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Abstract Intrinsically disordered proteins (IDPs) perform a wide range of functions in biology,12

suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel13

functions. Designing IDPs with specific structural or functional properties has, however, been14

difficult, in part because determining accurate conformational ensembles of IDPs generally15

requires a combination of computational modelling and experiments. Motivated by recent16

advancements in efficient physics-based models for simulations of IDPs, we have developed a17

general algorithm for designing IDPs with specific structural properties. We demonstrate the18

power of the algorithm by generating variants of naturally occurring IDPs with different levels of19

compaction and that vary more than 100 fold in their propensity to undergo phase separation,20

even while keeping a fixed amino acid composition. We experimentally tested designs of variants21

of the low-complexity domain of hnRNPA1 and find high accuracy in our computational22

predictions, both in terms of single-chain compaction and propensity to undergo phase23

separation. We analyze the sequence features that determine changes in compaction and24

propensity to phase separate and find an overall good agreement with previous findings for25

naturally occurring sequences. Our general, physics-based method enables the design of26

disordered sequences with specified conformational properties. Our algorithm thus expands the27

toolbox for protein design to include also the most flexible proteins and will enable the design of28

proteins whose functions exploit the many properties afforded by protein disorder.29

30

Introduction31

Intrinsically disordered proteins and regions (from here collectively termed IDPs) (Uversky and32

Dunker, 2010) represent a diverse class of proteins that carry out a wide range of functions (Van33

Der Lee et al., 2014) and are characterized by extreme but often non-random structural hetero-34

geneity. Their distinct amino acid composition and sequences (Uversky et al., 2000) differ from35

those of natively folded proteins, and prevent the formation of stable folded conformations. Thus,36

IDPs are best described by ensembles of heterogeneous conformations that interconvert rapidly37

(Mittag and Forman-Kay, 2007; Thomasen and Lindorff-Larsen, 2022). The disordered anddynamic38

nature of IDPs is often central for their biological and biochemical functions. They can be linkers39

separating functional domains, regulating the interaction between the latter (Li et al., 2018), or they40
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can play roles as spacers that impair undesirable protein-protein interactions (Santner et al., 2012;41

Jamecna et al., 2019). IDPs are often involved in mediating molecular interactions including via so-42

called short-linear motifs (Davey et al., 2012), and their large capture radius may give rise to faster43

binding kinetics compared to that of folded proteins (Shoemaker et al., 2000). Thus, IDPs are for ex-44

ample commonly found in signaling molecules (Wright and Dyson, 2015) and transcription factors45

(Liu et al., 2006). Furthermore, the interactions within and between IDPs and other biomolecules46

have emerged as an important factor in the spatial organization of cellular matter. Through their47

ability to form multivalent interactions, IDPs can aid in or drive the formation of membraneless48

organelles, which typically consist of a wide range of biomolecules and compartmentalize many49

biological processes (Banani et al., 2017; Mittag and Pappu, 2022). In vitro, many IDPs have been50

shown to undergo a phase separation (PS) process that leads to the co-existence of a protein-rich51

dense phase that separates from a dilute phase when the concentration of the protein reaches the52

so-called saturation concentration (csat) (Mittag and Pappu, 2022). Thus, at concentrations above53

csat, the proteinmay be found both in a dilute phase, and a co-existing dense phase thatmacroscop-54

ically may appear liquid-like and at the molecular level may behave as a viscoelastic fluid (Mittag55

and Pappu, 2022; Alshareedah et al., 2023).56

Similarly to the long-lasting quest for predicting the native structure of folded proteins from57

their sequences (Kuhlman and Bradley, 2019), a field which has recently witnessed substantial ad-58

vances (Jumper et al., 2021; Baek et al., 2021; Lin et al., 2023), there is interest in understanding59

the sequence determinants for the conformational properties of IDPs (Uversky et al., 2000;Marsh60

and Forman-Kay, 2010; Das et al., 2015; Cohan et al., 2019) and how these are related to their61

function (Zarin et al., 2021; Tesei et al., 2023). For both folded and disordered proteins, the ability62

to predict structure(s) from sequences may help infer its functional properties. Accurate structure63

prediction may also support or sometimes replace the need for experimental studies of protein64

structure. Finally, rapid structure prediction enables proteome-wide analyses and can aid in pro-65

tein design.66

In parallel with our continuously improving ability to predict structures of folded proteins, there67

has been substantial development in our ability to design sequences that fold into specific three-68

dimensional folded structures (Pan and Kortemme, 2021; Woolfson, 2021; Goverde et al., 2023).69

Given themultitude of functions and properties of IDPs, there would be a great potential in design-70

ing IDPs with targeted properties. Such proteins could potentially find applications in designing71

linkers in multi-domain enzymes (Van Rosmalen et al., 2017), signalling molecules, or using IDPs72

as biomaterials (Dzuricky et al., 2018). In contrast to the developments for folded proteins, our abil-73

ity to design IDPs with specific properties remainsmore limited. This is because characterizing and74

predicting the structural properties of IDPs is a complicated task, and because we know less about75

the sequence-ensemble relationships for IDPs. The native structure of folded proteins can be ex-76

perimentally determined at atomic resolution, and the availability of many high-resolution struc-77

tures has been one key driving force to understand and predict how sequences encode structures78

(Jumper et al., 2021). On the other hand, characterizing the ensemble of conformations that an79

IDP adopts generally requires the integration of experiments and simulation methods (Mittag and80

Forman-Kay, 2007; Thomasen and Lindorff-Larsen, 2022). Collecting and interpreting such data is,81

however, difficult and often ambiguous, and as a consequence there are only limited examples of82

detailed structural characterizations (Lazar et al., 2021). Thus, there are still many open questions83

about how the sequence of an IDP translates into a structural ensemble and function (Lindorff-84

Larsen and Kragelund, 2021). Despite these limitations, a number of rules have emerged that85

govern the local and global conformational properties of IDPs. For example, the content (Müller-86

Späth et al., 2010) and patterning (Das and Pappu, 2013) of charged residues has been related87

to the global expansion of an IDP in solution (Tesei et al., 2023; Lotthammer et al., 2023), as well88

as their propensity to undergo PS (Lin and Chan, 2017; Schuster et al., 2020; Bremer et al., 2022).89

Similarly, hydrophobicity, and in particular the number and patterning of aromatic residues, influ-90

ences the compaction of an IDP and its propensity to phase separate (Zheng et al., 2020; Martin91

2 of 22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.22.563461doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.22.563461
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al., 2020; Holehouse et al., 2021).92

A number of different approaches have recently enabled the development of accurate, yet93

highly computationally-efficient models for molecular simulations of the global conformational94

properties of IDPs (Shea et al., 2021; Tesei et al., 2021; Dannenhoffer-Lafage and Best, 2021; Regy95

et al., 2021; Joseph et al., 2021; Tesei and Lindorff-Larsen, 2022). These simulation methods make96

it possible to use a physics-based coarse-grainedmodel to predict conformational ensembles from97

sequences on time-scales that are compatible with screening large number of sequences, e.g. all98

IDPs in the human genome (Tesei et al., 2023). Building on these developments, we here present99

an algorithm to generate sequences of IDPs with pre-defined conformational properties. The cen-100

tral idea is to search sequence space and to use efficient coarse-grained simulations to link each101

sequence to conformational properties. Specifically, we use the CALVADOS model, that has been102

optimized by targeting small-angle X-ray scattering (SAXS) and paramagnetic relaxation enhance-103

ment NMR experiments on IDPs in solution (Tesei et al., 2021), and which has been extensively104

validated using independent experimental data (Tesei et al., 2023). In some aspects our work105

builds on previous work using genetic algorithms (Zeng et al., 2021; Lichtinger et al., 2021), but106

we show how our design method enables large-scale exploration of the sequence-structure space107

and validate the results experimentally.108

Webegin by studying four IDPs with different sequence compositions and characteristics. Start-109

ing from each sequence, we design new sequences with different levels of compaction while keep-110

ing the amino acid composition constant. The results show that—even with the restriction of hav-111

ing a fixed amino acid composition—it is possible to achieve conformational ensembles with highly112

diverse properties. We show that this is mainly, but not solely, due to differences in the patterning113

of charges. We used the low complexity domain of hnRNPA1 (hereafter A1-LCD), to study the rela-114

tionship between sequence patterning, single-chain properties, and the propensity to undergo PS.115

We selected five variants of A1-LCD for experimental characterization, and find good agreement116

between the experiments and predictions. Together, our results show that the algorithm that we117

have developed is efficient and can be used to design IDP sequences with novel properties. The118

algorithm is fully general, and can therefore also be used to design sequences with varying amino119

acid composition and for other target properties than chain expansion.120

Results121

Algorithm to design novel IDPs122

To design IDP sequences with specific conformational properties, it is necessary to be able to pre-123

dict these properties from sequences accurately and rapidly. Therefore, the first question that we124

address is whether it is possible to use state-of-the-art simulation-based approaches to develop a125

generalizable method for IDP design. Very recent work has established efficient machine-learning-126

based methods to predict average conformational properties from sequences (Tesei et al., 2023;127

Lotthammer et al., 2023), but these methods do not predict full conformational ensembles and128

have not been tested experimentally on novel sequences. Instead, we used a simulation-based129

approach where we employ a coarse-grained model to generate a conformational ensemble for a130

given sequence (Fig. 1).131

We combine coarse-grained molecular dynamics (MD) simulations using the CALVADOS model132

(Tesei et al., 2021) with alchemical free-energy calculations in an algorithm that sequentially gener-133

ates new sequences and characterizes their conformational ensembles in a time-efficient manner.134

While MD simulations with a coarse-grained model can rapidly produce conformational ensem-135

bles fromwhich structural features can be directly calculated, screening a large number of different136

IDPs sequentially with only MD simulations would still be computationally difficult. Alchemical free-137

energy calculations, on the other hand, can predict conformational properties of newly proposed138

sequences from conformational ensembles generated by simulations of different sequences. Our139

algorithm thus combines simulations and alchemical free-energy calculations in an optimization140
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Figure 1. Outline of our algorithm for designing sequences of IDPs with targeted conformational properties.
As starting point, we here use naturally occurring IDP sequences, though this is not a requirement of the
approach. We use MD simulations with the coarse-grained CALVADOS force field to describe the IDPs and to
generate a conformational ensemble. New sequences are proposed through a Markov chain Monte Carlo
scheme. We evolve the sequences by consecutive swaps in positions between two randomly selected
residues, and evaluate whether the sequences get closer or further away from the design target—here chain
compaction. During sequence optimization, we calculate the conformational properties for a given sequence
either by direct simulations or through alchemical calculations that rely on conformational ensembles of
previously sampled sequences. The conformations shown have the same radius of gyration as the average of
the conformational ensemble.
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process that in some ways is analogous to what has been proposed in the context of force field141

optimization (Norgaard et al., 2008; Orioli et al., 2020; Köfinger and Hummer, 2021).142

While the overall sequence composition of an IDP is known to affect its conformational proper-143

ties (Tesei et al., 2023), we here aimed at exploring the more subtle and difficult-to-extract effects144

of sequence patterning (Das and Pappu, 2013; Das et al., 2015; Sherry et al., 2017; Beveridge et al.,145

2019; Martin et al., 2020; Cohan et al., 2021). Therefore, we apply our design algorithm to gener-146

ate sequences of IDPs with diverse structural properties while preserving the overall amino acid147

composition. In this way we also test and possibly expand our understanding of how the pattern-148

ing of specific residues in a sequence influences its conformational properties. Early pioneering149

work focused on the role of charge patterning on conformational properties and propensity to150

phase separate (Das and Pappu, 2013; Das et al., 2016; Lin and Chan, 2017; Schuster et al., 2020).151

Other studies have linked the number and patterning of amino acids, in particular aromatic and152

arginine residues, to both conformational and phase properties (Wang et al., 2018; Martin et al.,153

2020; Holehouse et al., 2021; Bremer et al., 2022).154

Nonetheless, even restricting the sequence space to sequences of fixed composition, the num-155

ber of possible sequences is enormous; for example, there are ca. 1.8×10127 unique sequenceswith156

the amino acid composition of the disordered domain of the fused in sarcoma (FUS) protein. Thus,157

sampling even a tiny part of this space is unfeasible. To circumvent this problem, our algorithm158

drives the exploration of the sequence space towards sequences resulting in the target conforma-159

tional property. This is achieved via a Markov chain Monte Carlo (MCMC) sampling scheme that160

iteratively generates sequence variants and predicts their conformational properties (through MD161

simulations and alchemical free-energy calculations) in search of specific arrangements of amino162

acids that determine a certain structural feature (see Methods for a more detailed description of163

the algorithm and its components).164

To exemplify and demonstrate the power of our algorithm we generate variants of IDPs with165

either increased or decreased chain expansion, measured by their radius of gyration (Rg), while166

keeping a fixed amino acid composition. To this aim, at each iteration the algorithm swaps the167

positions of two randomly selected residues to generate a variant (from hereon called a swap168

variant). We compare the Rg before and after the swap (evaluated either from MD simulations or169

alchemical free-energy calculations), and the Monte Carlo move is accepted or rejected based on170

theMetropolis-Hastings criterion (Fig. 1). Althoughwehere have focusedon the difficult problemof171

changing conformational properties while keeping a fixed amino acid composition, the algorithm172

is versatile and other criteria can be used to propose changes in the sequences (e.g. single point173

mutations without keeping a fixed amino acid composition) as well as selecting for other structural174

features than the Rg.175

Design of IDPs with conformational ensembles that vary in compaction176

The second question that we address is: Starting from a natural IDP, how much more compact177

or expanded can it become when only changing the positions of the amino acids in its sequence?178

To answer this question, we selected four IDPs with different sequence compositions: �-Synuclein179

(�Syn), and the low complexity domain from hnRNPA1 (A1-LCD), the prion-like domain in FUS (FUS-180

PLD) and the R-/G-rich domain of the P granule protein LAF-1 (LAF-1-RGG) (Fig. 2a). We used our181

sequence design algorithm in a simulated annealing protocol to let the sequences evolve in search182

of amino acid arrangements that result in more compact ensembles. The results show that we183

can generate sequence permutations of �Syn, A1-LCD and LAF-1-RGG, that are substantially more184

compact than the wild-type sequence (Fig. 2b, green lines). In contrast, for FUS-PLD we only find185

variants that are modestly more compact than the wild-type protein. To demonstrate that the186

algorithm can also find sequences of increased expansion, we began from the compact designs187

and instead targeted greaterRg values. For �Syn, A1-LCD and LAF-1-RGGwe find that the algorithm188

quickly generates sequences with wild-type-like dimensions (Fig. 2b, orange lines). Interestingly,189

in all cases the algorithm only finds sequences that are modestly more expanded than the wild-190
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Figure 2. (a) Pie chart of the sequence composition of �Syn, A1-LCD, LAF-1-RGG and FUS-PLD. Amino acids
are grouped as negative (D, E), positive (R, K), aromatic (Y, W, F), polar (S, T, N, Q, H, C), aliphatic (A, V, I, L, M, P)
and glycine. (b) Design of compact (green lines) and expanded (orange lines) variants for �Syn, A1-LCD,
LAF-1-RGG and FUS-PLD. Each accepted Monte Carlo step thus gives rise to a sequence that differs from the
previous by the position of the two swapped residues. Each Monte Carlo step therefore corresponds to a
different sequence, whose ensemble averaged Rg is evaluated by either MD simulations or alchemical
free-energy calculations. The grey horizontal line indicates the Rg of the wild-type sequence.

type sequence although the algorithm was tuned to expand the protein as much as possible. We191

repeated these calculations starting also from the wild-type sequences and reached similar results192

(Fig. S1).193

Sequence features that determine the compaction of the designs194

In the calculations above, we observed that while thousands of swap moves are required for the195

algorithm to reach the most compact ensembles, a much smaller number of moves was required196

to recover sequences with wild-type-like dimensions (Fig. 2b). As the moves swap two randomly197

selected positions, we speculate that there is an entropic barrier in sequence space in finding the198

arrangement of amino acids that determines compact ensembles. This suggests compaction is199

driven by some kind of specific ordering of the amino acid sequences. The next question we ad-200

dressed was therefore: What are the sequence determinants of IDP compaction in the generated201

sequences? As described above, we were able to generate substantially more compact variants202

for �Syn, A1-LCD and LAF-1-RGG, but not for FUS-PLD. We therefore aimed to identify which se-203

quence features led to this compaction, and assessed if the same features were responsible in all204

three cases. We calculated a number of sequence features for the variants of �Syn, A1-LCD and205

LAF-1-RGG and examined the correlation with the Rg (Figs. 3a and S2). In all cases, we observe206

a strong correlation between the patterning of the charged amino acid residues, as captured by207

the � parameter (Das and Pappu, 2013) (Fig. 3a), and chain dimensions. The � parameter captures208
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whether the positively and negatively charged residues are well mixed together (low �) or whether209

they tend to be found in blocks of like charges (high �) (Das and Pappu, 2013). For all three pro-210

teins we observe that the positively charged residues tend to be clustered in the N-terminal third211

of the sequence and the negatively charged residues in the C-terminal third as the sequences get212

increasingly compact during the sequence design (Fig. 3b). Since the N-terminus carries a posi-213

tive charge, and the C-terminus carries a negative charge, it is likely that the termini contribute214

to the overall charge segregation. We stress that we did not directly drive this charge clustering215

during the sequence design algorithm, but that the analysis shows that clustering of the charges216

occurs as the algorithm explores sequence space to generate compact structures. The formation217

of charge-clustered sequences is in line with the hypothesis above of an ‘entropic bottleneck’ dur-218

ing the sequence design, and that it is easier to disrupt such patterns than to generate them by219

randomly swapping amino acid residues.220

We also examined other sequence features including patterning of aromatic and hydrophobic221

residues, and found that they generally have a weaker correlation with the Rg (Fig. S2). For LAF-222

1-RGG we, however, found that the patterning of hydrophobic residues may also contribute to223

compaction similarly to the patterning of charges (Fig. S2). This suggests that while charge pattern-224

ing captures most of the variation in compaction of the permuted sequences, it is difficult to find225

individual sequence descriptors that fully explain the chain dimensions of IDPs, and that combi-226

nations of features may be needed to predict compaction (Cohan et al., 2021; Tesei et al., 2023;227

Lotthammer et al., 2023; Chao et al., 2023). The importance of charge patterning also helps to228

explain why we were not able to obtain swap variants of FUS-PLD that are more compact than229

the wild-type, since FUS-PLD has only two negatively charged and no positively charged residues230

(Fig. 2a).231

Relating sequence, compaction and propensity to phase separate for the designs232

Theory, simulations and experiments show that the compaction of an IDP is related to its propen-233

sity to self-associate and to undergo different forms of phase transitions (Choi et al., 2020). Concep-234

tually, this can be understood by the fact that the intramolecular interactions that drive sequence235

compaction are the same as the intermolecular interactions that drive self-association and phase236

separation. It would be useful to be able to design proteins with predefined propensities to un-237

dergo phase separation and participate in the formation of biomolecular condensates. Building238

on previous work in this area (Zeng et al., 2021; Lichtinger et al., 2021), the fourth question that239

we sought to answer is: Are the changes in single-chain compaction of the designed swap variants240

accompanied by a change in their propensity to phase separate? To examine this question we241

chose to study A1-LCD in more detail because the relationship between sequence and phase sep-242

aration of A1-LCD has been studied extensively by experiments, theory and simulations (Martin243

et al., 2020; Tesei et al., 2021; Bremer et al., 2022;Maristany et al., 2023).244

To improve statistics, we performed nine additional runs of the design algorithm to generate245

a larger and more diversified pool of A1-LCD variants with different levels of compaction (Fig. S3).246

We then grouped these sequences by their Rg (in bins of 0.05-nm width), clustered the sequences247

(see Supplementary material), and use the centroid of each cluster for further analyses. In this248

way we remove sequences that are very similar to each other (there are many similar sequences249

within each run of sequence design since the design algorithm evolves sequences by consecutive250

position swaps of two residues) and only use one representative sequence for each cluster. We251

then performed 1- �s simulations of each centroid sequence to re-evaluate their Rg. We do this252

to validate the accuracy of the alchemical free-energy calculations in predicting the Rg of variants253

proposed by the design algorithm. In line with preliminary tests (Fig. S4, see Methods), we find an254

average error on the predicted Rg values of 1.5% (Fig. S5). We then re-binned the centroids based255

on theRg from simulations, and for each bin we selected up to 15 sequences that are diverse in the256

patterning of charged and aromatic residues. In this way, we selected 120 A1-LCD swap variants257

(including the wild type) with diverse sequence features and compaction (Fig. 4a,b). Of the 119258
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Figure 4. Characterization of the 119 A1-LCD swap variants selected by designing for more compact
conformational ensembles and the wild-type (WT) A1-LCD. We show the relationship between Rg and (a) �, (b)
!aro (patterning of aromatic residues; a high !aro indicates clustering of aromatic residues), (c) the csat
calculated from simulations of 100 chains in slab geometry. We highlight the WT sequence of A1-LCD in green
and five variants selected for experimental characterization in red. Error bars of the average Rg are not
shown as their size is negligible.

swap variants, 113 have less than 30% sequence identity to the wild-type protein (Fig. S6).259

To examine the propensity of the designed A1-LCD variants to phase separate, we ran simula-260

tions of these variants (one at a time) consisting of 100 copies in a ‘slab’ geometry and estimate261

their csat from the concentration of the dilute phase in the simulation box (Dignon et al., 2018). As262

previously observed for a model system (Lin and Chan, 2017), we find a logarithmic relationship263

between Rg and csat, with compact variants showing a stronger propensity to PS (low csat), and264

expanded variants showing a weaker propensity for PS (high csat) (Fig. 4c). Despite this expected265

correlation between single-chain properties and the propensity to phase separate, we find some266

sequences with similar Rg values whose csat values differ by up to one order of magnitude. This267

observation suggests that while the single chain behaviour can be very similar, other features en-268

coded in the sequences can cause diversity in the PS properties. Overall, this correlation between269

Rg and csat further supports a strong link between single-chain properties and PS propensity that270

can be used to extrapolate PS propensity from single chain compaction, but also suggests that271

other sequence features that do not substantially change the single-chain Rg might have a role in272

PS.273

Experimental characterization of A1-LCD variants274

Above we have described an approach to design IDPs and examine how the arrangement of amino275

acids in the primary sequences can influence their behaviour. While the coarse-grainedmodel that276

we use in our algorithm (Tesei et al., 2021) has been extensively validated on naturally occurring277

proteins and variants thereof (Tesei et al., 2023), it has not been used as a generative model and278

tested on novel, designed sequences. We thus asked whether the accuracy of CALVADOS for pre-279

dictingRg and csat for natural proteins also extends to sequences that show little sequence identity280

to natural proteins and, for example, show substantial charge patterning. Thus, a fifth question281

that we asked was: How accurate are our computational predictions of chain compaction and282

propensity to phase separate for the designed variants?283

We therefore sought to test our predictions by experiments. We focused our experiments on284
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fifteen swap variants of A1-LCD, selected from the 120 sequences analysed above, that represent a285

range of compaction and sequence properties. We focused on A1-LCD since the wild-type protein286

is already relatively compact and because its propensity to phase separate is rather strong for287

a protein of its length (Martin et al., 2020; Bremer et al., 2022). Thus, we speculated that the288

ability to make it evenmore compact and endow it with lower csat without changing the amino acid289

composition would be a powerful test of our design algorithm and the CALVADOS model.290

Out of the fifteen variants that we selected, we successfully expressed and purified five variants291

(red points in Fig. 4 and S7) and the wild-type A1-LCD protein. We ran new simulations of the se-292

lected variants under the conditions of the experiments and including a glycine-serine pair at the293

N-terminus that is present in the experimental constructs (Table S1). We name these variants V1294

to V5, sorted by their calculated Rg, with V1 predicted to be the most compact and most strongly295

phase separating variant, with a strong segregation of positive and negative charges at the termini296

(Fig. 5a). We induced phase separation by adding 150 mM NaCl and visualized the resulting con-297

densates by differential interference contrast (DIC) microscopy. We observed that all variants form298

condensates, and show some diversity in their morphology (Fig. 5b). We measured the csat of the299

five variants and the wild-type and compared the experimental results with those predicted from300

multi-chain simulations. We find a high correlation between predicted and observed values of csat301

(Fig. 5c), with the only outlier being V5, which is the sole variant expected to be more expanded302

than theWT (Fig. 5b). To investigate possible reasons for the discrepancy in PS propensity of V5 we303

ran additional simulations. The calculated csat values that we compare to experiments (Fig. 5c) are304

averages over the csat values calculated from three independent simulations. We obtained compa-305

rable results from the three independent replicates, demonstrating that the differences are not306

due to lack of convergence of the simulations (Fig. S8). We also ran simulations with different se-307

tups: one with twice as many chains to address potential finite size effects, and another with the308

updated CALVADOS 2 model (Tesei and Lindorff-Larsen, 2022). All three simulation setups gave309

comparable values for csat (Fig. S8).310

Weused previously describedmethods tomeasure SAXS data for proteins close to the solubility311

limit (Martin et al., 2021) to test our predictions of sequence compaction. Like for csat, we find a312

high correlation between theRg values derived fromSAXS and those from simulations (Fig. 5d), and313

a good agreement between the experimental and calculated SAXS curves with �2r values around314

1–2 (Fig. S9). Given the low csat of V1 (15 �M), we were not able to obtain a sufficient signal-to-noise315

ratio at a protein concentration below csat. We instead turned to diffusion NMR experiments at low316

protein concentrations to measure the hydrodynamic radius (Rh) of V1 and wild-type A1-LCD. We317

thus acquired NMR data for wild type A1-LCD and V1 at 307 K, where the measured csat of V1 is318

34 �M (compared to 15 �M at 298 K). At this temperature, we find that V1 is substantially more319

compact than wild-type A1-LCD (Fig. 5e). We note that for both Rg and Rh there appears to be a320

small, but systematic, offset between the predicted and experimentally determined values. Some321

of these differencesmay indicate remaining errors in the CALVADOS force field, butmay also reflect322

uncertainty in how Rg and Rh are estimated from experiments and simulations (Henriques et al.,323

2018; Pesce and Lindorff-Larsen, 2021; Pesce et al., 2022; Tranchant et al., 2023), and we also note324

the high agreement between calculated and experimental SAXS data (Fig. S9).325

We find that both simulations and experiments show that V3 is more compact than V4 (Fig. 5d),326

while V4 has a lower csat than V3 (Fig. 5c). Previously it has been shown that changes in the formal327

net charge may break the correlation between Rg and csat (Tesei et al., 2021; Bremer et al., 2022),328

but the case of V3 and V4 show that certain sequence features can break this symmetry even with-329

out changing the amino acid composition, and that this is captured by CALVADOS. Examining the330

sequence features of V3 and V4, we note that V4 has a greater value of � (indicating that negatively331

and positively charged residues are not well mixed) (Fig. 4a), while the high value of !aro in V3 show332

that the aromatic residues are highly segregated (Fig. 4b); a feature that has previously been corre-333

lated with an increased propensity to form amorphous aggregates (Martin et al., 2020). Whether334

these or other sequence features cause the ‘symmetry breaking’ between Rg and csat for V3 and V4335
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Figure 5. Experimental characterization of wild-type A1-LCD and five designed variants. (a) Diagram of the
arrangement of amino acids in A1-LCD and the five design variants. Negative and positive charges are
coloured respectively in red and blue. The neutral residues are coloured by a grey scale that reflects their
hydrophobicity (corresponding to the � parameter in CALVADOS), with the least hydrophobic residues in
white and the most hydrophobic residues in black. (b) Visualization of condensates of wild-type A1-LCD and
the five variants by DIC microscopy; these images are only meant to illustrate the formation of condensates
and not necessarily differences between the variants. (c) Comparison of experimental and calculated values
of csat at 298 K. (d) Comparison of experimental and calculated values of Rg for wild-type A1-LCD and V2–V5.
(e) Comparison of experimental and calculated values of Rh at 304 K for wild-type A1-LCD and V1. Error bars
whose sizes are comparable to that of the markers are not shown.
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will be an interesting topic for future analyses.336

Designed variants in the context of the human disordered proteome337

The results described above show that we can design IDPs with specific levels of compaction and338

that charge segregation emerges as an important determinant of compaction of the designed se-339

quences. This result is in line with previous observations from theory, simulation and experiments340

(Das and Pappu, 2013; Sherry et al., 2017; Choi et al., 2020). Recently, we have performed simula-341

tions of all IDPs from the human proteome (the IDRome), and found that chain compaction of this342

broad range of natural sequences is governed by a complex interplay between average hydropho-343

bicity, net charge and charge patterning (Tesei et al., 2023). Motivated by these observations we344

examined the results of the sequences generated by our design algorithm in the context of the345

properties of natural disordered sequences in the human proteome.346

The first aspect which we examined was inspired by our observation that we could generate347

more compact variants of �Syn, A1-LCD and LAF-1-RGG, but not expand these proteins much348

(Fig. 2). As discussed above, we speculated that this observation was due to the fact that the349

charged residues in these proteins are already well-mixed so that it is easier to compact them by350

segregating positive and negative charges than to expand them by further mixing these charged351

residues. Similarly, we hypothesized that the small number of charged residues in FUS-PLD was352

the cause of the inability to change the compaction substantially. These observations led us to353

hypothesize that it would be possible to increase the compaction of natural proteins with stronger354

charge segregation. We therefore turned to calculations of the z(�+−) score, which is analogous355

to the � score for charge segregation, but is defined in a way that makes it more appropriate for356

comparisons across sequences of different lengths and compositions (Cohan et al., 2021). We thus357

examined the distribution of z(�+−) scores across the human IDRome (Tesei et al., 2023) and find358

that, for example, A1-LCD has a well-mixed arrangement of charges as indicated by z(�+−) ≈ 0359

(Fig. 6a).360

To examine whether charge patterning and compaction of the designed variants reflect the361

same rules as for natural proteins we turned to the calculation of scaling exponents (�) as a length-362

independent measure of compaction. For a so-called ‘ideal-chain’ polymer, protein–protein, pro-363

tein–water, and water-water interactions are balanced, and � = 0.5; smaller values of � indicate364

more compact sequences, and an expanded, excluded-volume random-coil has � ≈ 0.6. We calcu-365

lated � for the designed A1-LCD variants and find that they follow the overall general relationship366

between charge segregation (z(�+−)) and sequence compaction (�) observed for natural proteins367

(Fig. 6b).368

To explore these aspects further, we selected three naturally occurring human IDPs (the disor-369

dered domains of HSFX4, FRAT2 and SFMBT1) whose compaction can be explained by their strong370

segregation of positively and negatively charged residues (Fig. 6c). Building on our hypothesis371

of why we could not expand the well-mixed sequences of �Syn, A1-LCD and LAF-1-RGG (Fig. 2),372

we asked whether we could design sequences resulting in more expanded conformational en-373

sembles if we started from these charge segregated sequences. Indeed, when we applied our374

design algorithm with the wild-type sequences of HSFX4, FRAT2 and SFMBT1 as starting points,375

we were able to obtain substantially more expanded sequences as well as also modestly more376

compact sequences (Fig. 6d). Together, these results support the notion that—for fixed sequence377

composition—modulation of the distribution of the positively and negatively charged residues is378

a key determinant of compaction and our ability to change this.379

While charge segregation is important for fixed sequence composition, we previously found380

a more complex interplay between a wider range of sequence properties and chain compaction381

(Tesei et al., 2023). These observations in turn enabled us to train a support vector regression382

(SVR) machine-learning model to predict scaling exponents from sequences (�SVR). Given that the383

SVR model was trained on natural sequences, we asked how well our machine learning model384

was able to predict chain compaction for designs that have properties that are less common in385
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Figure 6. Designed swap variants in the context of the IDRome. (a) Histogram of the sequences in the
IDRome grouped based on their charge clustering. We use z(�+−) to compare the degree of charge clustering
for sequences of different lengths and composition, with high values of z(�+−) indicating high segregation
(Cohan et al., 2021). z(�+−) for the wild-type A1, HSFX4, FRAT2, SFMBT1 are indicated respectively in green,
blue, red and pink. (b) Comparison of 120 swap variants of A1-LCD (orange) with the IDRome by compaction
(�) and charge clustering (z(�+−)). (c) Diagram of the sequences of disordered regions in HSFX4, FRAT2 and
SFMBT1 that we extracted from the IDRome as representative naturally occurring IDPs that show strong
charge clustering. Negative and positive charges are coloured respectively in red and blue. The neutral
residues are coloured by a grey scale that reflects their hydrophobicity (corresponding to the � parameter in
CALVADOS), with the least hydrophobic residues in white and the most hydrophobic residues in black. (d)
Design of more expanded and more compact swap variants starting from the wild-type sequences of the
disordered domains of HSFX4, FRAT2 and SFMBT1. (e) Comparison of � calculated from MD simulations (with
CALVADOS 2 (Tesei and Lindorff-Larsen, 2022)) and predicted via an SVR machine-learning model (�SVR) (Tesei
et al., 2023) for 120 representative A1-LCD variants.
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natural sequences. Overall, we find a high correlation between predicted (�SVR) scaling exponents386

and those obtained directly from simulations (�) of the 120 A1-LCD variants (Fig. 6e). The aver-387

age absolute error of the predictions (14%) is somewhat greater than the value found across the388

IDRome (2.3%; Tesei et al. (2023)), though these values are not fully comparable due to the differ-389

ent ranges of scaling exponents in the two data sets. We note that defining and calculating scaling390

exponents is most robust for proteins that behave more like long homopolymers, and that the391

specific structural properties in the most compact sequences make the average scaling exponent392

less representative of the conformational ensemble.393

Conclusions394

Intrinsically disordered proteins and regions play important roles in a range of biological processes395

and convey functions that complement those of folded proteins. Thus, the ability to design disor-396

dered sequences could substantially expand our ability to design proteins with novel functions and397

properties, in the same way as biology exploits combinations of order and disorder. Combinations398

of experiments and simulations has led to an improved understanding of the conformational prop-399

erties of IDPs, which in turn has enabled improved models to generate conformational ensembles400

directly from sequence viamolecular simulations (Vitalis and Pappu, 2009; Shea et al., 2021). These401

models have enabled previouswork on design of IDPs (Zeng et al., 2021; Lichtinger et al., 2021) and402

genome-wide studies of sequence-ensemble relationships (Tesei et al., 2023; Lotthammer et al.,403

2023).404

Here, we describe a general approach for designing IDPs that exploits a computationally ef-405

ficient simulation model. Our design algorithm is based on MCMC sampling of sequence space,406

where each sequence is structurally characterized by combining CALVADOS-basedMD simulations407

(Tesei et al., 2021) and alchemical free-energy calculations (Shirts and Chodera, 2008). The MCMC408

sampling guides the sequence towards a design target, and uses the MD simulations and alchem-409

ical calculations to predict the conformational ensembles of candidate sequences. Together, this410

leads to an efficient algorithm that we have successfully used to generate a wide range of se-411

quences with diverse structural features.412

We selected five variants of A1-LCD for experimental characterization and find good agreement413

between experiments and simulations both in terms of the target property (compaction) as well414

as the propensity of the sequences to undergo phase separation. These findings are in our view415

important. First, we selected A1-LCD because it is one of the more compact IDPs that have been416

characterized experimentally, and thus making it even more compact is non-trivial. Second, we417

restricted our optimization algorithm to maintain sequence composition, and show that we can418

find substantially more compact sequences even with this restriction. Third, the high correlation419

between the experimental and calculated radii of gyration demonstrates that CALVADOS remains420

accurate even for highly unnatural sequences whose properties are well outside those it has pre-421

viously been trained and benchmarked on. This is a strong validation of our approach of using a422

physics-based model to drive the sequence design algorithm. We note, however, that the CALVA-423

DOS force field we used could have been readily reparameterized to improve predictions of single-424

chain compaction, in case our experiments had revealed discrepancies with simulation predictions425

(Norgaard et al., 2008; Tesei et al., 2021). Fourth, we show that our designs not only match the426

experiments for the design target (compaction), but also have phase separation properties that427

generally match the predictions from simulations. We note, however, that V5 appears to be an428

outlier since its experimental csat value is lower than the prediction from CALVADOS and deviates429

from the observed trend of increasing csat with increasing Rg. The origin of the discrepancy for the430

csat value is unclear and we note again that we accurately predict the Rg of V5.431

In addition to developing an algorithm to design IDPs with different levels of compaction, our432

work also sheds light on sequence-ensemble relationships that can help us understand how natu-433

ral evolution shapes IDPs. We found that we could generate more compact structures for proteins434

with the same composition as �Syn, A1-LCD and LAF-1-RGG, but not for FUS-PLD, and that we435
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could not generate substantially more expanded conformations based on any of these composi-436

tions. Our results show that these effects are mainly due to the number and patterning of charged437

residues in these proteins. Thus, while global sequence composition may be an important factor438

in the evolution of IDPs (Hansen et al., 2006; Tompa and Fuxreiter, 2008; Moesa et al., 2012) our439

results support the notion that patterning also plays a key role. The results from these analysis are440

in line with previous bioinformatics analyses that show that most natural IDPs have relatively high441

mixing of positively and negatively charged residues (Holehouse et al., 2017). Nevertheless, we442

and others have previously shown that some natural IDPs are compact due to strong segregation443

of positively and negatively charged residues (Das and Pappu, 2013; Sawle and Ghosh, 2015; Tesei444

et al., 2023; Lotthammer et al., 2023), and we show that for sequences such as the disordered445

domains of HSFX4, FRAT2 and SFMBT1 we can indeed generate more expanded sequences by dis-446

rupting this charge patterning. Whether the high mixing of charged residues is due to entropic447

effects of many tolerated mutations in IDPs (Nilsson et al., 2011; Schlessinger et al., 2011; Pajkos448

et al., 2012; Forman-Kay and Mittag, 2013) or is due to effects e.g. on solubility or preventing449

erroneous interactions is an interesting question for future studies.450

Looking ahead, our results show that the accuracy of CALVADOS appears to extrapolate also451

outside the realm of the natural proteins, and variants thereof, on which the model was trained.452

This suggests that even more extensive sampling of sequence space might be useful. While our453

MCMC-based approach enables a fine-grained and substantial sampling of the sequence space, it454

may be combined with or replaced by other approaches to guide the sequence design. We and455

others have recently shown that it is possible to encode the sequence-ensemble relationships from456

coarse-grained simulations in machine learning methods (Tesei et al., 2023; Lotthammer et al.,457

2023; Chao et al., 2023); we suggest that such methods for predicting properties from sequences458

may be used together with, for example, reinforcement learning (Angermueller et al., 2020;Wang459

et al., 2023) or Bayesian optimization (Yang et al., 2022) to explore sequence space even more460

efficiently. This would in particular be important when designing for structural observables that461

are more complex than single-chain compaction, where simulations could be more expensive and462

alchemical free-energy calculations might be less efficient. Indeed, our algorithm is general and463

can be applied to design for other structural features than compaction, and can be adapted to464

other ways of sampling sequence space. The range of applications can therefore be extended to465

studies focused on understanding the effect of the patterning of specific residues or groups of466

residues, or to designing for e.g. binders for disordered therapeutic targets.467

In summary, we have developed, applied and validated an algorithm for designing disordered468

sequences with specified conformational properties. We show that we can design IDPs with sub-469

stantially increased compaction even with fixed amino acid composition, and find that our al-470

gorithms mostly exploits the relationship between charge patterning and compaction. We also471

explain why some sequences are difficult to expand when the positively and negatively charged472

residues are well-mixed. Our experimental validation highlights the accuracy of the coarse-grained473

model with prospective testing of novel sequences. Together, our results show that it is now possi-474

ble to design sequences of disordered proteins, thus expanding our toolbox for designing proteins475

with novel or improved functions.476

Methods477

Markov chain Monte Carlo sampling for IDP design478

We employed aMCMC algorithm to generate sequences of IDPs. We here targeted the compaction479

of the chain (as quantified by the Rg) and kept the composition constant during the sequence480

sampling by using swaps of a randomly selected pair of residues as ourMCMCmove. We evaluated481

theRg of the new sequence, either by running anMD simulation or by reweighting (see below), and482
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used the Metropolis-Hastings criterion to evaluate the probability of acceptance (Ak−1→k):483

Ak−1→k =

⎧

⎪

⎨

⎪

⎩

exp
[

− |ΔRg,k|−|ΔRg,k−1|

c

]

, |ΔRg,k| > |ΔRg,k−1|

1, |ΔRg,k| ≤ |ΔRg,k−1|
(1)

Here, |ΔRg,k| is the cost function that quantifies the absolute difference between the Rg of the484

sequence at theMCMC step k and a targetRg (|ΔRg,k| = |Rg,k−Rg,target|), and c is a control parameter.485

Rg,target is set to 0 nm to design for more compact IDPs and to 10 nm to design for more expanded486

IDPs. The starting value for c is 0.014, corresponding to Ak−1→k=0.5 for |ΔRg,k| − |ΔRg,k−1|=0.01 nm.487

We apply simulated annealing using an approach where c is decreased by 1% every 2lMCMC steps,488

where l is the number of amino acids in the IDP sequence.489

Although in this work we focus on the specific application of generating variants with fixed490

amino acid composition, the algorithmandour software accommodates other user-specifiedMCMC491

moves (e.g. single- or multi-site amino acid substitutions, substitutions restricted to specific posi-492

tions and specific residue types). Furthermore, other observables that can be calculated from the493

simulations can be used as design target. A scheme of the design algorithm is shown in Fig. S10.494

Molecular dynamics simulations495

We ran coarse-grainedmolecular dynamics simulations using the CALVADOSM1 (Tesei et al., 2021)496

C�-based model. Instead, when comparing � from simulations to � predicted with the SVR model,497

we used the CALVADOS 2 (Tesei and Lindorff-Larsen, 2022) model since the SVRmodel was trained498

on CALVADOS 2 simulations. Single chain simulations in the design algorithm were run for 500 ns499

with a 10 fs time step. Simulation conditions were set to reproduce 298 K, 150 mM ionic strength500

and pH 7. Other single chain simulations that are not in the context of the design were run for 1 �s501

and, when simulations are compared to experiments, at the experimental conditions.502

Multi-chain simulations to study the PS propensity of the A1-LCD variants were performed in503

slab geometry with the CALVADOSM1model. One hundred chains were assembled in a simulation504

box 150 nm long and with a cross-section of 15 nm×15 nm. Multi-chain simulations were run for505

20 �s. For multi-chain simulations of experimental constructs, three replicates were run for a total506

simulation time of 120 �s (one replicate 20 �s long and two replicates 50 �s long).507

The cut-off used for nonbonded non-ionic interactions was 4 nm for single-chain simulations508

and 2 nm formulti-chain simulations (Tesei and Lindorff-Larsen, 2022). Charge-charge interactions509

were truncated and shifted at a cut-off of 4 nm in all simulations.510

Alchemical free-energy calculations with MBAR511

When proposing a new sequence, the design algorithm attempts to predict the Rg by reweighting512

simulations generated at previous steps of the MCMC algorithm using the Multistate Bennett Ac-513

ceptance Ratio (MBAR) method (Shirts and Chodera, 2008). Since the simulations are performed514

with a C�-based coarse-grained model, changing the amino acid type in a position of the sequence515

simply means changing the force field parameters and possibly the charge of the bead represent-516

ing the residue at that position. Thus, it is easy to evaluate the per-frame potential energy of a517

new sequence of conformations sampled with another protein sequence. MBAR takes as input an518

energy matrix defined by frames coming from n simulations of different sequences (MBAR pool)519

and the potential energy functions from each sequence. We calculate the potential energies of the520

frames of the simulations for a new sequence proposed by the MCMC algorithm, and use MBAR521

to obtain the Boltzmann weights to estimate the weighted average of the Rg of the new sequence522

without running a new simulation.523

The reweighting is most accurate when there is substantial overlap between the potential en-524

ergy functions of the simulations in the MBAR pool and that of the new sequence. We quantify525

how much the energies of the frames from the simulations in the MBAR pool are compatible with526
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the potential energy function of the new sequence by calculating the number of effective frames527

(Neff) that contributes to the averaging:528

Neff = N exp [−
N
∑

i
wi ln(wiN)] (2)

whereN is the total number of frames from the simulations in the MBAR pool andwi is the weight529

of the itℎ frame obtained from MBAR to calculate the Rg of the new sequence. By generating test530

data sets where we compare the simulated Rg with the predicted Rg from MBAR weights, we as-531

sessed the relationship between Neff and the accuracy of the predicted Rg (Fig. S4). In light of this532

analysis, we set a threshold forNeff to 20000. When the weights obtained by MBAR result in aNeff533

below this threshold, the algorithm initiates a new simulation and uses theRg from this simulation534

when evaluating the acceptance probability.535

The ability to estimate the Rg of new sequences by reweighting makes the design algorithm536

more efficient as it decreases the number of MD simulations that are needed. Due to the large size537

of the energy matrix, we still need to keep the number of simulations in the MBAR pool relatively538

low, so that the calculations are efficient. With a test data set, we also assessed how the efficiency539

of the algorithm would change varying the size of the MBAR pool. In general, the larger the pool,540

the less simulations are required by the algorithm (i.e. it occurs less frequently that the Neff drops541

below 20000). In light of these observations, we set the maximum size of the MBAR pool to 10542

(Fig. S4). When the size of the pool is at its maximum and the Neff drops below the threshold, a543

new simulation is performed and added to the pool, while the oldest simulation is discarded from544

the MBAR pool.545

Small-angle X-ray scattering546

SAXS (Fig. S11 and Table S2) was performed at BioCAT (beamline 18ID at the Advanced Photon547

Source, Chicago) with in-line size exclusion chromatography (SEC-SAXS) to separate sample from548

aggregates, contaminants and storage buffer components, thus ensuring optimal sample quality549

(Fig. S12) as previously reported (Bremer et al., 2022; Martin et al., 2020, 2021). Samples were550

loaded onto a Superdex 75 Increase 10/300 GL column (Cytiva), which was run at 0.6 mL/min by an551

AKTA Pure FPLC (GE) and the eluate, after passing through the UV monitor, was flown through the552

SAXS flow cell. The flow cell consisted of a 1.0 mm ID quartz capillary with ∼20 �mwalls. All protein553

solutions were measured at room temperature in 20 mM HEPES (pH 7.0), 150 mM NaCl, 2 mM554

DTT. A co-flowing buffer sheath was used to separate the sample from the capillary walls, helping555

prevent radiation damage (Kirby et al., 2016). Scattering intensity was recorded using an Eiger2 XE556

9M (Dectris) detector which was placed 3.685 m from the sample giving us access to a q-range of557

0.0029–0.42 Å−1. 0.5 s exposures were acquired every 1 s during elution and data were reduced558

using BioXTAS RAW 2.1.4 (Hopkins et al., 2017). Buffer blanks were created by averaging regions559

flanking the elution peak and subtracted from exposures selected from the elution peak to create560

the I(q) vs q curves (scattering profiles) used for subsequent analyses. RAW was used for buffer561

subtraction, averaging, andGuinier fits. Scattering profileswere additionally fit using an empirically562

derived molecular form factor (MFF) (Riback et al., 2017) (used to calculate the experimental Rg563

values in Fig. 5).564

Diffusion Ordered NMR Spectroscopy565

We carried out diffusion ordered spectroscopy (DOSY) experiments (Wu et al., 1995) at 307 K to566

measure translational diffusion coefficients for WT A1-LCD and the V1 variant, by fitting intensity567

decays of individual signals selected between 0.5 ppm and 2.5 ppm (Leeb and Danielsson, 2020)568

with the Stejskal-Tanner equation (Stejskal and Tanner, 1965). We used 1,4-dioxane (0.10% v/v) as569

internal reference for the Rh (2.27 ± 0.04 Å, (Tranchant et al., 2023)). We acquired 80 scans for570

A1-LCD and 480 scans for V1. Spectra were recorded on a Bruker 600MHz spectrometer equipped571

with a cryoprobe and Z-field gradient, andwere obtained over gradient strengths from 5 to 95% (32572
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points) for A1-LCD and from5% to 75% (16 points) for V1 (
 = 26752 rad s−1 Gauss−1) with a diffusion573

time (Δ) of 50 ms and gradient length (�) of 6 ms. Translational diffusion coefficients were fitted in574

Dynamics Center v2.5.6 (Bruker) and were used to estimate the Rh for the proteins (Prestel et al.,575

2018), with error propagation using the diffusion coefficients of both the protein and dioxane.576

Data and code availability577

Data and code used and produced by this study are available on GitHub. MD simulations of 120578

A1-LCD variants and of the six experimental constructs of A1-LCD variants and wild-type, both579

as single-chain and multi-chains in slab geometry, are available on the Electronic Research Data580

Archive. SAXS data are deposited in SASDB (Kikhney et al., 2020) (Table S2).581
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