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ABSTRACT 32 

Gliomas are incurable malignancies notable for an immunosuppressive microenvironment with 33 
abundant myeloid cells whose immunomodulatory properties remain poorly defined. Here, 34 
utilizing scRNA-seq data for 183,062 myeloid cells from 85 human tumors, we discover that nearly 35 
all glioma-associated myeloid cells express at least one of four immunomodulatory activity 36 
programs: Scavenger Immunosuppressive, C1Q Immunosuppressive, CXCR4 Inflammatory, and 37 
IL1B Inflammatory. All four programs are present in IDH1 mutant and wild-type gliomas and are 38 
expressed in macrophages, monocytes, and microglia whether of blood or resident myeloid cell 39 
origins. Integrating our scRNA-seq data with mitochondrial DNA-based lineage tracing, spatial 40 
transcriptomics, and organoid explant systems that model peripheral monocyte infiltration, we 41 
show that these programs are driven by microenvironmental cues and therapies rather than 42 
myeloid cell type, origin, or mutation status. The C1Q Immunosuppressive program is driven by 43 
routinely administered dexamethasone. The Scavenger Immunosuppressive program includes 44 
ligands with established roles in T-cell suppression, is induced in hypoxic regions, and is 45 
associated with immunotherapy resistance. Both immunosuppressive programs are less 46 
prevalent in lower-grade gliomas, which are instead enriched for the CXCR4 Inflammatory 47 
program. Our study provides a framework to understand immunomodulatory myeloid cells in 48 
glioma, and a foundation to develop more effective immunotherapies.  49 

INTRODUCTION 50 

Diffuse gliomas are the most common primary malignant brain tumors in adults, and remain 51 
ultimately fatal despite significant advances in our molecular understanding of the malignant 52 
cells1–7. These tumors are divided into isocitrate dehydrogenase (IDH)-mutant and wild-type (WT) 53 
gliomas8, with glioblastoma (GBM), IDH-WT, being the most prevalent and aggressive form 54 
(median overall survival < 2 years)9,10. The limited efficacy of current therapies, which include 55 
surgery, chemotherapy, and radiotherapy11, underscores the need for novel therapeutic 56 
strategies. 57 

Immunotherapy has revolutionized treatment for many types of cancer. Unfortunately, despite 58 
anecdotal responses12,13, immunotherapy trials have failed to provide life-prolonging benefit for 59 
glioma patients14,15. Gliomas represent an immunotherapy challenge due to the unique immune 60 
microenvironment of the brain, restricted access of systemic therapies due to the blood-brain 61 
barrier, and the need to balance therapeutic immune responses with potentially fatal 62 
inflammation-induced edema. The poor clinical responses to conventional immunotherapy 63 
highlight the need to better understand the complex microenvironment in gliomas, which includes 64 
limited activated T-cells and an abundance of myeloid cells. 65 

Tumor-associated myeloid cells have become a major focus in the pursuit of effective 66 
immunotherapies for solid tumors. In many solid tumors, including glioma, increased myeloid cells 67 
are associated with higher grade and worse overall survival16,17. These cells can create an 68 
immunosuppressive microenvironment that leads to immunotherapy resistance. Understanding 69 
their functional phenotypes, origins, and developmental drivers is a critical step towards rational 70 
therapeutic strategies that overcome myeloid immunosuppression.  71 
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In gliomas, myeloid cells are particularly suppressive and are the most prevalent non-malignant 72 
cell type, comprising up to 50% of all cells in a tumor18. Their abundance and ability to orchestrate 73 
neighboring cell behavior makes them central to the pathobiology of gliomas19. Prior studies have 74 
shown that myeloid cells have a major influence on the molecular state of tumor cells6,20,  as well 75 
as tumor-infiltrating T cells20–22, the main effector cells of checkpoint blockade, vaccine, and 76 
chimeric antigen receptor (CAR)-T cell therapies. Tumor-associated myeloid cells also recruit 77 
additional myeloid cells from the peripheral circulation through cytokine and chemokine release, 78 
and may drive them towards immunosuppressive phenotypes19. However, the specific myeloid 79 
cell types and gene expression programs that orchestrate these functions remain to be 80 
determined.  81 

Myeloid cells in gliomas have traditionally been classified and studied according to cell type and/or 82 
presumed developmental origin4,18,21,23–25. Myeloid cell types include microglia, macrophages, 83 
monocytes, conventional dendritic cells (cDC), and neutrophils. Origin is typically classified as 84 
microglia-derived or bone marrow-derived based on marker genes identified from lineage tracing 85 
experiments in healthy mice. These murine lineage tracing studies have shown that microglia are 86 
derived from the embryonic yolk sac and remain isolated to the brain, while other myeloid cell 87 
types are derived from bone marrow26–28. However, despite its therapeutic implications, the origins 88 
of myeloid cells in human brain tumors remain uncertain29,30.  89 

Our understanding of the heterogeneity of malignant cells in glioma has greatly improved due to 90 
single-cell RNA sequencing (scRNA-seq) technologies. Over the past decade, this work has 91 
helped reveal the developmental origins and inherent plasticity of these cells, yielding insights 92 
into the function of the main cellular states (NPC-like, OPC-like, AC-like, MES1, and MES2) and 93 
suggesting rational targets to limit their progression1,3–5,7. Recent studies using various single-cell 94 
technologies have begun to uncover the diversity of myeloid cell states in human and mouse 95 
gliomas, including some interactions with other cell types within the tumors4,18,20,21,23–25,31,32. These 96 
studies revealed differences in the composition and suspected origin of myeloid cell types 97 
between IDH-mutant and wild type gliomas, primary and recurrent gliomas, and even within 98 
different regions of the same tumor21,24. 99 

Yet, many outstanding questions remain. First, at present, there is no consensus on the definition 100 
of myeloid cell states, or how they inform the clinical and biological features of gliomas. Second, 101 
previous studies have viewed myeloid cells through the lens of the traditional cell type and origin 102 
classification, but classifying functional activities independent of cell type or origin has been 103 
challenging with standard cell clustering approaches. Third, the origins of myeloid cells in gliomas 104 
remain uncertain due to difficulties in tracing cell lineage in human samples. Finally, the interplay 105 
between myeloid cells and other malignant and non-malignant cell states within the tumor has 106 
primarily been deduced from variations in cellular composition within samples or with limited 107 
markers. Assessing the spatial relationships of these cells at increased granularity is crucial to 108 
understand how myeloid cells interact with their niches and immune microenvironments. Thus, 109 
incomplete knowledge of glioma-associated myeloid cells, their diverse expression programs, 110 
their origins, and their functional significance within the specialized glioma immune 111 
microenvironment remains a major impediment to advancing immune therapies.  112 
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An additional impediment relates to challenges with experimental modeling of human tumor-113 
associated myeloid cells. Tumor-associated macrophages change state quickly in vitro on 114 
monolayer plastic cell culture, and mouse models incompletely recapitulate macrophage 115 
programs associated with human tumors33. Mouse microglia are smaller, are less morphologically 116 
complex than their human counterparts, and lack orthologues to important human microglial 117 
genes34. While these systems have helped answer important questions and demonstrated the 118 
importance of myeloid cells for glioma biology20,31,35, more faithful and representative experimental 119 
systems of human tumor-associated myeloid cells are urgently needed for both fundamental 120 
understanding and clinical translation. 121 

Here we sought to overcome these limitations through a systematic single-cell study of myeloid 122 
cells in human gliomas coupled with functional validations in refined experimental tumor models. 123 
We leveraged scRNA-seq data for 85 diverse gliomas, including primary and recurrent IDH-124 
mutant and wild-type tumors, and emerging computational methods for decoupling myeloid cell 125 
type from activity to identify four dominant immunomodulatory activity programs shared across 126 
microglia, macrophages, monocytes, and dendritic cells. We then integrated lineage tracing 127 
techniques in patient samples, spatial transcriptomics, and high-fidelity ex vivo human tumor 128 
models to discover the cellular origins, tumor niches, and drivers of these dominant 129 
immunomodulatory programs. Our analyses portray a dynamic and plastic myeloid cell 130 
compartment that is responsive to microenvironmental cues and evolves with glioma progression 131 
to become highly immunosuppressive. In sum, they provide a foundation for advancing diagnostic 132 
and immunotherapeutic strategies for gliomas. 133 

RESULTS 134 

Unbiased identification of consensus gene programs in glioma-associated myeloid cells 135 

To better understand the immune microenvironment in gliomas, we utilized scRNA-seq to 136 
characterize all immune and non-immune cell types within freshly resected human adult diffuse 137 
gliomas. We included a wide array of tumors, spanning IDH-wild type and mutant tumors, primary 138 
and recurrent tumors, and tumors exposed to different therapies. We combined 43 tumor profiles 139 
prospectively collected for this study with an additional 42 consolidated from prior 140 
publications7,21,36. These 85 profiles (Supplemental Table 1) were divided into a discovery dataset 141 
that included 44 tumors profiled by the latest 3’ scRNA-seq technologies, (10Xv3 / SeqWell S3)37, 142 
and a validation dataset (41 tumors profiled by 10Xv2). We annotated all cells based on marker 143 
gene expression, removed doublets, and called single-cell copy number alterations (CNAs) to 144 
confirm malignant cells (Fig. 1a, Extended Data Fig. 1a-c, see Methods).  145 

We then turned our attention to the myeloid cells. To discover the consensus myeloid gene 146 
expression programs in gliomas, we utilized our discovery dataset, which was composed of three 147 
independent cohorts from three different institutions. We used an unbiased method, consensus 148 
non-negative matrix factorization (cNMF)38 to identify sets of genes (‘programs’) that were 149 
coordinately regulated across the myeloid cells within each cohort (Supplemental Table 2, 150 
Methods). Hierarchical clustering of these programs identified recurrent expression programs 151 
captured in all three discovery cohorts, from which we derived 14 consensus gene programs (Fig. 152 
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1a, Extended Data 1a-c). These 14 programs captured the gene expression patterns of all 153 
individual programs within the corresponding clusters (Fig. 1b).  154 

These consensus programs included both myeloid cell identity programs and cell activity 155 
programs. The identity programs contain classical marker genes for myeloid cell types, including 156 
microglia, macrophages, monocytes, dendritic cells, and neutrophils. The activity programs are 157 
composed of genes with immunomodulatory functions, genes involved in specific cell response 158 
programs (such as interferon or hypoxia response) and genes linked to proliferation (Fig. 1c). The 159 
14 programs were found across IDH-mutant, IDH WT, primary, and recurrent gliomas (Fig. 1c), 160 
and importantly, were all recapitulated in our validation cohort (Extended Data Fig. 1d-e). 161 

In parallel, we performed Louvain clustering and Uniform Manifold Approximation and Projection 162 
(UMAP) to understand the myeloid cell state spaces. This standard approach treats cells as a 163 
singular unit, clustering them based on their similarity to other cells, as opposed to cNMF which 164 
considers multiple discrete programs in each single cell by computing and evaluating the usage 165 
of consensus gene programs. The clustering and UMAP visualization highlighted different myeloid 166 
cell types seen in our cNMF analysis, but was less effective at capturing the cNMF activity 167 
programs, each of which can manifest in different cell types (Extended Data Fig. 2a-c). Going 168 
forward, we relied on cNMF to evaluate myeloid cell types and their superimposed activity 169 
programs, given its ability to capture more than one program in a given cell. 170 

Superimposable myeloid cell identity and cell activity programs 171 

Among the five cell identity programs, we find that the microglia program, highlighted by classical 172 
marker genes TMEM119, P2RY12, and CX3CR1, is the most prevalent (Fig. 1d). The 173 
macrophage program includes GPNMB, LGALS3, CD63, CD9, and CD68, all well-established 174 
markers of tumor-associated macrophages. The cDC program, which is composed of cDC1 and 175 
cDC2 marker genes, was the least prevalent. While the neutrophil and cDC programs were almost 176 
entirely composed of known peripheral neutrophil and cDC genes, the tumor-associated 177 
monocyte program had significant differences from peripheral monocytes. To investigate this 178 
further, we performed scRNA-seq on peripheral myeloid cells from matched blood samples for 17 179 
of our patients (Extended Data Fig. 3). cNMF analysis of the peripheral cells identified three 180 
monocyte programs (CD14, CD16 and Suppressive; see Methods). We found that the tumor-181 
associated monocyte program shared features with the CD14 and Suppressive programs in 182 
peripheral monocytes, but had almost no overlap with the CD16 monocyte program (Extended 183 
Data Fig. 3). The tumor-associated monocyte program also included genes involved in cell 184 
adhesion, migration, differentiation, and initial inflammatory response (e.g., VCAN, FCN1, LYZ, 185 
CD44, FLNA, and CCR2). This suggests that the monocytes represented in the GBM data are 186 
undergoing differentiation within the tumor tissue.  187 

Notably, the most prevalent programs in the glioma-associated myeloid cells were four activity 188 
programs enriched for immunomodulatory genes (Fig. 1d and Extended Data Fig. 1e). 91% of the 189 
myeloid cells expressed one of these four immunomodulatory programs. For comparison, roughly 190 
76% of cells could be confidently assigned to one of the five myeloid cell types based on the 191 
cNMF identity programs (the other 24% were ‘activity dominated’) (Fig. 1c). The 192 
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immunomodulatory programs could be split into two inflammatory programs and two 193 
immunosuppressive programs based on the genes driving the programs (Fig. 1b-c). The IL1B 194 
Inflammatory program includes inflammatory cytokines and chemokines with established roles in 195 
myeloid cell recruitment such as IL1B, IL1A, CCL3, CCL4, CC2, TNF, OSM, and CXCL8. The 196 
CXCR4 Inflammatory program is composed of genes involved in lymphocyte and monocyte 197 
recruitment such as CXCR4, CXCL12, CCL3, CCL4, and CX3CR1, as well as genes involved in 198 
immediate stress responses like RHOB, JUN, KLF2, and EGR1. Interestingly, this program also 199 
includes genes known to interact with neural cell types, such as PDK4, P2RY13, and CXCR4. On 200 
the immunosuppressive side, the C1Q program is defined by expression of C1QA, C1QB, C1QC, 201 
CD16, CD163, C3, C2, and VSIG4, many of which are involved in the complement system and/or 202 
have established immunosuppressive effects in other contexts. Finally, the Scavenger 203 
Immunosuppressive program is composed of scavenger receptors, such as MRC1, MSR1, 204 
CD163, LYVE1, COLEC12 and STAB1, along with other potentially immunosuppressive genes 205 
such as NRP1, RNASE1 and CTSB. Many of these have been shown to suppress T cell function 206 
including CD16339 and VISG440 which bind to T cells and inhibits their proliferation, as well as 207 
MSR1 (CD204) which has a soluble form that binds and inhibits IFN-γ from activating T cells 208 
through inhibiting STAT1 signaling41.  209 

Each of the four programs are expressed in multiple cell types; for example, the IL1B Inflammatory 210 
program is found in subsets of all myeloid cell types (Extended Data Fig. 4a-b). Conversely, each 211 
myeloid cell type utilizes more than one of the four immunomodulatory activity programs. 212 
Macrophages can express any of the four programs, but are enriched in the two 213 
immunosuppressive programs (Extended Data Fig. 4c). Microglia are enriched for the 214 
inflammatory programs and the C1Q Immunosuppressive program, but rarely express the 215 
Scavenger Immunosuppressive program. Neutrophils are unique in that they have limited 216 
expression of the four immunomodulatory programs, but rather are typically dominated by the 217 
neutrophil program itself.  218 

These findings prompted us to seek more holistic insight into the four immunomodulatory 219 
programs, their inter-relationships, and their usages across cell types. We plotted all 183,062 220 
myeloid cells from the 85 tumors by their usage of each program (Extended Data Fig. 4d-e, Fig. 221 
1e). Although the activity programs are driven by different sets of genes, they can be co-222 
expressed within individual myeloid cells. The integrative analysis also revealed correlations (and 223 
anti-correlations) in the expression or ‘usage’ of the different activity programs across cells, while 224 
also affirming their associations with the different myeloid cell types (Fig. 1f, Extended Data Fig. 225 
4c). Importantly, these patterns and distributions were conserved across all three discovery 226 
cohorts and the validation cohort (Extended Data Fig. 4f). 227 

These collective analyses revealed four immunomodulatory activity programs utilized by the 228 
multiple myeloid cell types in human gliomas, and present regardless of IDH mutation, recurrence, 229 
or treatment status. Interestingly, only one of the four programs, the IL1B inflammatory program, 230 
was evident in peripheral myeloid cells in glioma patients (Jaccard Index > 0.1, Extended Data 231 
Fig. 3, Supplemental Table 2). This suggests that the myeloid cells are highly plastic and that their 232 
programs are directed by cell-extrinsic factors in the tumor microenvironment more than their 233 
origin. 234 
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 235 

Fig. 1: Identification of consensus superimposable myeloid cell identity and cell activity programs. 236 
a) Schematics of the analysis pipeline for identifying the recurrent myeloid programs across the three discovery glioma 237 
cohorts. b) Heatmap demonstrating the cosine similarity indices of the gene spectra scores of each program in the 238 
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three discovery cohorts. c) Heatmaps demonstrating the expression of genes in recurrent myeloid programs (rows) by 239 
cell (column) grouped by cell type. Cell type defined by usage of myeloid identity programs. d) Box plots exhibiting the 240 
percentage of cells by sample expressing the recurrent myeloid programs indicated on the left of the heatmap across 241 
the three discovery cohorts. Int. = intermediate cells expressing adjacent identity programs. e) Quadrant plot of myeloid 242 
cells from the discovery and validation cohorts. Coordinates of cell determined by: (CXCR4 - Scav. program usage), 243 
(IL1B - C1Q program usage). Axes are diagonal. Each dot is a pie chart exhibiting the prevalence of the four indicated 244 
immunomodulatory programs in that cell. f) Quadrant plots displaying myeloid cell identify usage per cell.  245 

Convergent phenotypes of microglia- and bone marrow-derived myeloid cells in glioma 246 

To gain further insight into the determinants and plasticity of myeloid cell phenotypes we 247 
investigated their cellular origins. The current paradigm based on mouse models is that microglia 248 
are self-renewing tissue resident macrophages derived from embryonic yolk sack, whereas other 249 
myeloid cell types, including immunosuppressive macrophages, come from bone marrow24,26–28.  250 

Mitochondrial DNA mutations can be used as endogenous barcodes in human samples to infer 251 
lineage relationships and cellular origins. We utilized MAESTER42 to call mitochondrial DNA 252 
mutations in tumor-associated myeloid cells and matched peripheral blood monocytes from four 253 
patients (Fig. 2a). We distinguished mitochondrial mutations present in peripheral blood cells from 254 
those that were detected only in tumor-associated myeloid cells. We presumed that myeloid cells 255 
in the tumor whose variants matched the former were blood-derived, while those with the latter 256 
variants would likely represent resident myeloid cells in the brain. 257 

Consistent with expectations, we found that cells expressing a microglia program were most likely 258 
to harbor resident myeloid cell-specific variants, while other myeloid cell types were more likely 259 
to harbor variants shared with peripheral blood (Fig. 2b). The cell activity programs were more 260 
promiscuous in terms of origins, manifesting across different cell types and derivations (Fig. 2c). 261 
Notably, intermediate cells that co-express microglia and macrophage programs were also 262 
enriched for peripheral blood variants (Fig. 2b). This suggests that bone marrow-derived myeloid 263 
cells can activate a microglia-like phenotype in tumors.   264 

This result prompted us to directly evaluate the capacity of bone marrow-derived cells to acquire 265 
these glioma-associated myeloid phenotypes. We applied patient peripheral blood mononuclear 266 
cells (PBMCs) to glioma organoids derived from the same patient's tumor resection that no longer 267 
contained immune cells (Fig. 2d). After one week of co-culture, we found that the organoids were 268 
extensively infiltrated by myeloid cells. We extracted these infiltrated myeloid cells and compared 269 
them to myeloid cells that remained in the surrounding media by flow cytometry. We found that 270 
the infiltrating myeloid cells up-regulated the canonical microglia markers, TMEM119 and 271 
P2RY12, confirming that bone-marrow derived monocytes can acquire features of the tissue 272 
resident microglia (Fig. 2d). In contrast, myeloid cells that remained outside the organoids were 273 
much less likely to express these markers. Immunohistochemistry of the organoids confirmed 274 
robust infiltration of immune cells, including myeloid cells expressing both microglia markers (Fig. 275 
2e and Extended Data 5a-b). Interestingly, IFN-γ markedly increased infiltration and differentiation 276 
of myeloid cells applied to the organoids, consistent with prior work43 (Extended Data Fig. 5b-c).   277 

Together these data show that all tumor-associated myeloid programs, including the microglia 278 
program, can be expressed in cells derived from the peripheral blood. They highlight the plasticity 279 
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of myeloid cells in the tumor microenvironment and demonstrate that developmental origin does 280 
not constrain the expression of immunomodulatory programs in glioma-associated myeloid cells.  281 

 282 

Fig. 2: Convergent phenotypes of microglia- and bone marrow-derived myeloid cells in glioma. a) 283 
Schematics of the MAESTER analysis pipeline for determining the origin of myeloid cells in the glioma 284 
microenvironment. b) Dot plot exhibiting the enrichment difference between PBMC-specific and Resident-specific 285 
variants. Each dot represents the enrichment level of the indicated identities (left) in each patient. X-axis denotes the 286 
scaled difference between GSVA enrichment of PBMC-specific variants and Resident variants. c) Stacked bar charts 287 
indicating the average usage of the indicated myeloid programs in the key across the four patients. The "other 288 
programs" category encompasses the other identities and activities. d) Schematic (left) and flow cytometry plots (right) 289 
of myeloid cells from indicated condition. T cells are used as gating control for P2RY12 and TMEM119. e) 290 
Immunofluorescence image showing matched patient derived PBMC cells infiltrated into a glioblastoma organoid.  291 

Immunomodulatory program composition varies with histopathological tumor grade 292 

We next asked whether the myeloid cell identities and immunomodulatory programs correlate 293 
with clinical factors such as IDH mutation status. Prior studies have reported increased 294 
inflammatory phenotypes in IDH-mutant tumors18,25,32. Consistently, we found that IDH-mutant 295 
tumors have a distinct composition of immunomodulatory myeloid programs, characterized by 296 
strong enrichment of the CXCR4 Inflammatory program and depletion of both immunosuppressive 297 
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programs (Fig. 3a and Extended Data Fig. 6a-b). Prior studies have also reported increased 298 
microglia in IDH-mutant tumors4,18,25,32. However, we did not detect any significant difference in 299 
the composition of cell identity programs in our datasets, with the exception that the monocyte 300 
program was more common in IDH-WT tumors. Although the CXCR4 program manifests across 301 
multiple myeloid cell types, it has some overlapping markers with microglia that could make it 302 
difficult to distinguish from microglia using technologies that rely on limited marker genes.  303 

These distinctions in myeloid program composition could be a function of the mutant IDH enzyme 304 
or, alternatively, could reflect associations with tumor grade, given that IDH-mutant cohorts 305 
include many low grade tumors. In support of the latter, we find that immunomodulatory program 306 
composition strongly correlates with grade, with the myeloid composition of Grade 4 IDH-mutant 307 
tumors closely approximating Grade 4 IDH-WT tumors (Fig. 3b-c, Extended Data Fig. 6c). 308 
Although all IDH-WT gliomas are now designated as grade 4 due to their similarly poor patient 309 
outcomes8, their histopathological grade was previously incorporated into diagnostic criteria. 310 
Examination of a cohort scored with this prior classification revealed that the myeloid program 311 
composition of low-grade IDH-WT tumors mirrored that of low-grade IDH-mutant tumors(Fig. 3d). 312 
Hence, our data suggest that purported differences in the myeloid compartment of IDH-mutant 313 
and IDH-WT are more likely to reflect tumor grade. 314 

Focusing on tumor grade, we found that myeloid cells in high-grade tumors were also enriched 315 
for our G2-M cycling program (Fig. 3e). Unexpectedly, a high proportion of these cycling cells 316 
expressed the Scavenger Immunosuppressive program (Fig. 3f-g). The Scavenger 317 
Immunosuppressive program was the only program enriched for co-expression of cycling 318 
programs, whereas the neutrophil and IL1B Inflammatory programs demonstrated minimal 319 
overlap with cycling programs.  320 

These results demonstrate that observed differences in the myeloid states in glioma are 321 
influenced by grade rather than IDH mutation, and that these differences largely involve 322 
differential expression of the immunomodulatory activity programs. This provides a more granular 323 
understanding of observations seen in smaller cohorts or with technologies that rely on limited 324 
state markers such as multiplex fluorescence and flow cytometry. It also points to the tumor 325 
microenvironment as a major driver of the immunomodulatory programs. 326 
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 327 

Fig. 3: Immunomodulatory program composition varies with histopathological tumor grade. a) 328 
Boxplot exhibiting the average usage of the indicated activity or identity programs. *FDR-corrected Wilcoxon Rank-329 
Sum Test p-value < 0.01. b) Quadrant plot exhibiting myeloid cells colored the grades of the associated tumors. c) 330 
Boxplot showing the average usage of each program by histopathological tumor grade. d) Boxplot showing module 331 
score calculated per tumor in the TCGA LGG-GBM dataset. Score derived using CXCR4 program gene set. e) Boxplot 332 
similar to (c) but with cycling program usage. f) Boxplot showing the odds ratio of cycling in each myeloid cell state, 333 
calculated independently for each tumor. ‘Cycling’ and program defined by a cell usage >20% of both cycling and 334 
indicated program. Increased odds *p<0.05 g) Quadrant plot illustrating cycling cell distribution among programs. 335 

 336 
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Spatial transcriptomics associates immunomodulatory programs with tumor niches 337 

To investigate potential microenvironmental drivers of the immunomodulatory myeloid programs, 338 
we integrated our scRNA-seq data with 10X Visium spatial transcriptomic data44. We conducted 339 
and combined two independent analyses to relate our cellular programs to tumor niches (Fig. 4a). 340 
First, we again leveraged cNMF to identify spatial gene programs in an unbiased manner that 341 
were differentially expressed across the 68,830 50 µm pixels in the 23 spatial sections (see 342 
Methods). This distinguished six prominent regional expression programs (“niche programs”) that 343 
included gray and white matter structural niches, hypoxic and vascular metabolic niches, a niche 344 
composed of proliferative cancer cells enriched for genes expressed by OPC-like and NPC-like 345 
malignant cells (Proliferative Cancer), and an inflammatory niche composed of immune cells and 346 
reactive astrocytic genes (Inflammatory) (Extended Data 7a). In parallel, we estimated the cellular 347 
content of each 50 µm pixel by integrating our previously defined scRNA-seq programs (see 348 
Methods, Supplemental Table 2) with the spatial data using Robust Cell Type Decomposition 349 
(RCTD)13. Plotting these data on individual tumor sections revealed clear niche-specific patterns 350 
in myeloid programs, cancer cell programs, and other cell types within the tumor (Fig. 4b).  351 

To collate recurrent spatial relationships systematically, we computed intra-pixel correlations 352 
between cellular programs and niche programs across all 10X Visium tumor sections. This 353 
revealed robust spatial associations between niche programs (niche-niche), between niche and 354 
cell programs (niche-cell), and between different cell programs (cell-cell) (Extended Data 7b-d). 355 
We derived a single overarching cell-niche map based on the niche-niche and niche-cell 356 
associations that showcased these spatial relationships (Fig. 4c). 357 

First, consideration of niche-niche relationships (Extended Data Fig. 7b) reveals a recurrent tumor 358 
architecture where a hypoxic niche is flanked by an inflammatory niche, which in turn is adjacent 359 
to a proliferative cancer niche that then runs into white matter, consistent with the clinical 360 
observation that most gliomas are present in white matter45. A vascular niche straddles the 361 
hypoxic niche and the inflammatory niche, indicative of vascular proliferation in response to 362 
hypoxia and potentially representing an entry point for immune infiltration. These patterns are 363 
generally consistent with recent reports46.  364 

Second, our assessment of cell-niche relationships (Extended Data Fig. 7c) indicated that the 365 
hypoxic regions surrounding necrotic tissue also appear to organize coincident and adjacent 366 
cellular programs. Malignant programs were layered around hypoxic regions, with MES2 367 
expressed within the hypoxic niche surrounded by MES1 and AC-like program layers in the 368 
Inflammatory niche (Fig. 4b-c). The OPC-like and NPC-like cancer programs were largely 369 
excluded from the hypoxic niche and expressed in the proliferative cancer niche.  370 

Hypoxia was similarly organizing for the myeloid cell programs. The Scavenger 371 
Immunosuppressive program was almost exclusively found in hypoxic regions, while the C1Q 372 
Immunosuppressive program was excluded from hypoxic niches and instead enriched in the 373 
surrounding inflammatory and vascular niches (Fig. 4b-c). The IL1B Inflammatory program was 374 
associated with hypoxic and Inflammatory niches, while the CXCR4 Inflammatory program was 375 
enriched in the Inflammatory and Vascular niches. Microglia were excluded from hypoxic niches, 376 
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but found throughout the rest of the tumor field. These analyses indicate that each myeloid 377 
program has its own tumor niche.  378 

Finally, we used a spatial regression model (see Methods) to assess cell-cell spatial relationships. 379 
Our assessment highlighted multiple spatial interactions involving the Scavenger 380 
Immunosuppressive program (Extended Data Fig. 7d,e). This program is enriched for spatial 381 
interactions with nearly every cell program occupying the hypoxic or vascular niche (Extended 382 
Data Fig. 7e). In particular, we noted correlations between the Scavenger Immunosuppressive 383 
and the MES2, MES1, and monocyte programs. We validated these connections orthogonally 384 
using our complete scRNA-seq dataset, which revealed that average usage of these associated 385 
programs was highly correlated with usage of the Scavenger Immunosuppressive program across 386 
tumors (Extended Data Fig. 7f). Overall, these data suggest that the Scavenger 387 
Immunosuppressive program may be a key determinant of the tumor microenvironment in glioma. 388 

Taken together, our findings propose a consistent and structured tumor architecture across 389 
gliomas, with myeloid cell programs demonstrating spatially restricted expression patterns that 390 
are associated with and potentially instructed by tumor microenvironmental cues. In particular, 391 
metabolic factors (e.g., hypoxia, vascular), proximal cell states (e.g., MES2), and brain structure 392 
(e.g., gray matter, white matter) appear to direct alternate myeloid programs. This raises the 393 
interesting corollary that the extent of tumor resection dictates which microenvironments and 394 
associated myeloid cell programs remain following surgery, and that incomplete resection of 395 
hypoxic regions results in increased presence of the Scavenger Immunosuppressive program. 396 
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 397 
Fig. 4: Spatial transcriptomics associates immunomodulatory programs with tumor niches. a) 398 
Schematic illustrates the dual analysis approach for spatial transcriptomics samples: cNMF defines broad 399 
transcriptomic niches, and RCTD demultiplexes cell content by pixel based on scRNA-seq signatures. The middle and 400 
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right plots were generated in an identical manner as those in Fig. 4b. b) Scatterpie plot (left) of 10X Visium section. 401 
Each pie chart represents a pixel. Scatter plot (right) of the same section. Colors show the RCTD-predicted pixel 402 
proportions for adjacent cell types. c) Cell-niche map illustrates conserved spatial relationships of tumor cell types and 403 
their ties to transcriptomic niches across spatial transcriptomic samples. 404 

Dexamethasone drives the C1Q Immunosuppressive program 405 

In addition to tumor niches, we asked if clinical therapies might have an effect on myeloid cell 406 
states. Dexamethasone is a potent corticosteroid routinely administered to glioma patients to 407 
reduce tumor-induced vasogenic edema in the brain pre- and post-operatively. Given that 408 
dexamethasone is also used to suppress inflammation in many diseases, we postulated it may 409 
be influencing myeloid cell programs. Therefore, we first tested if the dose of dexamethasone was 410 
significantly associated with any of our myeloid programs. In the MGB and McGill cohorts where 411 
treatment information was accessible to us, we find that the C1Q Immunosuppressive program is 412 
specifically and significantly associated with increasing steroid dose (Fig. 5a-b). Subsequently, 413 
we leveraged our MGB cohort dataset to contrast the myeloid profiles of patients treated with and 414 
without dexamethasone. This unique cohort included multiple patients who were not treated with 415 
dexamethasone due to concerns that the agent might hinder response to post operative 416 
immunotherapy trials. We find a specific and statistically significant association between use of 417 
dexamethasone and the C1Q Immunosuppressive program when controlling for the confounding 418 
effect of hypoxia (Fig. 5c).  419 

Given that both dexamethasone and myeloid cells can originate from blood, we next investigated 420 
whether dexamethasone also triggers suppressive phenotypes in circulating monocytes. We 421 
turned to our scRNA-seq data of peripheral blood of glioma patients. Stratifying patients by 422 
dexamethasone treatment, we again found one program in peripheral monocytes specifically 423 
increased in patients treated with dexamethasone (Fig. 5d). This program includes CD163 and 424 
other markers found in the C1Q Immunosuppressive program, although it was not completely 425 
overlapping, raising the possibility that this is a precursor program in the periphery to the program 426 
that develops in myeloid cells in the tumor. We also observed a positive correlation between the 427 
average expression of the dexamethasone-related program in circulating monocytes and the 428 
average expression of the C1Q Immunosuppressive program in tumor-associated monocytes 429 
from the same patient (Fig. 5e).  430 

To test whether dexamethasone can directly drive expression of the C1Q Immunosuppressive 431 
program in myeloid cells, we turned to our tumor organoid systems. We focused initially on 432 
endogenous tumor myeloid cells in organoids from recently resected tumors that maintained the 433 
original tumor microenvironment, including myeloid cells. Dexamethasone specifically induced 434 
the C1Q Immunosuppressive program per scRNA-seq (Fig. 5f). CD163, a surface protein marker 435 
associated with both of our immunosuppressive programs, was also increased (Fig. 5g,h). We 436 
also modeled infiltration of peripheral myeloid cells into the tumor by adding peripheral human 437 
monocytes to tumor organoids devoid of immune cells. Dexamethasone again strongly induced 438 
expression of the C1Q Immunosuppressive program in myeloid cells that infiltrated into the 439 
organoid (Fig. 5i,j).  440 
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Mirroring the real-world scenario where patients receive corticosteroids preoperatively, only to be 441 
discontinued post-surgery, we investigated whether dexamethasone-induced changes were 442 
reversible. We treated myeloid cells infiltrating tumor organoids for 2 days with dexamethasone 443 
and then washed out the drug from the wells and waited 2 weeks. Importantly, we found C1Q 444 
immunosuppressive program expression did not reverse even 2 weeks after drug withdrawal (Fig. 445 
5k and Extended Data Fig. 8). This dexamethasone-induced state change was only partially 446 
rescued by addition of high level IFN-γ.  447 

Altogether, these data indicate that dexamethasone drives the C1Q Immunosuppressive program 448 
in gliomas in a largely irreversible manner and may also create a pool of circulating suppressive 449 
monocytes that subsequently infiltrate tumor.  450 
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Fig. 5: Dexamethasone drives the C1Q Immunosuppressive program. a) Dot plot displays the linear 452 
regression coefficient between each myeloid program's average usage per sample and the respective patient's pre-453 
surgery daily dexamethasone dose, using only IDH-WT samples. b) Scatterplot of mean C1Q Immunosuppressive 454 
program with least-square linear regression line. c) Boxplot displays the average usage of programs stratified by use 455 
of dexamethasone in IDH-WT tumors with low hypoxic program usage in the MGB cohort. d) Boxplot of the percent of 456 
myeloid cells with the indicated peripheral myeloid programs in peripheral myeloid cells from patients with gliomas. e) 457 
Scatterplot illustrates the average C1Q Immunosuppressive usage in myeloid cells of tumor samples versus average 458 
Immunosuppressive Monocyte usage in related peripheral myeloid cells. Only tumors with low hypoxic program usage 459 
are considered. f) Schematic (left) and bar graph (right) of the percentage of myeloid cells expressing the C1Q 460 
Immunosuppressive program. P-value obtained using Fisher's Exact test. * p-value <0.05, all others have p-value > 461 
0.2. g) Immunofluorescence image of a GBO with intact endogenous TME co-cultured for 7 days with DMSO or 100 462 
nM dexamethasone. h) Quantification of marker positive cells in sectioned organoids. Each dot represents an organoid 463 
in the condition. Student’s T-test p<0.05. i) Schematic (left) and bar plot of flow cytometry results from experiment. Error 464 
bars St. Dev. j) Representative section of organoid and infiltrated monocytes when treated with dexamethasone. k) 465 
(left) Schematic of experimental design. (right) Flow cytometry results. Error bars St.Dev. Unless otherwise indicated 466 
*FDR-corrected Wilcoxon Rank-Sum Test p-value < 0.05. 467 

Clinical correlates with immune suppression and patient outcomes 468 

Finally, we sought to relate our glioma-associated myeloid programs to clinical correlates of 469 
immunity and outcome. Focusing first on infiltrating T cells (see Methods, Supplemental Table 2), 470 
we found that a majority expressed signatures consistent with Naive/Memory T-cells (65%), while 471 
25% resembled Effector T-cells and another 7% T regulatory cells (T-reg) (Extended Data Fig. 472 
9a). We did not detect a prominent program for exhausted T-cells, suggesting that this population 473 
is rare in our cohort. Given their established links to myeloid cells and immunosuppression47–49, 474 
we related T-reg proportions to our programs. Tumors with high T-reg frequency were enriched 475 
for myeloid cells expressing Scavenger and C1Q Immunosuppressive programs, but were 476 
depleted of CXCR4 Inflammatory-expressing cells (Fig. 6a). We also detected a spatial 477 
association between T-reg and the C1Q Immunosuppressive program (Extended Data Fig. 7d-478 
e), suggesting that T-reg cells reside in close proximity to C1Q-expressing myeloid cells. In 479 
contrast, T-cells with Naive/Memory expression signatures were spatially associated with hypoxic 480 
niches and the Scavenger Immunosuppressive program (Fig. 4c, Extended Data Fig. 7c). These 481 
results suggest that the respective immunosuppressive myeloid programs distinctly impact T-cell 482 
states and the immune microenvironment in gliomas.  483 

We next investigated whether our myeloid programs predict response to immunotherapy. A recent 484 
scRNA-seq study of 12 glioma patients treated with neoadjuvant PD1 blockade identified a 485 
population of SIGLEC9-expressing macrophages that accumulated in non-responsive tumors50. 486 
Reanalysis of these data using our cNMF framework revealed that SIGLEC9 positive cells were 487 
heterogeneous in their expression of our immunomodulatory programs (Extended Data Fig. 9b). 488 
Notably, only the SIGLEC9-positive cells expressing the Scavenger Immunosuppressive program 489 
were enriched in non-responders (Extended Data Fig. 9c), and that usage of the Scavenger 490 
Immunosuppressive program on its own was more closely associated with non-responding 491 
gliomas than SIGLEC9 alone (Fig. 6b-c, Extended Data 9b,d), indicating this immunosuppressive 492 
program may more fully explain the immunotherapy resistance phenotype than SIGLEC9 alone. 493 
Indeed, there was a striking difference in overall distribution of our immunomodulatory program 494 
usage in cells in responsive versus non-responsive tumors (Fig. 6b). This analysis highlights a 495 
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potentially critical role for this myeloid program in suppressing T-cell activation and/or other key 496 
determinants of response to checkpoint therapy.  497 

Finally, we asked whether any of our four myeloid cell programs were associated with survival. 498 
We used the top genes of our myeloid programs to score each tumor and adjusted the results 499 
based on its estimated myeloid content (see Methods). To avoid confounding effects of tumor 500 
grade and IDH mutation status, we limited our analysis to IDH WT glioblastoma patients. We 501 
found that high expression of the C1Q and Scavenger Immunosuppressive programs was 502 
significantly associated with worse overall patient survival (Fig. 6d), whereas no other myeloid 503 
programs were significant, suggesting that immunosuppressive myeloid microenvironments may 504 
be detrimental to survival even in the absence of immunotherapy.  505 

In summary, our analysis of clinical specimens and correlates suggests that the C1Q and 506 
Scavenger Immunosuppressive myeloid programs may shape T-cell phenotypes in the tumor 507 
microenvironment and, moreover, impact patient outcome and response to immunotherapy. 508 
While we cannot rule out that the associations may be partially correlative, prior literature and our 509 
spatial findings support causal roles for the myeloid programs in shaping the glioma 510 
microenvironment and these functional outcomes.   511 
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 512 

Fig. 6: Immunosuppressive programs associated with immunotherapy resistance and worse 513 
overall survival. a) Dot plot displaying the odds ratio for high program expression in tumors with high T-reg 514 
abundance. b) Quadrant plot of cells from Mei et. al., plotted based on expression of our immunomodulatory activity 515 
programs, highlighting cells in tumors with response or nonresponse to immunotherapy. c) Boxplot of per tumor 516 
calculation of SIGLEC9-positive cells or Scavenger Immunosuppressive program usage > 20%. d) Kaplan-Meyer 517 
curve of overall survival by combined immunosuppressive program expression. P-value calculated using the Cox 518 
proportional hazards regression model. e) Summary figure.  519 

DISCUSSION 520 

Harnessing the power of the immune system is arguably the most promising path to a cure for 521 
glioma patients. However, therapeutic development has been hindered by the unique immune 522 
microenvironment of brain tumors, which are densely infiltrated with myeloid cells and depleted 523 
of T cells. Here we combined single-cell and spatial genomic technologies for more than 100 524 
tumors, a complementary computational framework, clinical data, and functional experimental 525 
models to create foundational insights into myeloid cells in glioma. We detail the spectrum of 526 
glioma-associated myeloid cell types, their developmental origins, and the immunomodulatory 527 
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programs that they express. It answers key biological questions and should catalyze basic and 528 
translational efforts going forward.   529 

Our study highlights the plasticity of glioma-associated myeloid cells and the impact of the local 530 
microenvironment on their phenotypes. By decomposing scRNA-seq data of each cell into 531 
unbiased, discrete gene expression programs using cNMF, we disentangle cell identity from cell 532 
activity. This change in approach unveiled previously obscured biological insights. Although 533 
myeloid cells have typically been classified by cell type or cell ontogeny, we found neither to be 534 
major determinants of myeloid cell activity in gliomas. Rather, different myeloid cell types, 535 
including microglia, macrophages, and monocytes, can each engage the same set of 536 
immunomodulatory activity programs. Activation of each of these four programs appears to be 537 
largely determined by unique drivers in the microenvironment (Fig. 6e). The immunosuppressive 538 
programs are independently associated with either hypoxic regions in the tumors (Scavenger) or 539 
dexamethasone treatment (C1Q). The CXCR4 Inflammatory program is associated with low 540 
grade lesions where interactions with non-malignant neural cell types are prevalent, while the 541 
IL1B Inflammatory program appears to be a default program in response to an inflammatory 542 
microenvironment and itself seems to recruit additional myeloid cells into the tumor. 543 

Further indication of myeloid cell plasticity emerged from our inferential analysis of developmental 544 
origins on the basis of mitochondrial DNA mutations. This analysis revealed that blood-derived 545 
monocytes can adopt microglia-like expression states in tumors and that both blood-derived and 546 
resident cells can activate the full range of immunomodulatory programs. Moreover, we found 547 
that peripheral blood monocytes can rapidly differentiate and activate the different 548 
immunomodulatory programs when applied to glioma organoids. These findings underscore the 549 
potency of the tumor microenvironment for programming the functional phenotypes of myeloid 550 
cells, and stress the need for caution when inferring cellular origin from markers or immune 551 
function on the basis of myeloid cell type. They provide incentive to develop an updated model of 552 
myeloid cell development and phenotypes in the injured human brain.  553 

Based on our findings, we propose the following framework for glioma-associated myeloid cells, 554 
which may also be applicable to brain metastases and potentially other cancer types. First, 555 
myeloid states are composed of superimposable identity and activity programs and should be 556 
characterized and annotated accordingly. Second, myeloid cells exhibit striking developmental 557 
and phenotypic plasticity. Tumor niches potently influence their differentiation trajectories and 558 
immunomodulatory programs. Third, myeloid immunomodulatory programs shape the overall 559 
immune state of gliomas and, as such, are associated with patient outcome and response to 560 
immunotherapy. Fourth, the immunomodulatory programs and potentially the underlying cell 561 
states can be modulated by clinical and experimental interventions. Finally, our analyses suggest 562 
that therapeutic interventions should target specific immunomodulatory programs rather than 563 
indiscriminate myeloid cell targeting. Accordingly, our framework for systematic annotation and 564 
characterization of myeloid states in tumors and experimental models can catalyze and 565 
harmonize the study of myeloid programs and interventions, including studies that aim to 566 
modulate the immune microenvironment for therapeutic gains. In addition to its critical mass of 567 
data and program definitions, our resource includes a cloud-based pipeline and portal for 568 
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exploration of our data, and for the integration and analysis of additional datasets within this 569 
framework. 570 

This framework complements and builds on prior studies that provided evidence for the diversity 571 
and plasticity of glioma-associated myeloid cell states4,7,18–21,23–25, and hinted at the convergence 572 
of myeloid programs in response to the microenvironment18,51. In particular, a bulk RNA-seq 573 
analysis of sorted cell populations by Klemm and colleagues18 revealed that microglia acquired 574 
monocyte-derived macrophage features in IDH WT tumors and brain metastases, while 575 
monocyte-derived macrophages acquired microglia features in IDH-mutant gliomas. The 576 
importance of microenvironment was also highlighted in seminal work finding that resident 577 
myeloid phenotypes in non-cancerous tissue are shaped by their local microenvironment more 578 
than origin51. However, the field has been slowed by an inability to effectively disentangle cell type 579 
from activity and by limited sample sizes, with prior studies coming to different conclusions in 580 
several areas. Multiple studies have concluded that IDH mutation directly drives differences in 581 
myeloid cell phenotype4,18,21, while our analysis suggests this is largely driven by the 582 
microenvironment associated with tumor grade. Other studies found differences in myeloid 583 
phenotype with recurrence23, which we do not see in our larger cohort. Finally, while most studies 584 
focus on origin or cell type as the distinguishing features of myeloid cell states18,23–25, we show 585 
that specific immunomodulatory programs are shared across different myeloid cell types in 586 
response to the tumor microenvironment, regardless of origin. This convergence of immune 587 
phenotypes is highly significant for glioma biology and treatment. 588 

We recognize that our study has significant limitations and leaves critical questions unaddressed. 589 
Our data capture the diversity of myeloid cells at the time of tumor resection, but cannot appreciate 590 
their temporal dynamics, the stability of the myeloid cell programs in a given cell, or the rate of 591 
myeloid cell turnover in glioma. These fundamental questions regarding myeloid cell plasticity are 592 
clinically important and particularly timely given recent mouse modeling studies suggesting that 593 
myeloid cell lifespan may be extended in brain tumor niches52. Further study is also needed to 594 
define the specific signaling molecules that drive myeloid cell invasion, differentiation, and 595 
immunomodulatory program usage in gliomas. Although our study hints at the potential of 596 
therapeutic interventions to modulate glioma-associated myeloid states and the broader immune 597 
environment, their rational development will require insights into these signaling mechanisms and 598 
the downstream transcriptional and epigenetic regulators that create and maintain the 599 
immunomodulatory programs. A clearer understanding of these myeloid programs and 600 
determinants will require definition and integration of astrocytes, endothelial cells, pericytes and 601 
other immune and non-immune cell types in the glioma ecosystem53. 602 

In conclusion, we highlight potential clinical implications. Most addressable is the C1Q 603 
Immunosuppressive program, which is irreversibly driven by dexamethasone. This effect likely 604 
impacts immunotherapy clinical trials, as most permit some level of dexamethasone use. It also 605 
highlights the importance of creating alternatives to dexamethasone for symptom management. 606 
Finally, our data nominates the Scavenger Immunosuppressive program as a target for future 607 
work given its associations with immunotherapy resistance and poor outcomes. We hope that 608 
these foundational datasets and framework can harmonize and catalyze the study of brain tumor 609 
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myeloid cells and pave the way for therapeutic strategies designed to alter tumor 610 
microenvironments to increase immunotherapy efficacy. 611 

Extended Data 612 

613 
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Extended Data Fig. 1: Identification of consensus myeloid programs and validation a) Schematics of 614 
the computational pipeline for the identification of the recurrent myeloid programs across the scRNA-Seq libraries of 615 
the three discovery cohorts. b) UMAP of the broad annotation of all cells in the MGB cohort according to the key. c) 616 
UMAP demonstrating the presence (black) or absence (gray) of copy number variation events in all cells of the MGB 617 
cohort tumors. d) Heatmaps demonstrating the expression of genes in recurrent myeloid programs (rows) by cell 618 
(column) grouped by cell type. Cell usage of myeloid identity programs was used to define myeloid cell type e) 619 
Boxplots exhibiting the percentage of cells by sample expressing the recurrent myeloid programs indicated on the left 620 
of the heatmap across the validation cohort. 621 

 622 

 623 

Extended Data Fig. 2: Direct comparison of Louvain clustering and cNMF programs a) UMAP exhibiting 624 
the Louvain clusters of batch-corrected singlet myeloid cells of the MGB cohort. b) UMAPs of the myeloid cells of the 625 
MGB cohort demonstrating the usage of indicated programs at the top of each UMAP. c) (left) Annotations of Louvain 626 
clusters in (a) based on standard differential gene expression analysis of clusters. (Center) Name and frequency of 627 
most frequent cell type in the Louvain cluster as annotated by cNMF identity programs. (Right) bar chart of the percent 628 
of cells in the Louvain cluster with a given activity program as top program used in that cell, based on cNMF programs. 629 

 630 
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 631 

 632 

Extended Data Fig. 3: Identification and comparison of peripheral myeloid cNMF program to tumor 633 
cNMF programs. (Left) Schematic of peripheral myeloid cell program identification. (Right) Dot plot of Jaccard 634 
Index between peripheral myeloid cNMF programs and tumor cNMF programs. 635 
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 636 

Extended Data Fig. 4: Activity program usage among myeloid cell types. a) Stacked bar plots of absolute 637 
number of cells with activity program usage per myeloid cell type. b) Horizontal bar chart of percent of cell type with 638 
>20% activity program usage. c) Enrichment plot demonstrating the enrichment level of the four immunomodulatory 639 
programs (left) in the shown identities (above).  d) Schematics demonstrating the inclusion of the McGill Validation 640 
cohort in all subsequent analyses. e) Quadrant plots in which the color represents the usage level of the indicated 641 
immunomodulatory program. f) Quadrant plot in which the color represents the cohort from which the myeloid cell 642 
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comes. The position of each dot represents the difference in the usage of immunosuppressive and inflammatory 643 
programs by that cell (the upper part of the plot is more inflammatory, vs. the lower part is more immunosuppressive). 644 

 645 

Extended Data Fig. 5: Peripheral monocytes differentiate to express microglia markers in tumor 646 
microenvironment, which is potentiated by interferon a) Representative immunofluorescence images of 647 
organoid sections from experiments related to Fig. 2d,e. b) Quantification of images in (a). c) Flow cytometry results of 648 
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percent of CD45+ cells infiltrating into the organoids. Results are from multiple organoids mixed together for each 649 
condition. 650 

 651 

 652 

Extended Data Fig 6: Program composition varies with histopathological tumor grade more than 653 
IDH-mutation status. a) Box plot exhibiting the program module scores in tumors of the TCGA cohort. Each dot 654 
represents a tumor. * FDR-corrected Wilcoxon Rank-Sum Test p-value < 0.05. b) Quadrant plot exhibiting the IDH 655 
mutation status of the tumors from which the myeloid cells come. c) Quadrant plots exhibiting the grade of the tumors 656 
from which the myeloid cells come. Black denotes that the myeloid cell comes from a tumor with the grade displayed 657 
at the top of each quadrant plot, whereas grey indicates not that grade. 658 
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 659 
Extended Data Fig. 7: Spatial associations of cells and niches in glioma a) Heatmap shows gene (rows) 660 
expression across all pixels (columns) in the cohort of spatial transcriptomic samples. Top 40 genes of each niche 661 
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program are shown. Gene expression data is cell normalized, then log normalized and scaled by variance. b) Dot plot 662 
displays the spatial proximity enrichment score between niche programs, calculated independently per sample (see 663 
Methods for details). Dot size denotes the proportion of samples showing a significant correlation (p-adj < 0.01), while 664 
color signifies a positive (red) or negative (blue) correlation. c) Dot plot represents intra-pixel correlation between 665 
niche and cell type scores, calculated independently for each sample. Dot size shows the proportion of samples with 666 
a statistically significant correlation (p-adj<0.01), while color indicates a positive (red) or negative (blue) correlation. d) 667 
Dot plot displays the spatial proximity enrichment score between cell programs, calculated independently per sample. 668 
e) Network graph illustrates recurrent spatial relationships of tumor cell types across spatial transcriptomic samples. 669 
Nodes denote cell types, with edges marking significantly enriched proximities between cell types, observed in at 670 
least 40% of samples with an average enrichment score of at least 0.1. Edge width reflects this average score. f) 671 
Scatter plot exhibits the mean Scavenger Immunosuppressive program score (x-axis) versus the MES2 or MES1 672 
cancer program score (y-axis) in the scRNA-seq dataset. Linear least square results are shown (line, and p-value). 673 
 674 

 675 
Extended Data Fig. 8: Additional patient organoid models show irreversible phenotype. Flow 676 
cytometry results with organoids from multiple patients show the same phenotype as Fig. 5k. Bottom row shows 677 
ICAM1, a marker of the IL1B Inflammatory program.  678 
 679 
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 680 

Extended Data Fig. 9: Comparison of SIGLEC9 and Immunomodulatory programs in relation to 681 
immunotherapy resistance. a) Boxplot of percent of T cell state per tumor from our scRNA-seq datasets. b) 682 
Quadrant plot of cells from Mei et. al., plotted based on expression of our immunomodulatory activity programs, 683 
highlighting SIGLEC9 expression heterogeneity. c) Boxplot of SIGLEC9-positive cells from Mei et. al. that were 684 
grouped by expression of our immunomodulatory programs, then divided by corresponding tumor response to 685 
immunotherapy. Average per tumor plotted.  d) Boxplot of per tumor calculation of SIGLEC9-positive cells or 686 
Scavenger Immunosuppressive program usage > 20%.  687 
 688 
 689 
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METHODS 724 
 725 
LEAD CONTACT AND MATERIALS AVAILABILITY 726 
Further information and request for resources and reagents should be directed to Bradley E. 727 
Bernstein (bradley_bernstein@dfci.harvard.edu)  728 
 729 
Data and Code Availability 730 
The raw counts and processed dataset of both the discovery and validation cohort are available 731 
at the single-cell portal with study ID: SCP2389 at:  732 
https://singlecell.broadinstitute.org/single_cell/study/SCP2389/programs-origins-and-niches-of-733 
immunomodulatory-myeloid-cells-in-human-gliomas 734 
 735 
Scripts and codes used to generate all the data in the study are available at:  736 
https://github.com/BernsteinLab/Myeloid-Glioma 737 
 738 
An online tool to calculate usages of the presented consensus myeloid programs for glioma-739 
associated myeloid cells from other experiments can be found at: 740 
https://consensus-myeloid-program-calculator.shinyapps.io/shinyapp/  741 
This tool enables users to upload their own gene expression matrix from scRNA-seq data and 742 
output consensus program usages for each cell.  743 
 744 
Human Subjects 745 
Adult male and female patients at Massachusetts General Hospital or Brigham and Women’s 746 
Hospital (MGB) provided preoperative informed consent to take part in the study in all cases under 747 
the approved Institutional Review Board Protocol DF/HCC 10-417. Patients’ clinical 748 
characteristics are summarized in (Table S1). Patients in other cohorts were consented according 749 
to their published methods1–3. Previously unpublished patient data from McGill University was 750 
collected as reported with other tumors from McGill University4.  751 
 752 
Primary tumor processing for Seq-Well and glioma organoids (GBOs) 753 
Fresh tumor samples were collected directly from the operating room at the time of surgery and 754 
presence of glioblastoma was confirmed by frozen section. Samples were dissected into small 755 
pieces and mixed. For samples with enough material, we divided the mixed tumor pieces, with 756 
part of them going towards single cell dissociation and part going towards GBO generation.  757 
 758 
Single cell dissociation and Seq-Well prep 759 
For the MGB cohort, minced tissue pieces were mechanically and enzymatically dissociated using 760 
the Tumor Dissociation Kit, human according to manufacturer instructions and the GentleMACS™ 761 
Octo Dissociator with Heaters (Miltenyi Biotec) using custom settings. The single cell suspension 762 
was then depleted of dead cells and debris using magnetic-activated cell sorting (MACS, Dead 763 
Cell Depletion Kit, Miltenyi Biotec). Cells were then distributed drop-wise onto a Seq-Well 764 
microwell array preloaded with mRNA capture beads and processed as described previously5. 765 
For the other cohorts, the samples were processed as previously described1–3. 766 
 767 
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Creation and maintenance of GBOs 768 
Minced tissue pieces were further dissected using two scalpel until tissue pieces were 1-2 mm in 769 
diameter. These were washed, further processed, and maintained according to the detailed 770 
protocol by Jacob et. al.6. 771 
 772 
Patient PBMC/Monocyte processing 773 
Patient PBMCs were collected at the time of surgery and isolated using SepMate-15 tubes 774 
(StemCell Technologies) and Lympholyte-H (Cedarlane) according to manufacturer’s 775 
instructions. Cells were either directly processed for Seq-Well as above, or were enriched for pan-776 
myeloid cells using CD11b beads (Miltenyi Biotec, Cat#: 130-097-142) on Miltenyi magnet 777 
according to the manufacturing protocols and then processed for Seq-Well. CD11b+CD45+ purity 778 
was checked by flow cytometry (purity>90%).  779 
 780 
GBO perturbation and single-cell read-out methods 781 
GBO perturbations 782 
For perturbation experiments, GBOs were pipetted into ultra-low adherence round-bottom 96-well 783 
plates (Corning #7007) at 1 GBO per well. GBOs were plated in 100 uL of GBO media. Small 784 
molecules were then added in an additional 100 uL of media at 2x concentration. Media was 785 
changed every 2-3 days by removing 100 uL and replacing it with 100 uL of fresh media with the 786 
perturbation. Depending on the experiment, each condition had 6-12 GBOs per condition to 787 
account for heterogeneity among GBOs. For experiments with flow cytometry or scRNA-seq as a 788 
read out, multiple GBOs were grouped together in replicates per condition and then dissociated 789 
to single cells together.  790 
 791 
Myeloid-GBO co-culture 792 
Human  CD11b+CD45+ cells isolated from tumor or donor patient PBMCs, as described above, 793 
were aliquoted and frozen down at 5x10^6-1x10^7 cells per ml per vial. Before co-culturing with 794 
GBOs, myeloid cells were gently thawed and washed in warm myeloid cell media (ImmunoCult™-795 
SF Macrophage Differentiation Medium - using base media with only, M-CSF 50 ng/mL | 796 
STEMCELL Technologies, Cat. 10961), and plated in a 24-well low-attachment plate (Corning) to 797 
recover for 30 minutes in the 37C CO2 incubator. Plates were placed on an orbital rotator at 120 798 
rpm with 2.5 x 10^6 maximum cells per well to avoid cell attachment and to maintain monocyte 799 
morphology. 10,000-50,000 monocytes, depending on the experiment, were then added to each 800 
GBO well in 100 uL myeloid cell media with a small molecule perturbation when applicable. Media 801 
was changed every 2-3 days by removing 100 uL and replacing it with 100 uL of fresh media (1:1 802 
mix of GBO media and myeloid cell media) with the perturbation when applicable.  803 
 804 
Dissociation of GBOs 805 
In brief, all GBOs within each experimental replicate were grouped together in a 1.7 mL Eppendorf 806 
tube, media was aspirated, and GBOs were washed two times with 1 mL media to remove small 807 
molecules and/or cells. GBOs were then dissociated to single cells using dissociation media from 808 
the Miltenyi tumor dissociation kit mixed 2:1 with Accutase in the 1.7 mL tubes. These were placed 809 
at 37C and the mechanically dissociated every 5-10 min via pipetting up and down until there was 810 
a homogeneous single cell mixture. Cells were passed through a 40 um filter and then used for 811 
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downstream assays. Cells were processed for SeqWell as described above or analyzed by flow 812 
cytometry as described below. 813 
 814 
Flow cytometry 815 
Flow cytometry was done based on a prior protocol7. In brief, an antibody cocktail was made by 816 
1:1 ratio of Brilliant Stain Buffer(BD Horizon,566349) and PBS, and then antibodies/dyes were 817 
added. Single cell suspensions were washed by PBS+0.5% BSA in 1.5ml Eppendorf tubes or 96-818 
well U bottom plates. Cells were pelleted by centrifugation at room temperature, 300 x g for 5 819 
mins. After removing the washing buffer, cells were resuspended in 100ul staining cocktails via 820 
pipetting up and down ~10 times. Plates or tubes were covered to avoid light and stained in a 821 
dark at room temperature for 20-25 mins. Cells were washed by PBS+0.5%BSA, centrifuged at 822 
room temperature, 300 x g for 5 mins. Cell pellets were resuspended in 200 ul of PBS+0.5%BSA. 823 
Flow cytometry was processed on BD LSRFortessa X-20 according to the manufacturing 824 
procedure. UltraComp eBeads(Invitrogen, 01-3333-42) are used to pre-annotate the 825 
compensation. FlowJo V10 is used to process data analysis. Antibodies used listed below.  826 
 827 
Histological assessment of GBO experiments 828 
GBOs were fixed in 4% formaldehyde for 30 min and then washed with DPBS and left in a 30% 829 
sucrose solution overnight to dehydrate the tissue. The organoids were then embedded in OCT 830 
(Sakura Tissue Tek) and frozen via isopropanol bath. The tissue was then sectioned at a 831 
thickness of 8 um using a Cryostat. For staining, slides were dried at room temperature for 10 min 832 
then prewashed with 1X TBST to remove OCT. The tissue was blocked with a glycine BSA 833 
solution for 1h at room temperature. Tissue sections were then incubated with primary antibodies 834 
(see below) either at 4C overnight or at room temperature for 2h. Tissue sections were then 835 
washed thoroughly with 1X TBST and incubated with fluorophore conjugated secondary 836 
antibodies and DAPI for 1h at room temperature. The tissue was washed with 1X TBS and 837 
incubated with 1X True Black Autofluorescence quencher for 1 min. Tissue sections were washed 838 
with 1X TBS and mounted with Prolonged Gold mounting media (Invitrogen) and covered with 839 
glass slips. For imaging, the Leica Thunder microscopy system was used with an automated 840 
mechanized stage. Images were taken using the scanning features with a 40X oil immersion 841 
objective. Images were then stitched together and enhanced with the fast computational clearing 842 
programs of the Leica LAS X software.   843 
 844 
Histological Analysis  845 
All histological images were analyzed using the Qupath open source image analysis software. 846 
The cells were counted using the cell detection feature using the DAPI channel. The detected 847 
cells were then called for positivity of up to three fluorescent markers using the single object 848 
measurement feature with positivity thresholds adjusted on a per experiment basis. Thresholds 849 
were set by comparison of experimental conditions to control and then applied to all images of 850 
the experiment through automated scripts.   851 
 852 
 853 
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Antibodies Source Identifier 

Anti-SOX2 antibody [20G5] 
(ab171380) 

Abcam Ab171380 
RRID:AB_2732072 

Anti Iba1, Rabbit (for 
Immunocytochemistry) 

Fujifilm Wako 019-19741 
RRID:AB_839504 

CD3 epsilon antibody [CD3-
12] 

Genetex GTX11089 
RRID:AB_369097 

Cleaved Caspase-3 (Asp175) 
Antibody #9661 

Cell signaling  9661 
RRID:AB_2341188 

P2Y12 (extracellular) 
Polyclonal Antibody 

Thermo Fisher scientific  PA5-111827 
RRID:AB_2857236 

CD45 Monoclonal Antibody 
(YAML501.4) 

Thermo Fisher scientific MA5-17687 
RRID:AB_2539077 

TMEM119 Polyclonal 
antibody 

Proteintech   27585-1-AP 
RRID:AB_2880915 

Anti-EGFR (Ab-1) Mouse 
mAb (528) 

Milliporesigma   

Recombinant Anti-VSIG4 
antibody [EPR22576-70] 
(ab252933) 

Abcam Ab252933 
 
 

CD163 mouse monoclonal 
antibody,clone 2G12 

Origene 50-167-6602 
RRID:AB_2623740 

Anti-Ki67 antibody Abcam Ab15580 
RRID:AB_443209 

CD68 Monoclonal Antibody 
(KP1) 

Thermo 14-0688-82 
RRID:AB_11151139 

MRC1(CD206) antibody  Biolegend  321102 
RRID:AB_571923 

NRP1 (CD304) Antibody Thermo M A5-32179 
RRID:AB_2809467 

Nurr1 antibody Thermo PA5-78097 
RRID:AB_2736269 

CD83 Antibody Biolegend  305302 
RRID:AB_314510 

RHOB antibody Thermo 711274 
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 854 
Single-cell, spatial, and bulk RNA-seq analyses 855 
Cohorts 856 
There were 4 cohorts utilized in this study, split into two datasets. The discovery dataset contained 857 
the MGB, Houston Methodist1, and Jackson Laboratories3 cohorts. Cells in these cohorts were 858 
assayed with more advanced scRNA-seq technologies: Seq-Well S3 (MGB) or 10X Genomics 3’ 859 
v3 (Methodist and Jax Labs). The validation dataset was composed of samples from the McGill 860 
cohort, some of which had been previously published 2;4 and a set that were not previously 861 
published. McGill tumors were assayed using 10X Genomics 3’ v2 kits.  862 
 863 
Alignment 864 
The Cumulus platform8 was utilized to handle the processing of the large-scale Single-cell RNA-865 
Seq experiments. Libraries were aligned to the GRCh38 genome using STARsolo9. See our 866 
GitHub page for specific settings https://github.com/BernsteinLab/Myeloid-Glioma. 867 
 868 
We merged the STARsolo raw outputs (i.e., no filtration of cells) into a single expression matrix 869 
per study using Seurat’s “Read10X” and “merge” functions. We removed cells in which the 870 
expression of less than 500 genes or more than 6000 genes was detected. We also filtered out 871 

RRID:AB_2633147 

CXCR4(CD184) Antibody Biolegend 306502 
RRID:AB_314608 

P2RY12 Antibody-BV421 Biolegend 392106 

CD8 Antibody-BV711 Biolegend 344374 

TMEM119 Antibody-AF488 Abcam AB225497 

CD163 Antibody-PE Biolegend 333606 

CD11b Antibody-PE-Cy5 Biolegend 301308 

CD45 Antibody-AF700 Biolegend 304012 

ICAM1(CD54) Antibody-
PacBlue 

Biolegend 332716 

CD16 Antibody-BV711 Biolegend 302044 

Flow Cytometry Reagents 

UltraComp eBeads Invitrogen 
 

01-3333-42 
 

Brilliant Stain Buffer BD Horizon 566349 

Zombie NIR Live/Dead Dye Biolegend 77184 
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cells that demonstrated less than 1000 UMIs. We have also removed genes expressed in less 872 
than three cells in the matrix. 873 
 874 
Data processing and visualization 875 
The raw matrices outputs of STARsolo for each tumor were gzipped and used as input for Seurat 876 
10 by utilizing the Read10X() function with the default parameters. The pipeline was performed for 877 
each cohort independently. Tumors belonging to each cohort were merged using Seurat's 878 
merge() function to generate a Seurat object for each cohort. The percentage of mitochondrial 879 
gene expression was determined using PercentageFeatureSet() with the pattern set to "^MT.". 880 
We filtered out cells expressing below 500 genes and above 6000 genes. We also filtered out 881 
cells with less than 1000 UMIs and cells with more than 25% of transcriptome composed of 882 
mitochondrial gene expression. The filtering process was carried out using Seurat's subset() 883 
function.  884 
 885 
For plotting purposes, normalization, scaling, and variable gene detection were performed using 886 
the SCTransform() function, where we used the percentage of mitochondrial gene expression as 887 
a regression factor. We performed PCA using RunPCA() with default parameters and generated 888 
an elbow plot using the ElbowPlot() function to help us determine the dimensions for generating 889 
UMAPs and for Louvain clustering (MGB: 24, Houston Methodist: 19, Jackson’s Laboratory: 890 
16).24 891 
 892 
UMAP was generated using the RunUMAP() with the reduction set to "pca". FindNeighbors() and 893 
FindClusters() were used for clustering, with the resolution set to 0.3.  894 
 895 
Classification of tumor cell types  896 
To classify tumor cells in all cohorts, we identified the main cell programs in the MGB cohort and 897 
identified the top program for each cell in all cohorts. This top program was then used as the cell’s 898 
classification.  899 
 900 
We merged all cells from the 22 tumors in the MGB cohort and used this expression matrix as the 901 
input for cNMF. We identified the top 4000 most variable genes using SCTransform, regressing 902 
out mitochondrial content. We subsetted the matrix for these genes and the resulting matrix was 903 
then subjected to consensus non-negative matrix factorization (cNMF) 11.  904 
 905 
For the cNMF "prepare" function, we performed factorization over K ranges from 2-35. We 906 
ensured that all the variable genes were considered for the factorization using the parameter "--907 
numgenes 4000". We also performed 500 iterations by inputting "--n-iter 500" in the cNMF prepare 908 
script. K=18 was the highest value with silhouette score above k=5 and was thus chosen for the 909 
"consensus" script of cNMF. cNMF was run with "--local-density-threshold" value at 0.015. 910 
 911 
We annotated each program on the final "gene_spectra" output of cNMF by comparing the top 912 
100 genes to previously published gene sets and known marker genes. gProfiler 12 was used to 913 
determine enrichment scores for a manually curated gene set matrix with over 600 gene sets 914 
(Table 3). Manual integration of enrichment scores and known marker genes helped us determine 915 
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the names of the programs (Extended Data Figure 1a). Of note, MGH720, a tumor with 916 
histological diagnosis of Giant Cell Glioblastoma, had a cNMF unique malignant program.  917 
 918 
We then used the gene spectra output of the cNMF programs to calculate the usages of these 919 
programs by cells in the other published cohorts. We extracted a raw counts matrix including the 920 
intersection between genes detected in the cohort and the top 4000 variable genes in the MGB 921 
cohort. This matrix was then subjected to the cNMF "prepare" script for normalization. The --922 
numgenes parameter is set to the number of genes in the matrix. We used 923 
sklearn.decomposition.non_negative_factorization in which X is the filtered normalized 924 
expression matrix, and H is the filtered gene spectra consensus matrix. The following parameters 925 
were used: “n_components= 18, init='random', update_H=False, solver='cd', 926 
beta_loss='frobenius', tol=0.0001, max_iter=1000, alpha=0.0, alpha_W=0.0, alpha_H='same', 927 
l1_ratio=0.0, regularization=None, random_state=None, verbose=0, shuffle=False”. The code is 928 
available at https://github.com/BernsteinLab/Myeloid-Glioma. 929 
 930 
Finally, each cell was annotated as a cell type using the final “usage” matrix output of cNMF 931 
or the calculated usage matrices as discussed above. The usage scores were normalized to 932 
100% for each cell. For each cell, the usage scores for all programs in each category were 933 
summed to create a usage score for the cell type category. For example, the usage scores 934 
for 4 myeloid programs were summed to create the “myeloid usage” per cell. Cells were then 935 
annotated as one of the cell types using the top scoring usage for cell type category.  936 
 937 
Of note, cycling cells were considered separately. inferCNV was used to annotate cycling 938 
cells as “Malignant” or “Non-Malignant”. Non-Malignant cells were then additionally annotated 939 
by the next highest cell type. These secondary annotations were used when separating cell 940 
types for further cell-type specific analysis.  941 
 942 
CNA inference from single-cell data 943 
We selected a group of reference cells not annotated as any malignant program from various 944 
tumors (i.e., a mix of Myeloid, T cells, Oligos, and Vasculature Cells). We extracted and merged 945 
the raw counts of these reference cells into a single matrix. The reference cells used are given in 946 
(https://github.com/BernsteinLab/Myeloid-Glioma). We then utilized the inferCNV package 947 
(inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV). We performed 948 
the analysis for each tumor separately. In the annotation file, we included the reference cells and 949 
annotated the cells of each tumor, as discussed above. We concatenated each tumor's raw matrix 950 
with the reference cells' raw matrix. We constructed the gene order file required for inferCNV 951 
using the "gtf_to_position_file.py" script provided by the inferCNV package. We have included the 952 
following additional arguments: "--denoise --HMM --cluster_by_groups --cutoff 0.1". We have also 953 
ensured that the --ref_group_names match the names given to the reference cells in the 954 
annotation files. The selection of the reference cells was performed for each cohort separately. 955 
 956 
Doublet Detection 957 
Doublets were determined using integration of cNMF and inferCNV data. Cells were considered 958 
Doublets by cNMF if they expressed a second program above a specific threshold. Cell-type-959 
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specific thresholds were selected by subsetting by cell type, then plotting the usage of each 960 
potential second program. From this plot, we found the value which separated the background 961 
usage of a second program from doublets. Cells were also considered doublets if their cNMF 962 
annotation was not compatible with the inferCNV profile. Of note, the cycling programs were 963 
not considered in doublet analysis. 964 
 965 
Integrated definition of malignant cells 966 
If a tumor had detectable CNVs by inferCNV, cells from that tumor needed to meet the following 967 
criteria: Non-doublet, positive for CNV, and not annotated as a non-malignant cell type by cNMF 968 
program. For those tumors in which CNVs could not be readily detected by inferCNV, we relied 969 
on annotations based on cNMF. 970 
 971 
Gene program identifications  972 
For more granular analysis of cell programs for a specific cell type (myeloid cells, T cells, or 973 
malignant cells), we took cells in each specific category and removed doublets based on the 974 
method described in the “Doublet Detection” section above. We then input only cells 975 
determined to be singlets into another cNMF analysis for each category. 976 
 977 
Myeloid cells 978 
We used the MGB, Jax Labs, and Methodist Cohorts for identifying the cNMF programs in 979 
myeloid cells in Gliomas. The cNMF was carried out in two rounds for each cohort. The first 980 
round was used to identify cells using programs that are not myeloid (i.e., different cell type 981 
identity) or programs used by less than 100 myeloid cells. We remove such cells for 982 
subsequent analyses. The second round was used to determine the myeloid programs 983 
(Supplemental Table 2). 984 
 985 
In the first round, raw counts of all cells annotated as myeloid and singlets (non-doublets) 986 
from each cohort were used to create a Seurat object independently. We then normalized the 987 
Seurat object using NormalizeData() and identified the top 2000 variable genes with mean 988 
expression above 0.001 in expressing cells in each cohort using the FindVariableFeatures(). 989 
Subsequently, we output the three matrices. These matrices were subjected separately to 990 
cNMF with the following parameters in the "prepare" script: --n-iter 500 --total-workers 1 --991 
seed 14 --numgenes 2000. Then we performed factorization and generated the K-plots using 992 
the factorize, combine, and k_selection_plot scripts of cNMF. We then chose the following 993 
Ks: MGB - 22, Houston Methodist - 23, Jackson’s laboratories - 14. We then performed the 994 
consensus script with the above Ks and a "local-density-threshold" of 0.02. 995 
 996 
In the second round, we removed cells from each cohort as discussed above and we created 997 
a merged Seurat object from the three cleaned matrices using Seurat's merge() function. 998 
Then, we normalized the merged Seurat object and detected variable genes using 999 
NormalizeData() and FindVariableFeatures(). We then filtered out the genes with a mean 1000 
expression value below 0.01 in expressing cells and standardized variance below 1. We then 1001 
filtered the cleaned myeloid matrix of each cohort to include the variable genes that met the 1002 
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criteria mentioned above. Similar to round 1, these matrices were subjected to cNMF 1003 
individually with the following parameters in the prepare script: --n-iter 500 --total-workers 1 -1004 
-seed 14 --numgenes 2276. Then, we also ran the factorization and generated the K-plots 1005 
using the factorize, combine, and k_selection_plot scripts of cNMF.We then chose the 1006 
following Ks in the second round: MGB - 18 (We filtered out programs that are not myeloid), 1007 
Houston Methodist - 19, Jackson’s laboratories - 18. Finally, we then performed the 1008 
consensus script with the above-mentioned Ks and a "local-density-threshold" of 0.02. 1009 
 1010 
To find the consensus programs, we performed a cosine correlation of the gene spectra 1011 
output of each cohort. Programs with a cosine similarity score of 0.5 or above were 1012 
considered for further processing. These programs' weights 'w' were then averaged to obtain 1013 
a set of meta-programs representing the shared transcriptional programs across datasets. 1014 
Ward's method, a hierarchical clustering algorithm, was applied to the similarity matrix to 1015 
visualize the relationships between programs in a heatmap. 1016 
 1017 
We averaged the spectra scores in the "gene_spectra_consensus" outputs of round 2 cNMF 1018 
for programs with high cosine similarity, resulting in 14 consensus myeloid programs across 1019 
the three cohorts. We annotated the programs as discussed above. 1020 
 1021 
Malignant and T cells 1022 
Malignant cells and T cell programs (Supplemental Table 2) were obtained from the MGB data in 1023 
separate cNMF runs similar to the two-step cNMF used in myeloid cells. We selected a k-value 1024 
of seven for the malignant cells based on the silhouette plot's stability, consistent with previously 1025 
published glioblastoma signatures represented in our five chosen programs 10. For the T cells, we 1026 
found the optimal program count to be four. We calculated the usage of these programs in the 1027 
other cohorts in a way similar to the all-cell type cNMF mentioned above. 1028 
 1029 
Processing and cNMF for PBMC scRNA-Seq libraries 1030 
The PBMC libraries were processed for cNMF similarly to the primary tumor libraries. We merged 1031 
the expression matrix of all the PBMC libraries using Seurat's "merge" function. The seurat object 1032 
was then normalized using' NormalizeData()" and "ScaleData()". We then used 1033 
"FindVariableFeatures() "to calculate the variance score for every gene. We selected the top 3000 1034 
variable genes after removing genes below 0.001 mean expression (in expressing cells) and then 1035 
subsetted the gene expression matrix to include the variable genes only. As described above, 1036 
cNMF was performed with "--numgenes 3000" and the value K=18 for the "consensus" script of 1037 
cNMF, annotation was done using gProfiler, and non-doublet cells were identified. We isolated 1038 
myeloid cells, identified the top 2000 most variable genes, and performed two rounds of cNMF 1039 
(K=16) 1040 
 1041 
Comparison of gene programs 1042 
To assess the similarity of two given gene programs, we took the top 100 genes in those programs 1043 
and compared their makeup using Jaccard index. P-values were measured by assessing the 1044 
probability of observed gene matches were obtained by random chance using a binomial test 1045 
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where k is the number of matches, n is the size of the gene set, and p is probability of randomly 1046 
drawing matches from all genes scored in the program. 1047 
 1048 
Comparative UMAP and Clustering of myeloid cells 1049 
We extracted the raw counts of all MGB cells annotated as myeloid and singlets (non-doublets) 1050 
from each tumor. Then, normalization was performed for each tumor separately using 1051 
NormalizeData() with default settings, followed by FindVariableGenes() with the following settings 1052 
(selection.method= "vst", nfeatures = 2000). We then ran FindIntegrationAnchors() k.filter set at 1053 
30 (to ensure that tumors with few myeloid cells were included. We then used the anchors 1054 
identified as input to batch-correct the objects using IntegrateData(), setting features.to.integrate 1055 
as the intersection of genes detected in all tumors in and dims to 1:30. 1056 
 1057 
The batch-corrected Seurat object was then subjected to ScaleData(), RunPCA(), and 1058 
ElbowPlot() with default parameters to identify the number of dimensions to use for Louvain 1059 
clustering and UMAP generation. We generated the UMAP using RunUMAP() with "dims" set to 1060 
1:8 and "reductions" set to "pca". We performed the clustering using FindNeighbors() with "dims" 1061 
set to "1:8" followed by FindClusters() with a 0.3 resolution. UMAPs were generated using the 1062 
"DimPlot()" function. 1063 
 1064 
Generation of heatmap for gene expression programs 1065 
To generate the gene expression heatmap of the NMF programs, we assigned the myeloid cells 1066 
to one of the following categories: 1067 
Microglia: Minimum 10% usage of microglia program and other identity programs are all below 1068 
the usage value of the microglia program (macrophages must be below 10%). 1069 
Microglia-Like - Minimum 10% usage of microglia and 10% usage of monocytes or macrophages 1070 
program. Other identity programs should be below the usage value of these two programs 1071 
(Otherwise, it is assigned as a microglia).  1072 
Macrophages - Minimum 10% usage of macrophage program and other identity programs are all 1073 
below the usage value of the macrophage program (monocyte below 10%). 1074 
Mono_Macro - Minimum 10% usage of macrophages and 10% usage of monocytes program. 1075 
Other identity programs are below the usage value of these two programs.  1076 
Monocytes: Minimum 10% usage of macrophage program and other identity programs are below 1077 
the monocytes program's usage value. 1078 
cDC - Minimum 10% usage of the cDCs program and other identity programs are all below the 1079 
usage value of the cDCs program. 1080 
Neutrophils - Minimum 10% usage of the Neutrophils program and other identity programs are all 1081 
below the usage value of the Neutrophils program. 1082 
Activity Dominated - All identity programs are below 10% usage. 1083 
 1084 
For selecting the genes included in the heatmaps, we identified the top 100 genes in the averaged 1085 
gene_spectra output of the myeloid cNMF programs for each program. We counted the number 1086 
of myeloid cells expressing the top 100 genes in each program. We included the top 20 genes 1087 
with the highest number of myeloid cells expressing them in each program. 1088 
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We used the "ComplexHeatmap" library in R 13 to generate the heatmaps. We z-score scaled the 1089 
log1p normalized gene expression values across all the myeloid cells (regardless of the 1090 
categorization). We then set an upper limit of 2 and a lower limit of -1. We generated a heatmap 1091 
for each category separately. We turned off row clustering (genes) by setting "cluster_rows = 1092 
FALSE" in the Heatmap function, and we allowed default column clustering within each category 1093 
(cells).   1094 
 1095 
Generation of quadrant plots: 1096 
The X-axis of the quadrant plots is calculated by subtracting the usage of the C1Q 1097 
Immunosuppressive program from the IL1B pro-inflammatory program. In contrast, the Y axis is 1098 
calculated by subtracting the Scavenger Immunosuppressive program usage from the CXCR4 1099 
pro-inflammatory program in each myeloid cell. For the quadrant plot with scatterpies as dots, we 1100 
used the “scatterpie” library (https://github.com/GuangchuangYu/scatterpie). The “others” 1101 
category for the pie charts was calculated by summing the usages of all programs excluding the 1102 
four immunomodulatory programs. 1103 
 1104 
Assignment of myeloid and T cells to recurrent gene program 1105 
We considered the myeloid cell to use an activity cNMF program if it has a minimum usage of 1106 
20%. For identities, we annotated the myeloid cells with the top identity program usage if it has at 1107 
least 10% in a particular identity program. A single myeloid cell could be classified as using 1108 
multiple programs. For example, a myeloid cell can be considered microglia using the Scavenger 1109 
Immunosuppressive program if it has at least 10% usage of microglia program and 20% usage of 1110 
the scavenger immunosuppressive program. For Extended Figure 4b-c, we calculated 1111 
Observed/Expected ratios of the co-occurrence of a myeloid identity program and a myeloid 1112 
activity program and used a hypergeometric test to assess significance. 1113 
 1114 
T cell program usages were more distinct. We therefore simply defined them by the program of 1115 
their top usage. 1116 
 1117 
Creation of discretized matrix and identification of marker genes per program 1118 
To facilitate the discovery of specific markers and the spatial cellular demultiplexing described 1119 
below, we created a discretized matrix of MGB cells with the strongest expression of each tumor 1120 
cell program, including each myeloid, T cell, and cancer programs, thus excluding intermediate 1121 
cells. For the outputs of Myeloid, Malignant, and T cell cNMFs, cells with a minimum 2.5-fold 1122 
higher usage of a particular program over the second most used program were annotated with 1123 
that program as a discrete cell. For oligodendrocytes and vasculature, the usages from "all cell 1124 
types" cNMF outputs were used to annotate Oligo or vasculature discrete cells. Doublets, cycling 1125 
programs, and cycling cells were excluded from the analysis.  1126 
 1127 
Additionally, we downloaded scRNA-Seq for normal brain tissue from 25 and 40-year-old 1128 
individuals 14. These libraries were processed using the abovementioned Seurat processing; we 1129 
normalized the cells and used 1:14 as "dims" for generating UMAPs and identifying clusters. We 1130 
performed FindMarkers and extracted neurons and astrocytes from the published matrix based 1131 
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on differentially expressed genes. We then merged these cells with the discrete cells matrix. We 1132 
generated a UMAP as described above. 1133 
 1134 
To identify markers for the immunomodulatory programs, we extracted discrete cells annotated 1135 
as Scavenger Immunosuppressive, C1Q Immunosuppressive, IL1B inflammatory, or CXCR4 1136 
inflammatory using Seurat's subset() function. A similar processing pipeline was performed with 1137 
the option "dims" set to 1:16 in FindNeighbors() and FindClusters(). The UMAP coordinates for 1138 
these cells were obtained using Embeddings() with the option "reduction" set to "umap". Then the 1139 
normalized matrix of these cells was extracted using the function GetAssayData() with the option 1140 
slot set to "data". These files were used as input for COMET 15 to identify the significant markers 1141 
that distinguish each immunomodulatory program. 1142 
 1143 
MAESTER analysis for determination of myeloid cell origin 1144 
To determine the origins of the various myeloid cell identities, we processed the MAESTER 1145 
libraries in three steps, namely, (1) preprocessing, (2) identifying variants of interest, and (3) 1146 
measuring the enrichment of the identified variants in the various myeloid identities. 1147 
 1148 
Step 1: Preprocessing.The preprocessing was performed as previously described16. Briefly,  we 1149 
trimmed high quality reads, aligned them using STAR (hg38), and processed them using 1150 
MAEGATK as previously described16. 1151 
 1152 
Step 2: Low-resolution pseudobulking to identify variants of interest. To determine the origin of 1153 
the myeloid cell identities, we had to identify variants specific to myeloid cells in the tumor 1154 
microenvironment and not present in the PBMC. We also had to identify variants present in the 1155 
myeloid cells in the PBMC but absent in the tumor microenvironment. We pseudobulked the 1156 
primary tumor libraries to the following categories based on their RNA-Seq annotation: 1157 
For primary tumor libraries: "Malignant", "Tumor-Associated Myeloid (TAMs)", "Stromal", "Oligo", 1158 
"Tcells" and for PBMC libraries, we considered only "Neutrophils" and "Monocytes" 1159 
(Myeloid_PBMCs). 1160 
 1161 
This stage involves multiple steps: 1162 
1- The first step was to extract the number of UMIs supporting each possible variant at every 1163 
possible location from MAEGATK output using the following script in R: 1164 
computeAFMutMatrix <- function(SE){ 1165 
  ref_allele <- as.character(rowRanges(SE)$refAllele) 1166 
   1167 
  getMutMatrix <- function(letter){ 1168 
    mat <- (assays(SE)[[paste0(letter, "_counts_fw")]] + assays(SE)[[paste0(letter, 1169 
"_counts_rev")]])  1170 
    rownames(mat) <- paste0(as.character(1:dim(mat)[1]), "_", toupper(ref_allele), ">", letter) 1171 
    return(mat[toupper(ref_allele) != letter,]) 1172 
  } 1173 
   1174 
  rbind(getMutMatrix("A"), getMutMatrix("C"), getMutMatrix("G"), getMutMatrix("T")) 1175 
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} 1176 
The computeAFMutMatrix generates a matrix where the rows are every possible variant in the 1177 
mitochondrial genome, and the columns are barcodes (cells). The values represent the UMIs 1178 
supporting each variant in the given barcode. 1179 
2- We extracted the coverage of the Maester libraries at each base of the MT genome in every 1180 
cell from the output of MAEGATK, which is stored in assays(maegatk.rse)[["coverage"]] whereby 1181 
the "maegatk.rse" is the R object output of MAEGATK. 1182 
3- We annotated the cells in each matrix (obtained from step 1 and step 2) based on the scRNA-1183 
Seq library (as mentioned in the "Annotation of cells to broad cell type categories"). We 1184 
created a data frame in which one column has the barcodes, and the other has the respective 1185 
annotation. 1186 
4- We pseudobulked the UMI count matrix (obtained from Step 1) using R using the following 1187 
steps: (a) we subsetted the matrix into each annotation using tibble. (b) Then, we used the sum() 1188 
function to sum all the rows in each matrix, creating a pseudobulked number for each annotation. 1189 
(c) We merged all the summed values in each matrix for each variant possibility into a 1190 
pseudobulked matrix in which each column represents an annotation. 1191 
5- We pseudobulked the coverage matrix (obtained from Step 2) similarly to Step 4. 1192 
6- We calculated the pseudobulked Variant Allele Frequencies (VAFs) using R. We added a 1193 
pseudo-count 0.000001 to each value in the pseudobulked coverage matrix. We divided each 1194 
value in the pseudobulked counts matrix by its respective coverage in the pseudobulked coverage 1195 
matrix to obtain pseudobulked VAFs for each category. 1196 
7- To ensure the specificity of each variant's detection with 99% certainty, we utilized a binomial 1197 
model to establish a minimum VAF threshold dependent on coverage.  1198 
8- To consider the variant to be specific to the myeloid cells in the tumor microenvironment, the 1199 
variant has to meet the following criteria: (a) meet the minimum VAF requirement for TAMs for 1200 
the coverages in TAMs and Myeloid_PBMC categories. (b) VAF=0 in the Myeloid PBMC category. 1201 
(c) VAF > minimum required in the TAM category. 1202 
9- To identify variants specific to the myeloid cells in PBMC, the variant has to meet the following 1203 
criteria: (a) meet the minimum VAF requirement for Myeloid_PBMC for the coverages in 1204 
Malignant, TAMs, and Myeloid_PBMC categories. (b) VAF = 0 in the Malignant category. (If the 1205 
tumor library is enriched for malignant cells, this criteria can be replaced with VAF in 1206 
Myeloid_PBMC, which is 20 times more than Malignant (c) VAF > 0 in the TAM category. (d) VAF 1207 
> minimum required in Myeloid_PBMC category.  1208 
 1209 
Step 3: Determination of enrichment of variants of interest in various identities of myeloid cells. 1210 
We hypothesized that myeloid cells enriched for tumor microenvironment-specific variants are 1211 
tissue residents, whereas those enriched for PBMC-specific variants are monocytes-derived. To 1212 
perform the enrichment analysis, the following steps were implemented: 1213 
1- We annotated the TAMs with the myeloid identities cNMF programs. We kept cells that met 1214 
the following criteria to ensure the reliability of the identity and the results: 1215 
 1216 
For Microglia annotation - (a) Cell has a minimum of 15% usage of microglia program. (b) the 1217 
microglia program must be at least two times higher than any other identity program. (c) 1218 
macrophage program has to be at least two times lower than any other identity program.  1219 
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 1220 
For Microglia_Like annotation - (a) Cell has a minimum of 10% usage of microglia program. (b) 1221 
The cell has a minimum of 10% usage of the macrophage program. (c) the microglia program 1222 
must be at least twice as high as any other identity program (excluding macrophages and 1223 
monocytes). (d) The macrophage program must be at least twice as high as any other identity 1224 
program (excluding microglia and monocytes).  1225 
 1226 
For Mono_Macro annotation - (a) Cell has a minimum of 10% usage of monocytes program. (b) 1227 
The cell has a minimum of 10% usage of the macrophage program. (c) the monocyte program 1228 
must be at least two times higher than any other identity program (excluding macrophages). ( d) 1229 
The macrophage program must be at least twice as high than any other identity program 1230 
(excluding monocytes). 1231 
 1232 
For Macrophages annotation - (a) Cell has a minimum of 15% usage of the macrophages 1233 
program. (b) the macrophage program has to be at least two times higher than any other identity 1234 
program. (c) monocytes program has to be at least two times lower than any other identity 1235 
program. (d) microglia program has to be at least two times lower than any other identity program. 1236 
 1237 
For Monocytes annotation - (a) Cell has a minimum of 15% usage of the monocytes program. (b) 1238 
the monocyte program has to be at least two times higher than any other identity program. (c) 1239 
macrophage program has to be at least two times lower than any other identity program. 1240 
 1241 
For Neutrophils annotation - (a) Cell has a minimum of 15% usage of neutrophils program. (b) the 1242 
neutrophils program has to be at least two times higher than any other identity program. 1243 
 1244 
For cDC annotation - (a) Cell has a minimum of 15% usage of cDC program. (b) the cDC program 1245 
has to be at least two times higher than any other identity program. 1246 
 1247 
2- We subsetted the single cells MAESTER UMI matrix obtained in (Stage 2 - Step 1) to smaller 1248 
matrices, with each matrix composed of cells annotated with one of the above identities (Stage 3 1249 
- Step 1). 1250 
 1251 
3- We created a matrix in which the rows are the variants of interest identified in Stage 3, and 1252 
each column represents an identity. The values in this matrix denote the number of cells in each 1253 
identity in which the variant was detected. We used 1254 
"annotation_matrix[,apply(annotation_matrix,2,function(x) sum(x > 0))]" in R for each subsetted 1255 
matrix. This script will keep columns that have UMI > 0. Then, we identified the number of cells 1256 
having UMIs >0 for each annotation by using "ncol(as.matrix(annotation_matrix)" whereby 1257 
annotation_matrix represents each subsetted matrix. 1258 
 1259 
4- We removed any variant with 0 value in every pseudobulked category. 1260 
 1261 
5- We removed any identity (column) that had less than ten total values from consideration to 1262 
ensure proper enrichment results. 1263 
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 1264 
6- We used GSVA 19 by categorizing the rows of the matrix as PBMC-specific or Tumor 1265 
microenvironment-specific. Since the values are integers (number of cells having UMIs supporting 1266 
the variants), we set the option "kcdf" to "Poisson" in the "gsva" script. 1267 
 1268 
7- We subtracted the GSVA enrichment for tumor microenvironment-specific variants from GSVA 1269 
enrichment for PBMC-specific variants for each identity. Positive values indicate PBMC-origins, 1270 
whereas negative values indicate tissue resident origin. 1271 
 1272 
8- We calculated the prevalence of each identity in each tumor. We plotted the dot plots with the 1273 
dot's position representing the subtracted GSVA enrichment values and the size of the dot 1274 
representing the prevalence using ggplot2.  1275 
 1276 
9- We calculated the average % usages of the four immunomodulatory programs in each identity, 1277 
labeled the remaining percentage as others in each tumor, and plotted them as stacked bar plots 1278 
using ggplot2. 1279 
 1280 
Sample level association analysis 1281 
To measure inter-state association, we determined the average usage of myeloid, T, and cancer 1282 
programs in their respective cells in each sample. We utilized Spearman correlation to understand 1283 
how a rise in one myeloid state corresponded to changes in cancer or T cell states, enabling us 1284 
to examine how variations in one state could influence the behavior of others within the same 1285 
sample. 1286 
  1287 
In our state-clinical/molecular associations analysis, we applied the sample state averages 1288 
derived above. These were compared across various clinical and molecular categories, such as 1289 
tumor grade, IDH mutation status, and steroid usage, using the Wilcoxon rank-sum test. 1290 
  1291 
To account for the confounding effect of sample hypoxia on the influence of dexamethasone on 1292 
the complement immunosuppressive myeloid program, we limited this analysis to samples where 1293 
the average MES2 program usage in cancer cells was below 20%. 1294 
  1295 
We employed a linear least-square regression to investigate changes in average myeloid program 1296 
usage across samples relative to the daily dose of dexamethasone.  1297 
 1298 
To assess the myeloid and cancer program associations with T-regs, we classified each sample 1299 
in the top 50% and bottom 50% expressors of T-reg and cancer/myeloid program usages and 1300 
used Fisher’s Exact Test to measure this association. P-values were adjusted using False 1301 
Discovery Rate (FDR). 1302 
 1303 
Cell cycle analysis 1304 
We evaluated the relationship between the cell cycle and different myeloid cell states in each 1305 
sample independently. Cells were defined as cycling if the combined usage of G1S and G2M 1306 
programs exceeded 20%, and as belonging to a specific state if its usage surpassed 20%. We 1307 
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used Fisher's exact test to measure this association and obtained an odds ratio. For each 1308 
program, we assessed the probability that its sample distribution was higher than 1 using a one-1309 
sample t-test on the log transformed values, so they become approximately normally distributed65. 1310 
 1311 
Deconvolution of TCGA, GLASS, and G-SAM and correlation with cell programs and 1312 
clinical data 1313 
The analysis pipeline consisted of three steps to deconvolve published glioma bulk expression 1314 
datasets. Step 2 and 3 of the pipeline were performed for each dataset separately. 1315 
 1316 
Step 1: Creating gene set for each program.The top 50 genes were obtained for each myeloid 1317 
program by ranking them in the merged gene spectra output. For T cells and Malignant Cells, we 1318 
ranked the gene spectra from their respective cNMF outputs to obtain the top 50 genes for each 1319 
program. For the other cell types, we used the gene spectra output of the cNMF of all cells in the 1320 
tumor microenvironment. We ranked and obtained the top 50 genes for the Pericytes, Endothelial, 1321 
and Oligo programs. Then, we selected genes which only appeared in the list of a single program 1322 
and not in the top 100 genes of any other program. 1323 
 1324 
Step 2: Calculating Module scores using Seurat. Raw gene counts for Glioma datasets were 1325 
obtained. The matrices were then CPM-normalized using EdgeR's DGEList(), calcNormFactors(), 1326 
and cpm() functions 20. The CPM-normalized matrix was then log-transformed using the log1p() 1327 
function of R. Afterward, Seurat objects were created using the CreateSeuratObject() function. 1328 
The Seurat objects were scaled using ScaleData(). Finally, the module scores were calculated 1329 
using Seurat's AddModuleScore() function. The above-mentioned gene sets were used as input 1330 
in the "features" option of AddModuleScore(). 1331 
 1332 
Step 3: Normalizing the Module Score. In order to correct for the purity differences in the published 1333 
bulk glioma mRNA-expression datasets, we imputed the percentages of Malignant, Oligo, 1334 
Vasculature, Myeloid, T cells, and other immune cells in the bulk expression matrices using 1335 
CIBERSORTx 21. As input, we discretized the MGB “all cell type” matrix in a similar fashion but 1336 
by utilizing the usage outputs of the “all cell type” cNMF only. The matrix was used as the 1337 
"single_cell_reference" in the Fractions module of CIBERSORTx. The published bulk gene 1338 
expression matrices used as "mixture" input were also CPM normalized without log-1339 
transformation. The module scores obtained above were then divided by the imputed value of 1340 
their respective cell type in the CIBERSORTx results outputs.  1341 
 1342 
These normalized module scores were then used to correlate with sample clinical data, including 1343 
IDH mutation status and Molecular Grade. For correlation with clinical data, the normalized 1344 
module scores were log10 transformed. We removed libraries with a CIBERSORTx value below 1345 
0.1 for myeloid. To correlate the module scores with the expression levels of the identified ligands 1346 
in the LGG and GBM TCGA cohorts, we performed a Pearson correlation between the log-1347 
transformed normalized module score and the log-transformed normalized expression. We used 1348 
the Wilcoxon Rank-Sum test to assess statistical significance, adjusting p-values using FDR.  1349 
 1350 
Spatial transcriptomic analysis 1351 
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We used Visium spatial transcriptomics to analyze 23 samples44. Our methodology encompassed 1352 
two distinct approaches: unbiased niche discovery using cNMF; and cell state demultiplexing 1353 
using RCTD68 and the single-cell RNA-seq programs. 1354 
  1355 
In the unbiased niche discovery, we used all samples, both normal and cancer, for cNMF analysis. 1356 
We selected the 1500 top spatially variable genes based on Moran’s I and ran the cNMF algorithm 1357 
from k=2 to 25. The optimal k value (k=7) was determined as the highest one with a Silhouette 1358 
score above 0.9. We defined the identity of niche programs through the analysis of gene 1359 
expression patterns and excluded the program whose top genes were mitochondrial and 1360 
ribosomal. To ensure uniformity, the usage scores were normalized to 1 in each pixel. 1361 
  1362 
For cell state demultiplexing, we used the discretized matrix described above. Using this single-1363 
cell reference, RCTD was run individually on each spatial sample. Again, the scores were 1364 
normalized to sum to 1 in each pixel. 1365 
  1366 
To assess the link between niche and cell state, we used Spearman correlation to evaluate the 1367 
relationship between normalized RCTD scores and cNMF usage for individual patient samples. 1368 
In Figure 4, a cell type was classified as part of a niche if correlation held statistical significance 1369 
(FDR<0.01) in over half of the samples. 1370 
  1371 
In our analysis of cell state and niche-niche spatial relationships, we designed a spatial regression 1372 
model to quantify cell state proximity, analyzing one sample at a time. For any pair of cell or niche 1373 
states across all pixels in a sample, we regressed the presence of one state in a central pixel 1374 
against the average expression of the other state in surrounding pixels. In this model, we binarized 1375 
the central pixel's state presence using a state-specific threshold determined by a knee plot 1376 
(KneeLocator69) of cell state expression across pixels in all samples. The resulting regression 1377 
coefficient indicates the association strength between the states, with the p-value demonstrating 1378 
the statistical significance of this association. The constant represents the background signal of 1379 
the non-central state. Extended Data Figure 7e's network graph was plotted using the python 1380 
package NetworkX (v2.0). Each edge's size represents the ratio of the regression coefficient to 1381 
the constant, providing a measure of the state association strength relative to the background 1382 
signal. Edges are statistically significant (FDR < 0.01) in over 40% of the samples with an 1383 
association strength above 0.1. 1384 
 1385 
Correlation of Immunomodulatory Programs with Responders and Non-responders to 1386 
Immunotherapy 1387 
We downloaded the published Seurat object of scRNA-Seq libraries of glioma patients responding 1388 
or not responding to immunotherapy 22. Based on the published annotations, we extracted the 1389 
myeloid cells from the Seurat object. We calculated the usage of the myeloid cNMF programs in 1390 
the published Seurat object, as shown above. We averaged the usage of each program in each 1391 
patient and measured the difference between the usages in responding vs non-responding 1392 
patients, using Wilcoxon Rank-Sum tests to assess significance.  1393 
 1394 
Survival Analysis 1395 
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We merged the survival information (Survival time) and Events from the cohorts of G-SAM and 1396 
GLASS. We included IDH WT GBM tumors only. We used the normalized module score values 1397 
(without log transformation) for the cNMF programs. We removed duplicate patient entries, 1398 
corresponding to recurrences, by keeping the values from the primary tumor only. We removed 1399 
any library with a CIBERSORTx value of 0 for the myeloid lineage. We then took the samples in 1400 
the top 33% of Scavenger immunosuppressive module scores and those in the top 33% of C1Q 1401 
immunosuppressive module score and considered this group of samples as the "high" 1402 
immunosuppressive. For the “low” immunosuppressive group, we selected samples both in the 1403 
bottom 33% of libraries in terms of Scavenger immunosuppressive module scores and the bottom 1404 
33% of C1Q immunosuppressive module scores.  1405 
 1406 
The library "ggsurvfit" (https://github.com/pharmaverse/ggsurvfit) was then used to generate the 1407 
Kaplan-Meier survival curve. A Cox Proportional Hazard Model 1408 
(https://github.com/therneau/survival) was used to determine differences in probabilities of 1409 
survival. 1410 
 1411 
 1412 
 1413 
 1414 
 1415 
 1416 
  1417 
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