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Abstract 18 

 19 

Identifying reproducible and generalizable brain-phenotype associations is a central goal of 20 

neuroimaging. Consistent with this goal, prediction frameworks evaluate brain-phenotype 21 

models in unseen data. Most prediction studies train and evaluate a model in the same dataset. 22 

However, external validation, or the evaluation of a model in an external dataset, provides a 23 

better assessment of robustness and generalizability. Despite the promise of external validation 24 

and calls for its usage, the statistical power of such studies has yet to be investigated. In this 25 

work, we ran over 60 million simulations across several datasets, phenotypes, and sample sizes 26 

to better understand how the sizes of the training and external datasets affect statistical power. 27 

We found that prior external validation studies used sample sizes prone to low power, which 28 

may lead to false negatives and effect size inflation. Furthermore, increases in the external 29 

sample size led to increased simulated power directly following theoretical power curves, 30 

whereas changes in the training dataset size offset the simulated power curves. Finally, we 31 

compared the performance of a model within a dataset to the external performance. The within-32 

dataset performance was typically within r=0.2 of the cross-dataset performance, which could 33 

help decide how to power future external validation studies. Overall, our results illustrate the 34 

importance of considering the sample sizes of both the training and external datasets when 35 

performing external validation.  36 

 37 

1. Introduction 38 

 39 

Neuroimaging studies increasingly leverage large datasets to understand brain-phenotype 40 

associations (Horien et al., 2021). However, even traditionally “large” datasets, which include 41 

hundreds of participants, are underpowered for many association studies (Marek et al., 2022). 42 

Low statistical power presents numerous roadblocks to the reproducibility of neuroimaging 43 

research, including false negatives, inflated effect sizes, and replication failures (Yarkoni, 2009; 44 
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Yarkoni and Braver, 2010; Button et al., 2013; Cremers, Wager and Yarkoni, 2017; Marek et al., 45 

2022).  46 

 47 

In contrast to association studies, prediction frameworks can alleviate the poor reproducibility 48 

seen in certain neuroimaging studies (Klapwijk et al., 2021; Rosenberg and Finn, 2022; 49 

Goltermann et al., 2023; Makowski et al., 2023; Spisak, Bingel and Wager, 2023). Unlike 50 

association, “prediction” entails the evaluation of a model on unseen data, which minimizes the 51 

risk of overfitting. Thus, it provides a more robust measure of brain-phenotype associations than 52 

in-sample associations. Typically, prediction is achieved by dividing a dataset into “training” and 53 

“test” sets, such as through k-fold cross-validation. Although an improvement over in-sample 54 

associations, splitting a dataset into training and test samples does not fully capture the 55 

generalizability and utility of brain-phenotype associations. Even with cross-validation, a model 56 

can be overfit to the idiosyncrasies of a particular dataset (Genon, Eickhoff and Kharabian, 57 

2022; Yeung et al., 2022).  58 

 59 

External validation, or applying a model to an entirely different dataset, is the gold standard 60 

when evaluating the generalizability of predictive models. Generalizing a model to another 61 

dataset with different characteristics provides strong evidence of a robust and reproducible 62 

brain-phenotype association. As such, numerous works encourage generalization to external 63 

datasets (Woo et al., 2017; Rosenberg, Casey and Holmes, 2018; Genon, Eickhoff and 64 

Kharabian, 2022; Rosenberg and Finn, 2022; Wu et al., 2022; Yeung et al., 2022). Since few 65 

studies have the resources to collect two independent samples, external validation is usually 66 

performed using an existing publicly available dataset. As the availability of such datasets 67 

continues to increase, external validation will likely become more accessible and commonplace. 68 

 69 

Nevertheless, external datasets rarely harmonize with the primary dataset, often including 70 

differences in phenotypic measures or neuroimaging data. Researchers typically resort to the 71 

most similar dataset available. Given the limited number of options for external datasets, 72 

statistical power is rarely a consideration for external validation studies. Thus, the power of 73 

many external validation studies is unknown, and there remains a need for appropriate 74 

methodological approaches for determining the sample size required for external validation.   75 

 76 

In this work, we explore how the sample sizes of both the training and external datasets affect 77 

cross-dataset prediction power in four large (n=424-7977), publicly available neuroimaging 78 

datasets. We first survey what training and external sample sizes have been used by existing 79 

external validation studies. Next, we resample the publicly available datasets across multiple 80 

sample sizes and evaluate internal (i.e., within-dataset) and external (i.e., across datasets) 81 

prediction performance. Finally, we investigate the relationship between the internal and 82 

external prediction performance. 83 

 84 

 85 

 86 

 87 

 88 
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2. Methods 89 

 90 

2.1 Datasets 91 

 92 

Resting-state fMRI data were obtained in each of our four datasets: the Adolescent Brain 93 

Cognitive Development (ABCD) Study (Casey et al., 2018), the Healthy Brain Network (HBN) 94 

Dataset (Alexander et al., 2017), the Human Connectome Project Development (HCPD) 95 

Dataset (Somerville et al., 2018), and the Philadelphia Neurodevelopmental Cohort (PNC) 96 

Dataset (Satterthwaite et al., 2014, 2016). Details about the datasets are presented in Table S1. 97 

In brief, the ABCD dataset consists of 9–10-year-olds who underwent fMRI scanning across 21 98 

sites in the United States (n=7822-7977 across phenotypes). The HBN dataset consists of 99 

participants aged 5-22 years recruited from four sites near the New York greater metropolitan 100 

area (n=1024-1201). The HCPD dataset consists of participants aged 8-22 years who 101 

completed fMRI scanning across four sites in the United States (Harvard, UCLA, University of 102 

Minnesota, Washington University in St. Louis) (n=424-605). The PNC dataset consists of 8–21-103 

year-olds in the Philadelphia area who received care at the Children’s Hospital of Philadelphia 104 

(n=1106-1126).  105 

 106 

Throughout this work, we predicted age, attention problems, and matrix reasoning in these four 107 

datasets. These measures span a wide range of effect sizes, making them particularly useful for 108 

investigating power and effect size inflation. For the attention problems measure, we used the 109 

Child Behavior Checklist (CBCL) (Achenbach and Ruffle, 2000) Attention Problems Raw Score 110 

in ABCD, HBN, and HCPD. In PNC, we used the Structured Interview for Prodromal Symptoms 111 

(Miller et al., 2003): Trouble with Focus and Attention Severity Scale (SIP001, accession code: 112 

phv00194672.v2.p2). We used the WISC-V (Wechsler, 2014) Matrix Reasoning Total Raw 113 

Score in ABCD, HBN, and HCPD for the matrix reasoning measure. In PNC, we used the Penn 114 

Matrix Reasoning (Bilker et al., 2012; Moore et al., 2015) Total Raw Score (PMAT_CR, 115 

accession code: phv00194834.v2.p2). Summary statistics for these measures are presented in 116 

Table S1. While we used the Matrix Reasoning Raw Score in the main text, additional results 117 

using the Matrix Reasoning Scaled Score are presented in Table S2 and Figures S7-9. 118 

 119 

2.2 Preprocessing 120 

 121 

Data were pre-processed using BioImage Suite (Papademetris et al., 2006). This pre-122 

processing included regression of covariates of no interest from the functional data, including 123 

linear and quadratic drifts, mean cerebrospinal fluid signal, mean white matter signal, and mean 124 

global signal. Additional motion control was applied by regressing a 24-parameter motion 125 

model—which included six rigid body motion parameters, six temporal derivatives, and the 126 

square of these terms—from the data. Subsequently, we applied temporal smoothing with a 127 

Gaussian filter (approximate cutoff frequency=0.12 Hz) and gray matter masking, as defined in 128 

common space (Holmes et al., 1998). Then, the Shen 268-node atlas (Shen et al., 2013) was 129 

applied to parcellate the denoised data into 268 nodes. Finally, we generated functional 130 

connectivity matrices by correlating each time series from pairs of nodes and applying the 131 

Fisher transform.  132 
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Data were excluded for poor data quality, missing nodes due to lack of full brain coverage, high 133 

motion (>0.2mm mean frame-wise displacement), or missing phenotypic data. After applying 134 

these exclusion criteria, 7977, 1201, 605, and 1126 participants remained in ABCD, HBN, 135 

HCPD, and PNC, respectively.  136 

 137 

2.3 Data subsampling 138 

 139 

For the within-dataset validation, the main dataset was resampled without replacement and split 140 

into two subsets: a group to train predictive models (training group) and a group to evaluate the 141 

performance of the predictive models (held-out group). We chose to evaluate within-dataset 142 

performance using a held-out group instead of k-fold cross-validation because the variability in 143 

k-fold performance approaches zero as the training sample size approaches the main dataset 144 

size. The held-out group size was 100 for HCPD, 200 for HBN and PNC, and 3000 for ABCD. 145 

The training group was randomly subsampled at various logarithmically spaced sample sizes 146 

(see Figure 2, Figure S4 for sample sizes). We resampled the main and external datasets for 147 

the cross-dataset validation. For each training sample, models were evaluated in random 148 

subsets of the external dataset of various sample sizes (see Figure 2, Figure S4 for sample 149 

sizes). 150 

 151 

The resampling procedure was repeated 100 times for the main dataset, and the external 152 

dataset was resampled 100 times for each of these repeats. Thus, we performed 10,000 153 

evaluations for each combination of the training dataset, external dataset, phenotype, training 154 

sample size, and external sample size. In total, this paper included over 60 million model 155 

evaluations. A summary of the resampling procedure is presented in Figure S1.  156 

 157 

2.4 Regression models 158 

 159 

We will refer to two types of results throughout this work: 1) within-dataset validation and 2) 160 

external validation. For within-dataset validation, we evaluated performance in a randomly 161 

selected held-out sample. Covariates (sex, motion, and age, if applicable) were first regressed 162 

from the training data. Then, a ridge regression model was trained using the top 1% of features 163 

most correlated with the outcome of interest (Pedregosa et al., 2011). Five-fold cross-validation 164 

was performed within the training set to select the L2 regularization parameter 𝛼 (𝛼=10{-3,-2,-165 
1,0,1,2,3}). Afterward, the entire pipeline was applied to the held-out test data. Crucially, the 166 

covariate regression parameters and features obtained from the training set were applied to the 167 

test set to avoid data leakage (Snoek, Miletić and Scholte, 2019; Chyzhyk et al., 2022). For 168 

cross-dataset validation, we used the same models as above. However, the model was 169 

evaluated with the external dataset instead of the held-out test data. Performance was 170 

evaluated with Pearson’s correlation r as it is among the most common measures used in 171 

neuroimaging predictive studies. For instance, Yeung et al. found that 97 of the 108 investigated 172 

studies used Pearson’s correlation as the evaluation metric (Yeung et al., 2022).  173 

 174 

We will define the “ground truth” prediction performance as follows. For within-dataset 175 

predictions, the ground truth refers to the performance in the total sample averaged over 100 176 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.25.563971doi: bioRxiv preprint 

https://paperpile.com/c/Ka1GKt/UTMe
https://paperpile.com/c/Ka1GKt/UTMe
https://paperpile.com/c/Ka1GKt/UTMe
https://paperpile.com/c/Ka1GKt/ADKO+3JP0
https://paperpile.com/c/Ka1GKt/ADKO+3JP0
https://paperpile.com/c/Ka1GKt/ADKO+3JP0
https://paperpile.com/c/Ka1GKt/Urrn
https://paperpile.com/c/Ka1GKt/Urrn
https://paperpile.com/c/Ka1GKt/Urrn
https://doi.org/10.1101/2023.10.25.563971
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

random iterations of nested 5-fold cross-validation. The ground truth was operationalized for 177 

external predictions as the prediction performance when training in the whole primary dataset 178 

and testing with the entire external dataset.  179 

 180 

2.5 Predictive power calculation 181 

 182 

We calculated predictive power for all combinations of training dataset, test dataset, and 183 

phenotype that had a significant ground truth effect. Since external validation involves testing a 184 

model in an independent dataset, directly converting r to p-values is appropriate, as opposed to 185 

cross-validation, where calculating p-values requires permutation testing. One-tailed 186 

significance testing was used since we only hypothesize that r>0 to achieve significant 187 

prediction performance. To calculate power in cross-dataset predictions, we computed the 188 

fraction of subsamples that achieved a significant prediction performance, as defined by the 189 

field-wide practice of p<0.05.  190 

 191 

Furthermore, we compared the simulated power to the “theoretical power,” which assumes that 192 

the ground truth effect size is known. The theoretical power curve was calculated as: 193 

(Eq. 1)  𝑝𝑜𝑤𝑒𝑟(𝑁)  =  1 − 𝐹( 𝑡𝑎𝑛ℎ−1(𝑟𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) ∗ √𝑁 − 3 ) 194 

where F is the standard normal cumulative distribution function, rground truth is the ground truth 195 

cross-dataset prediction performance, which we defined as the cross-dataset prediction 196 

performance using the full training and test datasets, and N is the sample size. 197 

 198 

2.6 False positive rate 199 

 200 

We computed the false positive rate for all cross-dataset predictions that did not have a 201 

significant ground truth effect. The false positive rate is the proportion of simulated examples for 202 

which the observed effect is significant (p<0.05) despite a ground truth effect that is not 203 

significant.  204 

 205 

2.7 Performance effect size inflation 206 

 207 

Another important consideration is the inflation of reported effect sizes, as documented by 208 

numerous previous studies (Yarkoni, 2009; Button et al., 2013; Cremers, Wager and Yarkoni, 209 

2017; Marek et al., 2022). Low power reduces the likelihood of detecting an actual effect and 210 

leads to the inflation of reported significant effects (Yarkoni, 2009; Button et al., 2013). In other 211 

words, if significant results are reported in a low-powered sample, such as due to a small 212 

sample size, then the effect size is likely inflated.  213 

 214 

We first examined all results that achieved significant prediction performance to approximate the 215 

inflation of effect sizes because this aligns with publication bias surrounding positive results. We 216 

agree with other works that non-significant results should still be published (Dwan et al., 2008; 217 

Button et al., 2013), but the current reality of the field is that most published results are 218 

significant predictions. Among the significant prediction results, we compared the effect size to 219 
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the ground truth effect size and calculated the inflation relative to the ground truth (Δr=rreported - 220 

rground truth). 221 

 222 

2.8 Relating internal and external performance 223 

 224 

After looking at within-dataset performance and cross-dataset performance separately, we 225 

compared the two to determine whether within-dataset performance could inform how well a 226 

model would generalize. We calculated the difference between the within-dataset held-out 227 

performance (rinternal) and the performance in the full external dataset (rexternal) for each training 228 

sample. We then assessed the performance difference across 100 iterations of random 229 

subsampling for each training dataset size.   230 

 231 

2.9 Literature review of external validation sample sizes 232 

 233 

We performed a brief literature review of sample sizes in neuroimaging external validation 234 

studies published in 2022-2023 to investigate the simulated power at typical sample sizes in the 235 

field. Supplemental Information Section S5: Literature review of external validation sample sizes 236 

provides the details of this review.  237 

 238 

3. Results 239 

 240 

In the main text, we show the results of training in the HBN dataset and testing in other 241 

datasets. All possible combinations of training/test datasets are included in the supplemental 242 

information. 243 

 244 

3.1 External validation sample sizes in the literature 245 

 246 

Among 27 qualifying articles published in 2022-2023, the median sample size of the training 247 

dataset was n=161 (IQR: 100-495), and the median sample size of the external dataset was 248 

n=94 (IQR: 39.5-682). A previous analysis by Yeung et al. included papers before 2022 (Yeung 249 

et al., 2022), finding 27 articles using external validation. In this sample, the median sample size 250 

of the training dataset was n=87 (IQR: 25-343), and the median sample size of the external 251 

dataset was n=137 (IQR: 60-197). Across both samples, the median training sample size was 252 

n=129 (IQR: 59.5-371.25), and the median external sample size was n=108 (IQR: 50-281). 253 

 254 

3.2 Within-dataset performance 255 

 256 

As the training sample size increased, within-dataset prediction performance also increased on 257 

average (representative HBN results in Figure 1; additional results in Figure S2). Unsurprisingly, 258 

variability in performance was greater at small sample sizes across all datasets and phenotypes 259 

(Figure S2).  260 

 261 

Because of this variability, effect sizes at small sample sizes were sometimes greater than the 262 

ground truth. For example, at a sample size of n=204 in HBN, the fraction of subsamples with 263 
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prediction performance of Δr>0.05 compared to the ground truth was 0% for age, 11% for 264 

attention problems, and 24% for matrix reasoning. Similar trends were seen across all datasets 265 

(Figure S2), where the highest proportion of effect size inflation occurred in attention problems 266 

and matrix reasoning prediction. Still, there was little to no inflation for age prediction. 267 

Furthermore, the inflation of effects was rare in ABCD, which had by far the largest held-out 268 

group.  269 

 270 
Figure 1. Within-dataset held-out prediction performance in HBN for age, attention problems, 271 

and matrix reasoning. The performance was evaluated in a randomly selected held-out sample 272 

of size n=200. The error bars show the 2.5th and 97.5th percentiles among 100 repeats of 273 

resampling at each training sample size. The dotted line reflects the correlation value required 274 

for a significance level of p<0.05. Similar results were observed for the ABCD, HCPD, and PNC 275 

datasets; see Figures S2-3. AP: attention problems, MR: matrix reasoning. 276 

 277 

3.3 Baseline cross-dataset performance 278 

 279 

Along with within-dataset performance, we evaluated cross-dataset performance. Ground truth 280 

performances for each dataset and phenotype—evaluated using the full training and external 281 

dataset sizes—varied from non-predictive to strong (Table 1). All age models significantly 282 

predicted across datasets, and all matrix reasoning models cross-predicted, except for when 283 

testing in ABCD. Three of the twelve attention problems models had weakly significant 284 

performance. Notably, we evaluated the cross-dataset performance even when the within-285 

dataset performance was not significant for the sake of completeness. 286 

 Training Data 

 ABCD HBN HCPD PNC 

External 
Data 

Age AP MR Age AP MR Age AP MR Age AP MR 

ABCD Within Within Within N/A 0.02 -0.03 N/A 0.02 0.03* N/A 0.04* 0.03* 

HBN N/A -0.01 0.29** Within Within Within 0.58** 0.00 0.31** 0.54** -0.02 0.26** 

HCPD N/A 0.07 0.43** 0.73** 0.05 0.25** Within Within Within 0.65** 0.00 0.26** 

PNC N/A 0.09* 0.23** 0.48** 0.00 0.22** 0.42** 0.06* 0.20** Within Within Within 

Table 1. Ground truth performance for cross-dataset predictions using full training and external 287 

samples. AP: attention problems, MR: matrix reasoning. *p<0.05, **p<1e-5 288 
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3.4 Power and false positive rate for cross-dataset predictions 289 

 290 

In all datasets, cross-dataset prediction power was affected by both the external dataset size 291 

and the training dataset size (representative HBN results in Figure 2; additional results in Figure 292 

S4). Furthermore, when assuming the ground truth effect size was known, the cross-dataset 293 

power followed the theoretical curve for power of correlations (Figure 2; Figure S4; see blue 294 

lines). Decreasing the size of the training dataset appeared to negatively offset the theoretical 295 

power curve.  296 

 297 

For cases where the ground truth effect was non-significant, we found that the false positive rate 298 

was highest for large external samples and small training samples. At large sample sizes, 299 

effects can achieve significance with a very small effect size. Thus, with the high variability of 300 

training samples at a small sample size, there is a risk of fitting a “lucky” model, leading to false 301 

positives. 302 

 303 

Across all datasets, age had the highest ground truth effect size (r=0.42-0.73). It could achieve 304 

more power with fewer test samples than attention problems or matrix reasoning, which directly 305 

follows Equation 1. Furthermore, greater power was achieved with smaller training samples in 306 

age predictions relative to attention problems or matrix reasoning. This result suggests that 307 

strong effects, such as age, can be robustly detected in small samples. Notably, using the full 308 

external samples but training samples of only n=20, all six cross-dataset age predictions had 309 

power ranging from 86-100%. However, as described above, small training and large test 310 

samples pose the greatest risk for false positives in cases where the effect size is smaller.  311 

 312 

We also tested power for the median sample sizes based on our literature review. The training 313 

sample size closest to the median was n=114 and the external sample size closest to the 314 

median was n=114. For these sample sizes, the power ranged across training/external dataset 315 

combinations from 99.11-100.00% for age, 5.47-8.35% for attention problems, and 5.24-72.74% 316 

for matrix reasoning. For sample sizes comparable to the 25th percentile in the field (training 317 

size: n=64, test size: n=48), the power was 78.33-98.94% for all dataset combinations for age, 318 

4.86-6.84% for attention problems, and 5.67-35.63% for matrix reasoning. When instead 319 

considering sample sizes comparable to the 75th percentile in the field (training size: n=365, test 320 

size: n=273), the power was 100.00% for all dataset combinations for age, 8.34-9.50% for 321 

attention problems, and 8.22-99.57% for matrix reasoning. In particular for attention problems 322 

and matrix reasoning, common sample sizes for external validation in the field appear to be 323 

underpowered, where 80% power is the typical goal. 324 

 325 

 326 

 327 

 328 
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 329 
Figure 2. Power and false positive rates for cross-dataset predictions, training in HBN and 330 

testing in ABCD (top row), HCPD (middle row), or PNC (bottom row) for prediction of age (left 331 

column), attention problems (middle column), or matrix reasoning (right column). The blue lines 332 

represent theoretical power assuming a known ground truth performance. The panel with N/A 333 

means that data were not included in this study. Similar results were observed for the ABCD, 334 

HCPD, and PNC datasets; see Figure S4. AP: attention problems, MR: matrix reasoning. 335 

 336 

3.5 Effect size inflation for cross-dataset predictions 337 

 338 

Among significant results, we computed the median effect size inflation (or deflation) relative to 339 

the ground truth (representative HBN results in Figure 3; additional results in Figure S5). Across 340 

all datasets, effect size inflation was greatest in weaker predictions and smallest in strong 341 

predictions, such as age. For the weakest predictive models, the training dataset size made little 342 

difference in effect size inflation, likely because effect size inflation is a consequence of low 343 

power based on the test sample size. For stronger models (e.g., age), we saw a greater effect 344 

of training size. There was little to no inflation, but smaller training sizes produced worse 345 

predictions. When predicting age, we previously mentioned that >80% power could be achieved 346 

with small training samples and large external samples. Still, the deflation of effects shows the 347 

primary disadvantage of using small training samples.  348 

 349 

Using the training sample size closest to the median in the field (n=114), the external sample 350 

size closest to the field-wide median (n=114) showed median inflation rates, where negative 351 
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inflation means deflation, ranging across datasets from Δr of -0.12 to -0.05 for age, 0.10 to 0.20 352 

for attention problems, and -0.17 to 0.21 for matrix reasoning. If using smaller external sample 353 

sizes, such as that closest to the 25th percentile in the field (training size: n=64, test size: n=48), 354 

the inflation rates ranged from -0.16 to -0.05 for age, 0.20 to 0.31 for attention problems, and     355 

-0.10 to 0.32 for matrix reasoning. For sample sizes comparable to the 75th percentile (training 356 

size: n=365, test size: n=273), the inflation rates were -0.06-0.00 for age, 0.03-0.14 for attention 357 

problems, and -0.17-0.15 for matrix reasoning. For age and similar strong predictions, typical 358 

sample sizes in the field could lead to underestimating effect sizes. In contrast, effect sizes may 359 

be overestimated for attention problems and matrix reasoning.  360 

 361 

 362 
Figure 3. Median effect size inflation for cross-dataset predictions, training in HBN and testing 363 

in ABCD (top row), HCPD (middle row), or PNC (bottom row) for prediction of age (left column), 364 

attention (middle column), or matrix reasoning (right column). Panels with N/A mean that data 365 

were not available. Similar results were observed for the ABCD, HCPD, and PNC datasets; see 366 

Figure S5. AP: attention problems, MR: matrix reasoning. 367 

 368 

3.6 Relating within- to cross-dataset performance 369 

 370 

A key remaining question is how within-dataset and cross-dataset performance may be related, 371 

and whether a possible association can inform future cross-dataset studies. As such, we 372 

compared the within-dataset held-out performance (rinternal) to the performance in the full external 373 

dataset (rexternal) for each training subsample (representative HBN results in Figure 4; additional 374 
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results in Figure S6). In most cases, the average within-dataset performance was within r=0.2 of 375 

the cross-dataset prediction. Although the average was a relatively good estimate of the cross-376 

dataset performance, we do not have the luxury of averaging across many different subsamples 377 

in neuroimaging. The difference in internal and external performances was highly variable for 378 

any given subsample, especially at smaller sample sizes.  379 

 380 

The internal and external performance were not always closely related on average. In particular, 381 

matrix reasoning predictions did not generalize to ABCD, so rinternal - rexternal was consistently 382 

greater than zero. Inversely, matrix reasoning models from ABCD generalized to the other 383 

datasets more strongly than the within-dataset performance, so rinternal - rexternal was negative.  384 

 385 

When deciding how to power an external validation study, one should most heavily consider 386 

cases where rinternal is much greater than rexternal, which would lead to false negatives or potential 387 

effect size inflation. At the training size closest to the existing median in the field (n=114), 388 

86.57% of evaluations across all datasets and phenotypes met the requirement of (rinternal - 389 

rexternal < 0.2), and 71.10% met the criteria when restricting to (rinternal - rexternal < 0.1). At the 390 

sample size closest to the 25th percentile of existing studies (n=64), 88.23% of studies were 391 

within the threshold of 0.2, and 72.57% were within the threshold of 0.1. At the sample size 392 

closest to the 75th percentile of existing studies (n=365), 83.42% and 71.83% were within the 393 

thresholds of 0.2 and 0.1, respectively. Counterintuitively, using more training data resulted in 394 

internal prediction performance that was less consistent with the external performance for each 395 

subsample. This trend is partially due to smaller sample sizes having worse average internal 396 

and external performance. As such, if the data are restricted to results that only obtain within-397 

dataset significance, the ratio of internal to external performance rinternal / rexternal was less than 398 

1.2 in 53.45% of evaluations for n=64, 53.81% for n=114, and 57.52% for n=365. The ratio was 399 

less than 1.5 in 67.80%, 68.83%, and 74.95% of evaluation for n=64, 114, and 365, 400 

respectively. Smaller samples tend to have the largest fractional increase in internal relative to 401 

external performance with increasing training sample size, suggesting that internal performance 402 

may be especially inflated relative to external performance when using small sample sizes.  403 
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 404 
Figure 4. Boxplots of the difference between internal and external performance for each 405 

subsample of the training data. For each training data size, 100 random subsamples were 406 

taken. The model was evaluated for internal performance in a held-out sample of size n=200. 407 

For external performance, the model formed in the training subsample was applied to the full 408 

external dataset. Panels with N/A mean that data were not available. Similar results were 409 

observed for the ABCD, HCPD, and PNC datasets; see Figure S6. AP: attention problems, MR: 410 

matrix reasoning. 411 

 412 

 413 

 414 
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4. Discussion 415 

 416 

This work investigated power and effect size inflation in predictive models of brain-phenotypic 417 

associations as a function of training and external dataset sizes. Our results suggest that prior 418 

external validation studies have relied on sample sizes prone to low power, potentially leading to 419 

false negatives and effect size inflation. Increasing the sample size of external datasets 420 

increased the power following theoretical curves, whereas the training dataset size offset the 421 

power curve. Relatedly, false positive findings were most frequent for non-significant ground 422 

truth effects when using small training and large external datasets. For attention problems and 423 

matrix reasoning, significant effects were inflated with smaller external dataset sizes. However, 424 

for age, which exhibited the largest effect size, there was deflation when using small training 425 

samples. Finally, the within-dataset performance was usually within r=0.2 of the cross-dataset 426 

performance. These results serve two purposes. First, they contextualize existing external 427 

validation results in the predictive neuroimaging literature. Second, they underscore potential 428 

pitfalls when implementing external validation in future studies.  429 

 430 

Though external validation only occurs in a minority of neuroimaging prediction studies (Yeung 431 

et al., 2022), we expect that it will become increasingly prominent as the field confronts ongoing 432 

reproducibility challenges. In addition, external validation may help to ameliorate machine 433 

learning ethical issues (Mitchell et al., 2019; Chandler, Foltz and Elvevåg, 2020), including bias 434 

(Benkarim et al., 2021; Greene et al., 2022; Li et al., 2022) and trustworthiness (Rosenblatt et 435 

al., 2023). For bias, evaluating models in external datasets will better depict the robustness and 436 

generalizability of brain-phenotype associations in populations with different characteristics 437 

(Mehrabi et al., 2021; Tejavibulya et al., 2022). For trustworthiness, external validation ensures 438 

that data manipulations are not driving the results (Finlayson et al., 2019; Rosenblatt et al., 439 

2023). Given the promise of external validation for improving reproducibility, bias, and 440 

trustworthiness, neuroimaging may follow a similar trajectory as genome-wide association 441 

studies, for which external replication is now a standard practice (Poldrack et al., 2017; 442 

Uffelmann et al., 2021).  443 

 444 

Adequately powered studies mitigate against potential false negatives and effect size inflation, 445 

which, in turn, promotes the reproducibility and utility of scientific insights (Yarkoni, 2009; 446 

Yarkoni and Braver, 2010; Button et al., 2013; Cremers, Wager and Yarkoni, 2017; Marek et al., 447 

2022). While large training datasets are needed to avoid overfitting or poor generalizability, the 448 

external dataset sample size is arguably more important for power in cross-dataset predictions. 449 

The power is proportional to the square root of the external sample size, but it only indirectly 450 

depends on the training sample size via the quality of the model. Furthermore, smaller training 451 

datasets are applicable when the brain-phenotype associations are strong. As such, 452 

reproducible brain-phenotype associations require large sample or effect sizes (Gratton, Nelson 453 

and Gordon, 2022). As an extreme example, age predictions with a training size of only n=20 454 

had power ranging from 86-100% when using the full external dataset. Still, we would not 455 

recommend using a small training sample in cross-sectional external validation studies. The 456 

combination of small training samples (<100) and large external samples (>500) increased the 457 

likelihood of false positives.  458 
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In addition to power, effect size—measured by correlation—is another crucial component of 459 

external validation. Intuitively, smaller external dataset sizes require larger effect sizes to 460 

achieve significance. Combined with the reporting bias toward significant effects (Greenwald, 461 

1975; Munafò, Stothart and Flint, 2009; Button et al., 2013; Open Science Collaboration, 2015), 462 

published effects with small test or external datasets may be inflated. Encouraging researchers 463 

to publish the results of external validation attempts—regardless of statistical significance—464 

would ameliorate this issue. However, a more realistic solution could be to promote the use of 465 

large external dataset sizes. Effect sizes are unlikely to be inflated in large external test sets. 466 

One caveat is that statistical significance can be achieved with trivial effect sizes. For instance, 467 

a significant effect of r=0.03, n=5000 may not be very meaningful, but it has a p-value less than 468 

0.05. However, it is not to say that small effects cannot be meaningful, as these can affect policy 469 

(Searle et al., 2014; Gratton, Nelson and Gordon, 2022) or inform our understanding of a more 470 

complex characteristic. Instead, we emphasize that reporting and interpreting the effect size and 471 

significance are crucial in understanding brain-phenotype associations in large datasets (Cohen, 472 

1994; Gigerenzer, 2004). 473 

 474 

If the ground truth effect size for a given cross-dataset brain-phenotype association was known, 475 

the required sample size could be calculated directly using power curves. Unfortunately, perfect 476 

knowledge of the ground truth effect size would require evaluating the cross-dataset prediction 477 

before the study. Instead, one must rely on either within-dataset prediction performance (if the 478 

main dataset has already been collected) or published effect sizes, which typically represent 479 

within-dataset prediction rather than external validation. Based on our results, accounting for the 480 

drop-off in external dataset predictions by subtracting 0.1 to 0.2 from the within-dataset or 481 

literature correlation values may be a quick and dirty rule of thumb. A decrease in external 482 

validation prediction performance compared to within-dataset prediction is generally expected 483 

due to dataset shift, which is when the training and test populations are mismatched in a way 484 

that may degrade performance (Subbaswamy and Saria, 2020; Dockès, Varoquaux and Poline, 485 

2021; Finlayson et al., 2021). A mismatch between datasets may come from differences in 486 

population characteristics, image acquisition, or phenotypic measurements. If the training and 487 

external datasets are too dissimilar, a rule of thumb might not account for dataset shift.  488 

 489 

There were several limitations to our study. First, we focused on external validation instead of 490 

replication in an independent sample. Whereas external validation involves applying a model to 491 

another dataset, replication in an independent sample entails repeating the entire analysis in an 492 

independent dataset. Both are valid strategies to improve reproducibility and replicability, but 493 

from a predictive sense, external validation is more common. Second, we only analyzed 494 

multivariate brain-phenotype associations, as multivariate patterns are more reliable and 495 

becoming more popular than univariate associations. Third, to evaluate within-dataset 496 

performance, we used a small held-out sample (as small as n=100). This limitation was due to 497 

the size of the datasets, but we repeated the evaluation for 100 different random subsamples of 498 

size n=100 to reduce the noise. Fourth, the datasets in our study are all relatively similar. All 499 

participants live in the United States, are youths, and were born to the same generation. There 500 

are still differences between these datasets—the region within the United States, clinical 501 

diagnosis, and specific measurements. Whether our results generalize to datasets with other 502 
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differences remains to be seen. Fifth, we studied the external validation of cross-sectional brain-503 

phenotype associations. Still, other studies, such as longitudinal ones, may have greater power 504 

with smaller sample sizes (Gratton, Nelson and Gordon, 2022). 505 

 506 

When selecting a dataset for external validation of a predictive model, one may have few 507 

options, depending on the phenotype of interest. If one must use a small training or external 508 

dataset in an external validation study, recognizing and explicitly acknowledging the sample size 509 

limitations will be crucial for promoting reproducibility. Despite the current reliance of the field on 510 

within-dataset associations and predictions, external validation will become more widespread. 511 

This work provides a starting point for understanding what sample sizes are required to power 512 

external validation studies adequately.  513 

 514 

 515 
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Supplemental Information 699 

 700 

S1. Dataset summaries 701 

 702 

 ABCD (n=7977; 
49.17% female) 

HBN (n=1201; 
39.80% female) 

HCPD (n=605; 
53.72% female) 

PNC (n=1126; 
54.62% female) 

 Age AP MR Age AP MR Age AP MR Age AP MR 

Mean 9.92 2.91 18.05 11.65 7.41 18.36 14.61 2.03 21.08 14.80 1.03 11.99 

SD 0.62 3.46 3.76 3.42 4.54 4.46 3.90 2.56 3.96 3.29 1.19 4.09 

Range 9.00- 
10.92 

0.00- 
20.00 

0.00- 
30.00 

5.00- 
22.00 

0.00- 
19.00 

2.00- 
31.00 

8.08- 
21.92 

0.00- 
18.00 

11.00-
31.00 

8.00- 
21.00 

0.00- 
6.00 

0.00- 
24.00 

# Available 7977 7976 7822 1201 1150 1024 605 462 424 1126 1106 1119 

Table S1. Summary of the four datasets and three phenotypes used in this work. The 703 

proportions of male/female participants reflect self-reported sex. AP: attention problems; MR: 704 

matrix reasoning. 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 
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 720 

 721 
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 727 

 728 
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S2. Sampling procedure 731 

 732 

 733 
Figure S1. Summary of subsampling procedure in external validation. The main dataset was 734 

first split into two subsets: a group to train predictive models (training group) and an evaluation 735 

group (held-out group). We then subsampled the training dataset at various sample sizes and 736 

trained a model. The model was evaluated in the held-out group to estimate within-dataset 737 

performance. An external dataset was also subsampled at various sample sizes. The model 738 

was evaluated in these external subsamples to estimate external validation performance. The 739 

subsampling procedure was repeated 100 times for the main dataset, and the external dataset 740 

was subsampled 100 times for each of these repeats. Thus, we performed 10,000 evaluations 741 

for each combination of the training dataset, external dataset, phenotype, training sample size, 742 

and external sample size, which totaled to over 60 million model evaluations.  743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 
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S3. Evaluation in additional datasets 762 

 763 
Figure S2, related to Figure 1. Within-dataset held-out prediction performance in all datasets. 764 

The performance was evaluated in a randomly selected held-out sample of size n=3000 in 765 

ABCD, n=100 in HCPD, and n=200 in PNC. The error bars show the 2.5th and 97.5th percentiles 766 

among 100 repeats of resampling at each training sample size. The dotted line reflects the 767 

correlation value required for a significance level of p<0.05. AP: attention problems, MR: matrix 768 

reasoning. 769 

 770 
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 771 
Figure S3, related to Figure 1. Fraction of within-dataset prediction performance exceeding the 772 

ground truth by Δr>0.05 at a sample size of n=204. AP: attention problems, MR: matrix 773 

reasoning. 774 

 775 

 776 
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 777 
Figure S4, related to Figure 2. Analysis of power and false positive rates when training models 778 

in the additional three datasets: ABCD, HCPD, and PNC. Panels with N/A mean that data were 779 

not included in this study. AP: attention problems, MR: matrix reasoning. 780 
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 781 
Figure S5, related to Figure 3. Median effect size inflation when training models in the 782 

additional three datasets: ABCD, HCPD, and PNC. Panels with N/A mean that data were not 783 

available. AP: attention problems, MR: matrix reasoning. 784 
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 785 
Figure S6, related to Figure 4. Boxplots of the difference between internal and external 786 

performance for each subsample of the training data in ABCD, HCPD, and PNC. For each 787 

training data size, 100 random subsamples were taken. For internal performance, the model 788 

was evaluated in a held-out sample of size n=3000 for ABCD, n=100 for HCPD, and n=200 for 789 

PNC. For external performance, the model formed in the training subsample was applied to the 790 

full external dataset. Panels with N/A mean that data were not available. AP: attention problems, 791 

MR: matrix reasoning. 792 
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S4. Scaled matrix reasoning 816 

 817 

 Training Data 

 ABCD HBN HCPD 

External Data MR MR (scaled) MR MR (scaled) MR MR (scaled) 

ABCD Within Within -0.03 0.07** 0.03* 0.09** 

HBN 0.29** 0.08* Within Within 0.31** 0.11* 

HCPD 0.43** 0.23** 0.25** 0.23** Within Within 

 818 

Table S2. External validation performance in ABCD, HBN, and HCPD for Matrix Reasoning 819 

Total Raw Score and Matrix Reasoning Scaled Score. Scaled scores were not available in PNC. 820 

*p<0.05, **p<1e-5 821 

 822 

 823 
Figure S7, related to Figures 1 and S2. Within-dataset held-out prediction performance in 824 

ABCD, HBN, and HCPD for scaled matrix reasoning. In the main text, the total raw matrix 825 

reasoning score was used, but here we re-analyzed the data using the scaled score. 826 

 827 

 828 
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 829 
Figure S8, related to Figures 2 and S4. Power and false positive rates for cross-dataset 830 

predictions using scaled matrix reasoning. The row reflects the training dataset (ABCD, HBN, 831 

HCPD), and the column reflects the test dataset (ABCD, HBN, HCPD). In the main text, the total 832 

raw matrix reasoning score was used, but here we re-analyzed the data using the scaled score. 833 

 834 

 835 

 836 
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 837 
Figure S9, related to Figures 3 and S5. Median effect size inflation for cross-dataset 838 

predictions. The row reflects the training dataset (ABCD, HBN, HCPD), and the column reflects 839 

the test dataset (ABCD, HBN, HCPD). In the main text, the total raw matrix reasoning score was 840 

used, but here we re-analyzed the data using the scaled score. 841 

 842 

 843 

 844 

 845 
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S5. Literature review of external validation sample sizes 859 

 860 

We performed a brief literature review to contextualize the power and external validation results. 861 

Using PubMed, we searched for articles with the following keywords to find functional 862 

connectivity prediction papers using external validation: ("functional connect*" OR ("fMRI" AND 863 

"connect*")) AND ("predict*") AND ("external" OR "cross-dataset" OR "across datasets" OR 864 

"generaliz*"). In cases where the articles used multiple training or external datasets, we 865 

recorded the sample size of the largest one. Articles were restricted to 2022 and 2023, which 866 

returned 117 articles as of July 2023. Articles were excluded for lacking external validation, not 867 

using fMRI connectivity data, or inadequate reporting details. Ultimately, 27 articles were 868 

included in our sample. The median sample size of the training dataset was n=161 (IQR: 100-869 

495), and the median sample size of the external dataset was n=94 (IQR: 39.5-682). An 870 

additional analysis by Yeung et al. included papers before 2022 (Yeung et al., 2022), and they 871 

found 27 articles using external validation. In this sample, the median sample size of the training 872 

dataset was n=87 (IQR: 25-343), and the median sample size of the external dataset was 873 

n=137 (IQR: 60-197). In both our dataset and the Yeung et al. dataset combined, the median 874 

training sample size was n=129 (IQR: 59.5-371.25), and the median external sample size was 875 

n=108 (IQR: 50-281). 876 

 877 

 878 

 879 

 880 
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