ecological
factors. Future reverse translational studies should be conducted
using animal and in vitro models to clarify the biochemical
mechanisms driving the causal associations identified in this
study.
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