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Abstract  20 

Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low 21 

transmission settings before spreading to high transmission settings. Several features of low-transmission 22 

regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better 23 

treatment access, less within-host competition among clones, and lower rates of recombination. Here, we 24 

test whether importation of drug-resistant parasites is more likely to lead to successful emergence and 25 

establishment in low-transmission or high-transmission periods of the same epidemiological setting, using 26 

a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina 27 

Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key 28 

model variables, we found that drug-resistant genotypes imported during the low transmission season were, 29 

(1) more susceptible to stochastic extinction due to the action of random genetic drift, and (2) more likely 30 

to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to 31 

drift. This implies that rare importation events are more likely to lead to establishment if they occur during 32 

a high-transmission season, but that constant importation (e.g., neighboring countries with high levels of 33 

resistance) may produce a greater risk during low-transmission periods. 34 

  35 
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Introduction 36 

Despite recent advances in malaria control resulting in a reduction of prevalence, Plasmodium falciparum 37 

malaria continues to be a major public health concern. The widespread use of artemisinin-based 38 

combination therapies (ACTs) has contributed to this reduction in prevalence, but increased usage of ACTs 39 

also increases the selective pressure on the parasites to develop drug resistance. Historically, the emergence 40 

of drug resistance has followed a pattern of first appearing in low transmission settings, such as Southeast 41 

Asia and South America, followed by later migration to high transmission settings. This was the case for 42 

chloroquine and sulfadoxine-pyrimethamine resistant P. falciparum [1–4], and more recently, artemisinin-43 

resistant P. falciparum phenotypes which were identified in western Cambodia in 2007-2008 [5,6]. Since 44 

the identification of resistance-associated kelch13 point mutations [5], artemisinin resistance has been 45 

identified in other parts of Southeast Asia [7,8], Guyana [9,10], Rwanda [11,12], and Uganda [13–15]. 46 

Thus, developing a mechanistic understanding as to the cause of delayed emergence or slower evolution of 47 

drug resistance in high-transmission settings is particularly germane in the African context where a 48 

reservoir of kelch13 mutations currently exists and has the potential for rapid expansion [16]. 49 

Several mechanisms have been proposed to explain this pattern of slower drug-resistance emergence, 50 

establishment, and/or evolution in higher transmission regions. First, due to higher population-level 51 

immunity to malaria, a new infectious mosquito bite is less likely to lead to malaria symptoms in a higher 52 

transmission region, resulting in a lower probability that a new infection will be treated by drugs [17–19]. 53 

Second, treatment coverage and access are generally lower in high-transmission regions, meaning that new 54 

symptomatic infections will also have a lower chance of facing treatment. Third, multiclonal infections 55 

(i.e., infections in which the host is infected with several genetically distinct strains of the parasite) result 56 

in within-host competition which may suppress drug-resistant clones due to their cost of resistance or 57 

immune-mediated competition [20–23]. Within high transmission settings, such as sub-Saharan Africa, 58 

multiclonal infections are common [24], thus creating the relevant conditions for drug-resistant and drug-59 

sensitive parasites to be present in the same host. A counteracting factor of this mechanism is that in the 60 

presence of the relevant drug therapy, the demise of drug-sensitive parasites in a multiclonal infection may 61 

result in competitive release of the drug-resistant parasite and accelerate its spread [21]. Finally, higher 62 

rates of recombination in high transmission regions may act against multigenic drug-resistant genotypes by 63 

breaking up beneficial combinations of drug-resistance mutations [25] though much work remains to be 64 

done on this question. 65 

A growing body of mathematical models suggests that a combination of within-host competition and 66 

immune-mediated symptomology are contributors to the cause of the delayed drug resistance emergence in 67 

high transmission settings [18,20,21,26–31]. Of particular note is the work of Bushman et al. [21] who used 68 
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an individual-based model (IBM) combined with ordinary differential equations to model within-host red 69 

blood cells, immune response, and parasite dynamics to explore the role of within-host competition. The 70 

study found that resistant genotypes initially have a higher risk of extinction in high transmission settings, 71 

but resistance can rapidly spread if extinction is avoided. These findings are supported by Whitlock et al. 72 

[20] using a similar IBM approach; however, their model also accounted for variations in the antigenic 73 

response to various strains of the parasite. Similarly, Masserey et al. [31] also used an IBM coupled with 74 

an emulator based approach to examine the impact that various factors such as drug 75 

pharmacokinetics/pharmacodynamics, treatment coverage, parasite biology, and environmental factors 76 

have on the establishment of drug resistance. 77 

Despite the complexity of the models that have been developed, the effects of spatial-temporal diversity 78 

on P. falciparum evolution has not been fully explored [32], and it is unknown in which epidemiological 79 

scenarios importation of drug-resistant parasites presents the most risk – a question that we explore here. 80 

In the context of the high-transmission regions of sub-Saharan Africa, the malaria burden is not uniformly 81 

distributed [33], and a country may contain regions of high and low transmission which may influence the 82 

evolutionary environment for resistant genotypes. Another limitation of prior studies is that even high 83 

transmission regions can have significant seasonal variation in transmission patterns with periods of 84 

comparatively low transmission occurring outside of the peak transmission season. Accordingly, there has 85 

been increasing interest in the role that seasonality plays in malaria transmission, with recent studies 86 

suggesting that persistent asymptomatic infections allow for dry season survival [34]. Finally, while 87 

importation is a known mechanism through which drug-resistance has been introduced into various 88 

countries, the actual risk of establishment or fixation post-importation is unknown. A contributing factor is 89 

the inherent complication in surveillance efforts to monitor importation. While data are limited, in a 90 

retrospective study of 54 international travelers arriving in Italy from 2014 to 2015 with confirmed cases 91 

of P. falciparum malaria, 9 genetic markers for drug resistant genotypes were detected, suggesting that the 92 

rate of importation across national borders may be substantial [35], a finding echoed by an earlier study 93 

[36]. 94 

In this study we explore a straightforward importation mechanism for the introduction of drug 95 

resistance in high-transmission regions, through the application of a spatial, IBM of malaria that was 96 

previously calibrated and validated for Burkina Faso [37]. This simulation also allows us to explore the role 97 

of seasonality and how importation of drug-resistant parasites may lead to the emergence and establishment 98 

of drug resistance in a realistic high-transmission context with seasonal variation and heterogeneity of 99 

malaria transmission. By restricting importation in the simulation to a particular month, we are able to 100 
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calculate extinction probabilities and follow long-term trajectories to determine what times of year (and 101 

what importation rates) pose the most risk for the establishment and spread of drug resistance. 102 

 103 

Methods 104 

Here we use the term appearance to refer to the period following the importation of one or more 105 

artemisinin-resistant genotypes (called 580Y for short, using the most common allele found so far). Not all 106 

importations are successful, and an imported genotype may immediately go extinct (i.e., no further 107 

transmission), or have a brief period of transmission before going extinct. If the genotype is able to survive 108 

the action of random genetic drift surrounding its appearance, we say that is has successfully emerged once 109 

its allele frequency is greater than 0.001 (10-3) allowing for possible progression to fixation as the dominant 110 

strain [38]. 111 

 112 

Simulation Overview 113 

We utilized a previously calibrated and validated spatial IBM of malaria and human movement in Burkina 114 

Faso [37,39,40]. As the simulation was designed and constructed with the intent of exploring the evolution 115 

of drug resistance in P. falciparum [39]  ̧ it has the appropriate components necessary to explore the 116 

mechanisms for delayed emergence without being constructed explicitly for it. The simulation models 117 

Burkina Faso as a grid of 10,936 5km-by-5km cells (approximately 273,400 km2) and uses an initial 118 

population of 3.6 million individuals (25% of the 2007 population) (Supplemental Material 1, §2 – 4). 119 

Malaria transmission follows the holoendemic patterns of Burkina Faso with the median PfPR2-10 in a given 120 

cell ranging between 7.9% to 67.6% [41]. Transmission also follows a seasonal pattern, with transmission 121 

increasing at the start of the rainy season in late-May to early-June, peaking between August to October, 122 

and declining to a seasonal low in November [37]. On a regional level, the transmission season may be 123 

shorter or longer depending upon the length of the rainy season, with the northern Sahelian climatic region 124 

having a heighted transmission of about three months, while the season lasts for about five months in the 125 

southern Sudanian climatic region. 126 

Upon model initialization, the simulated landscape initially consists of parasites that are chloroquine 127 

resistant, artemisinin and piperaquine sensitive, and either amodiaquine sensitive or resistant with a 50-50 128 

probability. Following model burn-in, mutation by the parasite in the presence of the relevant therapy is 129 

enabled based upon previously calibrated mutation rates [42], under the assumption that  the large majority 130 

of mutation occurs during asexual blood stage replication [43]. When locally transmitted infections occur 131 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563204doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563204
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 / 27 
 

via new infectious bites, individuals may remain asymptomatic, or progress to clinical symptoms based 132 

upon their individual immune response. Upon presenting with clinical symptoms, individuals seek 133 

treatment following preconfigured rates for Burkina Faso. Individuals under 5 years of age follow 134 

treatment-seeking rates determined by previous Malaria Indicator Survey findings [44], while individuals 135 

over 5 seek treatment at a rate that is 55% (absolute value) of the under-5 rate. This treatment seeking rate 136 

also increases at a rate of 3% starting in model year 2019, consistent with the expected expansion of 137 

treatment seeking by individuals [45]. Treatment seeking does not ensure that an efficacious ACT will be 138 

taken as the private market accounts for 16.8% of treatments in the simulation, consistent with the local 139 

treatment landscape [44]. 140 

The individual immune response is summarized as follows, with the full scope elucidated in Nguyen et 141 

al. [39] and relevant changes included below. Upon being selected by the simulation to be bitten by an 142 

infectious mosquito, the individual undergoes a sporozoite challenge during which their immune response 143 

may result in sporozoites being cleared before the parasite enters the liver stage [37]. Based upon the 144 

individual’s immune response the probability of infection ranges from 20% (high immune response) to 80% 145 

(low immune response). Successful infections proceed to the blood stage where the total parasitemia 𝐷𝐷𝑅𝑅, 146 

where R notes the specific P. falciparum clone, is initially set based upon a random uniform draw from the 147 

appropriate parasitemia range (e.g., clinical infections will draw from a range of 1010 to 1012 parasites per 148 

microliter of blood).  149 

Clearance of the parasite by the immune system is then based upon the following calculation: 150 

𝐷𝐷𝑅𝑅,𝑡𝑡+𝐾𝐾 = (1 − 𝐶𝐶𝑅𝑅)(0.8036 · (1 −𝑀𝑀𝑡𝑡) + 0.9572 · 𝑀𝑀𝑡𝑡)𝐾𝐾 (1) 

 151 

Where 𝐷𝐷𝑅𝑅,𝑡𝑡 represents the parasite density at time t, 𝑀𝑀𝑡𝑡 represents the host immune response using a scale 152 

from zero to one, and CR represents the fitness cost of the given strain with zero representing the wildtype 153 

(i.e., no fitness cost). The parasite density is updated asynchronously every seven days (𝐾𝐾 = 7) and prior 154 

validation ensured that this did not differ from daily updating and informed the numeric values used in the 155 

equation [39]. In the event of a new infection (resulting in a multiclonal infection), or clearance of a prior 156 

infection, the parasite density is updated prior to the next scheduled seven-day update interval. 157 

As individuals are infected and clear infections, the individual immune response; described by the 158 

variable ϴ; increases according to rates parameterized in Nguyen et al. [39], and impacts the probability 159 

that any new infection will progress to clinical symptoms as follows: 160 
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 161 

where ϴmid describes the point at which immunity confers a 50% chance of developing symptoms, and z 162 

describes the relationship between the level of immunity and the likelihood of developing symptoms [46]. 163 

If individuals go an extended period of time without exposure, ϴ decays with a half-life of 400 days, 164 

resulting in an increasing likelihood that an individual will experience malaria symptoms following a new 165 

infectious mosquito bite.  166 

Individuals are infected in the population based upon the force of infection (FOI) of parasites present 167 

in a given cell, with individual host parasitemia used to calculate the FOI of P. falciparum clone R, at time 168 

t, for all hosts n such that: 169 

𝐷𝐷𝑐𝑐 = �𝛿𝛿𝑗𝑗,𝑐𝑐𝛾𝛾𝑗𝑗,𝑐𝑐

𝑐𝑐𝑖𝑖

𝑗𝑗=1

 
(3) 

Λ𝑡𝑡,𝑅𝑅 = 𝛽𝛽�𝑔𝑔(𝐷𝐷𝑐𝑐) ∙ 𝑏𝑏𝑐𝑐 ∙
𝑐𝑐

𝑐𝑐=1

𝐷𝐷𝑅𝑅,𝑡𝑡+𝐾𝐾 
(4) 

 170 

Where Equation 3 describes the total parasitemia 𝐷𝐷𝑐𝑐 of an individual where the quantity of the parasite 171 

density of clone j in the host is given by 𝛿𝛿𝑗𝑗.𝑐𝑐, with 𝛾𝛾𝑗𝑗,𝑐𝑐 representing the presence/absence of gametocyte 172 

production of the clone j where one represents normal production and zero represents none. Due to the 173 

nature of the simulation, the residual gametocytaemia following a cured infection (i.e., the asexual 174 

parasitemia is zero) is not simulated. To compensate for this the gametocytaemic period is shifted earlier 175 

so that infectious hosts have the same number of infectious days as real infections, and overall, this does 176 

not impact the simulation since gametocytocidal drugs are not included in the simulation. 177 

Equation 4 describes the FOI for R where bi is the biting attractiveness of the host, function g describes 178 

the saturation of transmission probability with increasing parasite density as described by Ross et al. [47], 179 

and β represents a scaling factor used to calibrate the entomological inoculation rate for the given location 180 

within the simulation. Thus, Λ𝑡𝑡,𝑅𝑅 is ultimately dependent upon the parasitemia of R in individuals, resulting 181 

in a link to individual immune response and any fitness cost associated with a given parasite. As a result, a 182 

high fitness cost incurred by drug resistant strains will result in a discounting of the FOI, consistent with 183 

the competitive advantage of the wild type in absence of drug pressure [48,49]. 184 
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 185 

Study Parameterizations 186 

Using the previously prepared parameterization of Burkina Faso calibrated to the epidemiological situation 187 

as of 2017 [37]. While prevalence and case numbers in Burkina Faso are likely to have changed somewhat 188 

since 2017, the intent of this study is to explore the general behavior of imported parasites and not exact 189 

forecasts of allele frequency. Using this calibration, two simulation studies were conducted, a 190 

comprehensive national scale simulation, and a smaller limited locality study. For the first study, the role 191 

of seasonality on importation was examined by controlling the month of importation, number of importation 192 

events per month (i.e., 1, 3, 6, or 9), and parasite density of the imported infection (i.e., a symptomatic or 193 

asymptomatic infection), yielding a total of 96 combinations. During the month of importation, an 194 

importation may occur on any day, with the exact number of imports on a given day determined using a 195 

Poisson distribution across the entire month. The location of importation is determined by a weighted draw 196 

across the entire population, based upon the total population in each cell within the simulation 197 

(Supplemental Material 1, §5). Due to the population distribution of Burkina Faso having a lower 198 

population in the Sahelian climate zone, this has the effect of biasing importations towards the more densely 199 

populated Sudano-Sahelian (containing Ouagadougou, the capital of Burkina Faso) and Sudanian 200 

(containing Bobo-Dioulasso, the second largest city in Burkina Faso) climate zones (Supplemental Material 201 

1, §3 – 4. 202 

Upon selection of a cell, the individual to be infected at the location is determined by a uniform random 203 

draw from all susceptible individuals at that location. The individual is then infected by an artemisinin 204 

resistant P. falciparum parasite with the pfkelch13 allele 580Y, and the host parasitemia level is set to the 205 

appropriate value for a symptomatic (between 1010 and 1012 parasites per microliter of blood) or 206 

asymptomatic (less than 1,000 parasites per microliter of blood) infection. In the event of a symptomatic 207 

infection, the individual may seek treatment on the basis of their age and the regional treatment seeking rate 208 

which ranges from 52.1% to 87.0% for an individual under-5 and 23.4% to 39.1% for an individual over-209 

5. If an individual seeks treatment, they receive either artemether–lumefantrine (68% of treatments), 210 

amodiaquine (12.4%), quinine (5.6%), dihydroartemisinin-piperaquine (4.9%), artesunate–amodiaquine 211 

(2.5%), artesunate (2.2%), artesunate, sulfadoxine/pyrimethamine (1.6%), chloroquine (1.5%), or 212 

mefloquine (1.3%) with the probability of a specific  treatment based upon previous survey data and the 213 

make-up of the nationally recommended first-line therapies and private-market treatments [37,44,50]. 214 

Although importation is implemented by importing a singly-infected individual, following importation 215 

multiclonal infections are possible if the individual is infected by another clone. Following model burn-in, 216 
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the simulation is allowed to run for twenty years. In order to ensure the statistical validity of the results, 50 217 

replicates of each combination were run, for a total of 3,600 replicates. 218 

Following evaluation of a drug-resistant genotype establishing under various importation conditions, 219 

additional reporting was incorporated to capture additional population immunity data and three additional 220 

parameterizations were prepared. These changes allowed for an assessment of the mechanisms of delayed 221 

drug resistance or establishment to be evaluated, within the constraints of the mechanisms that are 222 

implemented within the simulation. For the first parameterization, de novo mutations were enabled using a 223 

previously determined mutation rate [42] so that the evolution and spread of drug-resistant genotypes could 224 

be observed 225 

Finally, additional model validation was conducted to ensure conformity of multiclonal infections and 226 

multiplicity of infections (MOI) to field conditions. Within the simulation, the proportion of multiclonal 227 

infections fluctuates on a seasonal basis, and the ranges are in good agreement with previous studies. A 228 

sentinel site study in Nanoro, Burkina Faso, located in the Sudano-Sahelian climate zone, was conducted 229 

from September 2010 to October 2012 and recorded a mean MOI of 2.732 (±0.056) with a range of 1 to 7 230 

parasite genotypes [51], compared to simulation results of 2.220 ± 0.455 (Supplemental Material 1, §1).  231 

 232 

Limited Locality Studies 233 

Following completion of the national scale studies, additional studies were conducted with a limited 234 

population or limited geographic scope intended to isolate or reproduce dynamics observed in the national-235 

level model results. Specifically, these more limited models were used to explore if observed seasonal 236 

fluctuations in 580Y frequency and treatment seeking behavior could help to explain observed transmission 237 

and infection dynamics. A total of three additional spatial models were prepared, all deriving from the same 238 

configuration used for the national scale model: a single cell with a population of 100,000, a two-by-two 239 

grid with a total population of 300,000 individuals, and a three-by-three grid with a total population of 240 

320,000 individuals. All models are based upon four different configurations in which the five-month 241 

seasonal pattern of the Sudanian zone is enabled or disabled, and treatment seeking is either balanced (i.e., 242 

50% of under-5, 50% of over-5) or skewed based upon the national upper and lower bounds (i.e., 87% of 243 

under-5, 23.4% of over-5). 244 

 245 
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Statistical Analysis 246 

To examine whether the month of case importation is associated with the frequency of parasites with the 247 

580Y allele, we performed a Kruskal-Wallis test to identify whether differences exist across months, 248 

followed by pairwise Wilcoxon rank-sum tests to identify which pairs of months yielded significantly 249 

different frequencies following importation. This was repeated, collapsing months into the high (June – 250 

October) and low (November – May) transmission seasons to compare these two time periods. This was 251 

followed by examining whether different months of importation are associated with a greater probability 252 

of emergence of the 580Y allele, defined by having a frequency ≥ 0.001, we used chi-squared tests for 253 

proportions. An initial, global chi-squared test identified if any months differed, and subsequent pairwise 254 

tests identified months with different probabilities. Within months, we also tested whether symptomatic or 255 

asymptomatic importation was associated with probability of establishment. All p-values lower than 10-4 256 

are reported as 10-4. 257 

To show alignment among simulated time trends in total infections, treatment administration, immune 258 

response, and frequency of parasites with the 580Y allele, Spearman’s correlation coefficients were 259 

calculated following visual inspection. For pairs of variables with oscillating trends that did not have 260 

aligned peaks and troughs, a lag was applied to align the oscillations, providing insight into how one trend 261 

follows another. The use of a lag is appropriate given the inherent delays associated with infection, 262 

presentation of symptoms, and transmission of P. falciparum infections. Correlation coefficients were 263 

calculated for the three climatic regions for scenarios consisting of de novo mutation, importation during 264 

the low transmission season, and importation during the high transmission season.  265 

 266 

Results 267 

Role of Seasonality on Importation 268 

When varying the month of importation of drug resistance, the number of importations, and the parasitemia 269 

of the imported individual, there is a clear difference between extinction outcomes and sustained 270 

transmission outcomes when comparing low-transmission months to high-transmission months (Figure 1). 271 

In six of the eight combinations for symptomatic/asymptomatic importation and importation count, drug-272 

resistant genotypes are more likely to establish when imported during low-transmission months (p ≤ 0.0007, 273 

Wilcoxon-Rank Sum, Supplemental Materials 2, Table S2). In the scenarios of three asymptomatic 274 

importations or one symptomatic importation, future resistance frequencies appear lower for parasites 275 

imported during low-transmission periods (Figure 1), but the differences are not statistically significant 276 
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(p=0.81 and p=0.41, respectively) due to the large number of zeros in each set of simulations. This large 277 

number of zeros for configurations with one or three asymptomatic importations, or one symptomatic 278 

importation per month, underlines the influence of extinction and random genetic drift during the 279 

importation process. If an imported parasite is unlikely to be sampled by a mosquito, then low transmission 280 

periods would be associated with lower risk of establishment. This is most easily seen in the extinction 281 

paths in Figure 2 where importation is rare (i.e., one importation event in a given month) and onward 282 

transmission occurs with low probability due to the asymptomatic nature of the imported infections; in 283 

these scenarios, extinction probabilities are higher for parasites imported during the low-transmission 284 

season. However, averaging across all scenarios, pairwise comparisons of months across the low season 285 

and the high season indicate that 580Y allele frequency after ten years is likely to be a median 1.84-fold 286 

higher (IQR: 0.90 – 3.35) if the allele is imported during the low-transmission season (Supplemental 287 

Materials 2, Table S4), indicating that if importation events are common (i.e., several per month) low-288 

transmission periods are associated with a higher starting frequency and a higher a probability of emergence 289 

or establishment for the recently imported parasite. 290 

While any imported parasite has a small chance of surviving past initial appearance, the likelihood of 291 

progressing to a frequency of 10-3, suggesting emergence has occurred and the parasite is likely to be 292 

observed, in any scenario was generally below 30% (Figure 3). As expected, our analysis shows that a 293 

higher number of importation events is associated with a higher likelihood of eventual establishment 294 

(asymptomatic global χ2 = 109.3, df = 3, p < 0.01; symptomatic global χ2 = 145.9, df = 3, p < 0.01). Median 295 

probability of progressing past an allele frequency of 10-3 is 0.08 (IQR: 0.02 - 0.14; across 56 month-296 

scenario combinations) when importation occurs during the low-transmission season, and 0.02 (IQR: 0.02 297 

– 0.06; across 40 month-scenario combination) during the high transmission season. These results support 298 

the finding that when a drug-resistant genotype is imported, assuming it can escape the risk of random 299 

extinction, emergence is more probable for imports during the low-transmission season. When importation 300 

is common (9 asymptomatic imports per month, Figure 4), only 2% to 8% of high season importations (i.e., 301 

between June and October) reach a 580Y allele frequency ≥10-3, whereas 4% to 18% of the low season 302 

importations reach a 580Y frequency  ≥10-3. When the months immediately following the high transmission 303 

season are excluded (i.e., November and December), the range is 12% to 18%, suggesting selection 304 

mechanisms at play during the high transmission season may are still at play for a period of time following 305 

the end of the season.  306 

 307 
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Selection mechanisms during high- and low-transmission seasons 308 

An examination of the short-term changes in malaria dynamics as the transmission season changes suggests 309 

three common effects that may influence the selections strength for drug-resistant genotypes: changes in 310 

drug coverage, changes in symptoms occurrence, and changes in the multi-clonal nature of some infections. 311 

In a seasonal malaria setting, the age distribution of cases can change between low and high season, and if 312 

treatment coverage depends on age, then selection pressure for drug resistance will vary by season as the 313 

total population with clinical infections who seek treatment (i.e., total population treatment coverage) varies 314 

by season. A simple demonstration of this can be seen in a small population model (320,000 individuals 315 

occupying a 3x3 grid) with age-based treatment coverage and seasonal transmission presented as factors in 316 

the analysis. When both seasonality (based upon the five-month Sudanian zone in Burkina Faso) and age-317 

based treatment coverage (87% coverage for under-5 and 23.4% coverage for over-5) are present then 318 

treatment coverage varies seasonally, in this example between 54% and 60% (Figure 5), in contrast to 319 

constant treatment coverage when seasonality is absent or under equal treatment seeking. The under-5 and 320 

over-5 treatment coverages in this example were chosen as representational of the maxima and minima for 321 

each group based upon provincial coverages. In our national scale simulations of Burkina Faso, population 322 

treatment coverage changes by 2% to 3% (absolute value) between the seasons resulting in weak to 323 

moderate changes in selection pressure (Figure 6). 324 

The nature of the simulation allows for the mean level of all individual immune responses to the parasite 325 

to be captured, denoted here as 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝. As expected, 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 follows a lagged seasonal cycle, with 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 having 326 

the strongest Spearman correlation with number of infections three months prior (Figure 6), which is 327 

independent of the number of importations across the six combinations of region and importation timing. 328 

This cycle of 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 increasing and decreasing across seasons creates a linkage between individual immune 329 

responses and the likelihood of symptoms and treatment seeking. However, the 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 value peaks and 330 

troughs between 0.42 and 0.45 (on an immunity scale of zero to one) warranting further investigation as to 331 

whether immunity differences of this magnitude can have an observable effect on selection pressure. 332 

One consequence of 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 changing between seasons is that the fraction of malaria parasites currently 333 

residing in symptomatic patients versus asymptomatic patients changes as well. The quantity φ , defined as 334 

the ratio of symptomatic infections to all infections [17,19,52] gives a general description of what 335 

proportion of drug-resistant genotypes are currently experiencing positive selection resulting from 336 

treatment and what proportion are currently undergoing negative selection imposed by their fitness cost. 337 

This symptomatic fraction φ appears to be generally low, ranging from 0.07 to 0.12, with a higher 338 

proportion of infections subject to drug pressure at the end of the high season than during the middle of the 339 
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low season.  However, φ is out of phase with the treatment coverage suggesting that the net combined effect 340 

of treatment coverage and symptoms presentation may result in negligible changes in evolutionary pressure 341 

during the course of the year (Figure 6). 342 

The role of the individual immune response also works in tandem with the role of within-host 343 

competition occurring in multiclonal infections. The high MOI – with a median ranging from 1.747 – 2.268 344 

depending upon the scenario and climatic zone (Supplemental Materials 1, §3) – along with the low 345 

frequency of resistant clones during the appearance and emergence of drug-resistant genotypes indicates 346 

that within-host competition between drug-sensitive and drug-resistant genotypes is likely occurring. The 347 

strength of this effect can be examined within the simulation by comparing the proportion of multiclonal 348 

infections carrying a 580Y clone to all multiclonal infections (Figure 7). This proportion is highest when 349 

median MOI is lowest, towards the end of the high-transmission season, again showing that these seasonal 350 

forces are acting in opposition preventing the formation of a clear picture of when within-host competition 351 

against drug-resistant genotypes should be the strongest.  352 

 353 

Discussion 354 

Drug resistance has always presented a danger to public health goals. For malaria, however, there is time 355 

to prepare as antimalarial drug resistance typically emerges slowly and may take a decade or more to spread 356 

geographically. Here, we look at the effects that importation of drug-resistant genotypes has on the national-357 

scale malaria epidemiology (modeled here as the high-transmission settings of Burkina Faso) and we ask 358 

whether imported drug-resistant genotypes are more likely to establish if importation occurs in the high-359 

transmission season or in the low-transmission season.  We show that random genetic drift and starting 360 

frequency play an important role in an imported allele’s future trajectory, but we are uncertain if change in 361 

selection pressure is substantial enough across transmission seasons to alter a drug-resistant genotype’s 362 

evolutionary path after importation. 363 

The major evolutionary-epidemiological gap identified in our work is that seasonally changing 364 

selection pressures for drug resistance are not easily identified as such, and that the direction of change may 365 

not always be clear.  Three common factors are known to affect drug-resistance evolution across 366 

transmission settings – treatment coverage, symptoms presentation, and within-host competition in multi-367 

clonal infections – but these factors do not align the same way between seasons in the same epidemiological 368 

setting as they do between countries that have different epidemiological settings.  For example, in the 369 

seasonal setting presented here, treatment coverage goes up seasonally at the same time as symptoms 370 

presentation goes down. The proportion of multi-clonal infections harboring at least one drug-resistant 371 
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genotype is highest when median MOI is lowest, leading to an ambiguous picture or perhaps small 372 

evolutionary differences in terms of when within-host competition may be acting to reduce the frequency 373 

or relative density of drug-resistant genotypes. 374 

The traditional population-genetic effects of importation and drift do have their expected behaviors in 375 

our analysis of drug-resistance importation for malaria. Random genetic drift may lead to extinction for 376 

imported mutants with higher probabilities of extinction associated with low importation rates and low 377 

transmission rates. Imported parasites that are not lost due to drift will progress to emergence and 378 

establishment more quickly if the initial importation event occurred in a smaller population, i.e., during 379 

low-transmission season. 380 

As in all epidemiological modeling analyses, the model structure itself means that some limitations are 381 

present in the analysis and interpretation. First, the way that symptomatic importations are implemented 382 

may introduce some bias in favor of the parasite. Specifically, (i) immune response is ignored when an 383 

infection is imported and, (ii) treatment seeking behavior is based upon where the individual resides; 384 

however, in practice individuals may be more (or less) likely to seek treatment if symptomatic when passing 385 

through a port of entry. Second, genetic background and age were also not included as factors in the 386 

analysis.  Third, this study focused on importation of pfkelch13 mutants associated with longer clearance 387 

half-lives and high rates of treatment failure, but the treatment failure rate of pfkelch13 mutants depends 388 

strongly on the presence/absence of certain partner-drug mutations [53,54], as well as the genetic 389 

background that these mutations appeared on.  Imported parasites with intrinsically high failure rates would 390 

likely have an easier time avoiding the effects of drift, spreading, and establishing in the population.  391 

Finally, age, as is well known in malaria, is an important factor associated with malaria history and 392 

treatment seeking; and an imported parasites in a younger patients will have different parasitemia levels 393 

and different likelihood of seeking treatment depending on the patient’s country of origin, recent history in 394 

high transmission settings, and malaria immunity.  395 

The critical public health conversation that this study has implications for is the future of molecular 396 

surveillance for specific P. falciparum drug-resistant genotypes that are at risk of being imported from one 397 

country to another.  In particular, when transmission is highly seasonal, monitoring for known markers of 398 

drug resistance may be more important during the low-transmission season. This may become increasingly 399 

relevant in the African context with the de novo appearance of the drug resistance markers 561H in Rwanda 400 

[11], along with 469Y and 675V in Uganda [14]. In addition to the de novo appearance of these markers on 401 

a regional level, at least one instance of the 561H allele has been isolated in Uganda [14,15], suggesting 402 

that cross border migration of drug resistance is already taking place. 403 
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A major factor for projecting the future evolution of drug resistance is the increased usage of ACTs 404 

within high transmission settings. While the historical pattern has been for the establishment of imported 405 

genotypes following the evolution of drug resistance in low transmission settings, the recent identification 406 

of de novo drug resistance in high transmission settings [11,13,16] suggests that low-transmission 407 

appearance may simply be more likely but not a determinative rule for all drug-resistance emergence events. 408 

Given the role that individual immune response plays in creating an environment conducive to the evolution 409 

of drug resistance, understanding the possible impact of upcoming vaccinations (i.e., RTS,S/AS01) on 410 

selection for – or against – drug resistance by the parasites may play a role in speeding up or slowing down 411 

the selection of drug-resistant genotypes [55,56].  Nevertheless, despite some of the known effects of 412 

transmission setting on drug-resistance evolution – via differences in drug coverage and symptoms 413 

presentation, primarily – these effects do not appear to translate to differences between seasons in the same 414 

epidemiological setting.  While drift and importation rate do appear to have their traditional effects on the 415 

success of recently imported genotypes into a new population, natural selection on drug resistance does not 416 

appear to be stronger in one part of the malaria season than another, or these selective differences could not 417 

be identified in the Burkina Faso-specific model parameterizations analyzed here. 418 

 419 

Availability of data and materials 420 

The source code for the base mathematical model and analysis specific to this manuscript can be found on 421 

GitHub at https://github.com/bonilab/malariaibm-spatial-BurkinaFaso-2022. Within the repository the 422 

dataset(s) supporting the conclusions of this article (and its additional files) are stored under, 423 
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Figure 1. 580Y frequency at model completion (after 20 years) based upon month of importation. 582 
Circles show median allele frequency, bars show interquartile ranges, and violin plots show full range. As 583 
expected, the final frequency of 580Y increases as the number of importations increases (top to bottom) 584 
and when cases are symptomatic as opposed to asymptomatic (left to right). In most scenarios, importations 585 
that occur during periods of low seasonal transmission are more likely to result in establishment than cases 586 
imported during periods of high seasonal transmission (shaded region).  587 
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Figure 2. Visualization of 580Y trajectories that reached extinction.  Plots show 580Y allele frequency trajectories under a scenario of one 590 
asymptomatic importation per month and are broken up into twelve panels by month of introduction.  Only trajectories that reached extinction, out 591 
of fifty model runs, are shown.  Title on each panel shows the month of introduction and the number (n) of trajectories that reached extinction in the 592 
first 20 years.  The likelihood of extinction was higher in the low transmission season (78% to 92% during Jan-May) than in the high-transmission 593 
season (34% to 64% during Jun-Dec). 594 
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Figure 3. Probability of successful emergence following importation. Probabilities shown (circles) are maximum likelihood estimates from fifty 597 
simulations and bars show 95% confidence intervals (exact binomial method).  Probabilities of emergence are stratified by month of importation (x-598 
axis), by number of importation events per month (columns), and by whether the imported parasite occurred in an asymptomatic (top row) or 599 
symptomatic (bottom row) individual. Successful emergence is generally more likely for parasites imported during low transmission season (non-600 
shaded). 601 
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Figure 4. Visualization of 580Y trajectories that successfully emerged (frequency > 0.001).  Plots show 580Y allele frequency trajectories under 604 
a scenario of nine asymptomatic importations per month and are broken up into twelve panels by month of introduction.  Only trajectories that 605 
reached an allele frequency >0.001, out of 50 simulations, are shown.  Title on each panel shows the month of introduction and the number (n) of 606 
trajectories that successfully emerged. Successful emergence was higher in the low transmission season (12% to 18% during Jan-May) than in the 607 
high-transmission season (2% to 8% during Jun-Dec). 608 
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Figure 5. Change in treatment seeking when controlling for seasonality and treatment seeking by age group. Lines in each panel show 611 
median percentage of symptomatic malaria infections seeking treatment with shaded areas showing interquartile ranges from one hundred 612 
simulations.  Panel titles show whether the epidemiological setting represents seasonal (right) or non-seasonal transmission (left), and whether 613 
treatment seeking is the same across age groups (“50-50”) with 50% of individuals seeking treatment (left) or uneven with 87% of children under-614 
5 and 23.4% of individuals over-5 seeking treatment (right).  In the presence of both seasonality and uneven treatment seeking across age groups, 615 
treatment coverage and thus selection pressure change through time (bottom right). 616 
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Figure 6. Treatment coverage and fraction symptomatic (φ) from Jan 1, 2033, to Jan 1, 2036. When examining a 36-month window, we 619 
clearly see that the population treatment coverage is slowly increasing (consistent with a gradual increase in treatment seeking over time) and that 620 
treatment coverage (right-axis) fluctuates moderately with the transmission season. The fraction of all infections that are symptomatic (φ) remains 621 
relatively constant (between 0.073 and 0.117) but fluctuates out-of-phase with treatment coverage.  The product of φ and coverage (black line) 622 
fluctuates between 0.058 and 0.092.  Medians and IQRs (shaded areas) shown from fifty simulations. 623 

 624 

  625 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563204doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563204
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 / 27 
 

Figure 7. Multiplicity of infection and fraction of multi-clonal infections harboring resistant alleles, from Jan 1, 2033, to Jan 1, 2036. Mean 626 
multiplicity of infection (MOI) across individuals ranges from 1.55 to 2.75, peaking at the end of the low-transmission season. Fraction of 627 
multiclonal infections that harbor resistant alleles also fluctuates and peaks at the end of the high-transmission season (out of phase with MOI).  628 
There does not appear to be a particular period when 580Y alleles are experiencing maximum within-host competition from wild-type parasites. 629 
Medians and IQRs (shaded areas) shown from fifty simulations. 630 
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