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Abstract 20 

Flow cytometry is a powerful technology for high-throughput protein quantification at the 21 

single-cell level, widely used in basic research and routine clinical diagnostics. Traditionally, 22 

data analysis is carried out using manual gating, in which cut-offs are defined manually for each 23 

marker. Recent technical advances, including the introduction of mass cytometry, have 24 

increased the number of proteins that can be simultaneously assessed in each cell. To tackle the 25 

resulting escalation in data complexity, numerous new analysis algorithms have been 26 

developed. However, many of these show limitations in terms of providing statistical testing, 27 

data sharing, cross-experiment comparability integration with clinical data. We developed 28 

MetaGate as a platform for interactive statistical analysis and visualization of manually gated 29 

high-dimensional cytometry data with integration of clinical meta data. MetaGate allows 30 

manual gating to take place in traditional cytometry analysis software, while providing a 31 

combinatorial gating system for simple and transparent definition of biologically relevant cell 32 

populations. We demonstrate the utility of MetaGate through a comprehensive analysis of 33 

peripheral blood immune cells from 28 patients with diffuse large B-cell lymphoma (DLBCL) 34 

along with 17 age- and sex-matched healthy controls using two mass cytometry panels made 35 

of a total of 55 phenotypic markers. In a two-step process, raw data from 143 FCS files is first 36 

condensed through a data reduction algorithm and combined with information from manual 37 

gates, user-defined cellular populations and clinical meta data. This results in one single small 38 

project file containing all relevant information to allow rapid statistical calculation and 39 

visualization of any desired comparison, including box plots, heatmaps and volcano plots. Our 40 

detailed characterization of the peripheral blood immune cell repertoire in patients with DLBCL 41 

corroborate previous reports showing expansion of monocytic myeloid-derived suppressor 42 

cells, as well as an inverse correlation between NK cell numbers and disease progression.  43 
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Introduction 44 

Fluorescence-based flow cytometry was invented in the late 1960s, and has since gained 45 

widespread popularity in basic research, routine diagnostics and clinical trials. Modern flow 46 

cytometers allow simultaneous quantification of more than 40 antigens with single-cell 47 

resolution, and the introduction of mass cytometry has further increased this number.1 This has 48 

enabled detailed functional and phenotypic characterization of very complex subsets of cells 49 

within highly heterogenous sample material, such as peripheral blood or tumor tissue. 50 

The massive advances in cytometry technology have posed challenges for bioinformatical 51 

analysis. Traditionally, cytometry data analysis is carried out by manually defining biologically 52 

relevant cell populations by setting cut-off values for multiple antigen markers. This strategy, 53 

termed manual gating, allows consideration of known biology, internal controls, and 54 

experiment-specific technical issues in the data analysis. However, with increasing data 55 

complexity, manual gating becomes labor-intensive and prone to operator bias.1-3 In response 56 

to these challenges, a vast collection of clustering and dimensionality reduction algorithms has 57 

been implemented for cytometry data analysis and visualization, including t-SNE, PhenoGraph, 58 

SPADE and FlowSOM.4-8 Although representing major advances in our ability to explore and 59 

understand high-dimensional single-cell data, the output of these algorithms can be 60 

unpredictable, due to experiment-specific marker selection, technical variation or inherent 61 

properties of different clustering methods.9 62 

Despite its limitations and the plethora of new analysis algorithms available, manual 63 

gating remains the most widely used method for cytometry data analysis. However, 64 

stratification of samples, statistical analysis and visualization of summarized data typically 65 

involves multiple data handling steps in different software packages, potentially reducing 66 

throughput and data traceability. To alleviate these problems, we developed the MetaGate R 67 

package. Through its graphical user interface, MetaGate provides a platform for statistical 68 
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analysis and visualization of complex cytometry data sets from raw data via feature selection 69 

to publication-ready figures, based on manual gating performed in two of the most popular flow 70 

cytometry analysis software packages, FlowJo and Cytobank. 71 

Along with genomics, proteomics and immunological imaging techniques, cytometry 72 

remains a crucial tool for assessing the immune system in cancer, both within the tumor 73 

microenvironment and at the global level. Such understanding is important for cancer 74 

prevention, diagnostics, prognostication and development of novel treatment strategies. To 75 

display the capabilities of MetaGate in such studies, we performed a broad mass cytometry 76 

characterization of peripheral blood from a cohort of 28 patients with diffuse large B-cell 77 

lymphoma (DLBCL) alongside 17 healthy blood donors. 78 

DLBCL is the most common group of non-Hodgkin lymphoma, with an incidence in the 79 

United States of around 7 cases per 100,000 persons per year.10 First-line treatment usually 80 

includes multi-agent chemotherapy in combination with the anti-CD20 monoclonal antibody 81 

rituximab. Two main subtypes, germinal-center B-cell (GCB) and activated B-cell (ABC) type, 82 

have been identified, correlating fairly well with histological features and explaining some of 83 

the outcome variation.11 However, the highly diverse presentation and outcome, which cannot 84 

fully be explained by existing clinical, histological or biochemical markers, remains a major 85 

clinical challenge.12 Therefore, to improve diagnostics, prognostics and treatment of this 86 

disease, there is a need for a better understanding of the heterogeneity of its presentation and 87 

immunological responses. 88 

The mass cytometry data from this study, which in part is previously published,13 is 89 

analyzed using MetaGate and describes a substantial impact on the immune system from both 90 

the disease and its treatment. All data figures and statistical analyses are generated in the 91 

MetaGate user interface. The MetaGate R package and source code is made publicly available, 92 
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along with all mass cytometry data and meta data, enabling anyone to reproduce the analysis, 93 

as well as further develop or use MetaGate for other data sets.  94 
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Methods 95 

Development of MetaGate 96 

MetaGate is developed as an R14 package with a web browser-based graphical user interface 97 

implemented using the shiny package.15 Interaction with FlowJo workspaces, GatingML files 98 

and Flow Cytometry standard (FCS) files is implemented with the use of the flowWorkspace, 99 

CytoML, flowCore and flowUtils packages.16-19 Plots are generated using the ggplot2 package.20 100 

 101 

Patient samples and clinical data 102 

The use of patient and healthy donor blood samples and clinical data was approved by the 103 

regional ethical board in Norway (ref. 2012/1143, 2015/2142, 2018/2482 and 2018/2485). 104 

Patients were selected from a lymphoma patient biobank established in January 2015 at Oslo 105 

University Hospital. Fully informed written consent was obtained from all healthy donors and 106 

patients. The study includes 17 healthy donors and 28 patients. Median age was 65 for healthy 107 

donors and 67 for patients, while the percentages of female subjects were 53% and 43%, 108 

respectively. Peripheral blood mononuclear cells (PBMC) were collected from patients directly 109 

before initiation and after completion of first-line chemotherapy, while healthy donor samples 110 

were collected at one timepoint. Inclusion diagnoses were diffuse large B-cell lymphoma 111 

(DLBCL), high-grade B-cell lymphoma (HGBCL) with MYC and BCL2 and/or BCL6 112 

rearrangements (or based on the 2008 WHO classification of lymphoid neoplasms, “B-cell 113 

lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma 114 

and Burkitt lymphoma”), and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL). All 115 

patients were treated with a combination of rituximab and chemotherapy regimens containing 116 

cyclophosphamide, doxorubicin, vincristine, etoposide and prednisolone 117 

(CHOP/EPOCH/CHOEP). The Hans algorithm was used for subtype classification of germinal 118 

center B-cell like (GCB) and non-GCB DLBCL. For patients, absolute numbers of lymphocytes 119 
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were retrieved from diagnostic white blood cell differential counts, while such data was not 120 

available for healthy donors. 121 

 122 

Mass cytometry 123 

PBMC from patients and healthy blood donors were isolated by density gradient centrifugation 124 

using Lymphoprep (Axis-Shield, Oslo, Norway). Cells were subsequently aliquoted and 125 

cryopreserved in 10% DMSO, 70% fetal calf serum (FCS) (Sigma-Aldric, St. Louis, MO) and 126 

20% RPMI 1640 (Thermo Fisher Scientific, Waltham, MA). Upon experiments, PBMCs were 127 

thawed and rested over-night in RPMI 1640 with 10% FCS. 128 

Cells were stained with Cell-ID Intercalator-Rh (Fluidigm, San Francisco, CA) and 129 

GLUT1.RBD.GFP (Metafora Biosystems, Evry cedex, France) according to the manufacturer’s 130 

instructions to allow for viability testing and GLUT-1 detection, respectively. Samples were 131 

then incubated with an Fc receptor binding inhibitor polyclonal antibody (Thermo Fisher 132 

Scientific), before staining with a surface antibody cocktail (Supplementary Table 1). 133 

Antibodies were either obtained pre-labeled from Fluidigm or in-house conjugated using 134 

Maxpar X8 antibody labeling kits (Fluidigm). After staining, the cells were fixed using 2% 135 

paraformaldehyde in PBS without Ca and Mg), and then permeabilized and barcoded using the 136 

Cell-ID 20-Plex Barcoding Kit (Fluidigm) according to the manufacturer’s instructions. 137 

Samples were then pooled, resuspended in pure methanol and stored at -20°C. On the day of 138 

mass cytometry acquisition, samples were thawed, stained with an intracellular antibody 139 

cocktail and labeled with Cell-ID Intercalator-Ir (Fluidigm) according to manufacturer’s 140 

instructions. Immediately before acquisition, samples were supplemented with EQ Four 141 

Element Calibration Beads (Fludigim) and acquired on a CyTOF 2 (Fluidigm), equipped with 142 

a SuperSampler (Victorian Airship, Alamo, CA). The event rate was kept below 400 events per 143 

second. Samples were analyzed in 8 batches with healthy donors and patients distributed evenly 144 
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across batches, and patient samples from different timepoints always included in the same 145 

batch. Due to lack of sufficient cell numbers, PBMCs from 3 of the healthy donors were not 146 

analyzed using mass cytometry panel 2. 147 

 148 

Data preparation 149 

FCS files were normalized using the Fluidigm Helios software, and debarcoded either by 150 

manual gating or using the Helios software. The files were then imported in Cytobank 151 

(Cytobank, Santa Clara, CA), where debris, doublets and dead cells were excluded. Data was 152 

then gated on CD45+ events and exported as FCS files. Files from the two panels were imported 153 

into separate FlowJo workspaces and gated according to Supplementary Figures 1–2. In each 154 

FlowJo workspace, all samples shared identical gating hierarchies, but gates were adjusted 155 

manually for each sample. Each FlowJo workspace was then imported in MetaGate. In 156 

MetaGate, populations were defined according to Supplementary Tables 3–4. Channels that 157 

were empty or representing intercalators or non-relevant markers were excluded 158 

(Supplementary Tables 1–2). Furthermore, the markers GLUT-1, CD71, CD137 and NKG2D 159 

were removed due to problematic performance or batch effects. Event limit was kept at 50, 160 

meaning that populations with less than 50 events were excluded from calculation of marker 161 

intensities or child population sizes. No data transformation was applied in MetaGate. Gating 162 

strategy plots were generated using the CytoML and ggcyto R packages. 163 

 164 

Statistical analysis 165 

All statistical plots and statistical analyses were generated in MetaGate version 1.0 on macOS 166 

13.1 running R version 4.2.2. Minor typographical changes and insertion of p value annotation 167 

were subsequently performed in Adobe Illustrator version 27.2. The Mann–Whitney U test was 168 

used for unpaired comparison of two groups (Figures 3B–G, 5A–F). Paired two-group 169 
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comparisons were tested using the Wilcoxon signed-rank test (Figures 4B–D, 4F). Comparison 170 

of multiple groups was done using the Kruskal–Wallis H test, and in the case of p values ≤ 0.05 171 

subsequent pairwise group comparisons using the Dunn test (Figure 4A, 4G). Adjustment of p 172 

values was not performed. 173 

P values above 0.05 were defined as not significant (ns.), while *, **, *** and **** were 174 

used to indicate p values below or equal to 0.05, 0.01, 0.001 and 0.0001, respectively. Bar plot 175 

height represents the median, while error bars indicate the inter-quartile range. In box plots, 176 

hinges correspond to the 25th and 75th percentile, while whiskers range to the most extreme 177 

values, but no longer than 1.5 times the inter-quartile range, and data points outside that range 178 

were plotted individually. 179 

 180 

Availability of data and code 181 

The full MetaGate source code is published at https://github.com/malmberglab/metagate. 182 

Documentation and installation instructions are available at https://metagate.malmberglab.com. 183 

Raw data for the included data set is available from FlowRepository using accession code FR-184 

FCM-Z6DF. The MetaGate file used to generate all statistics and figures can be downloaded 185 

from https://metagate.malmberglab.com.  186 
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Results 187 

Generating a MetaGate data set 188 

MetaGate is based on manual gating, which can be performed in either the FlowJo or Cytobank 189 

software packages. Blood samples or other cell suspensions are analyzed using a mass or flow 190 

cytometer (Figure 1A), which generates Flow Cytometry Standard (FCS) files. These are 191 

imported in FlowJo or Cytobank. After quality control, exclusion of unwanted events and 192 

adjustment of compensation, biologically relevant gates are set. The gate definitions are then 193 

exported as a FlowJo Workspace file or GatingML file from FlowJo or Cytobank, respectively. 194 

The FlowJo or GatingML file is then imported into MetaGate, which parses the file and 195 

produces a list of defined gates (Figure 1B). In the MetaGate graphical user interface, the user 196 

can then define populations by combining the gates, e.g. defining “CD8 T cells” as events inside 197 

the “CD3+” and “CD8+” gate, but outside the “CD19+” gate. The MetaGate data reduction 198 

algorithm is then applied, using the definitions of gates and populations along with raw data 199 

from FCS files to calculate mean, median and geometric intensity values and frequencies of all 200 

populations in each population. Given P populations and M markers, the algorithm will output 201 

(3 * M + P) * P values for each sample. Assuming 100,000 events, 40 markers, 100 populations 202 

and 4 bytes per value, MetaGate will generate 86 KB of data from a 15 MB FCS file. This data 203 

is then stored as a data file that is used for all subsequent data analysis (Figure 1C). 204 

 205 

Data analysis in MetaGate 206 

After loading the MetaGate data file in the MetaGate graphical user interface, the user can 207 

upload sample meta data, such as clinical features, experimental conditions or sample 208 

timepoints (Figure 1C). Sample groups are then defined interactively by selecting features 209 

based on the meta data. 210 
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The meta data should include information about which panel is used for each sample. By 211 

setting this as a panel variable, MetaGate will automatically make sure that the same individual 212 

is not included twice in a comparison in cases where both panels would provide the same data. 213 

In projects that contain paired samples, such as multiple perturbations or timepoints, a variable 214 

should be included that uniquely identifies each patient or healthy donor. MetaGate will then 215 

use this variable to perform paired statistical analyses. All meta data and group definitions are 216 

stored in the MetaGate file but can be modified at any time in downstream analysis. 217 

To demonstrate the main features of MetaGate, a previously partially reported data set of 218 

immune cell characterization in diffuse large B-cell lymphoma (DLBCL) was analyzed. 219 

Peripheral blood mononuclear cells (PBMC) from a total of 28 DLBCL patients and 17 age- 220 

and sex-matched healthy controls (Table 1) were investigated using two mass cytometry panels 221 

(Figure 2, Supplementary Tables 1–2). To evaluate the effect of therapy, patients were sampled 222 

both at the time of diagnosis and after treatment with rituximab and chemotherapy. For each of 223 

the two panels separately, gating was performed in FlowJo. The two resulting MetaGate data 224 

files were then merged. All plots and statistical calculations in Figure 3–5 and accompanying 225 

supplementary tables were produced in MetaGate. 226 

 227 

Large impact of DLBCL on peripheral blood immune cell phenotypes 228 

MetaGate allows creation of three main types of heatmaps. Using the first type, which shows 229 

marker expression for multiple populations in one group, the defining expression patterns of 230 

the key included populations can be visualized (Figure 3A). 231 

Volcano plots are useful for quickly identifying main differences between two groups, as 232 

they provide a graphical representation of both statistical significance and magnitude of 233 

difference for multiple readouts in the same plot. In MetaGate, volcano plots can be generated 234 

based on data from multiple panels and explored interactively by holding the cursor over each 235 
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dot. Using a volcano plot to compare sizes of major cell subsets between healthy donors and 236 

DLBCL patient samples before therapy, reveals multiple large differences (Figure 3B, 237 

Supplementary Table 5). Most significantly, HLA-DR- CD14+ CD19- CD3- CD56- cells, 238 

indicative of monocytic myeloid-derived suppressor cells,21 are greatly expanded in patients 239 

(Figure 3C). Inversely, the T-cell fraction of all CD45+ is lower in patients, but T cells also 240 

constitute a smaller fraction of lymphocytes (Figure 3D). As mass cytometry, in contrast to 241 

flow cytometry, does not allow distinction of lymphocytes by morphology, the lymphocyte 242 

population is here defined as the sum of T, B and natural killer (NK) cells. In patients, the 243 

CD56bright cells constitute a smaller part of the NK cell compartment, relative to the more mature 244 

CD56dim cells (Figure 3E). 245 

The second main type of heatmaps that MetaGate can produce, enables two-group 246 

comparisons of multiple markers in multiple populations (Figure 3F). Markers can represent 247 

both marker intensities and percentages of positive cells, and data from multiple panels can be 248 

displayed in the same plot. Using colors for displaying the p values from multiple non-249 

parametric tests and the direction of change, these plots give a fast overview of potentially 250 

significant findings. MetaGate furthermore produces a complete table of all statistics and allows 251 

this to be exported as a Microsoft Excel file. Most strikingly, T cells of DLBCL patients display 252 

higher levels of CD38, Ki-67, PD-1 and TIM-3 (Figure 3G). 253 

 254 

Immune cell subset dynamics through the course of treatment 255 

In addition to slightly varying chemotherapy regimens, the anti-CD20 antibody rituximab was 256 

given to all patients. As expected, peripheral blood B cells were virtually non-detectable in 257 

post-treatment samples, while B cell numbers before treatment did not differ significantly from 258 

those of healthy controls (Figure 4A). As illustrated here, MetaGate automatically selects 259 

appropriate statistical tests based on the number of groups compared. 260 
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The observed B-cell depletion highlights the importance of assessing absolute cell counts, 261 

in contrast to the relative subset sizes usually provided by cytometry assays. If absolute counts 262 

of a population are available, MetaGate automatically calculates absolute counts of all 263 

subpopulations. By linking clinical lymphocyte counts to the lymphocyte population in 264 

MetaGate, absolute counts of key T, B and NK cell subsets could be assessed. Most 265 

significantly, patients displayed larger numbers of the CD56bright NK cells after therapy, while 266 

several subsets of the more mature CD56dim NK cells decreased in size (Figures 4B–D). The 267 

NK-cell subset dynamics can be further investigated by utilizing the third type of heatmap 268 

available in MetaGate, which allows visualization of multiple readouts across more than two 269 

groups (Figure 4E). In addition to the expansion of the CD56bright NK cells, the CD56dim 270 

compartment displays a shift towards less mature cells with more NKG2A-expressing and less 271 

CD57-expressing cells. Looking at changes in marker expression after therapy, this is 272 

corroborated by the observed increase in NKp30 and NKp46 expression (Figure 4F). 273 

Furthermore, a clear increase in CD38 expression is observed in NK cells, consistent across all 274 

major subsets (Figure 4G). 275 

 276 

Prediction of disease outcome 277 

Using provided meta data, MetaGate allows simple and dynamic creation of sample groups for 278 

visualization and statistical testing. Looking at absolute cell counts of key lymphocyte 279 

populations in patient samples taken at the time of diagnosis, no clear differences were seen 280 

based on major age and subtype groups (Figure 5A–B). However, advanced disease (Ann Arbor 281 

stage III or IV) was somewhat associated with lower numbers of CD4+ T cells and CD56bright 282 

NK cells (Figures 5C–E). Only five patients experienced disease progression during the follow-283 

up time. Still, this group showed an association with lower absolute counts of CD56dim NK cells 284 

and higher numbers of IgD– memory B cells (Figures 5F–H).  285 
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Discussion 286 

The continuously increasing complexity of cytometry data warrants new strategies for data 287 

analysis. We developed MetaGate, allowing interactive and fast statistical analysis and 288 

visualization of complex cytometry data sets. In this paper, we visualize the novel features of 289 

MetaGate through the analysis of a previously partly published broad multi-panel mass 290 

cytometric characterization of peripheral blood immune cells in a cohort of 28 DLBCL patients.  291 

All plots and statistical analyses throughout this paper were generated in MetaGate, 292 

illustrating many of the most important features of the software package. Modern cytometry 293 

data sets often contain large numbers of readouts for comparison and assessing all of them 294 

manually can be very laborious, especially when there is a need to stratify the data on multiple 295 

clinical variables. Volcano plots, which are routinely used in genomics and proteomics, allow 296 

both statistical significance and the magnitude of change to be displayed in one graphical 297 

representation, which in MetaGate can be explored interactively. Conversely, heatmaps allow 298 

more than two groups to be compared, or multiple readouts to be assessed in multiple 299 

populations. Importantly, when comparing two groups, MetaGate heatmaps can also display 300 

statistical significance and direction of change, which can be particularly useful when assessing 301 

marker expression across multiple cell subsets. Such large-scale statistical testing introduces a 302 

considerable risk of type I errors. While MetaGate offers several p value correction techniques 303 

that can partly alleviate this problem, the use of p values in heatmaps and volcano plots in 304 

MetaGate should primarily be considered as a data exploration method, useful for highlighting 305 

potential findings of interest. Such findings can then be further explored using bar plots, which 306 

also allow multi-group comparisons and visualization of other meta data. In all plots, MetaGate 307 

automatically selects appropriate non-parametric statistical tests. 308 

In cytometry experiments with clear groups of samples, for example perturbation and 309 

controls, resulting data from manual gating can relatively easily be managed manually for 310 
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statistics and visualization. However, studies involving clinical data often include multiple 311 

variables of meta data, such as age, sex, diagnosis, sampling timepoint and treatment response. 312 

In this case, appropriate sample groups and comparisons may be numerous and not necessarily 313 

obvious early in the data analysis workflow. This can make manual data handling laborious and 314 

prone to errors. MetaGate seeks to alleviate this by mapping meta data from separate data files 315 

to samples and allowing groups to be created through a point-and-click query system in which 316 

the user selects features from the imported meta data. As both meta data and group definitions 317 

can be modified at any time, data exploration becomes simple and efficient. 318 

All data analysis in MetaGate is based on manual gating of the data, meaning that cell 319 

types are defined by manually setting presumed biological relevant cut-offs for marker 320 

expression in several one- or two-dimensional data plots. Although remaining the most 321 

common data analysis strategy, manual gating has multiple drawbacks.22 The reliance on visual 322 

inspection of data by a trained professional introduces potential operator bias and confirmation 323 

bias. Furthermore, with the increasing complexity of cytometry data, manual gating represents 324 

a laborious analysis strategy. Many of the analysis algorithms developed in response to these 325 

challenges prove particularly useful for exploring novel or complex cell subsets, but may not 326 

produce results that are easily compared between different studies or experimental batches.9 327 

DeepCyTOF and flowLearn are examples of algorithms that address these obstacles by 328 

automating the manual gating procedure through machine learning.23, 24 While MetaGate relies 329 

on gating of cells, there is no intrinsic requirement for these gates to be created manually by 330 

humans. Therefore, MetaGate can be further developed to allow (semi-)automatic gating by 331 

any of these algorithms upstream of the interactive statistical analysis in MetaGate. 332 

The MetaGate data reduction algorithm works by calculating mean intensity values and 333 

sizes of all defined populations for each sample, producing a very condensed data set that can 334 

be used for downstream analysis without access to the raw data. Consequently, MetaGate can 335 
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only generate plots and statistics based on predefined populations, limiting its usefulness for 336 

exploration of novel cell subsets. However, there are multiple benefits to this strategy. Because 337 

cytometry data consists of single-cell measurements of multiple parameters, data sets are 338 

typically large. A theoretical set of 100 files with one million events and 40 parameters in each 339 

would create around 15 gigabytes of data, which exceeds the available memory of most 340 

common workstations. Furthermore, the computational expensiveness of gating is increasing 341 

with the number of events and parameters. By performing all the memory- and processor-342 

consuming tasks in the MetaGate data import procedure, the downstream analysis in MetaGate 343 

becomes comparably very fast. Fixing gates, population definitions and sample selections at 344 

one point, and making these visible to the user, also enhances the traceability of the analysis. 345 

This, and the small size of the data file, furthermore simplifies data sharing, making data 346 

analysis possible without in-depth experimental knowledge, powerful computers or access to 347 

other specialized software. 348 

MetaGate is fully written in the R programming language, utilizing the shiny15 package 349 

to provide a web browser-based user interface. Taking advantage of the large selection of 350 

available R packages, the functionality of MetaGate can easily be extended. As a shiny-based 351 

application, MetaGate can either run locally on the user’s computer or be run on a remote server 352 

and accessed through the internet. As internet connection is not required and all source code is 353 

open and without need of compilation, MetaGate can also be used in secure data environments 354 

where custom software installation is prohibited, as long as R is available. 355 

While demonstrating some of the most important features of MetaGate, the mass 356 

cytometry analysis of 28 DLBCL patients and matched controls reveals marked effects on the 357 

peripheral blood immune system of DLBCL patients. Although current therapy induces 358 

remission in a large majority of DLBCL patients, incomplete remission or relapses are seen in 359 

around one-third of the patients, and a better understanding of the immune responses could 360 
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potentially lead to improved prognostication and treatment customization.12 Monocytic 361 

myeloid-dervied suppressor cells (M-MDSCs) are pathologically activated monocytes that 362 

have been associated with immunosuppression and poor outcome in multiple cancer settings.25 363 

Our data shows high numbers of M-MDSCs among DLBCL patients, which has previously 364 

been reported and linked to immunosuppression,26, 27 potentially explaining why monocytosis 365 

was identified as a negative prognostic marker in DLBCL28. Furthermore, the increased 366 

expression of Ki-67, CD38, PD-1 and TIM-3 on T cells represents a phenotype consistent with 367 

exhaustion and potential dysfunctional activation.29, 30 368 

Apart from the expected near-total depletion of B cells, the most markedly effect of 369 

chemotherapy on peripheral blood immune cell phenotypes was seen for NK cells. After 370 

chemotherapy, NK cells displayed lower expression of the maturation marker CD57, while 371 

higher expression was seen for the inhibitory receptor NKG2A and activating receptors NKp30 372 

and NKp46, which is in line with observations of reconstitution of NK cell subsets after 373 

hematological stem cell transplantation.31 The broad upregulation of CD38 expression across 374 

all NK cell subsets suggests a systemic immune activation following chemo-immunotherapy, 375 

possibly reflecting homeostatic recovery. Corroborating previous DLBCL studies, our data 376 

showed a positive correlation between NK cell counts before initiation of therapy and beneficial 377 

outcome.32, 33 378 

In conclusion, we present a new bioinformatical tool for high-throughput statistical 379 

analysis and visualization of cytometry data. The features of this software are displayed through 380 

the analysis of a mass cytometry characterization of peripheral blood from 28 DLBCL patients 381 

and matched controls, highlighting large immunophenotypic effects of both the disease and 382 

chemoimmunotherapy treatment, corroborating previously published reports. The initial 383 

manual gating of data, data reduction algorithm and dynamic integration with meta data, 384 

simplifies feature selection, data sharing and generation of publication-ready statistics and 385 
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plots. Published as an open-source R package, MetaGate can be improved, customized and 386 

integrated in existing workflows, potentially allowing researchers to more easily tackle the 387 

continuously increasing complexity of cytometry data.   388 
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Tables 500 

Table 1. Patients and healthy controls. 501 

 Healthy controls Patients 

Number of individuals 17 28 

Female 9 (53%) 12 (43%) 

Median age 67 65 

Subtype   

GCB DLBCL  13 (46.4%) 

Non-GCB DLBCL  11 (39.3%) 

Other  4 (14.3%) 

Stage   

Stage I  3 (10.7%) 

Stage II  7 (25%) 

Stage III  3 (10.7%) 

Stage IV  15 (53.6%) 

  502 
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Figures 503 

 504 

Figure 1. MetaGate data analysis workflow. 505 

(A) A biological sample, such as patient blood, is analyzed using a mass or flow cytometer, 506 

which produces FCS data files. Manual gating is performed in FlowJo or Cytobank, creating a 507 

data file with specifications of each gate. 508 

(B) Gate data and FCS files are imported into MetaGate, where a graphical user interface allows 509 

defining populations based on combinations of gates. Through a data reduction algorithm, a 510 

MetaGate data file is created, which contains marker expression and event frequencies of 511 

combinations of populations. 512 
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(C) The self-containing MetaGate data file is opened in the MetaGate graphical user interface 513 

for interactive production of statistics and plots, such as heatmaps, volcano plots and bar plots.  514 
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 515 

 516 

Figure 2. DLBCL immune characterization workflow. (A) Peripheral blood was collected 517 

from healthy blood donors (n=17) and from patients diagnosed with diffuse large B-cell 518 

lymphoma (n=28) before and after chemotherapy. (B) Blood samples were split and analyzed 519 

using two mass cytometry panels. Data from each panel was imported separately in MetaGate 520 

and later merged.  521 
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Figure 3. Peripheral blood immune cell composition in DLBCL. 523 

(A) Heat map showing expression of key markers in subsets of analyzed cell types, visualizing 524 

how subsets were defined for downstream analysis. (B) Volcano plot showing size differences 525 

of 36 key immune cell types between healthy donors and all patients before chemotherapy. (C–526 

E) Bar plots showing percentages of (C) M–MDSC (defined as HLA-DR- CD14+ CD19- CD3- 527 

CD56- cells), (D) T cells and (E) CD56bright NK cells, within various parent populations in 528 

healthy controls (n=17) and all patients before therapy (n=28). (F) Heatmap showing 529 

differences in marker expression between healthy controls (n=17) and patients before therapy 530 

(n=21–28) within multiple immune cell subsets, with colors indicating direction of difference 531 

and statistical significance from nonparametric tests without p value adjustment. Values are 532 

mean intensity values unless otherwise indicated. (G) Box plots showing selected readouts from 533 

(F). 534 
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 535 

Figure 4. Effects of treatment on immune cell phenotypes. 536 

(A) B cell frequencies as percentage of all CD45+ in healthy controls (n=17) and all patients 537 

(n=28) before and after treatment. (B) Volcano plot showing differences in absolute counts of 538 

28 cell subsets before and after treatment (n=28). (C–D) Selected comparisons from (B). (E) 539 

Heatmap showing median frequencies of key NK cell subsets as percentage of bulk NK cells 540 

in healthy controls (n=17) and patients (n=28) before and after therapy. (F) Heatmap showing 541 
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differences in marker expression within multiple immune cell subsets between patients before 542 

and after treatment (n=20–28), with colors indicating direction of difference and statistical 543 

significance from paired nonparametric tests without p value adjustment. (G) Mean CD38 544 

expression in multiple NK cell subsets of healthy controls (n=15–17) and patients (n=25–28) 545 

before and after treatment. 546 
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Figure 5. Immune cell repertoires stratified on patient characteristics. 548 

(A–C, F) Volcano plots showing differences in 33 absolute cell counts in peripheral blood of 549 

patients before therapy, stratified on (A) age, (B) subtype, (C) stage and (F) disease progression 550 

within the follow-up time. (D–E, G–H) Selected readouts from (C) and (F).  551 
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Supplementary Figures 552 

Supplementary Figure 1. Gating strategy for panel 1.  553 

  554 
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Supplementary Figure 2. Gating strategy for panel 2. 555 

  556 
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Supplementary Tables 557 

Supplementary Table 1. Mass cytometry panel 1. 558 

Mass Antigen Clone Supplier Note 
89Y CD45 HI30 Fluidigm  
102Pd Barcode  Fluidigm  
103Rh Intercalator  Fluidigm  
104Pd Barcode  Fluidigm  
105Pd Barcode  Fluidigm  
106Pd Barcode  Fluidigm  
108Pd Barcode  Fluidigm  
110Pd Barcode  Fluidigm  
141Pr CD8 RPA-T8 Biolegend  
142Nd CD57 HCD57 Fluidigm  
143Nd KIR3DL1 DX9 Miltenyi  
144Nd CD38 REA572 Miltenyi  
145Nd CD4 RPA-T4 Fluidigm  
146Nd IgD IA6-2 Fluidigm  
147Sm CD71 AC102 Miltenyi 2 

148Nd CD16 3G8 Fluidigm  
149Sm CD25 2A3 Fluidigm  
150Nd Anti-GFP, GLUT-1-GFP FM264G Biolegend 2 

151Eu CD123 AC145 Miltenyi 1 

152Sm TCRgd 11F2 Fluidigm  
153Eu CD7 CD7-6B7 Fluidigm  
154Sm NKG2C REA205 Miltenyi  
155Gd CD45RA HI100 Fluidigm  
156Gd NKp46 9E2 Miltenyi  
158Gd KIR2DL1 REA284 Miltenyi  
159Tb CD2 RPA-2.10 eBioscience  
160Gd CD28 CD28.2 Fluidigm  
161Dy Ki67 B56 Fluidigm  
162Dy CD27 L128 Fluidigm  
163Dy CD98 REA387 Miltenyi  
164Dy CD161 HP-3G10 Fluidigm  
165Ho CD127 A019D5 Fluidigm  
166Er CD11c B-ly6 BD 1 

167Er CCR7 G043H7 Fluidigm  
168Er NKp30 P30-15 Miltenyi  
169Tm NKG2A Z199 Fluidigm  
170Er CD3 UCHT1 Fluidigm  
171Yb CD19 Æ1 In-house  
172Yb KIR2DL2L3 GL183 Miltenyi  
173Yb HLA-DR AC122 Miltenyi  
174Yb PD-1 EH12.2H7 Fluidigm  
175Lu CD14 M5E2 Fluidigm  
176Yb CD56 NCAM16.2 Fluidigm  
191/193Ir Intercalator  Fluidigm  

1 Excluded because the marker is not of relevance to this analysis. 559 
2 Excluded due to batch effects. 560 
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Supplementary Table 1. Mass cytometry panel 2 562 

Mass Antigen Clone Supplier Note 
89Y CD45 HI30 Fluidigm  
102Pd Barcode  Fluidigm  
103Rh Intercalator  Fluidigm  
104Pd Barcode  Fluidigm  
105Pd Barcode  Fluidigm  
106Pd Barcode  Fluidigm  
108Pd Barcode  Fluidigm  
110Pd Barcode  Fluidigm  
141Pr KIR2DS4 JJC11.6 Miltenyi  
142Nd CD57 HCD57 Fluidigm  
143Nd KIR3DL1 DX9 Miltenyi  
144Nd CD38 REA572 Miltenyi  
145Nd CD4 RPA-T4 Fluidigm  
146Nd CD8 RPA-T8 Fluidigm  
147Sm CD137 4B4-1 Miltenyi 2 

148Nd CD16 3G8 Fluidigm  
149Sm Syk 4D10.2 Fluidigm  
150Nd MIP-1β D21-1351 Fluidigm 1 

151Eu CD107a H4A3 Fluidigm 1 
152Sm TNFα Mab11 Fluidigm 1 
153Eu TIM-3 F38-2E2 Miltenyi  
154Sm NKG2C REA205 Miltenyi  
155Gd KIR2DL1/S1 11PB6 Miltenyi  
156Gd LILRB1 GHI/75 Fluidigm  
158Gd KIR2DL1 REA284 Miltenyi  
159Tb CD2 RPA-2.10 eBioscience  
160Gd FcεR1γ-FITC, anti-FITC Polyclonal, FIT-22  Millipore, Fluidigm  
161Dy Ki67 B56 Fluidigm  
162Dy LFA-1 (open) m24 Biolegend 1 
163Dy KIR2DL3 REA147 Miltenyi  
164Dy CD96 NK92.39 Biolegend  
165Ho KSP37 TDA3 Biolegend 1 
166Er NKG2D ON72 Fluidigm 2 
167Er TIGIT 4E1.2 Miltenyi  
168Er IFN-γ B27 Fluidigm 1 
169Tm NKG2A Z199 Fluidigm  
170Er CD3 UCHT1 Fluidigm  
171Yb DNAM-1 DX11 Fluidigm  
172Yb KIR2DL2L3 GL183 Miltenyi  
173Yb Granzyme B GB11 Fluidigm  
174Yb PD-1 EH12.2H7 Fluidigm  
175Lu CD14, CD19 M5E2, Æ1 Fluidigm, in-house  
176Yb CD56 NCAM16.2 Fluidigm  
191/193Ir Intercalator  Fluidigm  

1 Excluded because the marker is not of relevance to this analysis. 563 
2 Excluded due to batch effects.  564 
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Supplementary Table 3. Population definitions for panel 1. 565 

Name Definition 
Lymphocytes Lymphocytes 
T cells CD3+, NOT CD19+, NOT CD14+CD3-, NOT CD56+ 
CD4+ T cells CD4+, NOT CD8+, CD3+, NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

Naive CD4+ T cells CCR7+, CD45RA+, CD4+, NOT CD8+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

Central memory CD4+ T cells CCR7+, NOT CD45RA+, CD4+, NOT CD8+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

Transitional memory CD4+ T cells CD3+ => CD28+, NOT CCR7+, NOT CD45RA+, CD4+, NOT CD8+, CD3+, 
NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

Effector memory CD4+ T cells NOT CD3+ => CD28+, NOT CCR7+, NOT CD45RA+, CD4+, NOT CD8+, 
CD3+, NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

EMRA CD4+ T cells NOT CCR7+, CD45RA+, CD4+, NOT CD8+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

Regulatory T cells CD4+ => CD25+CD127lowneg, NOT CD8+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

CD8+ T cells CD8+, NOT CD4+, CD3+, NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

Naive CD8+ T cells CCR7+, CD45RA+, CD8+, NOT CD4+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

Central memory CD8+ T cells CCR7+, NOT CD45RA+, CD8+, NOT CD4+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

Transitional memory CD8+ T cells CD3+ => CD28+, NOT CCR7+, NOT CD45RA+, CD8+, NOT CD4+, CD3+, 
NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

Effector memory CD8+ T cells NOT CD3+ => CD28+, NOT CCR7+, NOT CD45RA+, CD8+, NOT CD4+, 
CD3+, NOT CD19+, NOT CD14+CD3-, NOT CD56+ 

EMRA CD8+ T cells NOT CCR7+, CD45RA+, CD8+, NOT CD4+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

gd T cells CD3+ => TCRgd+, NOT CD8+, NOT CD4+, CD3+, NOT CD19+, NOT 
CD14+CD3-, NOT CD56+ 

B cells CD19+, NOT CD3+, NOT CD56+, NOT CD14+CD3- 

Naive B cells NOT CD19+ => CD27+, CD19+, NOT CD3+, NOT CD56+, NOT 
CD14+CD3- 

Memory B cells CD19+ => CD27+, NOT CD3+, NOT CD56+, NOT CD14+CD3- 

IgD+ memory B cells CD19+ => IgD+, CD19+ => CD27+, NOT CD3+, NOT CD56+, NOT 
CD14+CD3- 

IgD- memory B cells NOT CD19+ => IgD+, CD19+ => CD27+, NOT CD3+, NOT CD56+, NOT 
CD14+CD3- 

NK cells CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

CD56dim NK cells NOT CD56+ => CD56bright, CD56+, NOT CD3+, NOT CD14+CD3-, NOT 
CD19+ 

NKG2A+ KIR+ CD57+ CD56dim 
NK cells 

NKG2A+, CD56+ => KIR+, CD57+, NOT CD56+ => CD56bright, CD56+, 
NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A- KIR+ CD57+ CD56dim 
NK cells 

NOT NKG2A+, CD56+ => KIR+, CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A+ KIR- CD57+ CD56dim 
NK cells 

NKG2A+, NOT CD56+ => KIR+, CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A- KIR- CD57+ CD56dim 
NK cells 

NOT NKG2A+, NOT CD56+ => KIR+, CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A+ KIR+ CD57- CD56dim 
NK cells 

NKG2A+, CD56+ => KIR+, NOT CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A- KIR+ CD57- CD56dim 
NK cells 

NOT NKG2A+, CD56+ => KIR+, NOT CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A+ KIR- CD57- CD56dim 
NK cells 

NKG2A+, NOT CD56+ => KIR+, NOT CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2A- KIR- CD57- CD56dim NK 
cells 

NOT NKG2A+, NOT CD56+ => KIR+, NOT CD57+, NOT CD56+ => 
CD56bright, CD56+, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 

NKG2C+ CD56dim NK cells CD56+ => NKG2C+, NOT CD56+ => CD56bright, CD56+, NOT CD3+, NOT 
CD14+CD3-, NOT CD19+ 
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CD56bright NK cells CD56+ => CD56bright, NOT CD3+, NOT CD14+CD3-, NOT CD19+ 
Monocytes CD14+CD3- => HLA-DR+, NOT CD19+, NOT CD56+ 
Classical monocytes NOT CD16+, CD14+CD3- => HLA-DR+, NOT CD19+, NOT CD56+ 
Int./non-class. monocytes CD16+, CD14+CD3- => HLA-DR+, NOT CD19+, NOT CD56+ 
M-MDSC CD14+CD3-, NOT CD14+CD3- => HLA-DR+, NOT CD19+, NOT CD56+ 
CCR7+ CCR7+ 
CD3+ CD3+ 
CD28+ (CD3+) CD3+ => CD28+ 
TCRgd+ (CD3+) CD3+ => TCRgd+ 
CD4+ CD4+ 
CD25+ CD127low/neg (CD4+) CD4+ => CD25+CD127lowneg 
CD8+ CD8+ 
CD14+ CD3- CD14+CD3- 
HLA-DR+ (CD14+ CD3-) CD14+CD3- => HLA-DR+ 
CD16+ CD16+ 
CD19+ CD19+ 
CD27+ (CD19+) CD19+ => CD27+ 
IgD+ (CD19+) CD19+ => IgD+ 
CD45RA+ CD45RA+ 
CD56+ CD56+ 
CD56bright CD56+ => CD56bright 
KIR+ (CD56+) CD56+ => KIR+ 
KIR2DL1+ CD56+ CD56+ => KIR2DL1+ 
KIR2DL2L3+ (CD56+) CD56+ => KIR2DL2L3+ 
KIR3DL1+ (CD56+) CD56+ => KIR3DL1+ 
NKG2C+ (CD56+) CD56+ => NKG2C+ 
CD57+ CD57+ 
HLA-DR+ HLA-DR+ 
Ki-67+ Ki-67+ 
NKG2A+ NKG2A+ 
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Supplementary Table 4. Population definitions for panel 2. 567 

Name Definition 
T cells CD3+, NOT CD14+ or CD19+, NOT CD56+ 

CD4+ T cells CD3+ => CD4+, NOT CD3+ => CD8+, CD3+, NOT CD14+ or CD19+, NOT 
CD56+ 

CD8+ T cells CD3+ => CD8+, NOT CD3+ => CD4+, CD3+, NOT CD14+ or CD19+, NOT 
CD56+ 

NK cells CD56+, NOT CD3+, NOT CD14+ or CD19+ 
CD56dim NK cells NOT CD56+ => CD56bright, CD56+, NOT CD3+, NOT CD14+ or CD19+ 
NKG2A+ KIR+ CD57+ CD56dim 
NK cells 

NKG2A+, KIR+, CD57+, NOT CD56+ => CD56bright, CD56+, NOT CD3+, 
NOT CD14+ or CD19+ 

NKG2A- KIR+ CD57+ CD56dim 
NK cells 

NOT NKG2A+, KIR+, CD57+, NOT CD56+ => CD56bright, CD56+, NOT 
CD3+, NOT CD14+ or CD19+ 

NKG2A+ KIR- CD57+ CD56dim 
NK cells 

NKG2A+, NOT KIR+, CD57+, NOT CD56+ => CD56bright, CD56+, NOT 
CD3+, NOT CD14+ or CD19+ 

NKG2A- KIR- CD57+ CD56dim 
NK cells 

NOT NKG2A+, NOT KIR+, CD57+, NOT CD56+ => CD56bright, CD56+, 
NOT CD3+, NOT CD14+ or CD19+ 

NKG2A+ KIR+ CD57- CD56dim 
NK cells 

NKG2A+, KIR+, NOT CD57+, NOT CD56+ => CD56bright, CD56+, NOT 
CD3+, NOT CD14+ or CD19+ 

NKG2A- KIR+ CD57- CD56dim 
NK cells 

NOT NKG2A+, KIR+, NOT CD57+, NOT CD56+ => CD56bright, CD56+, 
NOT CD3+, NOT CD14+ or CD19+ 

NKG2A+ KIR- CD57- CD56dim 
NK cells 

NKG2A+, NOT KIR+, NOT CD57+, NOT CD56+ => CD56bright, CD56+, 
NOT CD3+, NOT CD14+ or CD19+ 

NKG2A- KIR- CD57- CD56dim NK 
cells 

NOT NKG2A+, NOT KIR+, NOT CD57+, NOT CD56+ => CD56bright, 
CD56+, NOT CD3+, NOT CD14+ or CD19+ 

NKG2C+ CD56dim NK cells NKG2C+, NOT CD56+ => CD56bright, CD56+, NOT CD3+, NOT CD14+ or 
CD19+ 

CD56bright NK cells CD56+ => CD56bright, NOT CD3+, NOT CD14+ or CD19+ 
CD3+ CD3+ 
CD4+ CD3+ => CD4+ 
CD8+ CD3+ => CD8+ 
CD14+ or CD19+ CD14+ or CD19+ 
CD56+ CD56+ 
CD56bright CD56+ => CD56bright 
CD57+ CD57+ 
KIR+ KIR+ 
KIR2DL1+ KIR2DL1+ 
KIR2DL2L3+ KIR2DL2L3+ 
KIR3DL1+ KIR3DL1+ 
LILRB1+ LILRB1+ 
NKG2A+ NKG2A+ 
NKG2C+ NKG2C+ 
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Supplementary Table 5. Peripheral blood immune cell abundances in healthy donors and 569 

patients before therapy. 570 

  Median value Subject count   
Readout Population Healthy Patients Healthy Patients log2 FC p value 
% T cells Bulk 54.63 % 30.61 % 17 28 -0,8358211 2,96E-07 
% B cells Bulk 8.58 % 4.76 % 17 28 -0,8504041 0,01527325 
% NK cells Bulk 11.74 % 13.63 % 17 28 0,21558804 0,15823181 
% Monocytes Bulk 8.26 % 15.01 % 17 28 0,86163219 0,00098764 
% M-MDSC Bulk 0.9 % 12.43 % 17 28 3,79518518 1,68E-07 
% CD4+ T cells T cells 55.73 % 41.48 % 17 28 -0,4261842 0,00931575 
% CD8+ T cells T cells 39.18 % 49.8 % 17 28 0,34586705 0,01748529 
% gd T cells T cells 1.77 % 1.31 % 17 28 -0,4353878 0,68515824 
% Naive CD4+ T cells CD4+ T cells 33.25 % 18.42 % 17 28 -0,8518818 0,03309576 
% Central memory CD4+ T cells CD4+ T cells 32.55 % 22.05 % 17 28 -0,5619033 0,0471276 
% Transitional memory CD4+ T cells CD4+ T cells 25.39 % 42.61 % 17 28 0,74687297 0,06931965 
% Effector memory CD4+ T cells CD4+ T cells 2.08 % 3.18 % 17 28 0,61297435 0,07700709 
% EMRA CD4+ T cells CD4+ T cells 1.05 % 2.57 % 17 28 1,28319028 0,03959916 
% Regulatory T cells CD4+ T cells 4.47 % 5.68 % 17 28 0,34762981 0,4649239 
% Naive CD8+ T cells CD8+ T cells 18.92 % 4.21 % 17 28 -2,1674409 0,00098764 
% Central memory CD8+ T cells CD8+ T cells 5.89 % 5.95 % 17 28 0,01480148 0,37131182 
% Transitional memory CD8+ T cells CD8+ T cells 20.31 % 22.48 % 17 28 0,14646699 0,77219008 
% Effector memory CD8+ T cells CD8+ T cells 7.5 % 11.44 % 17 28 0,60868413 0,06571372 
% EMRA CD8+ T cells CD8+ T cells 30.48 % 45.76 % 17 28 0,58592034 0,04198928 
% Naive B cells B cells 83.76 % 81.87 % 17 28 -0,0328609 0,58595842 
% Memory B cells B cells 16.24 % 18.13 % 17 28 0,15853257 0,58595842 
% IgD+ memory B cells Memory B cells 21.84 % 13.52 % 17 23 -0,6915886 0,04803052 
% IgD- memory B cells Memory B cells 78.16 % 86.48 % 17 23 0,14588778 0,04803052 
% CD56bright NK cells NK cells 6.24 % 2.81 % 17 28 -1,1521417 2,91E-05 
% CD56dim NK cells NK cells 93.76 % 97.19 % 17 28 0,05189189 2,91E-05 
% NKG2A+ KIR+ CD57+ CD56dim NK cells CD56dim NK cells 3.49 % 4.82 % 17 28 0,46470857 0,71955557 
% NKG2A- KIR+ CD57+ CD56dim NK cells CD56dim NK cells 12.96 % 16.15 % 17 28 0,31661505 0,75451763 
% NKG2A+ KIR- CD57+ CD56dim NK cells CD56dim NK cells 10.44 % 9.38 % 17 28 -0,1539872 0,91701338 
% NKG2A- KIR- CD57+ CD56dim NK cells CD56dim NK cells 8.62 % 8.53 % 17 28 -0,0149587 0,73697003 
% NKG2A+ KIR+ CD57- CD56dim NK cells CD56dim NK cells 4.52 % 4.37 % 17 28 -0,0461083 0,88036026 
% NKG2A- KIR+ CD57- CD56dim NK cells CD56dim NK cells 10.74 % 11.97 % 17 28 0,15730461 0,50865543 
% NKG2A+ KIR- CD57- CD56dim NK cells CD56dim NK cells 19.81 % 19.32 % 17 28 -0,0358563 0,93540976 
% NKG2A- KIR- CD57- CD56dim NK cells CD56dim NK cells 22.08 % 16.9 % 17 28 -0,385279 0,09440922 
% NKG2C+ CD56dim NK cells CD56dim NK cells 3.56 % 5 % 17 28 0,48672765 0,35894261 
% Classical monocytes Monocytes 87.76 % 85.08 % 17 28 -0,0448749 0,38393621 
% Int./non-class. monocytes Monocytes 12.24 % 14.92 % 17 28 0,28647881 0,38393621 
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