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Abstract 

Explore-exploit research faces challenges in generalizability due to a limited theoretical basis for 
exploration and exploitation. Neuroimaging can help identify whether explore-exploit decisions 
involve an opponent processing system to address this issue. Thus, we conducted a coordinate-
based meta-analysis (N=23 studies) finding activation in the dorsal lateral prefrontal cortex, 
anterior insula, and anterior cingulate cortex during exploration versus exploitation, which 
provides some evidence for opponent processing. However, the conjunction of explore-exploit 
decisions was associated with activation in the dorsal anterior cingulate cortex and dorsal 
medial prefrontal cortex, suggesting that these brain regions do not engage in opponent 
processing. Furthermore, exploratory analyses revealed heterogeneity in brain responses 
between task types during exploration and exploitation respectively. Coupled with results 
suggesting that activation during exploration and exploitation decisions is generally more similar 
than it is different suggests, there remain significant challenges in characterizing explore-exploit 
decision making. Nonetheless, dlPFC, AI, and ACC activation differentiate explore and exploit 
decisions and identifying these responses can aid in targeted interventions aimed at 
manipulating these decisions. 
 
Indexing: Exploration, Exploitation, Dynamic Decision Making, fMRI 
 
Abbreviations:  
 
fMRI: Functional Magnetic Resonance Imaging 
dlPFC: Dorsal Lateral Prefrontal Cortex 
AI: Anterior Insula 
ACC: Anterior Cingulate Cortex 
dACC: Dorsal Anterior Cingulate Cortex 
IPS: Intraparietal Sulcus  
vmPFC: Ventromedial Prefrontal Cortex 
dmPFC: Dorsomedial Prefrontal Cortex 
VS: Ventral Striatum 
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Introduction 

Explore-exploit problems are ubiquitous in many real-world situations such as staying in one 
line of employment or moving to another, keeping versus selling a stock, or trying out a new ice 
cream flavor versus sticking with what you know. In situations where a person does not have full 
knowledge of their opportunities and outcomes, there is a fundamental dilemma of whether to 
explore the space of possibilities available to them or to exploit what they already know. Due to 
their prevalence in naturalistic settings, explore-exploit dilemmas have been extensively 
investigated, with an emphasis on whether certain people are consistently likely to overexploit or 
underexploit. Over and under exploitation is especially interesting in psychological research as 
markers of psychopathology, such as among people with anxiety, compulsivity and smoking 
habits (Aberg and Paz 2022; Merideth A. Addicott et al. 2014; L. S. Morris et al. 2016).  

Despite the interest in explore-exploit tasks, generating generalizable insights from 
decisions made in the lab presents several major challenges. The first challenge is that explore-
exploit situations generally involve many independent variables that are difficult to control, such 
as the hidden payoffs of existing options, the number of options available to the participant, the 
strategies guiding exploration (random or directed), and the time horizons of the tasks (Wilson 
et al. 2014). Even simply understanding the payoffs of these choices include a multitude of 
decision variables such as risk, uncertainty, and ambiguity. Overall, the independent variables 
investigated, such as uncertainty (Payzan-LeNestour et al. 2013), task difficulty (Lee and 
Daunizeau 2021), information search (Drugowitsch et al. 2012) suggest explore-exploit 
decisions are a subset of within a value-based decision-making process. Controlling these 
independent variables is necessary to assess if exploration and exploitation can be construed 
as a consistent and useful psychological construct.  

Second, is a lack of behavioral convergence across foraging and n-armed bandit tasks (von 
Helversen et al. 2018), which suggests that exploration and exploitation may not be guided by 
consistent attitudes. Third, there remains a lack of a unified theory of exploration and 
exploitation, behaviorally and neurally, as to whether exploration and exploitation are opponent 
processes, or the result of the interaction of multiple underlying systems. These major questions 
suggest that reviewing the common features of exploration and exploitation could yield clarity 
both theoretically and empirically regarding how the field should understand these decisions. 
Specifically, by assessing common and distinct patterns of activation between exploration and 
exploitation across n-armed bandit and foraging tasks, it may be possible to identify evidence 
for whether explore-exploit decisions are dissociable psychological constructs. To do so, we first 
review extant literature, followed by conducting a coordinate-based (CBMA) meta-analysis to 
understand which brain regions are involved in exploration and exploitation.  

Understanding Explore-Exploit Decisions Behaviorally  

Many tasks have been conceived to isolate explore-exploit decisions, though they mostly fall 
within two categories: foraging tasks (M. A. Addicott et al. 2017) and n-armed bandit tasks 
(Cohen, McClure, and Yu 2007; M. A. Addicott et al. 2017; Zhen et al. 2022). These tasks are 
highly prevalent in explore-exploit research because they have computationally optimal closed-
form solutions. In foraging tasks, a participant selects whether to forage from a patch of 
resources such as an apple tree, or to travel to another patch at some distance from the current 
patch (Mobbs et al. 2018; Bernstein, Kacelnik, and Krebs 1988; Stephens and Krebs 1986). The 
optimal strategy is determined by a marginal value theorem (pMVT) which is based on the 
payoffs within a current patch and the distance to the next patch (Charnov 1976). Foraging 
tasks can be modeled through Markov decision processes (Averbeck 2015).  In n-armed bandit 
tasks, the participant decides which slot machine they would like to sample from (Bellman and 
Kalaba 1957). Explore-exploit decisions are classified through a variety of computational 
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algorithms, such as Boltzmann exploration (softmax), reinforcement learning (Kuleshov and 
Precup 2000), and can be approximated through Partially Observable Markov Decision 
Processes (POMDP) (Krishnamurthy and Wahlberg 2009). Ultimately, when the participant 
chooses bandits higher expected value, the decisions are classified as exploitative and when 
they choose bandits with lower or unknown expected value, they are classified as explorative 
(Daw et al., 2006). 

While there are canonical foraging and n-armed bandit tasks, there are many other variants 
of these tasks. One variation of the n-armed bandit task is the Horizon Task which runs for 15, 
30, or 45 minutes and was developed to discern if task length affects behavior (Trudel et al. 
2020). Another variation of the n-armed bandit is the Leapfrog task where two bandits’ values 
are fixed until the lower value bandit ‘leapfrogs’ over the higher value bandit at random intervals 
(Blanco et al. 2016). Variations of foraging also include the Clock Task (Moustafa et al. 2008). 
Optimal stopping problems such as the Secretary Task (Freeman 1983) are also sometimes 
grouped as explore-exploit dilemmas. With such a variety of tasks, a critical question is whether 
the independent variables manipulated within these tasks guide exploration and exploitation, or 
if general tastes in exploration and exploitation tend to guide behavior. If choices are 
inconsistent between tasks, then exploration and exploitation should not be conceived as 
independent constructs, but rather as the interaction of the underlying independent variables. 
Recent evidence suggests that foraging tasks and n-armed bandits lack behavioral 
convergence (von Helversen et al. 2018) which suggests that how people explore and exploit in 
n-armed bandits does not predict how people will explore or exploit in a foraging task. The lack 
of behavioral convergence between tasks is a major challenge as this suggests that there is a 
lack of a unifying psychological mechanism underlying exploration and exploitation decisions. 

Another approach may be to assess if economic or psychological differences can reliably 
differences in exploration or exploitation. Investigators have found that the explore-exploit 
tradeoff was associated information gain and the level of recent rewards (Cogliati Dezza et al. 
2017), and that this effect was modulated based on the cognitive load experienced by the 
participant (Cogliati Dezza, Cleeremans, and Alexander 2019). In the context of temporal 
discounting problems there have been mixed findings, with one investigation finding 
associations between temporal discounting and directed exploration and no relationship 
between temporal discounting and random exploration (Sadeghiyeh et al. 2020) and another 
study suggesting inconsistent preferences for temporal discounting and exploration and 
exploitation across multiple studies (Meyers and Koehler 2021). In assessing effects of 
impulsive behaviors, or risk attitudes, there were no significant associations with foraging 
decisions though gamblers exhibited more exploratory behavior (Merideth A. Addicott et al. 
2015).  

Other kinds of individual difference measures have yielded somewhat more robust 
associations with exploratory or exploitative behaviors. Experiences of lifetime scarcity were 
related to decreased resource-maximizing decision-making (Chang, Jara-Ettinger, and Baskin-
Sommers 2022) and individuals with adverse childhood experiences explored less in a foraging 
task (Lloyd, McKay, and Furl 2022). Contextual effects in foraging tasks affect the explore-
exploit tradeoff, with greater acute stress yielding overexploitation (Lenow et al. 2017), 
increased arousal associated with increased levels of exploration, and increases in valence 
substantially increased exploitation (van Dooren et al. 2021). Further, there are associations 
between psychopathologies and explore-exploit decisions. Some examples include that 
smokers make less initial exploratory choices (Merideth A. Addicott et al. 2012), people with 
greater anxiety and depression use lower levels of directed exploration (R. Smith et al. 2021), 
subjects with alcohol use disorders or binge eating disorders showed decreased exploration 
when confronted with losses (L. S. Morris et al. 2016), and people with schizophrenia overuse 
random exploration strategies (Speers and Bilkey 2023). Taken together, explore-exploit tasks 
have been applied in a variety of psychological domains, yielding little consistency in terms of 
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economic decisions, though people with maladaptive psychological or psychiatric attributes 
have an attenuated ability to optimize these decisions. 

Neurobiological Mechanisms of Exploration and Exploitation  

 
Explore-exploit tasks lack behavioral convergence, contain a multitude of possible 

independent variables, and lack a coherent theory as to whether exploration and exploitation 
are products of disparate versus unified mechanisms. Given the lack of clarity regarding the 
constructs and behaviors guiding explore-exploit decisions, another approach could examine 
the neurobiological factors that are consistent across explore-exploit choices. One notable 
challenge that could be observed neurobiologically is if explore-exploit tasks elicit a consistent 
or disparate set of responses during exploration versus exploitation (Cohen, McClure, and Yu 
2007) (see Figure 1). If exploration and exploitation elicit reliably different patterns of activation 
across various tasks, it could provide a window into the mechanisms may modulate explore-
exploit decisions through an opponent processing system. Over the past two decades, the 
accumulation of neuroimaging studies conducted in explore-exploit tasks suggests that 
reviewing these common patterns may provide insight into explore-exploit decision making as a 
whole.  

Explore-exploit decisions in neuroscience have identified several key cortical and subcortical 
brain regions that contribute to these choices (Dennison, Sazhin, and Smith 2022). In animal 
literature, the Anterior Cingulate Cortex (ACC) has been identified as a major modulator of 
explore-exploit decisions. Versions of the n-armed bandit task have been adapted for rats and 
mice using n-armed radial mazes (Ohta et al. 2021). ACC activation has been linked to foraging 
in rats through an adapted patch foraging task (Kane et al. 2022) and a two-armed bandit 
monkey lesion study (Kennerley et al. 2006). Similarly, the dACC is tied to both exploration and 
exploitation in a monkey foraging task (Ramakrishnan, Hayden, and Platt 2019; Hayden, 
Pearson, and Platt 2011). Nonetheless, other findings suggest that the ventral striatum (VS) and 
amygdala represent immediate and future value of exploratory choices respectively in rhesus 
monkeys (Costa, Mitz, and Averbeck 2019). In human neuroimaging studies, there are some 
commonly cited areas of activation in brain regions associated with cognitive control (dlPFC), 
reward (VS), and attention (ACC), which are often used in region of interest (ROI) analyses 
(Shenhav et al. 2014; Wiehler, Chakroun, and Peters 2021; Hogeveen et al. 2022).  
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Figure 1: Models of exploration and exploitation. Behavioral models of explore-exploit 
decisions envision an optimal set of decisions, with people expressing tendencies to over or 
underexploit on a continuum of possible options. Nonetheless, the underlying mechanisms may 
be a binary or opponent processing model, where people are either exploring or exploiting, with 
corresponding brain activation. Another model suggests that exploration and exploitation is the 
product of the interplaying of underlying variables, where all the brain regions are involved in 
both exploration and exploitation, though may work together more or less depending on the 
explore-exploit situation. 

Evidence for Models of Exploration and Exploitation 

 
While it is known that an array of brain regions is involved in explore-exploit decisions, it 
remains a key challenge to understand how these brain regions respond to dynamic 
environments. Two major accounts explain explore–exploit behaviors, which are the interaction 
of several neural regions depending on contextual features of the explore-exploit decision (e.g., 
dACC, dorsal striatum, lateral PFC, and VS; Donoso et al., 2014), or a dual-system driven by 
opponent processes of exploration and exploitation in frontoparietal regions (e.g., dlPFC, ACC, 
IPS vmPFC and VS; Mansouri et al. 2017; Hogeveen et al. 2022) (see Figure 1). If exploration 
and exploitation are generally more context-dependent rather than dissociable constructs, there 
may be less consistency in activation across these decision phases and across tasks. Instead, 
clusters of brain regions may work together depending on the task or context resulting in 
exploration or exploitation behavior (Addicott et al., 2017, Donoso et al., 2014, Hogeveen et al., 
2022). With this interpretation, exploration and exploitation behaviors may be more context 
specific, and could potentially better described by underlying variables such as the risk, 
uncertainty, information, time horizons or other variables involved in the decision-making 
process. Thus, an interplayed model may be the combination of underlying psychological 
constructs in a given situation. Nonetheless, one challenge of an interplayed model is that there 
could also be a more complex set of responses to exploration or exploitation, potentially 
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represented through connectivity patterns in the brain. It is also plausible that exploration and 
exploitation can be construed as opponent processes with concrete neural markers that reliably 
switch between exploration and exploitation (Mansouri et al., 2017). If this model has greater 
support, exploration and exploitation would be dissociable across tasks with consistent neural 
markers of activation. Furthermore, if there is evidence of opponent processing in exploration 
and exploitation this could allow for targeted interventions aimed at modulating these behaviors. 

In trying to reconcile these accounts, studies tease apart how certain elements of explore-
exploit dilemmas contribute to those decisions. For instance, understanding how environmental 
uncertainty and trends in information mediate this process may inform some of the underlying 
mechanisms in explore-exploit choices, with environmental uncertainty of new options (Badre et 
al. 2012; Navarro, Newell, and Schulze 2016; Tomov et al. 2020) seemingly largely processed 
in the PFC. Uncertainty in an environment has been represented in the brain in several ways, 
with relative uncertainty in the right rostrolateral PFC (Badre et al. 2012) and striatal dopamine 
function (Frank et al. 2009) driving directed exploration. The vmPFC was implicated in 
representing environmental uncertainty (Trudel et al. 2020), evidence accumulation in switching 
decisions (Blanchard and Gershman 2018), and determining the value of well-defined foraging 
options (Kolling et al., 2012). Taken together, these findings reinforce the importance of both 
frontopolar and subcortical regions in explore-exploit decisions, though it remains unclear to 
what degree an opponent process model driven by the frontoparietal cortex is supported by the 
weight of the evidence.  

In sum, the current state of knowledge is limited in identifying consistent elements 
supporting neural circuitry associated with explore-exploit decisions, whether there are 
systematic biases in the literature, and if certain brain regions remain underemphasized in the 
reporting and interpretation of the data. One means of addressing these limitations is through 
quantitatively assessing patterns of activation across neuroimaging studies using coordinate-
based meta-analyses (CBMA). We hypothesized that there would be convergence across 
explore-exploit studies in the activation of the vmPFC, dlPFC, VS, ACC, and IPS during explore-
exploit decisions. These decisions are differentiated from the feedback phase where 
participants receive rewards based on their decision. While the feedback phase can provide 
important information for encoding the value of current and alternative outcomes while receiving 
feedback (Boorman, Rushworth, and Behrens 2013; Tsujimoto, Genovesio, and Wise 2011) the 
feedback phase does not completely capture the decision to shift choices on the following turn. 
Next, we expected that the exploitation versus exploration decision would be associated with 
greater vmPFC, VS, ACC activity in the exploration phase and that the exploration phase would 
be associated with greater activation in the IPS and dlPFC than in the exploitation phase.  

Since we began this investigation, two groups of researchers have conducted meta-
analyses of explore decisions (Zhen et al. 2022), finding that exploration results in consistent 
activation of the dorsal medial prefrontal cortex and anterior insula, dorsolateral prefrontal cortex 
inferior frontal gyrus, and motor processing regions. (Wyatt et al. 2024).  We extend these 
results by comparing exploration versus exploitation with a larger sample of studies and 
investigating task-based differences between exploration and exploitation using Seed-based D 
Mapping (SDM) software. Including the contrast between exploration and exploitation serves as 
a crucial means to subtract the effects of value-based decision making in order to understand 
activation that is unique to exploration and exploitation. Another group argued that prefrontal 
and parietal circuits integrate and switch between exploration and exploitation. Our approach 
differs from (Wyatt et al. 2024) in that we conducted a quantitative rather than qualitative meta-
analysis, with regions identified subsequent to conservative thresholding and permutation 
testing. Overall, our results aims to identify activation patterns that are unique to exploration and 
exploitation, thereby helping identify to what degree we can theoretically understand these 
choices within an opponent processing model. We also explore activation differences between 
n-armed bandits and other types of explore-exploit tasks while making exploration or 
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exploitation decisions. In summary, we investigate the common patterns of activation across 
explore-exploit tasks, whether there are systematic biases in the literature, and if there are other 
regions that are underemphasized in the interpretation of the data. 

Materials and Methods 

Inclusion Criteria and Study Selection 

The current coordinate-based meta-analysis primarily followed PRISMA guidelines for 
meta-analyses regarding inclusion criteria, filtering, and analyses (Moher et al. 2009). We 
incorporated a pre-registration (https://aspredicted.org/7hc7c.pdf), which detailed the 
hypotheses and analyses we intended to use. We conducted a systematic literature search to 
identify explore-exploit studies that used neuroimaging techniques. First, we identified search 
terms by examining task names from several existing explore-exploit literature reviews (Cohen, 
McClure, and Yu 2007; M. A. Addicott et al. 2017; Zhen et al. 2022). Potentially eligible studies 
published through 1/01/2023 were identified by searching the PUBMED using the grouped 
terms: (n-armed OR exploration-exploitation OR explore-exploit OR multi-armed OR forage OR 
foraging OR "reward rate" OR (explore AND exploit) OR "reward trend" OR "clock task" OR 
clock-task OR "temporal-difference" OR "patch leaving" OR patch-leaving OR leave-stay OR 
"time horizon" OR "horizon task" OR bandit OR MVT OR "marginal value theorem" OR leapfrog 
OR "leap frog" OR leap-frog OR prey model OR "diet breadth model" OR "web surfing task" OR 
"web-surfing task" OR trend-guided OR "uncertainty driven") AND (fMRI OR “functional 
magnetic resonance imaging” OR neuroimaging OR brain OR neural OR MNI OR “Montreal 
Neurological Institute” OR Tal OR coordinates). To enhance search sensitivity, the reference 
lists of the retrieved articles and review papers were further checked to identify potentially 
relevant articles. Additionally, we included studies that reported whole-brain analyses, as region 
of interest based analyses can bias coordinate-based meta-analyses (Moher et al. 2009) and 
were thus excluded. Finally, we incorporated studies that reported coordinates in a standard 
stereotactic space [i.e., Talairach or Montreal Neurological Institute (MNI) space]. The search 
process was conducted by Avi Dachs, with the first author identifying the studies accepted for 
final inclusion in the meta-analysis. For eligible studies that did not report whole-brain data, we 
contacted authors if the required information was unavailable in the published reports. 

The initial PUBMED search yielded 6,214 papers. Of these, 5,256 papers were then 
excluded based on title, leaving 958 papers to be excluded by abstract and full text contents. Of 
the 958 remaining papers, 762 papers were excluded for not covering explore and exploit tasks, 
72 relevant papers were excluded for not collecting fMRI data, 45 animal studies were excluded, 
and 14 non-empirical papers were excluded, leaving only 65 papers for data extraction and 
coding (see Figure 2). In the coding phase, 47 more papers were excluded due to data that 
were incompatible with our analysis (i.e., not fMRI or whole-brain), leaving a total yield of 19 
papers. Finally, our list of papers was cross-referenced with the papers included in a similar 
meta-analysis (Zhen, 2022) revealing 4 papers that had been wrongly excluded from our 
search. After these papers were added, our final corpus included 23 papers with a cumulative N 
of 602 participants (see Figure 2 and Table 1). In total, we included 13 n-armed bandit studies, 
which varied in the number of bandits presented to the participant.  We identified foraging tasks 
and 3 other tasks, including a problem-solving task, clock hand task, web surf task, and an 
observe-bet task. We grouped non-n-armed bandit tasks into an “other” category with a total of 
10 studies to serve as a comparison group. Unlike n-armed bandits, the “other” tasks do not 
employ feedback about exploration or exploitation on each turn. Foraging, web-surf, and 
observe-or-bet tasks have clear shifts between exploration and exploitation based on 
observable changes in strategy. The clock hand task employs a fixed reward structure which is 
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learned over time and exploration and exploitation is classified based on response times (M. A. 
Addicott et al. 2017). Thus, we classify tasks that do not have a continuous sequence of 
changing rewards as “other” types of exploration and exploitation tasks. Further, n-armed 
bandits involve inferred shifts to exploitation, whereas foraging tasks have distinct shifts from 
exploiting to traveling to other patches (Barack 2024). While both n-armed bandit and foraging 
tasks are grouped as explore-exploit tasks, they are sufficiently different to serve as potential 
comparison groups. 

 
 

 
 

Figure 2: Inclusion criteria. Using the PRISMA flowchart system, we report the studies we 
identified, screened, and included in the meta-analysis. After we completed our initial search, 
four more studies identified by another meta-analysis (Zhen et al., 2022) that assessed 
activation during exploration. Starting from an initial search of 6,214 studies, we included n = 23 
studies in our analyses.  
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Table 1: Included studies. N = 23 studies were included for the meta-analysis during explore-
exploit decisions, and for the study of activation during exploration and exploitation specifically.  
 

Paper Program Threshold N Age Females Task 

Aberg et al., 2022 SPM 0.001 28 27.6 20 3-armed bandit 

Abram et al., 2019 FSL 0.05 25 28.0 12 web-surf task 

Addicott et al., 2014 SPM 0.005 22 36.0 NA 6-armed bandit 

Amiez et al., 2012 AFNI 0.05 11 27.9 6 4-armed bandit 

Badre et al., 2012 SPM 0.001 15 20.0 8 clock hand task 

Blanchard & Gershman, 2018 SPM 0.001 18 26.0 11 observe-bet  

Chakroun et al., 2020 SPM 0.05 31 26.9 0 4-armed bandit 

Daw et al., 2006 SPM 0.001 14 NA NA 4-armed bandit 

Donoso et al., 2014 SPM 0.005 40 18-26 20 4-armed bandit 

Dunne et al., 2016 SPM 0.005 17 23.3 9 2-armed bandit 

Howard-Jones et al., 2020 SPM 0.001 16 25.5 8 4-armed bandit 

Kolling et al., 2012 FSL 0.05 20 22-32 12 foraging 

Korn et al., 2018 SPM 0.001 28 23.5 13 foraging 

Korn et al., 2019 SPM 0.001 24 25.0 11 foraging 

Laurerio-Martinez et al., 2014 SPM 0.05 50 35.1 11 4-armed bandit 

Laurerio-Martinez et al., 2015 SPM 0.05 63 35.2 11 4-armed bandit 

Mobbs et al., 2013 SPM 0.05 15 25.0 10 foraging 

Seymour et al., 2012 SPM 0.001 30 NA NA 4-armed bandit 

Tomov et al.,  2020 SPM 0.001 31 18–35 17 2-armed bandit 

Trudel et al., 2020 FSL 0.05 24 25.6 14 2-armed bandit 

Wang and Voss., 2014 AFNI 0.05 42 18-35 22 foraging 

Wittman et al., 2016 FSL 0.05 20 21–32 8 foraging 

Zacharopoulos 2018 SPM 0.001 18 18-37 11 foraging 

Statistical Analysis 

We conducted a CBMA meta-analysis using Seed-based d mapping software (SDM-PSI 
version 6.22). SDM was implemented using several steps to conduct analyses described in the 
SDM tutorial and manual. First, we imported the screened data by preparing folders with MNI 
text files that reported the clusters and t values for each coordinate. Exploration and exploitation 
decisions were grouped based on the constructs reported in each study. 11 studies reported 
explore>exploit and exploit>explore contrasts and were coded as exploration and exploitation 
respectively (see Table 2). Other studies reported parametric effects for exploration and 
exploitation decisions (see Table 2) through assessing several components underlying value-
based decisions in uncertain environments. Studies modulated uncertainty (Badre et al. 2012; 
Trudel et al. 2020), relative value (Howard-Jones et al. 2010), task difficulty (Abram et al. 2019), 
search evidence, and search cost across decision stages (i.e.., exploration in Stage 1 and 
exploitation in Stage 2) (Zacharopoulos et al. 2018). We classified reinforcement learning 
associated with recent experience as exploration (Dunne, D’Souza, and O’Doherty 2016). 
Another variation of reinforcement learning included assessing exploitation as the last average 
reward rate, whereas exploration reflecting the expected values associated with learning past 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2024. ; https://doi.org/10.1101/2023.10.21.563317doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.21.563317
http://creativecommons.org/licenses/by/4.0/


 
 

11 
 

reward rates (Wittmann et al. 2016). Another study coded foraging value-decision value contrast 
for exploration and search value-decision value contrast for exploration (Kolling et al. 2012).  

Another study varied the parametric value of staying with a foraging patch whereas 
exploration was classified as the difference in decision versus consumption (Abram et al. 2019). 
Switch-in events were classified as exploration and activation associated with actor absolute 
reliability as exploitation due to the behavioral design (Donoso, Collins, and Koechlin 2014). 
Other studies varied the presence or absence of newly available information (Wang and Voss 
2014), and the advantageousness of the environment (Mobbs et al. 2013). In another study, the 
modeled choice kernel reflected exploratory decisions (Seymour et al. 2012). These 
classifications of exploration and exploitation reflect the coordinates selected for analysis and 
are accessible on OSF. Overall, the parametric effects generally reflected sensitivity to value, 
information, or uncertainty while exploring or exploiting an uncertain environment. 

 
Table 2: Reported contrasts.  Some studies reported explore>exploit and exploit>explore 
contrasts, which were coded as exploration and exploitation respectively. Others reported 
parametrically modulated effects. The classification of those modulators as exploration and 
exploitation is described in the methods section. The t-threshold identified for each study is 
reported, which was determined by the threshold identified in the analyses conducted by each 
study and their respective sample size. 

 
 

Paper T -threshold Contrasts 

Aberg et al., 2022 3.6459 Explore>Exploit 

Abram et al., 2019 2.0639 Parametric Modulator 

Addicott et al., 2014 3.1352 Explore>Exploit 

Amiez et al., 2012 2.2282 Explore>Exploit 

Badre et al., 2012 4.1404 Parametric Modulator 

Blanchard & Gershman, 2018 3.9216 Explore>Exploit 

Chakroun et al., 2020 2.0423 Explore>Exploit 

Daw et al., 2006 4.2208 Explore>Exploit 

Donoso et al., 2014 2.0227 Parametric Modulator 

Dunne et al., 2016 3.252 Parametric Modulator 

Howard-Jones et al., 2020 4.0728 Parametric Modulator 

Kolling et al., 2012 2.093 Parametric Modulator 

Korn et al., 2018 3.6896 Explore>Exploit 

Korn et al., 2019 3.7921 Explore>Exploit 

Laurerio-Martinez et al., 2014 2.0096 Explore>Exploit 

Laurerio-Martinez et al., 2015 1.999 Explore>Exploit 

Mobbs et al., 2013 2.1448 Parametric Modulator 

Seymour et al., 2012 3.6594 Explore>Exploit 

Tomov et al., 2020 3.6459 Parametric Modulator 

Trudel et al., 2020 2.0686 Parametric Modulator 

Wang and Voss 2014 1.68 Parametric Modulator 

Wittman et al., 2016 2.093 Parametric Modulator 

Zacharopoulos 2018 3.9651 Parametric Modulator 
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 Next, we created an SDM table with all the respective peak coordinates. We noted t-
stats in the SDM table with respect to effect sizes and converted reported p and z stats using 
the SDM “convert peaks” function (see Table 2). Then, we completed preprocessing using 
Functional MRI as its modality, with a gray matter correlation matter template following validated 
methods (Albajes-Eizagirre et al. 2019; J. Radua et al. 2012). We used a 1.0 anistropy setting, a 
20 mm FWHM isotropic kernel, a gray matter mask, and a standard 2mm voxel size. This was 
followed by a mean analyses with 50 imputations (Joaquim Radua and Mataix-Cols 2009). To 
compare exploration and exploitation decisions, and n-armed bandit versus other tasks, we 
generated linear models respectively where we compared these groups by assigning a linear 
model analysis (Joaquim Radua et al. 2010). We used the SDM meta-regression tool with 
prediction dummy variable {exploit=1, explore=0} and {n-armed=1, other=0} for the positive side 
of the significance test. Additionally, we included several nuisance regressors to control 
potentially confounding variables. Specifically, we included analysis type (parametrically 
modulated = 1, unmodulated = 0) and the smoothing kernel size (Sacchet and Knutson 2013). 
We included these nuisance regressors to ensure that analysis type was not a confounding 
variable and since the size of the smoothing kernel can move the observed activation anterior or 
posterior of the brain. 

Subsequently, we performed family wise error corrections and using n=1000 
permutations (Albajes-Eizagirre et al. 2019). This correction controls for multiple comparisons 
by randomly swapping the effect-sizes between the voxels for each study, recalculating the 
means of the studies for each voxel and saving the maximum of the means (Albajes-Eizagirre et 
al. 2019). The results were then thresholded using threshold-free cluster enhancement (TFCE) 
with a corrected probability threshold of p < 0.05 (S. M. Smith and Nichols 2009). TFCE has 
also been shown to have a sensitivity comparable to a Family Wise Error correction and yield 
valid results with only about five percent of significant clusters based on spurious convergence 
across 200,000 simulated meta-analyses (Frahm et al. 2022). TFCE statistics are generally 
neither too liberal or conservative and have been used across many meta-analyses (Albajes-
Eizagirre et al. 2019; Masson et al. 2021; Sheng et al. 2020). Masks were created and their 
values were extracted for reporting. For the conjunction of explore and exploit conditions, we 
conducted a CBMA of explore and exploit conditions respectively, and then used the multimodal 
function provided by SDM to produce the conjunction map.  

To assess potential heterogeneity and potential bias in the CBMA results, we extracted 
funnel plots. We report the strength of evidence through multiple robustness considerations, 
study heterogeneity (I² statistic), effect of small studies on the results (metabias) with resulting 
funnel plot asymmetry, and excess significance. The funnel plots are constructed through 
assessing the residual, or the weight each study has in the meta-analysis, with the size of its 
treatment effect, identified as precision on the y axis, though these tests must be interpreted 
with caution as publication bias can arise from multiple sources (Sterne et al. 2011). All 
analyses were completed in Montreal Neurological Institute (MNI) space. To report consistent 
results across human brains (Mazziotta et al. 1995), we show probabilistic anatomical labels for 
clusters of activation using the Harvard–Oxford cortical and subcortical atlases (Desikan et al. 
2006).  
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Results 

We completed meta-analyses that assessed activation across explore-exploit tasks, followed by 
activation specific to exploration and exploitation. All meta-analyses controlled the size of the 
smoothing kernel, as well as whether the analyses reported were parametrically modulated or 
unmodulated. The first meta-analysis investigated activation pooling across both exploration 
and exploitation conditions and is reported in Supplementary Results. Next, we assessed the 
contrast between exploration and exploitation. Subsequently, we report activation that is 
consistent across both exploration and exploitation. Lastly, we show exploratory results 
revealing activation that is greater among n-armed bandit tasks versus other tasks during 
exploitation and exploration.  

Neural Responses Between Exploration versus Exploitation Phases 

We conducted a CBMA contrasting the exploration and exploitation conditions across all the 
explore-exploit tasks. We hypothesized that the exploitation phase would be associated with 
greater vmPFC, VS, ACC activity than the exploration phase. We did not find any significant 
clusters for exploitation versus exploration that exceed a threshold of p < .05. Next, we 
hypothesized that the exploration phase would be associated with greater activation in the IPS 
and dlPFC than in the exploitation phase. Our results indicated five significant clusters of 
activation in the dorsolateral prefrontal cortex, right dorsal anterior cingulate cortex, anterior 
insula, and superior temporal gyrus (see Figure 3, Table 3). Using the Harvard-Oxford Atlas, our 
results were consistent with our hypotheses in finding stronger activation in the dlPFC during 
exploration versus exploitation. We followed up with analyses of metabias and excess 
significance, finding no significant metabias or excess significance for this CBMA. 
 

 
 
Figure 3. Clusters of activation in the contrast between explore versus exploit phases. 
Our results indicated that during the exploration versus exploitation phases, we found stronger 
activation in the dlPFC, AI and dACC, and the superior temporal gyrus. Maps were thresholded 
using TFCE at p=.05 and rendered in MRIcroGL. Thresholded 
(https://neurovault.org/images/888157/) and unthresholded 
(https://neurovault.org/images/888156/) images are available at Neurovault.  
 
 
Table 3: Reported clusters of activation across meta-analyses conducted. Confirmatory 
analyses conducted according to the pre-registration include the explore and exploit conditions 
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and assessing their respective conjunctions and contrasts. Exploratory analyses were 
conducted on n-armed bandit versus other tasks. Coordinates are reported in Montreal 
Neurological Institute (MNI) space.  
 

Analysis Type MNI 
coordinate SDM-Z P Voxels Cluster Location 

Confirmatory 

  

   
  

Explore >  Exploit 24,2,60 -4.784 0.001 1310 Right superior frontal gyrus, dorsolateral, BA 6 

  10,22,40 -3.03 0.012 838 Right median cingulate / paracingulate gyri, BA 32 

  34,22,6 -2.994 0.013 596 Right insula, BA 48 

  58,0,0 -2.882 0.24 266 Right superior temporal gyrus, BA 48 

  32,36,26 -4.205 0.02 41 Right middle frontal gyrus, BA 46 

    

Exploit  <  Explore Null 

Exploratory 

N-armed > Other 
(Exploit) Null 

  

   
  

Other > N-armed 
(Exploit) 4,34,44 -4.296 0.003 475 

Right superior frontal gyrus, medial, BA 8 

  30,24,4 -4.468 0.003 352 
(undefined), BA 47 

  

   
  

N-armed > Other 
(Explore) Null 

  

   
  

Other > N-Armed 
(Explore) Null 

Neural Responses to the Conjunction Between Exploration and Exploitation 

Phases 

 
We conducted a conjunction analysis across exploration and exploitation in the sample of 
studies we collected. We hypothesized that the conjunction of explore and exploit phases would 
be associated with activation in the IPS, dACC, and dlPFC. Supporting our hypothesis, we 
found common activation in the dACC in the conjunction between exploration and exploitation 
decisions (see Figure 4). Activation in exploration and exploitation elicits common activation 
across multiple regions with a correlation of r = .62 across the unthresholded explore and exploit 
images. These results suggest that areas of common activation should in the future be closely 
examined using multivariate and connectivity methods to understand how they are involved in 
exploration and exploitation. In contrast to our hypothesis, we did not find convergence in the 
IPS or dlPFC. We also found conjunctive patterns of activation in the dmPFC and anterior 
insula. 
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Figure 4. Clusters of activation in the conjunction of explore and exploit decisions. Our 
results indicate that during both explore and exploit phases, there is activation in the ACC, 
dmPFC, and insula. Maps were thresholded using TFCE at p=.05 and rendered in MRIcroGL. 
Red corresponds to activation during exploration, blue during exploitation, and yellow for the 
conjunction between both decisions. Thresholded images are available at 
https://neurovault.org/images/888159/, https://neurovault.org/images/888160/, and 
https://neurovault.org/images/888161/. Unthresholded images are available at 
https://neurovault.org/images/888167/, https://neurovault.org/images/888168/, and 
https://neurovault.org/images/888169/. 

Differential Activation Between N-Armed versus Other tasks During Exploration 

and Exploitation 

 

We followed up our pre-registered hypotheses by assessing if there are differences between 
activation in n-armed bandit tasks compared to other tasks during exploration and exploitation. If 
there are activation differences between tasks, this may suggest that these tasks are not 
eliciting consistent patterns of activation in exploration and exploitation as may be expected. 
During exploration, we did not find any activation differences between n-armed bandits and 
other tasks. During the exploitation phase, we found that other tasks versus n-armed bandits 
resulted in two significant clusters (see Table 3, Figure 5). There was no reported excess 
significance, or metabias in the results (p > .001).  
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Figure 5. Clusters of activation during exploitation, between other tasks and n-armed 
bandits. Our results indicate that there are differences in activation between tasks during 
exploitation. We found that there was greater activation in the dmPFC and AI when participants 
exploited in other tasks versus n-armed bandits. Maps were thresholded using TFCE at p=.05 
and rendered in MRIcroGL. Thresholded images are available at Neurovault: 
https://neurovault.org/images/888163/. Unthresholded images are available at Neurovault: 
https://neurovault.org/images/888162/, https://neurovault.org/images/888164/, 
https://neurovault.org/images/888165/, and https://neurovault.org/images/888166/. 

Discussion 

 
This investigation conducted a coordinate-based meta-analysis of explore-exploit tasks. We 
included both n-armed bandit and other types of explore-exploit tasks and analyzed them to 
assess patterns of activation that are consistent across explore-exploit decisions, as well as 
unique to exploration and exploitation decisions respectively, and differences in activation 
between tasks. First, we found consistent activation unique to exploration and exploitation 
decisions, with activation in the dlPFC, vmPFC, ACC, IPS, dmPFC, and VS, suggesting that 
exploration and exploitation generally evoke activation associated with value-based decision-
making (Bartra, McGuire, and Kable 2013). Second, we found greater activation in the dlPFC, 
dACC, and the AI during exploration versus exploitation.  
 
Third, we conducted an exploratory analysis to assess differences between n-armed bandits 
and foraging tasks during exploration and exploitation respectively. We found differences in 
activation in the AI and dmPFC between other tasks and n-armed bandit tasks during 
exploitation. Overall, our meta-analytic results support previous findings that have identified 
critical regions involved in exploration and exploitation. Specifically, we found convergence in 
brain regions reported in the seminal study by Daw et al., 2006 with activation in the dlPFC, 
vmPFC, IPS, ACC, and VS being involved in both exploration and exploitation. This finding 
suggests that exploration and exploitation evoke activation consistent with value-based 
decision-making (Rangel, Camerer, and Montague 2008), although it does not control for 
activation unique to these individual decision phases.  
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Opponent Processing versus Interplaying Models of Exploration and 

Exploitation 

When we investigated the contrast between exploration and exploitation, we found stronger 
activation in the dlPFC, AI, and dACC during exploration compared to exploitation, suggesting 
that these regions are part of opponent processes in explore-exploit decisions. These results 
are consistent with past findings (Laureiro-Martínez et al. 2014), suggesting that the dlPFC may 
contribute to tracking the value of alternative choices (Laureiro‐Martínez et al. 2015; Raja 
Beharelle et al. 2015), attending to risk (Obeso et al. 2021), tracking uncertainty (Chakroun et 
al. 2020; Tomov et al. 2020), and guiding directed exploration (Zajkowski, Kossut, and Wilson 
2017). Additionally, as the dlPFC is implicated in cognitive control (Friedman and Robbins 
2022), dlPFC activation may affect working memory as it relates to information gain and 
integrating recent rewards (Cogliati Dezza, Cleeremans, and Alexander 2019; Cogliati Dezza et 
al. 2017).   
 
The AI subserves several notable computational mechanisms that are relevant for exploration 
and exploitation. Overall, the AI has been found to respond more strongly exploration versus 
exploitation (Kayser et al. 2016; Ohira et al. 2013; Tomov et al. 2020; Blanchard and Gershman 
2018). Two recent accounts suggest that the AI could be processing risk (Zhen et al. 2022), or 
could serve as part of a broader salience network during exploration (Hogeveen et al. 2022). 
While the AI serves an important role within valuation processing (Bartra, McGuire, and Kable 
2013), other studies have indicated that the AI is stronger activated with the sudden introduction 
of reward structures rather than stable reward systems (Li et al. 2006). Thus, while the AI is 
involved in risk processes (Preuschoff et al., 2011; Smith et al., 2014), its role may involve 
orienting the dACC and dlPFC toward changes in valuations related to risk and uncertainty. 
 
The ACC may contribute to exploration versus exploitation by tracking trends in foraging tasks 
(Wittmann et al. 2016; Kolling et al. 2012), preparing movement away from disadvantageous 
foraging patches (Mobbs et al. 2013), with more self-focused individuals showing lower activity 
in dACC compared to individuals who were foraging for others (Zacharopoulos et al. 2018), and 
evaluating salient feedback for learning optimal strategies (Amiez et al. 2012). Nonetheless, the 
interpretations emphasizing the role of the ACC in foraging may be confounded as one 
investigation found that dACC engagement was explained solely by choice difficulty, and not the 
value of foraging (Shenhav et al. 2014). Our results are consistent with the prefrontal and 
parietal circuits integrating and switching between exploration and exploitation (Hogeveen et al. 
2022; Wyatt et al. 2024). Integrating the roles of the dlPFC, AI and dACC in regulating 
exploration versus exploitation is also consistent with recent findings suggesting that these 
regions could be part of a circuit that modulates strategic decisions (Jahn et al. 2023) and 
contribute to the opponent processing of exploration or exploitation. 
In contrast to recent meta-analyses (Wyatt et al. 2024; Zhen et al. 2022), our results suggest 
that many brain regions involved in value-based decision making are coactivated across both 
exploration and exploitation rather than evoking distinct patterns of activation. For example, our 
results suggested that the dorsal medial prefrontal cortex and premotor cortex (Zhen et al., 
2022) were involved in both exploration and exploitation. While these brain regions may be 
involved in exploration, by subtracting activation related to exploitation we show that these other 
brain regions may be simply involved in the overall value-based decision process (Rangel, 
Camerer, and Montague 2008) rather than being unique to exploration. Additionally, while the 
qualitative approach taken by Wyatt and colleagues indicated that the IPS and Precuneus have 
greater activation during exploration and exploitation, our quantitative analyses indicate that 
many of these regions fail to survive thresholding and are generally sensitive to both exploration 
and exploitation. Thus, while we agree with a recent empirical work that control and attention 
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networks are involved in exploration (Hogeveen et al. 2022), our results suggest that more 
precisely that the dACC, AI, and dlPFC are potentially the more relevant brain regions 
arbitrating between exploration and exploitation decisions. 
 
However, there remain two large issues in interpreting exploration and exploitation through the 
lens of the opponent process model. The first is that there are more similarities than differences 
in activation across our results. Even when controlling for the effects of exploration and 
exploitation decisions specifically, our conjunction analyses reveal that exploration and 
exploitation generally elicit similar patterns of activation, particularly in the ACC and dmPFC.  
These results suggest that areas of common activation should closely examined on the future 
using multivariate and connectivity methods to understand how they are involved in exploration 
and exploitation. Extending a previous meta-analysis suggests that these regions are not unique 
to exploration (Zhen et al. 2022), but are also involved in exploitation.  As a result, when 
differences are reported in these regions, they may be due to the interplaying of more complex 
underlying variables modulating these brain processes rather than a product of a general 
opponent processing system for exploration versus exploitation decisions.  
 
Secondly, our exploratory analyses suggest that there remains substantial heterogeneity 
between tasks. This issue may speak to the lack of behavioral convergent validity between 
these tasks (von Helversen et al. 2018), which is to say that a participant exploiting in a foraging 
task does not predict how they will exploit in an n-armed bandit task. During exploitation, we 
found differences in activation in the insula and dmPFC between other tasks and n-armed 
bandits. In theory, we would not expect to see differences in activation if exploitation across 
tasks reliably elicit similar responses, we would not expect to see differences between these 
tasks. Nonetheless, the differences in AI and dmPFC could reflect differences in how people 
perceive risk and uncertainty (ie: Zhen et al. 2022) or salient features (ie: (Hogeveen et al. 
2022) while exploiting in n-armed bandits versus foraging tasks. Thus, while our results suggest 
that while the dACC, AI and dlPFC differentiate exploration and exploitation, these constructs 
remain fragile to the context of the decision based on task, and that most of the activation 
associated with these decision processes is indistinguishable and is modulated based on 
context. As such, the interplaying model of exploration and exploitation is generally a better 
descriptor of these constructs, though the dlPFC, AI, and dACC can act as opponent processes 
between these types of decisions. 

Limitations  

 
Although our work has found that exploration and exploitation can be dissociated by dlPFC, AI, 
and dACC activation, we acknowledge our study has several notable limitations. First, while we 
included N=23 studies, this quantity is fairly low for a CBMA type meta-analysis, with a common 
benchmark suggesting a minimum of 17–20 Experiments (Yeung et al. 2019). However, the 
exploratory CBMA of n-armed bandits versus other tasks during exploration and exploitation 
contrasted 13 versus 10 studies. Since this sample size is below the benchmark, it should be 
considered exploratory. Nonetheless, there is a lack of clear guidance as to what constitutes 
acceptable sample sizes for SDM, as this highly depends on the effects measured, the number 
of participants, and whether thresholded images are included or not. Second, while we found 
substantial areas of coactivation between explore-exploit conditions, we cannot conclude that 
these areas are consistently involved with both types of decisions. For example, prior studies 
have shown that a region may appear to be involved in different processes despite having 
patterns of activation and connectivity profiles (Woo et al. 2014; D. V. Smith, Sip, and Delgado 
2015). Further analyses could disentangle the involvement of these brain regions and show 
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distinct connectivity with other brain regions to better understand their involvement in explore-
exploit decisions.  
 
Other limitations extend beyond meta-analytic methods when assessing exploration and 
exploitation more generally. Explore-exploit tasks limit the manner in which information is 
presented, and a latent variable that may bias switching decisions includes the trend in 
information. Some studies have started to explore the effects of trends in information (Wittmann 
et al. 2016; Kolling et al. 2012; Vestergaard and Schultz 2020), though it remains underexplored 
how these trends bias people to act too soon or too late. Further, brain connectivity (Friston 
2011; Utevsky et al. 2017) may reveal patterns of explore-exploit decision making, yet few 
connectivity studies (S. Morris et al. 2015; Tardiff et al. 2021) have been completed in this 
domain. Since the default mode network (DMN) is implicated in executive function and cognitive 
control (Fox et al. 2005), and the executive control network (ECN) serves to rapidly instantiate 
new task states (Marek and Dosenbach 2018), both the DMN and ECN could interact to drive 
exploiting versus exploring decisions. Future studies may reconcile the gap that remains in 
understanding how explore-exploit decisions are associated with brain connectivity patterns.  
 
While acknowledging limitations for generalizing both behavioral and neural results resulting 
from exploration and exploitation, the finding that the dlPFC, AI, and dACC reliably distinguish 
exploration and exploitation could inspire important future directions. First, a fruitful future 
direction includes modulating dlPFC responses, which are quite common in transcranial 
stimulation studies. Since there are many links between the dlPFC and psychopathology such 
as schizophrenia (Wu et al. 2017), anxiety (Balderston et al. 2020), and substance use 
(Goldstein and Volkow 2011), regulating dlPFC activation may reliably modulate explore-exploit 
decisions. Specific to substance use, while there has been extensive research into the neural 
mechanisms of addiction, it remains underexplored how individual differences in decision 
making serve as risk factors for increasing consumption of substances. Past investigations 
revealed that smokers explore less and learn faster (Merideth A. Addicott et al. 2012) and 
require greater cognitive control when exploring (Merideth A. Addicott et al. 2014). People with 
greater alcohol use tend to avoid uncertainty (L. S. Morris et al. 2016) and explore less. Brain 
responses may be modulated by substance use and mediated by social context (Sazhin et al. 
2020). Sharing rewards with friends decreases connectivity between VS and dorsomedial 
prefrontal cortex (Wyngaarden et al. 2023), suggesting that social contexts are an important 
feature of understanding substance use decisions.  Future investigations could also study the 
role of trends in decision making and assess whether substance users forecast future trends 
worse than non-substance users. Using explore-exploit dilemmas, researchers can assess how 
people make predictions, and whether substance users have an impaired cognitive ability to 
predict future outcomes. 

Conclusion 

 
In summary, we conducted a coordinate-based meta-analysis of neuroimaging studies using 
explore-exploit tasks. We found that areas associated with executive control (dlPFC), attention 
(IPS, dACC), and reward (VS) are reflected in exploration and exploitation decisions. 
Exploration versus exploitation can be distinguished by greater activation in the dlPFC, AI, and 
dACC. Nonetheless, there remains substantial heterogeneity in brain responses due to task 
types, modulated by activation in the AI and the dmPFC while exploiting. Further, exploration 
and exploitation are associated with more similar than dissimilar patterns of activation in the AI, 
dmPFC, ACC, and VS. These results suggest that exploration and exploitation are not reliable 
opponent processes but are more of a product of the interplaying of underlying physiological 
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and psychological features guiding these decisions. Nonetheless, the finding that the dlPFC, AI, 
and dACC distinguish exploration and exploitation could serve as an important area of future 
research in cognitive neuroscience and psychopathology, as modulating these brain regions 
could shift how people explore and exploit. 
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