A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies

Xihao Li^{1,2}, Han Chen^{3,4}, Margaret Sunitha Selvaraj^{5,6,7}, Eric Van Buren⁸, Hufeng Zhou⁸, Yuxuan Wang⁹, Ryan Sun¹⁰, Zachary R. McCaw¹, Zhi Yu^{5,6,7}, Donna K. Arnett¹¹, Joshua C. Bis¹², John Blangero¹³, Eric Boerwinkle^{3,14}, Donald W. Bowden¹⁵, Jennifer A. Brody¹², Brian E. Cade^{6,16,17}, April P. Carson¹⁸, Jenna C. Carlson¹⁹, Nathalie Chami²⁰, Yii-Der Ida Chen²¹, Joanne E. Curran¹³, Paul S. de Vries³, Myriam Fornage^{3,22}, Nora Franceschini²³, Barry I. Freedman²⁴, Charles Gu²⁵, Nancy L. Heard-Costa^{26,27}, Jiang He^{28,29}, Lifang Hou³⁰, Yi-Jen Hung³¹, Marquerite R. Irvin³². Robert C. Kaplan^{33,34}. Sharon L.R. Kardia³⁵. Tanika Kellv³⁶. Iain Konigsberg³⁷, Charles Kooperberg³⁴, Brian G. Kral³⁸, Changwei Li^{28,29}, Ruth J.F. Loos^{20,39}, Michael C. Mahaney¹³, Lisa W. Martin⁴⁰, Rasika A. Mathias³⁸, Ryan L. Minster¹⁹, Braxton D. Mitchell⁴¹, May E. Montasser⁴¹, Alanna C. Morrison³, Nicholette D. Palmer¹⁵, Patricia A. Peyser³⁵, Bruce M. Psaty^{12,42,43}, Laura M. Raffield², Susan Redline^{16,17}, Alexander P. Reiner^{34,42}, Stephen S. Rich⁴⁴, Colleen M. Sitlani¹², Jennifer A. Smith³⁵, Kent D. Taylor²¹, Hemant Tiwari⁴⁵, Ramachandran S. Vasan^{27,46}, Zhe Wang²⁰, Lisa R. Yanek³⁸, Bing Yu³, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Kenneth M. Rice⁴⁷, Jerome I. Rotter²¹, Gina M. Peloso⁹, Pradeep Natarajan^{5,6,7}, Zilin Li^{8,*}, Zhonghua Liu^{48,*} and Xihong Lin^{6,8,49*}

¹Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

²Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill,

NC, USA.

³Human Genetics Center, Department of Epidemiology, Human Genetics, and

Environmental Sciences, School of Public Health, The University of Texas Health

Science Center at Houston, Houston, TX, USA.

⁴Center for Precision Health, School of Biomedical Informatics, The University of

Texas Health Science Center at Houston, Houston, TX, USA.

⁵Center for Genomic Medicine and Cardiovascular Research Center,

Massachusetts General Hospital, Boston, MA, USA.

⁶Program in Medical and Population Genetics, Broad Institute of Harvard and

MIT, Cambridge, MA, USA.

⁷Department of Medicine, Harvard Medical School, Boston, MA, USA.

⁸Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

⁹Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.

¹⁰Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

¹¹Provost Office, University of South Carolina, Columbia, SC, USA.

¹²Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.

¹³Department of Human Genetics and South Texas Diabetes and Obesity

Institute, School of Medicine, The University of Texas Rio Grande Valley,

Brownsville, TX, USA.

¹⁴Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.

¹⁵Department of Biochemistry, Wake Forest University School of Medicine,

Winston-Salem, NC, USA.

¹⁶Division of Sleep and Circadian Disorders, Brigham and Women's Hospital,

Boston, MA, USA.

¹⁷Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.

¹⁸Department of Medicine, University of Mississippi Medical Center, Jackson,

MS, USA.

¹⁹Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.

²⁰The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

²¹The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.

²²Brown Foundation Institute of Molecular Medicine, McGovern Medical School,
 the University of Texas Health Science Center at Houston, Houston, TX, USA.
 ²³Department of Epidemiology, University of North Carolina at Chapel Hill,

Chapel Hill, NC, USA.

²⁴Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

²⁵Division of Biology & Biomedical Sciences, Washington University School of

Medicine, St. Louis, MO, USA.

²⁶Department of Neurology, Boston University Chobanian & Avedisian School of

Medicine, Boston, MA, USA.

²⁷Framingham Heart Study, Framingham, MA, USA.

²⁸Department of Epidemiology, Tulane University School of Public Health and

Tropical Medicine, New Orleans, LA, USA.

²⁹Tulane University Translational Science Institute, New Orleans, LA, USA.

³⁰Department of Preventive Medicine, Northwestern University, Chicago, IL,

USA.

³¹Department of Internal Medicine, Tri-Service General Hospital, National

Defense Medical Center, Taipei, Taiwan.

³²Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.

³³Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.

³⁴Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.

³⁵Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA. ³⁶Department of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA.

³⁷Department of Biomedical Informatics, University of Colorado, Aurora, CO,

USA.

³⁸Department of Medicine, Johns Hopkins University School of Medicine,

Baltimore, MD, USA.

³⁹Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of

Health and Medical Sciences, University of Copenhagen, Copenhagen,

Denmark.

⁴⁰George Washington University School of Medicine and Health Sciences,

Washington, DC, USA.

⁴¹Department of Medicine, University of Maryland School of Medicine, Baltimore,

MD, USA.

⁴²Departments of Epidemiology, University of Washington, Seattle, WA, USA.

⁴³Department of Health Systems and Population Health, University of

Washington, Seattle, WA, USA.

⁴⁴Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

⁴⁵Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.

⁴⁶Department of Quantitative and Qualitative Health Sciences, UT Health San

Antonio School of Public Health, San Antonia, TX, USA.

⁴⁷Department of Biostatistics, University of Washington, Seattle, WA, USA.

⁴⁸Department of Biostatistics, Mailman School of Public Health, Columbia

University, New York, NY, USA.

⁴⁹Department of Statistics, Harvard University, Cambridge, MA, USA.

*Correspondence should be addressed to Z. Li (li@hsph.harvard.edu), Z. Liu

(zl2509@cumc.columbia.edu) and X. Lin (xlin@hsph.harvard.edu).

List of consortium members and their affiliations appears at the end of the paper.

1 Abstract

2 Large-scale whole-genome sequencing (WGS) studies have improved our 3 understanding of the contributions of coding and noncoding rare variants to complex 4 human traits. Leveraging association effect sizes across multiple traits in WGS rare 5 variant association analysis can improve statistical power over single-trait analysis, and 6 also detect pleiotropic genes and regions. Existing multi-trait methods have limited 7 ability to perform rare variant analysis of large-scale WGS data. We propose 8 MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for 9 functionally-informed multi-trait rare variant analysis in large-scale WGS studies. 10 MultiSTAAR accounts for relatedness, population structure and correlation among 11 phenotypes by jointly analyzing multiple traits, and further empowers rare variant 12 association analysis by incorporating multiple functional annotations. We applied 13 MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-14 density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the 15 Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new 16 associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of NIPSNAP3A and an intergenic region on chromosome 1. 17 18 19 20 21 22

23

24 Advances in next generation sequencing technologies and the decreasing cost of 25 whole-exome/whole-genome sequencing (WES/WGS) have made it possible to study the genetic underpinnings of rare variants (i.e. minor allele frequency (MAF) < 1%) in 26 27 complex human traits. Large nationwide consortia and biobanks, such as the National 28 Heart, Lung and Blood Institute (NHLBI)'s Trans-Omics for Precision Medicine 29 (TOPMed) Program¹, the National Human Genome Research Institute's Genome 30 Sequencing Program (GSP), the National Institute of Health's All of Us Research Program², and the UK's Biobank WGS Program³, are expected to sequence more than 31 32 a million of individuals in total, at more than 1 billion genetic variants in both coding and noncoding regions of the human genome, while also recording thousands of 33 34 phenotypes. To mitigate the lack of power of single-variant analyses to identify rare variant associations⁴, variant set tests have been proposed to analyze the joint effects 35 of multiple rare variants ⁵⁻⁹, where most of the work has focused single trait analysis. 36 37

Pleiotropy occurs when genetic variants influence multiple traits¹⁰. There is growing empirical evidence from genome-wide association studies (GWASs) that many variants have pleiotropic effects^{11,12}. Identifying these effects can provide valuable insights into the genetic architecture of complex traits¹³. As such, it is of increasing interest to identify pleiotropic rare variants by jointly analyzing multiple traits in WGS rare variant association studies (RVASs).

44

45 Several existing methods for multi-trait rare variant association analysis, such as
 46 MSKAT¹⁴, Multi-SKAT¹⁵ and MTAR¹⁶, have shown that leveraging the cross-phenotype

47 correlation structure can improve the power of multi-trait analyses compared to singletrait analyses when analyzing pleiotropic genes¹⁴⁻¹⁷. However, existing methods do not 48 49 scale well, and are not feasible when analyzing large-scale WGS studies with hundreds 50 of millions of rare variants in samples exhibiting relatedness and population structure. 51 Furthermore, none of the existing multi-trait rare variant analysis methods leverages 52 functional annotations that predict the biological functionality of variants, resulting in limited interpretability and power loss. While the STAAR method¹⁸ dynamically 53 54 incorporates multiple variant functional annotations to maximize the power of rare 55 variant association tests, it is designed for single-trait analysis and cannot be directly 56 applied to multiple traits.

57

58 To overcome these limitations, we propose the Multi-trait variant-Set Test for 59 Association using Annotation infoRmation (MultiSTAAR), a statistical framework for 60 multi-trait rare variant analyses of large-scale WGS studies and biobanks. It has several features. First, by fitting a null Multivariate Linear Mixed Model (MLMM)¹⁹ for multiple 61 quantitative traits simultaneously, adjusting for ancestry principal components (PCs)²⁰ 62 and using a sparse genetic relatedness matrix (GRM)^{21,22}, MultiSTAAR scales well but 63 64 also accounts for relatedness and population structure, as well as correlations among the multiple traits. Second, MultiSTAAR enables the incorporation of multiple variant 65 66 functional annotations as weights to improve the power of RVASs. Furthermore, we 67 provide MultiSTAAR via a comprehensive pipeline for large-scale WGS studies, that 68 facilitates functionally-informed multi-trait analysis of both coding and noncoding rare

variants. Third, MultiSTAAR enables conditional multi-trait analysis to assess rare
 variant association signals beyond known common and low frequency variants.

71

72 In the current study, we conducted extensive simulation studies to demonstrate the 73 validity of MultiSTAAR and to assess the power gain of MultiSTAAR by incorporating 74 multiple relevant variant functional annotations, and its ability in preserving Type I error 75 rates. We then applied MultiSTAAR to perform WGS RVAS of 61,838 ancestrally 76 diverse participants from 20 studies from NHLBI's TOPMed consortium by jointly 77 analyzing three circulating lipid traits: low-density lipoprotein cholesterol (LDL-C), high-78 density lipoprotein cholesterol (HDL-C) and triglycerides (TG). We show that 79 MultiSTAAR is computationally feasible for large-scale WGS multi-trait rare variant 80 analysis, and in conditional analysis of LDL-C, HDL-C and TG, MultiSTAAR identifies 81 signals that were missed either by the existing multi-trait rare variant analysis methods 82 that overlook variant functional annotations, or by single-trait functionally-informed 83 analysis that ignore correlations between phenotypes.

84

85 **Results**

86 **Overview of the methods**

MultiSTAAR is a statistical framework and an analytic pipeline for jointly analyzing multiple traits in large-scale WGS rare variant association studies. There are two main components in the MultiSTAAR framework: (i) fitting null MLMMs using ancestry PCs and sparse GRMs to account for population structure, relatedness and the correlation between phenotypes, and (ii) testing for associations between each aggregated variant

92 set and multiple traits by dynamically incorporating multiple variant functional
93 annotations¹⁸ (Fig. 1a).

94

95	In WGS RVASs, an important but often underemphasized challenge is selecting
96	biologically-meaningful and functionally-interpretable analysis units, especially for the
97	noncoding genome ^{23,24} . In gene-centric analyses of multiple traits, MultiSTAAR provides
98	five functional categories (masks) to aggregate coding rare variants of each protein-
99	coding gene, as well as an additional eight masks of regulatory regions to aggregate
100	noncoding rare variants. In non-gene-centric analyses of multiple traits, MultiSTAAR
101	performs agnostic genetic region analyses using sliding windows ^{18,25} (Fig. 1b).
102	
103	For each rare variant set analyzed, MultiSTAAR first constructs the multi-trait burden,
104	SKAT and ACAT-V test statistics (Methods). For each type of rare variant test,
105	MultiSTAAR calculates multiple candidate P values using different variant functional
106	annotations as weights, following the STAAR framework ¹⁸ . MultiSTAAR then
107	aggregates the association strength by combining the P values from all annotations
108	using the ACAT method, that provides robustness to correlation between tests ⁹ , and
109	proposes an omnibus test, MultiSTAAR-O, that leverages the advantages of different
110	type of tests (Methods). Furthermore, MultiSTAAR can test multi-trait rare variants'
111	associations conditional on a set of known associations (Fig. 1b).
112	

113 Simulation studies

114 To evaluate the type I error rates and the power of MultiSTAAR, we performed 115 simulation studies under several configurations. Following the steps described in Data 116 Simulation (**Methods**), we generated three quantitative traits with a correlation matrix similar to the empirical correlation in the three lipid traits²⁶⁻²⁸. We then generated 117 118 genotypes by simulating 20,000 sequences for 100 different 1 megabase (Mb) regions, 119 each of them were generated to mimic the linkage disequilibrium structure of an African 120 American population by using the calibration coalescent model²⁹. Throughout the 121 simulation studies, we randomly and uniformly selected 5-kilobase (kb) regions from 122 these 1-Mb regions and considered sample sizes of 10,000 for each replicate. The 123 simulation studies focused on aggregating uncommon variants with an MAF < 5%. 124

125 Type I error rate evaluations

We performed 10⁸ simulations to evaluate the type I error rates of the multi-trait burden, 126

SKAT, ACAT-V and MultiSTAAR-O tests at $\alpha = 10^{-4}$, 10^{-5} , and 10^{-6} (Supplementary 127

128 **Table 1).** The results show that, for multi-trait rare variant analysis, all four MultiSTAAR

129 tests controlled the type I error rates at very close to the nominal α levels.

130

131 **Empirical power simulations**

132 We next assessed the power of MultiSTAAR-O for the analysis of multiple phenotypes 133 under different genetic architectures, while also comparing its power with existing 134 methods. Specifically, we considered four models, in which variants in the signal region 135 (variant-phenotype association regions) were associated with (1) one phenotype only, 136 (2) two positively correlated phenotypes, (3) two negatively correlated phenotypes and

137	(4) all three phenotypes. In addition, we considered different proportions (5%, 15% and
138	35% on average) of causal variants in the signal region, where causality of variants
139	depended on different sets of annotations, and the effect size directions of causal
140	variants were allowed to vary (Methods). Power was evaluated as the proportions of P
141	values less than $\alpha = 10^{-7}$ based on 10^4 simulations. Overall, MultiSTAAR-O
142	consistently delivered higher power to detect signal regions compared to multi-trait
143	burden, SKAT and ACAT-V tests, through its incorporation of multiple annotations
144	(Extended Data Figs. 2-5, Supplementary Figs. 1-4). This power advantage was also
145	robust to the existence of noninformative annotations.
146	
147	Application to the TOPMed lipids WGS data
148	We applied MultiSTAAR to identify rare variant associations with three quantitative lipid
149	traits (LDL-C, HDL-C and TG) through a multi-trait analysis using TOPMed Freeze 8
150	WGS data, comprising 61,838 individuals from 20 multi-ethnic studies (Supplementary
151	Note). LDL-C values were adjusted for the usage of lipid-lowering medication ^{26,30}
152	(Methods), and DNA samples were sequenced at >30x target coverage. Sample- and
153	variant-level quality control were performed for each participating study ^{1,26,30} .
154	
155	Race/ethnicity was measured using a combination of self-reported race/ethnicity and
156	study recruitment information ³¹ (Supplementary Note). Of the 61,838 samples, 15,636
157	(25.3%) were Black or African American, 27,439 (44.4%) were White, 4,461 (7.2%)
158	were Asian or Asian American, 13,138 (21.2%) were Hispanic/Latino American and
159	1,164 (1.9%) were Samoans. There were 414 million single-nucleotide variants (SNVs)

160	observed overall, with 6.5 million (1.6%) common variants (MAF > 5%), 5.2 million
161	(1.2%) low-frequency variants (1% \leq MAF \leq 5%) and 402 million (97.2%) rare variants
162	(MAF < 1%). The study-specific demographics and baseline characteristics are given in
163	Supplementary Table 2.
164	
165	Gene-centric multi-trait analysis of coding and noncoding rare variants
166	We applied MultiSTAAR-O on gene-centric multi-trait analysis of coding and noncoding
167	rare variants of genes with lipid traits in TOPMed. For coding variants, rare variants
168	(MAF < 1%) from five coding functional categories (masks) were aggregated,
169	separately, and analyzed using a joint model for LDL-C, HDL-C and TG, including (1)
170	putative loss-of-function (stop gain, stop loss and splice) rare variants, (2) missense
171	rare variants, (3) disruptive missense rare variants, (4) putative loss-of-function and
172	disruptive missense rare variants and (5) synonymous rare variants of each protein-
173	coding gene. The putative loss-of-function, missense and synonymous RVs were
174	defined by GENCODE Variant Effect Predictor (VEP) categories ³² . The disruptive
175	variants were further defined by MetaSVM ³³ , which measures the deleteriousness of
176	missense mutations. We incorporated 9 annotation principal components (aPCs) ^{18,26,34} ,
177	CADD ³⁵ , LINSIGHT ³⁶ , FATHMM-XF ³⁷ and MetaSVM ³³ (for missense rare variants only)
178	along with the two MAF-based weights ⁴ in MultiSTAAR-O (Supplementary Table 3).
179	The overall distribution of MultiSTAAR-O P values was well-calibrated for the multi-trait
180	analysis of coding rare variants (Extended Data Fig. 1b). At a Bonferroni-corrected
181	significance threshold of $\alpha = 0.05/(20,000 \times 5) = 5.00 \times 10^{-7}$, accounting for five
182	different coding masks across protein-coding genes, MultiSTAAR-O identified 51

genome-wide significant associations using unconditional multi-trait analysis (**Extended Data Fig. 1a**, **Supplementary Table 4**). After conditioning on previously reported variants associated with LDL-C, HDL-C or TG located within a 1 Mb broader region of each coding mask in the GWAS Catalog and Million Veteran Program (MVP)^{26,38,39}, 34 out of the 51 associations remained significant at the Bonferroni-corrected threshold of $\alpha = 0.05/51 = 9.80 \times 10^{-4}$ (**Table 1**).

189

190 For non-coding variants, rare variants from eight noncoding masks were analyzed in a similar fashion, including (1) promoter rare variants overlaid with CAGE sites⁴⁰, (2) 191 promoter rare variants overlaid with DHS sites⁴¹, (3) enhancer rare variants overlaid 192 with CAGE sites^{42,43}, (4) enhancer rare variants overlaid with DHS sites^{41,43}, (5) 193 194 untranslated region (UTR) rare variants, (6) upstream region rare variants, (7) 195 downstream region rare variants of each protein-coding gene and (8) rare variants in ncRNA genes²⁴. The promoter rare variants were defined as rare variants in the ± 3 -196 197 kilobase (kb) window of transcription start sites with the overlap of CAGE sites or DHS 198 sites. The enhancer rare variants were defined as RVs in GeneHancer-predicted 199 regions with the overlap of CAGE sites or DHS sites. The UTR, upstream, downstream and ncRNA rare variants were defined by GENCODE VEP categories³². With a well-200 201 calibrated overall distribution of MultiSTAAR-O P values (Extended Data Fig. 1d) and 202 at a Bonferroni-corrected significance threshold of $\alpha = 0.05/(20,000 \times 7) = 3.57 \times 1000$ 203 10^{-7} , accounting for seven different noncoding masks across protein-coding genes, 204 MultiSTAAR-O identified 76 genome-wide significant associations using unconditional 205 multi-trait analysis (Extended Data Fig. 1c, Supplementary Table 5). After

206	conditioning on known lipids-associated variants ^{26,38,39} , 6 out of the 76 associations
207	remained significant at the Bonferroni-corrected threshold of $\alpha = 0.05/76 = 6.58 \times$
208	10^{-4} (Table 2). These included promoter CAGE and enhancer CAGE rare variants in
209	APOA1, promoter DHS rare variants in CETP, enhancer CAGE rare variants in SPC24,
210	and enhancer DHS rare variants in NIPSNAP3A and LIPC.
211	
212	MultiSTAAR-O further identified 6 genome-wide significant associations using
213	unconditional multi-trait analysis at $\alpha = 0.05/20,000 = 2.50 \times 10^{-6}$ accounting for
214	ncRNA genes (Extended Data Fig. 1e, Supplementary Table 5), with 3 rare variant
215	associations in RP11-15F12.3, RP11-310H4.2 and MIR4497 remained significant at
216	$\alpha = 0.05/6 = 8.33 \times 10^{-3}$ after conditioning on known lipids-associated variants ^{26,38,39}
217	(Table 2).
218	
219	Notably, among the 9 conditionally significant noncoding rare variants associations with
220	lipid traits, 4 of them were not detected by any of the three single-trait analysis (LDL-C,

HDL-C or TG) using unconditional analysis of STAAR-O, including the associations of

222 enhancer DHS rare variants in *NIPSNAP3A* and *LIPC* as well as ncRNA rare variants in

223 *RP11-310H4.2* and *MIR4497* (**Supplementary Table 5**). These results demonstrate

that MultiSTAAR-O can increase power over existing methods, and identify additional

trait-associated signals by leveraging cross-phenotype correlations between multipletraits.

227

228 Genetic region multi-trait analysis of rare variants

229	We next applied MultiSTAAR-O to perform genetic region multi-trait analysis to identify
230	rare variants associated with lipid traits in TOPMed. Rare variants residing in 2-kilobase
231	(kb) sliding windows with a 1-kb skip length were aggregated and analyzed using a joint
232	model for LDL-C, HDL-C and TG. We incorporated 12 quantitative annotations,
233	including 9 aPCs, CADD, LINSIGHT, FATHMM-XF along with the two MAF weights in
234	MultiSTAAR-O (Methods). The overall distribution of MultiSTAAR-O P values was well-
235	calibrated for the multi-trait analysis (Fig. 2b). At a Bonferroni-corrected significance
236	threshold of $\alpha = 0.05/(2.65 \times 10^6) = 1.89 \times 10^{-8}$ accounting for 2.65 million 2-kb
237	sliding windows across the genome, MultiSTAAR-O identified 502 genome-wide
238	significant associations using unconditional multi-trait analysis (Fig. 2a, Supplementary
239	Table 6). By dynamically incorporating multiple functional annotations capturing
240	different aspects of variant function, MultiSTAAR-O detected more significant sliding
241	windows and showed consistently smaller P values for top sliding windows compared
242	with multi-trait analysis using only MAFs as the weight (Fig. 2c). After conditioning on
243	known lipids-associated variants ^{26,38,39} , 7 out of the 502 associations remained
244	significant at the Bonferroni-corrected threshold of $\alpha = 0.05/502 = 9.96 \times 10^{-5}$ (Table
245	3), including two sliding windows in DOCK7 (chromosome 1: 62,651,447 - 62,653,446
246	bp; chromosome 1: 62,652,447 - 62,654,446 bp) and an intergenic sliding window
247	(chromosome 1: 145,530,447 - 145,532,446 bp) that were not detected by any of the
248	three single-trait analysis (LDL-C, HDL-C or TG) using STAAR-O (Supplementary
249	Table 6). Notably, all known lipids-associated variants indexed in the previous literature
250	were at least 1-Mb away from the intergenic sliding window.

252 **Comparison of MultiSTAAR-O with existing multi-trait rare variant tests**

- 253 Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of coding rare
- variants identified 34 conditionally significant associations with lipid traits (**Table 1**),
- 255 including NPC1L1 and SCARB1 missense rare variants that were missed by multi-trait
- burden, SKAT and ACAT-V tests (Supplementary Table 4). Among the 9 and 7
- 257 conditionally significant associations detected in gene-centric multi-trait analysis of
- 258 noncoding rare variants and genetic region multi-trait analysis, MultiSTAAR-O identified
- 1 and 2 associations, respectively, that were missed by multi-trait burden, SKAT and
- ACAT-V tests (Supplementary Tables 5-6). These associations included enhancer
- 261 CAGE rare variants in SPC24 and two sliding windows in LDLR (chromosome 19:
- 262 11,104,367 11,106,366 bp; chromosome 19: 11,105,367 11,107,366 bp).
- 263

264 **Computation cost**

The computational cost for MultiSTAAR-O to perform WGS multi-trait rare variant analysis of n = 61,838 related TOPMed lipids samples was 2 hours using 250 2.10-GHz computing cores with 12-GB memory for gene-centric coding analysis; or 20 hours using 250 2.10-GHz computing cores with 24-GB memory for gene-centric noncoding analysis; 2 hours using 250 2.10-GHz computing cores with 12-GB memory of ncRNA analysis; and 20 hours using 500 2.10-GHz computing cores with 24-GB memory for sliding window analysis. Runtime for all analyses scales linearly with the sample size²⁴.

273 Discussion

274 In this study, we have introduced MultiSTAAR as a general statistical framework and a 275 flexible analytical pipeline for performing functionally-informed multi-trait RVAS in large-276 scale WGS studies. MultiSTAAR improves power by analyzing multiple traits 277 simultaneously and dynamically incorporating multiple functional annotations, while 278 accounting for relatedness and population structure among study samples. 279 280 By jointly analyzing multiple quantitative traits using a multivariate linear mixed model. 281 MultiSTAAR explicitly leverages the correlation among multiple phenotypes to enhance 282 power for detecting additional association signals, outperforming single-trait analyses of

the individual phenotypes. MultiSTAAR also enables conditional multi-trait analysis to
 identify putatively novel rare variant associations independent of a set of known

variants. Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of

286 noncoding rare variants identified 9 conditionally significant associations with lipid traits

287 (**Table 2**), including 4 noncoding associations that were missed by single-trait analysis

using STAAR (Supplementary Table 5). Our genetic region multi-trait analysis of rare

traits (**Table 3**), including 3 associations that were missed by single-trait analysis using

variants identified 7 conditionally significant 2-kb sliding windows associated with lipid

291 STAAR (**Supplementary Table 6**).

292

289

By dynamically incorporating multiple annotations capturing diverse aspects of variant
biological function in the second step, MultiSTAAR further improves power over existing
multi-trait rare variant analysis methods. Our simulation studies demonstrated that
MultiSTAAR-O maintained accurate type I error rates while achieving considerable

power gains over multi-trait burden, SKAT and ACAT-V tests that do not incorporate
functional annotation information (Extended Data Figs. 2-5, Supplementary Figs. 14). Notably, the existing ACAT-V method⁹ does not support multi-trait analysis. We
extended it to accommodate multi-trait settings and incorporated the multi-trait ACAT-V
test into the MultiSTAAR framework (Methods).

302

303 Implemented as a flexible analytical pipeline, MultiSTAAR allows for customized input 304 phenotype selection, variant set definition and user-specified annotation weights to 305 facilitate functionally-informed multi-trait analyses. In addition to rare variant association 306 analysis of coding and noncoding regions, MultiSTAAR also provides single-variant 307 multi-trait analysis for common and low-frequency variants under a given MAF or minor 308 allele count (MAC) cutoff (e.g. MAC \geq 20). Using 61,838 TOPMed lipids samples, it took 309 8 hours using 250 2.10-GHz computing cores with 12-GB memory for single-variant 310 multi-trait analysis, which is scalable for large WGS/WES datasets. On the other hand, 311 MultiSTAAR could be further extended to allow for dynamic windows with data-adaptive sizes in genetic region analysis^{24,44}, to properly leverage synthetic surrogates in the 312 presence of partially missing phenotypes⁴⁵, and to incorporate summary statistics for 313 314 meta-analysis of multiple WGS/WES studies⁴⁶.

315

316 In summary, MultiSTAAR provides a powerful statistical framework and a

317 computationally scalable analytical pipeline for large-scale WGS multi-trait analysis with

318 complex study samples. Compared to single-trait analysis, MultiSTAAR offers a notable

319 increase in statistical power when analyzing multiple moderately to highly correlated

320	traits, all while maintaining control over type I error rates across various genetic
321	architectures. As the sample sizes and number of available phenotypes increase in
322	biobank-scale sequencing studies, our proposed method may contribute to a better
323	understanding of the genetic architecture of complex traits by elucidating the role of rare
324	variants with pleiotropic effects.
325	
326	Acknowledgments
327	This work was supported by grants R35-CA197449, U19-CA203654, U01-HG012064,
328	and U01-HG009088 (X. Lin), NHLBI TOPMed Fellowship (X. Li), R01-HL142711 and
329	R01-HL127564 (P.N. and G.M.P.), 75N92020D00001, HHSN268201500003I, N01-HC-
330	95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161,
331	75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163,
332	75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166,
333	N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079,
334	UL1-TR-001420, UL1-TR001881, DK063491, R01-HL071051, R01-HL071205, R01-
335	HL071250, R01-HL071251, R01-HL071258, R01-HL071259, and UL1-RR033176
336	(J.I.R.), HHSN268201800001I and U01-HL137162 (K.M.R.), 1R35-HL135818, R01-
337	HL113338, and HL046389 (S.R.), HL105756 (B.M.P.), HHSN268201600018C,
338	HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and
339	HHSN268201600004C (C.K.), R01-MD012765 and R01-DK117445 (N.F.),
340	18CDA34110116 from American Heart Association (P.S.d.V.), R01-HL153805, R03-
341	HL154284 (B.E.C.), HHSN268201700001I, HHSN268201700002I,
342	HHSN268201700003I, HHSN268201700005I, and HHSN268201700004I (E.B.), U01-

343	HL072524, R01-HL104135-04S1, U01-HL054472, U01-HL054473, U01-HL054495,
344	U01-HL054509, and R01-HL055673-18S1 (D.K.A.), U01-HL72518, HL087698,
345	HL49762, HL59684, HL58625, HL071025, HL112064, NR0224103, and M01-
346	RR000052 (to the Johns Hopkins General Clinical Research Center). This work was
347	supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01
348	DK071891, R01 AG058921, the General Clinical Research Center of the Wake Forest
349	University School of Medicine (M01 RR07122, F32 HL085989), the American Diabetes
350	Association, and a pilot grant from the Claude Pepper Older Americans Independence
351	Center of Wake Forest University Health Sciences (P60 AG10484). The Framingham
352	Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195,
353	HHSN268201500001I and 75N92019D00031 from the National Heart, Lung and Blood
354	Institute and grant supplement R01 HL092577-06S1 for this research. We also
355	acknowledge the dedication of the FHS study participants without whom this research
356	would not be possible. R.S.V. is supported in part by the Evans Medical Foundation and
357	the Jay and Louis Coffman Endowment from the Department of Medicine, Boston
358	University School of Medicine. The Jackson Heart Study (JHS) is supported and
359	conducted in collaboration with Jackson State University (HHSN268201800013I),
360	Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health
361	(HHSN268201800015I) and the University of Mississippi Medical Center
362	(HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts
363	from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute on
364	Minority Health and Health Disparities (NIMHD). The authors also wish to thank the
365	staffs and participants of the JHS. Support for GENOA was provided by the National

366 Heart, Lung and Blood Institute (U01HL054457, U01HL054464, U01HL054481, 367 R01HL119443, and R01HL087660) of the National Institutes of Health. Collection of the 368 San Antonio Family Study data was supported in part by National Institutes of Health 369 (NIH) grants P01 HL045522, MH078143, MH078111 and MH083824; and whole 370 genome sequencing of SAFS subjects was supported by U01 DK085524 and R01 371 HL113323. Molecular data for the Trans-Omics in Precision Medicine (TOPMed) 372 program was supported by the National Heart, Lung and Blood Institute (NHLBI). Core 373 support including centralized genomic read mapping and genotype calling, along with 374 variant quality metrics and filtering were provided by the TOPMed Informatics Research 375 Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including 376 phenotype harmonization, data management, sample-identity QC, and general program 377 coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393: 378 U01HL-120393; contract HHSN268201800001I). We gratefully acknowledge the studies 379 and participants who provided biological samples and data for TOPMed. The full study 380 specific acknowledgements are detailed in **Supplementary Note**.

381

382 Author contributions

- 383 X. Li, H.C., Z. Li, Z. Liu and X. Lin designed the experiments. X. Li, H.C., Z. Li and X.
- Lin performed the experiments. X. Li, H.C., M.S.S., E.V.B., Y.W., R.S., Z.R.M., Z.Y.,
- 385 D.K.A., J.C.B., J.B., E.B., D.W.B., J.A.B., B.E.C., A.P.C., J.C.C., N.C., Y.D.I.C., J.E.C.,
- 386 P.S.d.V., M.F., N.F., B.I.F., C.G., N.L.H.C., J.H., L.H., Y.J.H., M.R.I., R.C.K., S.L.R.K.,
- 387 T.K., I.K., C.K., B.G.K., C.L., R.J.F.L., M.C.M., L.W.M., R.A.M., R.L.M., B.D.M., M.E.M.,
- 388 A.C.M., N.D.P., P.A.P., B.M.P., L.M.R., S.R., A.P.R., S.S.R., C.M.S., J.A.S., K.D.T.,

H.T., R.S.V., Z.W., L.R.Y., B.Y., K.M.R., J.I.R., G.M.P., P.N., Z. Li, Z. Liu and X. Lin
acquired, analyzed or interpreted data. G.M.P., P.N. and the NHLBI TOPMed Lipids
Working Group provided administrative, technical or material support. X. Li, Z. Li, Z. Liu
and X. Lin drafted the manuscript and revised it according to suggestions by the
coauthors. All authors critically reviewed the manuscript, suggested revisions as needed
and approved the final version.

395

Competing interests

Z.R.M. is an employee of Insitro. M.E.M. receives research funding from Regeneron
Pharmaceutical Inc., unrelated to this project. B.M.P. serves on the Steering Committee
of the Yale Open Data Access Project funded by Johnson & Johnson. L.M.R. is a
consultant for the TOPMed Administrative Coordinating Center (via Westat). X. Lin is a
consultant of AbbVie Pharmaceuticals and Verily Life Sciences. The remaining authors
declare no competing interests.

403

404 NHLBI Trans-Omics for Precisition Medicine (TOPMed) Consortium

405 Namiko Abe⁵⁰, Gonçalo Abecasis⁵¹, Francois Aguet⁵², Christine Albert⁵³, Laura

406 Almasy⁵⁴, Alvaro Alonso⁵⁵, Seth Ament⁵⁶, Peter Anderson⁵⁷, Pramod Anugu⁵⁸, Deborah

407 Applebaum-Bowden⁵⁹, Kristin Ardlie⁵², Dan Arking⁶⁰, Allison Ashley-Koch⁶¹, Stella

- 408 Aslibekyan⁶², Tim Assimes⁶³, Paul Auer⁶⁴, Dimitrios Avramopoulos⁶⁰, Najib Ayas⁶⁵,
- 409 Adithya Balasubramanian⁶⁶, John Barnard⁶⁷, Kathleen Barnes⁶⁸, R. Graham Barr⁶⁹,
- 410 Emily Barron-Casella⁶⁰, Lucas Barwick⁷⁰, Terri Beaty⁶⁰, Gerald Beck⁷¹, Diane Becker⁷²,
- 411 Lewis Becker⁶⁰, Rebecca Beer⁷³, Amber Beitelshees⁵⁶, Emelia Benjamin⁷⁴, Takis

Benos⁷⁵, Marcos Bezerra⁷⁶, Larry Bielak⁵¹, Thomas Blackwell⁵¹, Nathan Blue⁷⁷, Russell 412 Bowler⁷⁸, Ulrich Broeckel⁷⁹, Jai Broome⁵⁷, Deborah Brown⁸⁰, Karen Bunting⁵⁰, Esteban 413 Burchard⁸¹, Carlos Bustamante⁸², Erin Buth⁸³, Jonathan Cardwell⁸⁴, Vincent Carey⁸⁵, 414 Julie Carrier⁸⁶, Cara Carty⁸⁷, Richard Casaburi⁸⁸, Juan P Casas Romero⁸⁹, James 415 Casella⁶⁰, Peter Castaldi⁹⁰, Mark Chaffin⁵², Christy Chang⁵⁶, Yi-Cheng Chang⁹¹, Daniel 416 Chasman⁹², Sameer Chavan⁸⁴, Bo-Juen Chen⁵⁰, Wei-Min Chen⁹³, Michael Cho⁸⁵, 417 Seung Hoan Choi⁵², Lee-Ming Chuang⁹⁴, Mina Chung⁹⁵, Ren-Hua Chung⁹⁶, Clary 418 Clish⁹⁷, Suzy Comhair⁹⁸, Matthew Conomos⁸³, Elaine Cornell⁹⁹, Adolfo Correa¹⁰⁰, 419 Carolyn Crandall⁸⁸, James Crapo¹⁰¹, L. Adrienne Cupples¹⁰², Jeffrey Curtis¹⁰³, Brian 420 Custer¹⁰⁴, Coleen Damcott⁵⁶, Dawood Darbar¹⁰⁵, Sean David¹⁰⁶, Colleen Davis⁵⁷, 421 Michelle Daya⁸⁴, Michael DeBaun¹⁰⁷, Dawn DeMeo⁸⁵, Ranjan Deka¹⁰⁸, Scott Devine⁵⁶, 422 Huyen Dinh⁶⁶, Harsha Doddapaneni¹⁰⁹, Qing Duan¹¹⁰, Shannon Dugan-Perez¹¹¹, Ravi 423 Duggirala¹¹², Jon Peter Durda¹¹³, Susan K. Dutcher¹¹⁴, Charles Eaton¹¹⁵, Lynette 424 Ekunwe⁵⁸, Adel El Boueiz¹¹⁶, Patrick Ellinor¹¹⁷, Leslie Emery⁵⁷, Serpil Erzurum¹¹⁸, 425 Charles Farber⁹³, Jesse Farek⁶⁶, Tasha Fingerlin¹¹⁹, Matthew Flickinger⁵¹, Chris 426 Frazar⁵⁷, Mao Fu⁵⁶, Stephanie M. Fullerton⁵⁷, Lucinda Fulton¹²⁰, Stacey Gabriel⁵², 427 Weiniu Gan⁷³, Shanshan Gao⁸⁴, Yan Gao⁵⁸, Margery Gass¹²¹, Heather Geiger¹²², Bruce 428 Gelb¹²³, Mark Geraci¹²⁴, Soren Germer⁵⁰, Robert Gerszten¹²⁵, Auyon Ghosh⁸⁵, Richard 429 Gibbs⁶⁶, Chris Gignoux⁶³, Mark Gladwin¹²⁶, David Glahn¹²⁷, Stephanie Gogarten⁵⁷, Da-430 Wei Gong⁵⁶, Harald Goring¹²⁸, Sharon Graw¹²⁹, Kathryn J. Gray¹³⁰, Daniel Grine⁸⁴, Colin 431 Gross⁵¹, Yue Guan⁵⁶, Xiuqing Guo¹³¹, Namrata Gupta¹³², Jeff Haessler¹²¹, Michael 432 Hall¹³³, Yi Han⁶⁶, Patrick Hanly¹³⁴, Daniel Harris¹³⁵, Nicola L. Hawley¹³⁶, Ben Heavner⁸³, 433 Susan Heckbert¹³⁷, Ryan Hernandez⁸¹, David Herrington¹³⁸, Craig Hersh¹³⁹, Bertha 434

Hidalgo⁶², James Hixson¹⁴⁰, Brian Hobbs¹⁴¹, John Hokanson⁸⁴, Elliott Hong⁵⁶, Karin 435 Hoth¹⁴², Chao (Agnes) Hsiung¹⁴³, Jianhong Hu⁶⁶, Haley Huston¹⁴⁴, Chii Min Hwu¹⁴⁵, 436 Rebecca Jackson¹⁴⁶, Deepti Jain⁵⁷, Cashell Jaguish¹⁴⁷, Jill Johnsen¹⁴⁸, Andrew 437 Johnson⁷³, Craig Johnson⁵⁷, Rich Johnston⁵⁵, Kimberly Jones⁶⁰, Hyun Min Kang¹⁴⁹, 438 Shannon Kelly¹⁵⁰, Eimear Kenny¹²³, Michael Kessler⁵⁶, Alyna Khan⁵⁷, Ziad Khan⁶⁶, 439 Wonji Kim¹⁵¹, John Kimoff¹⁵², Greg Kinney¹⁵³, Barbara Konkle¹⁵⁴, Holly Kramer¹⁵⁵, 440 Christoph Lange¹⁵⁶, Ethan Lange⁸⁴, Leslie Lange¹⁵⁷, Cathy Laurie⁵⁷, Cecelia Laurie⁵⁷, 441 Meryl LeBoff⁸⁵, Jonathon LeFaive⁵¹, Jiwon Lee⁸⁵, Sandra Lee⁶⁶, Wen-Jane Lee¹⁴⁵, 442 David Levine⁵⁷, Daniel Levy⁷³, Joshua Lewis⁵⁶, Xiaohui Li¹³¹, Yun Li¹¹⁰, Henry Lin¹³¹, 443 Honghuang Lin¹⁵⁸, Simin Liu¹⁵⁹, Yongmei Liu¹⁶⁰, Yu Liu¹⁶¹, Steven Lubitz¹¹⁷, Kathryn 444 Lunetta¹⁶², James Luo⁷³, Ulysses Magalang¹⁶³, Barry Make⁶⁰, Ani Manichaikul⁹³, Alisa 445 Manning¹⁶⁴, JoAnn Manson⁸⁵, Melissa Marton¹²², Susan Mathai⁸⁴, Susanne May⁸³, 446 Patrick McArdle⁵⁶, Merry-Lynn McDonald¹⁶⁵, Sean McFarland¹⁵¹, Stephen McGarvey¹⁶⁶, 447 Daniel McGoldrick¹⁶⁷, Caitlin McHugh⁸³, Becky McNeil¹⁶⁸, Hao Mei⁵⁸, James Meigs¹⁶⁹, 448 Vipin Menon⁶⁶, Luisa Mestroni¹²⁹, Ginger Metcalf⁶⁶, Deborah A Meyers¹⁷⁰, Emmanuel 449 Mignot¹⁷¹, Julie Mikulla⁷³, Nancy Min⁵⁸, Mollie Minear¹⁷², Matt Moll⁹⁰, Zeineen Momin⁶⁶, 450 Courtney Montgomery¹⁷³, Donna Muzny⁶⁶, Josyf C Mychaleckyj⁹³, Girish Nadkarni¹²³, 451 Rakhi Naik⁶⁰, Take Naseri¹⁷⁴, Sergei Nekhai¹⁷⁵, Sarah C. Nelson⁸³, Bonnie Neltner⁸⁴, 452 Caitlin Nessner⁶⁶, Deborah Nickerson¹⁷⁶, Osuji Nkechinyere⁶⁶, Kari North¹¹⁰, Jeff 453 O'Connell¹⁷⁷, Tim O'Connor⁵⁶, Heather Ochs-Balcom¹⁷⁸, Geoffrey Okwuonu⁶⁶, Allan 454 Pack¹⁷⁹, David T. Paik¹⁸⁰, James Pankow¹⁸¹, George Papanicolaou⁷³, Cora Parker¹⁸², 455 Juan Manuel Peralta¹¹², Marco Perez⁶³, James Perry⁵⁶, Ulrike Peters¹⁸³, Lawrence S 456 Phillips⁵⁵, Jacob Pleiness⁵¹, Toni Pollin⁵⁶, Wendy Post¹⁸⁴, Julia Powers Becker¹⁸⁵, 457

Meher Preethi Boorgula⁸⁴, Michael Preuss¹²³, Pankaj Qasba⁷³, Dandi Qiao⁸⁵, Zhaohui 458 Qin⁵⁵, Nicholas Rafaels¹⁸⁶, Mahitha Rajendran⁶⁶, D.C. Rao¹²⁰, Laura Rasmussen-459 Torvik¹⁸⁷, Aakrosh Ratan⁹³, Robert Reed⁵⁶, Catherine Reeves¹⁸⁸, Elizabeth Regan¹⁸⁹, 460 Muagututi'a Sefuiva Reupena¹⁹⁰, Rebecca Robillard¹⁹¹, Nicolas Robine¹²², Dan 461 Roden¹⁹², Carolina Roselli⁵², Ingo Ruczinski⁶⁰, Alexi Runnels¹²², Pamela Russell⁸⁴, 462 Sarah Ruuska¹⁹³, Kathleen Ryan⁵⁶, Ester Cerdeira Sabino¹⁹⁴, Danish Saleheen¹⁹⁵, 463 Shabnam Salimi¹⁹⁶, Sejal Salvi⁶⁶, Steven Salzberg⁶⁰, Kevin Sandow¹⁹⁷, Vijay G. 464 Sankaran¹⁹⁸, Jireh Santibanez⁶⁶, Karen Schwander¹²⁰, David Schwartz⁸⁴, Frank 465 Sciurba¹²⁶, Christine Seidman¹⁹⁹, Jonathan Seidman²⁰⁰, Vivien Sheehan²⁰¹, Stephanie 466 L. Sherman²⁰², Amol Shetty⁵⁶, Aniket Shetty⁸⁴, Wayne Hui-Heng Sheu¹⁴⁵, M. Benjamin 467 Shoemaker²⁰³, Brian Silver²⁰⁴, Edwin Silverman⁸⁵, Robert Skomro²⁰⁵, Albert Vernon 468 Smith²⁰⁶, Josh Smith⁵⁷, Nicholas Smith²⁰⁷, Tanja Smith⁵⁰, Sylvia Smoller²⁰⁸, Beverly 469 Snively²⁰⁹, Michael Snyder²¹⁰, Tamar Sofer¹²⁵, Nona Sotoodehnia⁵⁷, Adrienne M. Stilp⁵⁷, 470 Garrett Storm²¹¹, Elizabeth Streeten⁵⁶, Jessica Lasky Su²¹², Yun Ju Sung¹²⁰, Jody 471 Sylvia⁸⁵, Adam Szpiro⁵⁷, Frédéric Sériès²¹³, Daniel Taliun⁵¹, Hua Tang²¹⁰, Margaret 472 Taub⁶⁰, Matthew Taylor¹²⁹, Simeon Taylor⁵⁶, Marilyn Telen⁶¹, Timothy A. Thornton⁵⁷, 473 Machiko Threlkeld²¹⁴, Lesley Tinker²¹⁵, David Tirschwell⁵⁷, Sarah Tishkoff²¹⁶, Catherine 474 Tong²¹⁷, Russell Tracy²¹⁸, Michael Tsai¹⁸¹, Dhananjay Vaidya⁶⁰, David Van Den Berg²¹⁹, 475 Peter VandeHaar⁵¹, Scott Vrieze¹⁸¹, Tarik Walker⁸⁴, Robert Wallace¹⁴², Avram Walts⁸⁴, 476 Fei Fei Wang⁵⁷, Heming Wang²²⁰, Jiongming Wang²²¹, Karol Watson⁸⁸, Jennifer Watt⁶⁶, 477 Daniel E. Weeks²²², Joshua Weinstock¹⁴⁹, Bruce Weir⁵⁷, Scott T Weiss²²³, Lu-Chen 478 Weng¹¹⁷, Jennifer Wessel²²⁴, Cristen Willer¹⁰³, Kayleen Williams⁸³, L. Keoki Williams²²⁵, 479 Scott Williams²²⁶, Carla Wilson⁸⁵, James Wilson²²⁷, Lara Winterkorn¹²², Quenna 480

481	Wong ⁵⁷ , F	Baoiun Wu ²²⁸ .	Joseph Wu ¹⁸⁰ ,	Huichun Xu ⁵⁶	Ivana Yang ⁸⁴	¹ Ketian Yu ⁵¹	_
TO1	wong , L	Juojun vvu ,			, ivana rang	, Roduli i u	,

- 482 Seyedeh Maryam Zekavat⁵², Yingze Zhang²²⁹, Snow Xueyan Zhao¹⁰¹, Wei Zhao²³⁰,
- 483 Xiaofeng Zhu²³¹, Elad Ziv²³², Michael Zody⁵⁰, Sebastian Zoellner⁵¹, Mariza de
- 484 Andrade²³³, Lisa de las Fuentes²³⁴
- 485
- 486 50 New York Genome Center, New York, New York, 10013, US; 51 University of
- 487 Michigan, Ann Arbor, Michigan, 48109, US; 52 Broad Institute, Cambridge,
- 488 Massachusetts, 2142, US; 53 Cedars Sinai, Boston, Massachusetts, 2114, US; 54 -
- 489 Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia,
- 490 Pennsylvania, 19104, US; 55 Emory University, Atlanta, Georgia, 30322, US; 56 -
- 491 University of Maryland, Baltimore, Maryland, 21201, US; 57 University of Washington,
- 492 Seattle, Washington, 98195, US; 58 University of Mississippi, Jackson, Mississippi,
- 493 38677, US; 59 National Institutes of Health, Bethesda, Maryland, 20892, US; 60 -
- 494 Johns Hopkins University, Baltimore, Maryland, 21218, US; 61 Duke University,
- 495 Durham, North Carolina, 27708, US; 62 University of Alabama, Birmingham, Alabama,
- 496 35487, US; 63 Stanford University, Stanford, California, 94305, US; 64 Medical
- 497 College of Wisconsin, Milwaukee, Wisconsin, 53211, US; 65 Providence Health Care,
- 498 Medicine, Vancouver, CA; 66 Baylor College of Medicine Human Genome Sequencing
- 499 Center, Houston, Texas, 77030, US; 67 Cleveland Clinic, Cleveland, Ohio, 44195, US;
- 500 68 Tempus, University of Colorado Anschutz Medical Campus, Aurora, Colorado,
- 501 80045, US; 69 Columbia University, New York, New York, 10032, US; 70 The
- 502 Emmes Corporation, LTRC, Rockville, Maryland, 20850, US; 71 Cleveland Clinic,
- 503 Quantitative Health Sciences, Cleveland, Ohio, 44195, US; 72 Johns Hopkins

504 University, Medicine, Baltimore, Maryland, 21218, US; 73 - National Heart, Lung, and 505 Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, US: 74 -506 Boston University, Massachusetts General Hospital, Boston University School of 507 Medicine, Boston, Massachusetts, 2114, US; 75 - University of Florida, Epidemiology, 508 Gainesville, Florida, 32610, US; 76 - Fundação de Hematologia e Hemoterapia de 509 Pernambuco - Hemope, Recife, 52011-000, BR; 77 - University of Utah, Obstetrics and 510 Gynecology, Salt Lake City, Utah, 84132, US: 78 - National Jewish Health, National 511 Jewish Health, Denver, Colorado, 80206, US; 79 - Medical College of Wisconsin, 512 Pediatrics, Milwaukee, Wisconsin, 53226, US; 80 - University of Texas Health at 513 Houston, Pediatrics, Houston, Texas, 77030, US; 81 - University of California, San 514 Francisco, San Francisco, California, 94143, US; 82 - Stanford University, Biomedical 515 Data Science, Stanford, California, 94305, US: 83 - University of Washington, 516 Biostatistics, Seattle, Washington, 98195, US; 84 - University of Colorado at Denver, 517 Denver, Colorado, 80204, US; 85 - Brigham & Women's Hospital, Boston, 518 Massachusetts, 2115, US; 86 - University of Montreal, US; 87 - Washington State 519 University, Pullman, Washington, 99164, US; 88 - University of California, Los Angeles, 520 Los Angeles, California, 90095, US; 89 - Brigham & Women's Hospital, US; 90 -521 Brigham & Women's Hospital, Medicine, Boston, Massachusetts, 2115, US; 91 -522 National Taiwan University, Taipei, 10617, TW; 92 - Brigham & Women's Hospital, 523 Division of Preventive Medicine, Boston, Massachusetts, 2215, US; 93 - University of 524 Virginia, Charlottesville, Virginia, 22903, US; 94 - National Taiwan University, National 525 Taiwan University Hospital, Taipei, 10617, TW; 95 - Cleveland Clinic, Cleveland Clinic, 526 Cleveland, Ohio, 44195, US; 96 - National Health Research Institute Taiwan, Miaoli

527	County, 350, TW; 97 - Broad Institute, Metabolomics Platform, Cambridge,
528	Massachusetts, 2142, US; 98 - Cleveland Clinic, Immunity and Immunology, Cleveland,
529	Ohio, 44195, US; 99 - University of Vermont, Burlington, Vermont, 5405, US; 100 -
530	University of Mississippi, Population Health Science, Jackson, Mississippi, 39216, US;
531	101 - National Jewish Health, Denver, Colorado, 80206, US; 102 - Boston University,
532	Biostatistics, Boston, Massachusetts, 2115, US; 103 - University of Michigan, Internal
533	Medicine, Ann Arbor, Michigan, 48109, US; 104 - Vitalant Research Institute, San
534	Francisco, California, 94118, US; 105 - University of Illinois at Chicago, Chicago, Illinois,
535	60607, US; 106 - University of Chicago, Chicago, Illinois, 60637, US; 107 - Vanderbilt
536	University, Nashville, Tennessee, 37235, US; 108 - University of Cincinnati, Cincinnati,
537	Ohio, 45220, US; 109 - Baylor College of Medicine Human Genome Sequencing
538	Center, Houston, Texas, 77030; 110 - University of North Carolina, Chapel Hill, North
539	Carolina, 27599, US; 111 - Baylor College of Medicine Human Genome Sequencing
540	Center, BCM, Houston, Texas, 77030, US; 112 - University of Texas Rio Grande Valley
541	School of Medicine, Edinburg, Texas, 78539, US; 113 - University of Vermont,
542	Pathology and Laboratory Medicine, Burlington, Vermont, 5405, US; 114 - Washington
543	University in St Louis, Genetics, St Louis, Missouri, 63110, US; 115 - Brown University,
544	Providence, Rhode Island, 2912, US; 116 - Harvard University, Channing Division of
545	Network Medicine, Cambridge, Massachusetts, 2138, US; 117 - Massachusetts General
546	Hospital, Boston, Massachusetts, 2114, US; 118 - Cleveland Clinic, Lerner Research
547	Institute, Cleveland, Ohio, 44195, US; 119 - National Jewish Health, Center for Genes,
548	Environment and Health, Denver, Colorado, 80206, US; 120 - Washington University in
549	St Louis, St Louis, Missouri, 63130, US; 121 - Fred Hutchinson Cancer Research

550	Center, Seattle, Washington, 98109, US; 122 - New York Genome Center, New York
551	City, New York, 10013, US; 123 - Icahn School of Medicine at Mount Sinai, New York,
552	New York, 10029, US; 124 - University of Pittsburgh, Pittsburgh, Pennsylvania, US; 125
553	- Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2215, US; 126 -
554	University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, US; 127 - Boston Children's
555	Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts,
556	2115, US; 128 - University of Texas Rio Grande Valley School of Medicine, San
557	Antonio, Texas, 78229, US; 129 - University of Colorado Anschutz Medical Campus,
558	Aurora, Colorado, 80045, US; 130 - Mass General Brigham, Obstetrics and
559	Gynecology, Boston, Massachusetts, 2115, US; 131 - Lundquist Institute, Torrance,
560	California, 90502, US; 132 - Broad Institute, Broad Institute, Cambridge,
561	Massachusetts, 2142, US; 133 - University of Mississippi, Cardiology, Jackson,
562	Mississippi, 39216, US; 134 - University of Calgary, Medicine, Calgary, CA; 135 -
563	University of Maryland, Genetics, Philadelphia, Pennsylvania, 19104, US; 136 - Yale
564	University, Department of Chronic Disease Epidemiology, New Haven, Connecticut,
565	6520, US; 137 - University of Washington, Epidemiology, Seattle, Washington, 98195-
566	9458, US; 138 - Wake Forest Baptist Health, Winston-Salem, North Carolina, 27157,
567	US; 139 - Brigham & Women's Hospital, Channing Division of Network Medicine,
568	Boston, Massachusetts, 2115, US; 140 - University of Texas Health at Houston,
569	Houston, Texas, 77225, US; 141 - Regeneron Genetics Center, Boston,
570	Massachusetts, 2115, US; 142 - University of Iowa, Iowa City, Iowa, 52242, US; 143 -
571	National Health Research Institute Taiwan, Institute of Population Health Sciences,
572	NHRI, Miaoli County, 350, TW; 144 - Blood Works Northwest, Seattle, Washington,

573	98104, US; 145 - Taichung Veterans General Hospital Taiwan, Taichung City, 407, TW;
574	146 - Oklahoma State University Medical Center, Internal Medicine, DIvision of
575	Endocrinology, Diabetes and Metabolism, Columbus, Ohio, 43210, US; 147 - National
576	Heart, Lung, and Blood Institute, National Institutes of Health, NHLBI, Bethesda,
577	Maryland, 20892, US; 148 - University of Washington, Medicine, Seattle, Washington,
578	98109, US; 149 - University of Michigan, Biostatistics, Ann Arbor, Michigan, 48109, US;
579	150 - University of California, San Francisco, San Francisco, California, 94118, US; 151
580	- Harvard University, Cambridge, Massachusetts, 2138, US; 152 - McGill University,
581	Montréal, QC H3A 0G4, CA; 153 - University of Colorado at Denver, Epidemiology,
582	Aurora, Colorado, 80045, US; 154 - Blood Works Northwest, Medicine, Seattle,
583	Washington, 98104, US; 155 - Loyola University, Public Health Sciences, Maywood,
584	Illinois, 60153, US; 156 - Harvard School of Public Health, Biostats, Boston,
585	Massachusetts, 2115, US; 157 - University of Colorado at Denver, Medicine, Aurora,
586	Colorado, 80048, US; 158 - Boston University, University of Massachusetts Chan
587	Medical School, Worcester, Massachusetts, 1655, US; 159 - Brown University,
588	Epidemiology and Medicine, Providence, Rhode Island, 2912, US; 160 - Duke
589	University, Cardiology, Durham, North Carolina, 27708, US; 161 - Stanford University,
590	Cardiovascular Institute, Stanford, California, 94305, US; 162 - Boston University,
591	Boston, Massachusetts, 2215, US; 163 - The Ohio State University, Division of
592	Pulmonary, Critical Care and Sleep Medicine, Columbus, Ohio, 43210, US; 164 - Broad
593	Institute, Harvard University, Massachusetts General Hospital; 165 - University of
594	Alabama, University of Alabama at Birmingham, Birmingham, Alabama, 35487, US; 166
595	- Brown University, Epidemiology, Providence, Rhode Island, 2912, US; 167 - University

596	of Washington, Genome Sciences, Seattle, Washington, 98195, US; 168 - RTI
597	International, US; 169 - Massachusetts General Hospital, Medicine, Boston,
598	Massachusetts, 2114, US; 170 - University of Arizona, Tucson, Arizona, 85721, US; 171
599	- Stanford University, Center For Sleep Sciences and Medicine, Palo Alto, California,
600	94304, US; 172 - National Institute of Child Health and Human Development, National
601	Institutes of Health, Bethesda, Maryland, 20892, US; 173 - Oklahoma Medical Research
602	Foundation, Genes and Human Disease, Oklahoma City, Oklahoma, 73104, US; 174 -
603	Ministry of Health, Government of Samoa, Apia, WS; 175 - Howard University,
604	Washington, District of Columbia, 20059, US; 176 - University of Washington,
605	Department of Genome Sciences, Seattle, Washington, 98195, US; 177 - University of
606	Maryland, Balitmore, Maryland, 21201, US; 178 - University at Buffalo, Buffalo, New
607	York, 14260, US; 179 - University of Pennsylvania, Division of Sleep
608	Medicine/Department of Medicine, Philadelphia, Pennsylvania, 19104-3403, US; 180 -
609	Stanford University, Stanford Cardiovascular Institute, Stanford, California, 94305, US;
610	181 - University of Minnesota, Minneapolis, Minnesota, 55455, US; 182 - RTI
611	International, Biostatistics and Epidemiology Division, Research Triangle Park, North
612	Carolina, 27709-2194, US; 183 - Fred Hutchinson Cancer Research Center, Fred Hutch
613	and UW, Seattle, Washington, 98109, US; 184 - Johns Hopkins University,
614	Cardiology/Medicine, Baltimore, Maryland, 21218, US; 185 - University of Colorado at
615	Denver, Medicine, Denver, Colorado, 80204, US; 186 - University of Colorado at
616	Denver, CCPM, Denver, Colorado, 80045, US; 187 - Northwestern University, Chicago,
617	Illinois, 60208, US; 188 - New York Genome Center, New York Genome Center, New
618	York City, New York, 10013, US; 189 - National Jewish Health, Medicine, Denver,

619	Colorado, 80206, US; 190 - Lutia I Puava Ae Mapu I Fagalele, Apia, WS; 191 -
620	University of Ottawa, Sleep Research Unit, University of Ottawa Institute for Mental
621	Health Research, Ottawa, ON K1Z 7K4, CA; 192 - Vanderbilt University, Medicine,
622	Pharmacology, Biomedicla Informatics, Nashville, Tennessee, 37235, US; 193 -
623	University of Washington, Seattle, Washington, 98104, US; 194 - Universidade de Sao
624	Paulo, Faculdade de Medicina, Sao Paulo, 1310000, BR; 195 - Columbia University,
625	New York, New York, 10027, US; 196 - University of Maryland, Pathology, Seattle,
626	Washington, 98195, US; 197 - Lundquist Institute, TGPS, Torrance, California, 90502,
627	US; 198 - Harvard University, Division of Hematology/Oncology, Boston,
628	Massachusetts, 2115, US; 199 - Harvard Medical School, Genetics, Boston,
629	Massachusetts, 2115, US; 200 - Harvard Medical School, Boston, Massachusetts,
630	2115, US; 201 - Emory University, Pediatrics, Atlanta, Georgia, 30307, US; 202 - Emory
631	University, Human Genetics, Atlanta, Georgia, 30322, US; 203 - Vanderbilt University,
632	Medicine/Cardiology, Nashville, Tennessee, 37235, US; 204 - UMass Memorial Medical
633	Center, Worcester, Massachusetts, 1655, US; 205 - University of Saskatchewan,
634	Saskatoon, SK S7N 5C9, CA; 206 - University of Michigan; 207 - University of
635	Washington, Epidemiology, Seattle, Washington, 98195, US; 208 - Albert Einstein
636	College of Medicine, New York, New York, 10461, US; 209 - Wake Forest Baptist
637	Health, Biostatistical Sciences, Winston-Salem, North Carolina, 27157, US; 210 -
638	Stanford University, Genetics, Stanford, California, 94305, US; 211 - University of
639	Colorado at Denver, Genomic Cardiology, Aurora, Colorado, 80045, US; 212 - Brigham
640	& Women's Hospital, Channing Department of Medicine, Boston, Massachusetts, 2115,
641	US; 213 - Université Laval, Quebec City, G1V 0A6, CA; 214 - University of Washington,

642	University of Washington, Department of Genome Sciences, Seattle, Washington,
643	98195, US; 215 - Fred Hutchinson Cancer Research Center, Cancer Prevention
644	Division of Public Health Sciences, Seattle, Washington, 98109, US; 216 - University of
645	Pennsylvania, Genetics, Philadelphia, Pennsylvania, 19104, US; 217 - University of
646	Washington, Department of Biostatistics, Seattle, Washington, 98195, US; 218 -
647	University of Vermont, Pathology & Laboratory Medicine, Burlington, Vermont, 5405,
648	US; 219 - University of Southern California, USC Methylation Characterization Center,
649	University of Southern California, California, 90033, US; 220 - Brigham & Women's
650	Hospital, Mass General Brigham, Boston, Massachusetts, 2115, US; 221 - University of
651	Michigan, US; 222 - University of Pittsburgh, Department of Human Genetics,
652	Pittsburgh, Pennsylvania, 15260, US; 223 - Brigham & Women's Hospital, Channing
653	Division of Network Medicine, Department of Medicine, Boston, Massachusetts, 2115,
654	US; 224 - Indiana University, Epidemiology, Indianapolis, Indiana, 46202, US; 225 -
655	Henry Ford Health System, Detroit, Michigan, 48202, US; 226 - Case Western Reserve
656	University; 227 - Beth Israel Deaconess Medical Center, Cardiology, Cambridge,
657	Massachusetts, 2139, US; 228 - Henry Ford Health System, Department of Medicine,
658	Detroit, Michigan, 48202, US; 229 - University of Pittsburgh, Medicine, Pittsburgh,
659	Pennsylvania, 15260, US; 230 - University of Michigan, Department of Epidemiology,
660	Ann Arbor, Michigan, 48109, US; 231 - Case Western Reserve University, Department
661	of Population and Quantitative Health Sciences, Cleveland, Ohio, 44106, US; 232 -
662	University of California, San Francisco, Medicine, San Francisco, California, 94143, US;
663	233 - Mayo Clinic, Health Quantitative Sciences Research, Rochester, Minnesota,

- 664 55905, US; 234 Washington University in St Louis, Department of Medicine,
- 665 Cardiovascular Division, St. Louis, Missouri, 63110, US

- 0/1

687 **TABLES**

Table 1 | TOPMed Gene-centric coding multi-trait analysis results of both

689 unconditional analysis and analysis conditional on known lipids-associated

- 690 variants. A total of 61,838 samples from the TOPMed Program were considered in the
- analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O
- 692 $P < 5.00 \times 10^{-7}$; conditional MultiSTAAR-O $P < 9.80 \times 10^{-4}$) are presented in the
- table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome number; Category,
- 694 functional category; No. of SNVs, number of rare variants (MAF < 1%) of the particular
- 695 coding functional category in the gene; MultiSTAAR-O, MultiSTAAR-O *P* value; Variants
- 696 (adjusted), adjusted variants in the conditional analysis.
- 697

Gene	Chr. no.	Category	No. of SNVs	MultiSTAAR-O (Unconditional)	MultiSTAAR-O (Conditional)	Variants (adjusted)
PCSK9	1	Putative loss- of-function	14	1.14E-115	2.66E-08	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
APOB	2	Putative loss- of-function	29	8.04E-28	5.76E-27	rs12478327, rs72654432, rs1042034, rs676210, rs533617, rs17240441, rs34722314, rs563290, rs10692845
ABCA1	9	Putative loss- of-function	28	2.04E-21	5.41E-21	rs2150867, rs33918808, rs112853430, rs4149307, rs9282541, rs1883025, rs1800978
LDLR	19	Putative loss- of-function	19	8.81E-21	7.16E-21	rs140753491, rs138294113, rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459
PCSK9	1	Missense	271	8.94E-71	1.29E-10	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
APOB	2	Missense	1407	5.57E-08	4.31E-08	rs12478327, rs72654432, rs1042034, rs676210, rs533617, rs17240441, rs34722314, rs563290, rs10692845
ABCG5	2	Missense	242	5.75E-08	9.81E-08	rs114780578, rs11887534, rs4245791
NPC1L1	7	Missense	477	3.10E-08	1.60E-07	rs217381
LPL	8	Missense	149	9.57E-19	7.14E-04	rs6996383, rs268, rs328, rs3289, rs13702, rs15285, rs78810414, rs28550053, rs12676079, rs55682243
ABCA1	9	Missense	597	3.63E-46	1.75E-33	rs2150867, rs33918808, rs112853430, rs4149307, rs9282541, rs1883025, rs1800978
SCARB1	12	Missense	192	6.77E-15	3.55E-15	rs6488913, rs4765127, rs1716407, rs825456, rs1672875, rs10846744, rs10773112, rs187471874, rs10773119 rs1973688, rs1601935,
LIPC	15	Missense	246	2.54E-20	6.66E-15	rs2043082, rs10468017, rs1532085, rs436965, rs35980001, rs1800588, rs2070895, rs113298164
CETP	16	Missense	168	8.84E-14	2.09E-04	rs35571500, rs247617, rs17231506, rs34498052, rs34119551, rs34065661, rs1597000001*, rs7499892, rs5883, rs289719, rs11860407, rs189866004,

						rs5880
LCAT	16	Missense	107	9.18E-14	3.06E-17	rs111315946, rs150660813, rs4986970, rs35673026, rs1109166, rs548291389 rs140753491, rs138294113,
LDLR	19	Missense	342	7.92E-58	2.12E-57	rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459
TM6SF2	19	Missense	120	7.06E-08	6.16E-07	rs3761077, rs150641967, rs187429064, rs2074304
PCSK9	1	Putative loss- of-function and disruptive missense	71	1.14E-107	8.22E-17	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
APOB	2	Putative loss- of-function and disruptive missense Putative loss-	75	9.96E-12	9.86E-12	rs12478327, rs72654432, rs1042034, rs676210, rs533617, rs17240441, rs34722314, rs563290, rs10692845
NPC1L1	7	of-function and disruptive missense	303	1.79E-09	8.29E-09	rs217381
ABCA1	9	Putative loss- of-function and disruptive missense	357	7.85E-33	2.66E-33	rs2150867, rs33918808, rs112853430, rs4149307, rs9282541, rs1883025, rs1800978
APOC3	11	Putative loss- of-function and disruptive missense	15	2.86E-126	3.01E-06	rs509728, rs61905072, rs66505542, rs7102314, rs964184, rs75198898, rs142958146, rs2075291, rs3135506, rs651821, rs45611741, rs662799, rs10750097, rs9804646, rs978880643, rs2070669, rs76353203, rs138326449, rs147210663, rs140621530, rs525028, rs141469619, rs188287950, rs202207736
SCARB1	12	Putative loss- of-function and disruptive missense	60	3.49E-17	2.14E-17	rs6488913, rs4765127, rs1716407, rs825456, rs1672875, rs10846744, rs10773112, rs187471874, rs10773119
LIPC	15	Putative loss- of-function and disruptive missense	130	1.01E-19	1.49E-17	rs1973688, rs1601935, rs2043082, rs10468017, rs1532085, rs436965, rs35980001, rs1800588, rs2070895, rs113298164
LCAT	16	Putative loss- of-function and disruptive missense	88	2.38E-16	5.07E-17	rs111315946, rs150660813, rs4986970, rs35673026, rs1109166, rs548291389
LDLR	19	Putative loss- of-function and disruptive missense	221	6.97E-72	1.57E-71	rs140753491, rs138294113, rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459
PCSK9	1	Disruptive missense	57	7.03E-19	1.33E-12	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
APOB	2	Disruptive missense	46	5.78E-09	4.48E-09	rs12478327, rs72654432, rs1042034, rs676210, rs533617, rs17240441, rs34722314, rs563290, rs10692845
NPC1L1	7	Disruptive missense	276	3.34E-09	1.57E-08	rs217381
ABCA1	9	Disruptive missense	329	1.17E-22	1.59E-23	rs2150867, rs33918808, rs112853430, rs4149307, rs9282541, rs1883025, rs1800978
APOC3	11	Disruptive missense	6	2.38E-29	3.93E-04	rs509728, rs61905072, rs66505542, rs7102314, rs964184, rs75198898, rs142958146, rs2075291, rs3135506,

						rs651821, rs45611741, rs662799, rs10750097, rs9804646, rs978880643, rs2070669, rs76353203, rs138326449, rs147210663, rs140621530, rs525028, rs141469619, rs188287950,
						rs202207736
	10	Disruptive	F 4			rs6488913, rs4765127, rs1716407,
SCARB1	12	missense	51	4.44E-16	2.86E-16	rs825456, rs1672875, rs10846744, rs10773112, rs187471874, rs10773119
						rs1973688, rs1601935,
LIPC	15	Disruptive	112	2.19E-18	2.65E-16	rs2043082, rs10468017,
2 0	10	missense		2.102 10	2.002 10	rs1532085, rs436965, rs35980001,
		Disruptive				rs1800588, rs2070895, rs113298164 rs111315946, rs150660813, rs4986970,
LCAT	16	missense	84	2.85E-14	6.44E-15	rs35673026, rs1109166, rs548291389
						rs140753491, rs138294113,
						rs17242353, rs17242843, rs10422256,
LDLR	19	Disruptive	203	2.22E-59	5.13E-59	rs72658860, rs11669576, rs2738447,
		missense				rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426,
						rs112942459

/02

705 **Table 2 | TOPMed Gene-centric noncoding multi-trait analysis results of both**

706 unconditional analysis and analysis conditional on known lipids-associated

- variants. A total of 61,838 samples from the TOPMed Program were considered in the
- analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O
- $P < 3.57 \times 10^{-7}$ and conditional MultiSTAAR-O $P < 6.58 \times 10^{-4}$ for 7 different
- noncoding masks across protein-coding genes; unconditional MultiSTAAR-O P <
- 711 2.50 \times 10⁻⁶ and conditional MultiSTAAR-O *P* < 8.33 \times 10⁻³ for ncRNA genes) are
- presented in the table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome
- 713 number; Category, functional category; No. of SNVs, number of rare variants (MAF <
- 1%) of the particular noncoding functional category in the gene; MultiSTAAR-O,
- 715 MultiSTAAR-O *P* value; Variants (adjusted), adjusted variants in the conditional
- analysis; n/a, no variant adjusted in the conditional analysis.
- 717

	Chr.		No. of	MultiSTAAR-O	MultiSTAAR-O	
Gene	no.	Category	SNVs	(Unconditional)	(Conditional)	Variants (adjusted)
APOA1	11	Promoter (CAGE)	230	2.33E-07	9.45E-07	rs509728, rs61905072, rs66505542, rs7102314, rs964184, rs75198898, rs142958146, rs2075291, rs3135506, rs651821, rs45611741, rs662799, rs10750097, rs9804646, rs978880643, rs2070669, rs76353203, rs138326449, rs147210663, rs140621530, rs525028, rs141469619, rs188287950,
CETP	16	Promoter (DHS)	411	1.21E-12	5.75E-04	rs202207736 rs35571500, rs247617, rs17231506, rs34498052, rs34119551, rs34065661, rs1597000001*, rs7499892, rs5883, rs289719, rs11860407, rs189866004, rs5880 rs509728, rs61905072, rs66505542,
APOA1	11	Enhancer (CAGE)	642	1.88E-24	6.23E-04	rs7102314, rs964184, rs75198898, rs142958146, rs2075291, rs3135506, rs651821, rs45611741, rs662799, rs10750097, rs9804646, rs978880643, rs2070669, rs76353203, rs138326449, rs147210663, rs140621530, rs525028, rs141469619, rs188287950, rs202207736
SPC24	19	Enhancer (CAGE)	366	1.33E-08	4.88E-04	rs140753491, rs138294113, rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459
NIPSNA P3A	9	Enhancer (DHS)	767	2.63E-08	8.46E-06	rs2150867, rs33918808, rs112853430, rs4149307, rs9282541, rs1883025, rs1800978
LIPC	15	Enhancer (DHS)	3714	4.26E-08	1.25E-04	rs1973688, rs1601935, rs2043082, rs10468017, rs1532085, rs436965, rs35980001, rs1800588, rs2070895, rs113298164
RP11- 310H4.2	7	ncRNA	154	1.69E-06	1.69E-06	n/a

	MIR4497	12	ncRNA	23	1.37E-06	1.42E-06	rs5800864
	RP11- 15F12.3	18	ncRNA	64	7.53E-11	7.50E-03	rs77960347, rs117623631, rs9958734, rs7229562, rs8086351, rs10048323, rs8084172
718	* Samoan-s	specific r	nissense variant				
719							
720							
721							
722							
723							
724							
725							
726							
727							
728							

729 Table 3 | TOPMed Genetic region (2-kb sliding window) multi-trait analysis results

730 of both unconditional analysis and analysis conditional on known lipid-

- 731 associated variants. A total of 61,838 samples from the TOPMed Program were
- 732 considered in the analysis. Results for the conditionally significant sliding windows
- (unconditional MultiSTAAR-O $P < 1.89 \times 10^{-8}$ and conditional MultiSTAAR-O $P < 1.89 \times 10^{-8}$ 733
- 734 9.96×10^{-5}) are presented in the table. MultiSTAAR-O is a two-sided test. Chr. no.,
- 735 chromosome number; Start location, start location of the 2-kb sliding window; End
- 736 location, end location of the 2-kb sliding window; No. of SNVs, number of rare variants
- 737 (MAF < 1%) in the 2-kb sliding window; MultiSTAAR-O, MultiSTAAR-O P value;
- 738 Variants (adjusted), adjusted variants in the conditional analysis; n/a, no variant
- 739 adjusted in the conditional analysis. Physical positions of each window are on build
- 740 hg38.

Chr. no.	Start location	End location	Gene	No. of SNVs	MultiSTAAR-O (Unconditional)	MultiSTAAR-O (Conditional)	Variants (adjusted)
1	55,051,447	55,053,446	PCSK9	327	7.11E-11	6.60E-08	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
1	55,052,447	55,054,446	PCSK9	320	9.37E-09	9.07E-06	rs12117661, rs2495491, rs11591147, rs67608943, rs72646508, rs693668, rs28362261, rs28362263, rs141502002, rs505151, rs28362286
1	62,651,447	62,653,446	DOCK7	277	5.08E-09	7.56E-10	rs67461605
1	62,652,447	62,654,446	DOCK7	257	4.87E-09	7.24E-10	rs67461605
1	145,530,447	145,532,446	intergenic	233	5.12E-09	5.12E-09	n/a
19	11,104,367	11,106,366	LDLR	336	1.15E-12	8.33E-13	rs140753491, rs138294113, rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459
19	11,105,367	11,107,366	LDLR	338	5.97E-14	5.55E-15	rs140753491, rs138294113, rs17242353, rs17242843, rs10422256, rs72658860, rs11669576, rs2738447, rs72658867, rs2738464, rs6511728, rs3760782, rs59168178, rs2278426, rs112942459

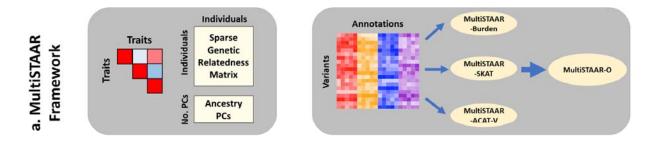
741 Samoan-specific missense variant.

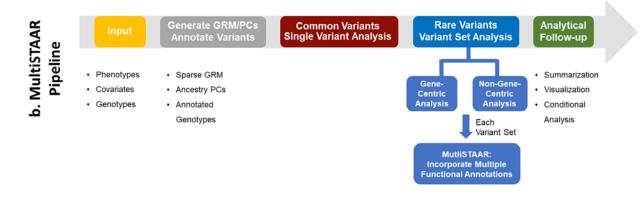
- 742
- 743

744 **FIGURES**

745 Fig. 1 | MultiSTAAR framework and pipeline. a, MultiSTAAR framework. (i) Fit null

- 746 Multivariate Linear Mixed Models (MLMMs) using sparse GRM and ancestry PCs to
- account for population structure, relatedness and the correlation between phenotypes.
- 748 (ii) Test for associations between each variant set and multiple traits by dynamically
- incorporating multiple variant functional annotations. b, MultiSTAAR pipeline. (i) Prepare
- the input data of MultiSTAAR, including genotypes, multiple phenotypes and covariates.
- (ii) Calculate sparse GRM, ancestry PCs and annotate all variants in the genome. (iii)
- 752 Perform single variant analysis for common variants. (iv) Define the rare variant analysis
- vnits, including gene-centric analysis of five coding functional categories and eight
- noncoding functional categories and non-gene-centric analysis of sliding windows. (v)
- 755 Provide result summarization and perform analytical follow-up via conditional analysis.





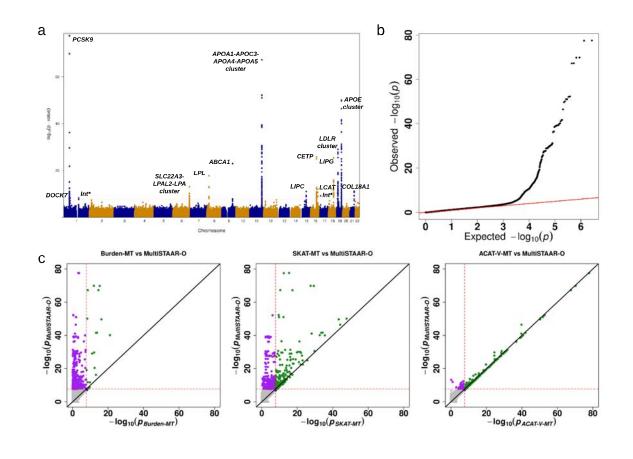
- 757
- 758
- 759

760 Fig. 2 | TOPMed Genetic region (2-kb sliding window) unconditional multi-trait

analysis results of low-density lipoprotein cholesterol (LDL-C), high-density

762 lipoprotein cholesterol (HDL-C) and triglycerides (TG) using TOPMed data. a,

- 763 Manhattan plot showing the associations of 2.65 million 2-kb sliding windows versus
- $-\log_{10}(P)$ of MultiSTAAR-O. The horizontal line indicates a genome-wide *P* value
- threshold of 1.89×10^{-8} (*n* = 61,838). **b**, Quantile-quantile plot of 2-kb sliding window
- MultiSTAAR-O *P* values (n = 61,838). **c**, Scatterplot of *P* values for the 2-kb sliding
- vindows comparing MultiSTAAR-O with Burden-MT, SKAT-MT and ACAT-V-MT tests
- 768 (MT is short for Multi-Trait). Each dot represents a sliding window with x-axis label being
- the $-\log_{10}(P)$ of the conventional multi-trait test and y-axis label being the $-\log_{10}(P)$ of
- 770 MultiSTAAR-O (*n* = 61,838). Burden-MT, SKAT-MT, ACAT-V-MT and MultiSTAAR-O
- are two-sided tests. Int*, intergenic sliding window.



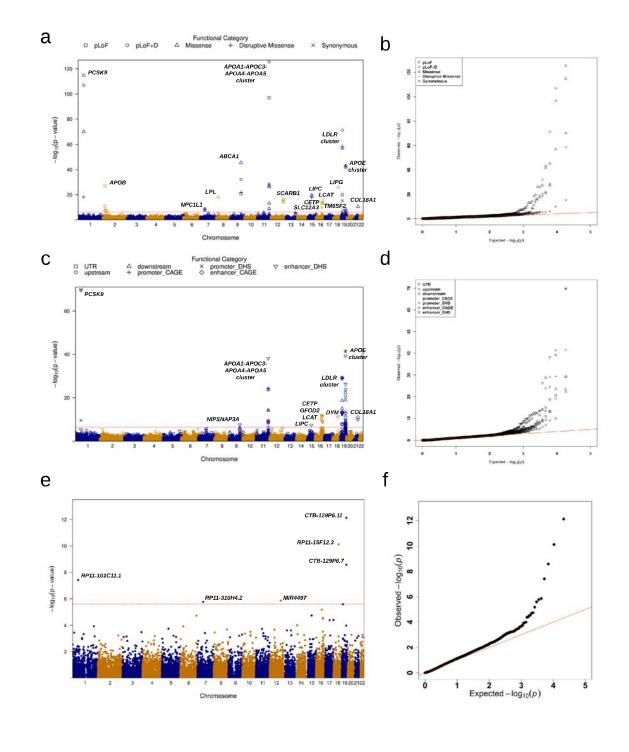
- 772
- 773
- 774

775 EXTENDED DATA FIGURES

Extended Data Fig. 1 | Manhattan plots and Q-Q plots for unconditional 776 777 gene-centric coding, noncoding and ncRNA analysis of low-density lipoprotein 778 cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerids 779 (TG) using TOPMed data (n = 61,838). a, Manhattan plots for unconditional gene-780 centric coding analysis of protein-coding gene. The horizontal line indicates a genome-781 wide MultiSTAAR-O P value threshold of 5.00×10^{-7} . The significant threshold is 782 defined by multiple comparisons using the Bonferroni correction $(0.05/(20,000 \times 5)) =$ 783 5.00×10^{-7}). Different symbols represent the MultiSTAAR-O P value of the protein-784 coding gene using different functional categories (putative loss-of-function, putative 785 loss-of-function and disruptive missense, missense, disruptive missense, synonymous). 786 b, Quantile-quantile plots for unconditional gene-centric coding analysis of protein-787 coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using 788 different functional categories. c, Manhattan plots for unconditional gene-centric 789 noncoding analysis of protein-coding gene. The horizontal line indicates a genome-wide 790 MultiSTAAR-O *P* value threshold of 3.57×10^{-7} . The significant threshold is defined by 791 multiple comparisons using the Bonferroni correction $(0.05/(20,000 \times 7) = 3.57 \times 10^{-7})$. 792 Different symbols represent the MultiSTAAR-O P value of the protein-coding gene using 793 different functional categories (upstream, downstream, UTR, promoter CAGE, promoter DHS, enhancer CAGE, enhancer_DHS). Promoter_CAGE and 794 795 promoter_DHS are the promoters with overlap of Cap Analysis of Gene Expression 796 (CAGE) sites and DNase hypersensitivity (DHS) sites for a given gene, respectively. 797 Enhancer_CAGE and enhancer_DHS are the enhancers in GeneHancer predicted 798 regions with the overlap of CAGE sites and DHS sites for a given gene, respectively. d, 799 Quantile-guantile plots for unconditional gene-centric noncoding analysis of protein-800 coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using 801 different functional categories. e, Manhattan plots for unconditional gene-centric 802 noncoding analysis of ncRNA gene. The horizontal line indicates a genome-wide 803 MultiSTAAR-O *P* value threshold of 2.50×10^{-6} . The significant threshold is defined by multiple comparisons using the Bonferroni correction $(0.05/20,000 = 2.50 \times 10^{-6})$. f. 804 805 Quantile-guantile plots for unconditional gene-centric noncoding analysis of ncRNA

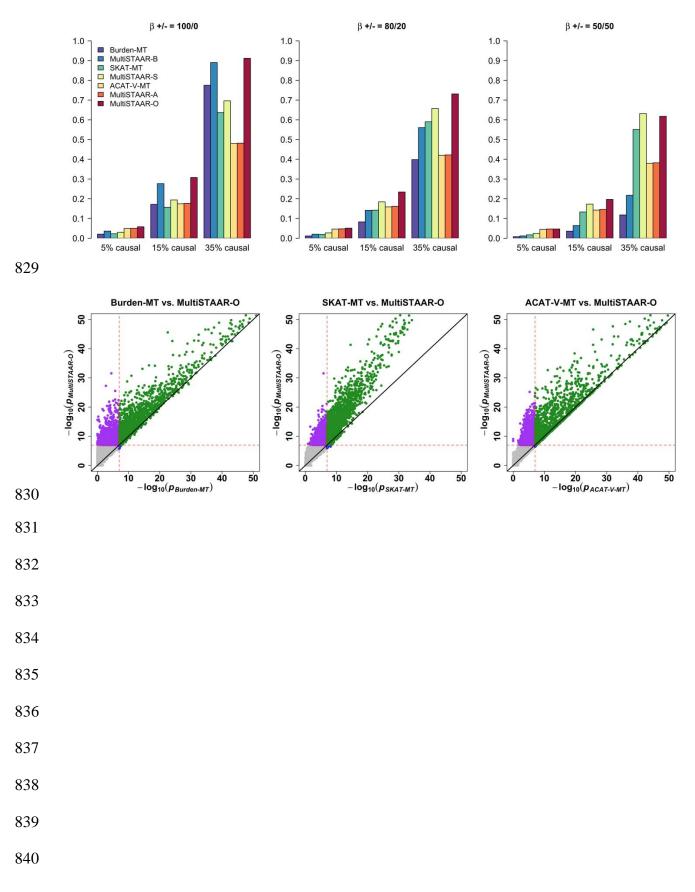
gene. In panels, **a**, **c** and **e**, the chromosome number are indicated by the colors of

807 dots. In all panels, MultiSTAAR-O is a two-sided test.



- 809
- 810

811 Extended Data Fig. 2 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT 812 (MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal 813 region are associated with one phenotype. Multi-trait Burden, SKAT and ACAT-V 814 tests implemented in MultiSTAAR are denoted by Burden-MT, SKAT-MT and ACAT-V-815 MT. MultiSTAAR methods incorporating ten functional annotations are denoted by 816 MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O. In each simulation 817 replicate, a 5-kb region was randomly selected as the signal region. Within each signal 818 region, variants were randomly generated to be causal based on the multivariate logistic 819 model and on average there were 5%, 15% or 35% causal variants in the signal region. 820 The effect sizes of causal variants were $\beta_i = c_0 |\log_{10} MAF_i|$, where c_0 was set to be 821 0.13. The barplot of power in the top panel consider settings in which the effect sizes for 822 the causal variants are 100% positive (0% negative), 80% positive (20% negative), and 823 50% positive (50% negative). The scatterplot of P values in the bottom panel compare 824 MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the 825 signal region are causal variants with all positive effect sizes. Power was estimated as the proportion of the *P* values less than $\alpha = 10^{-7}$ based on 10^4 replicates. Burden-MT, 826 827 SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 828 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.



841 Extended Data Fig. 3 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT

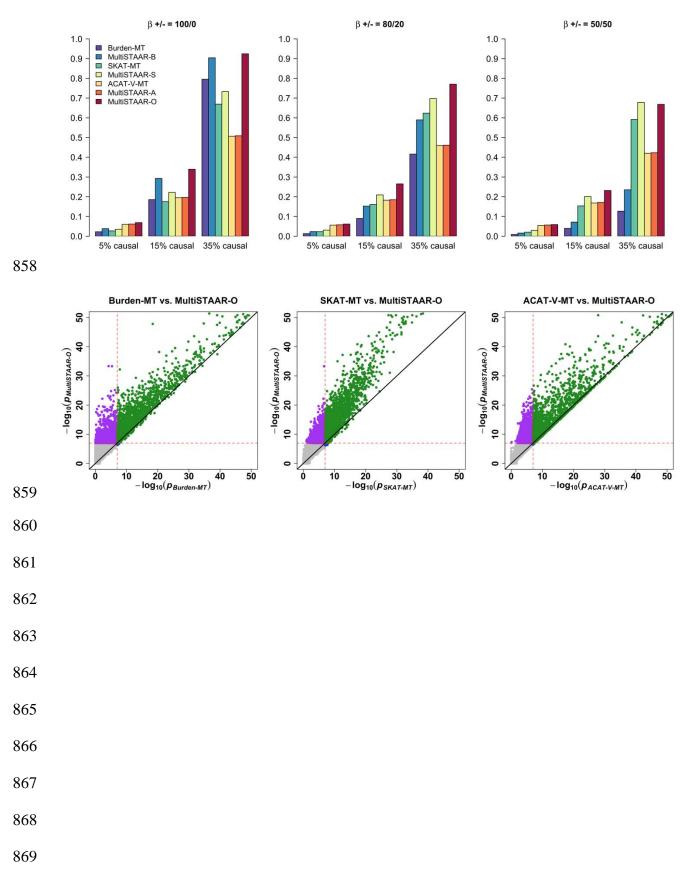
842 (MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal

region are associated with two positively correlated phenotypes. In each

simulation replicate, a 5-kb region was randomly selected as the signal region. Within

- 845 each signal region, variants were randomly generated to be causal based on the
- 846 multivariate logistic model and on average there were 5%, 15% or 35% causal variants
- in the signal region. The effect sizes of causal variants were $\beta_i = c_0 |\log_{10} MAF_i|$, where
- c_0 was set to be 0.1. The barplot of power in the top panel consider settings in which the
- effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20%
- negative), and 50% positive (50% negative). The scatterplot of *P* values in the bottom
- panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of
- variants in the signal region are causal variants with all positive effect sizes. Power was
- estimated as the proportion of the *P* values less than $\alpha = 10^{-7}$ based on 10^4 replicates.
- Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and
- 855 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.

856



870 Extended Data Fig. 4 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT

871 (MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal

872 region are associated with two negatively correlated phenotypes. In each

simulation replicate, a 5-kb region was randomly selected as the signal region. Within

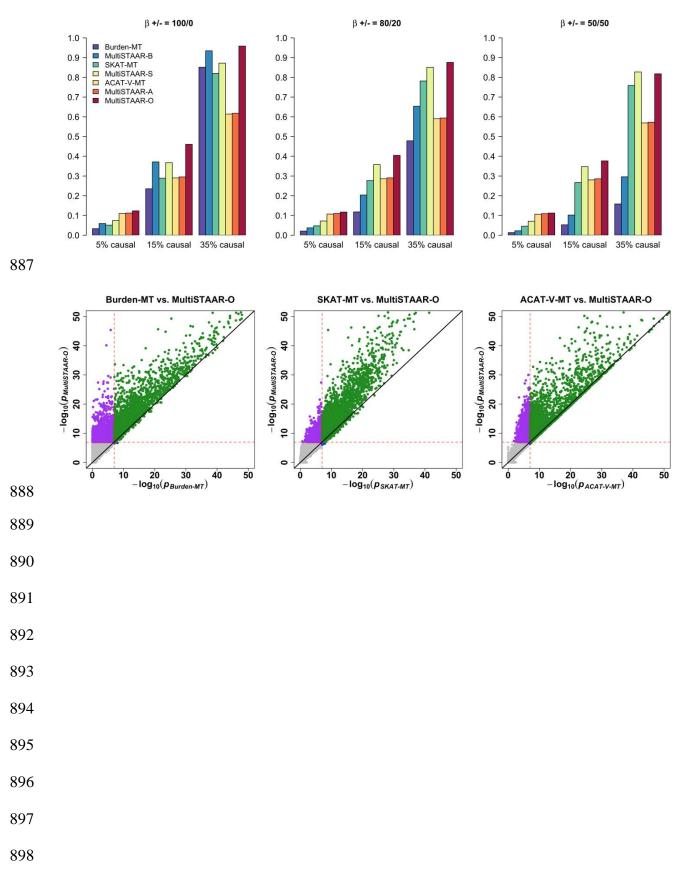
- each signal region, variants were randomly generated to be causal based on the
- 875 multivariate logistic model and on average there were 5%, 15% or 35% causal variants

in the signal region. The effect sizes of causal variants were $\beta_i = c_0 |\log_{10} MAF_i|$, where

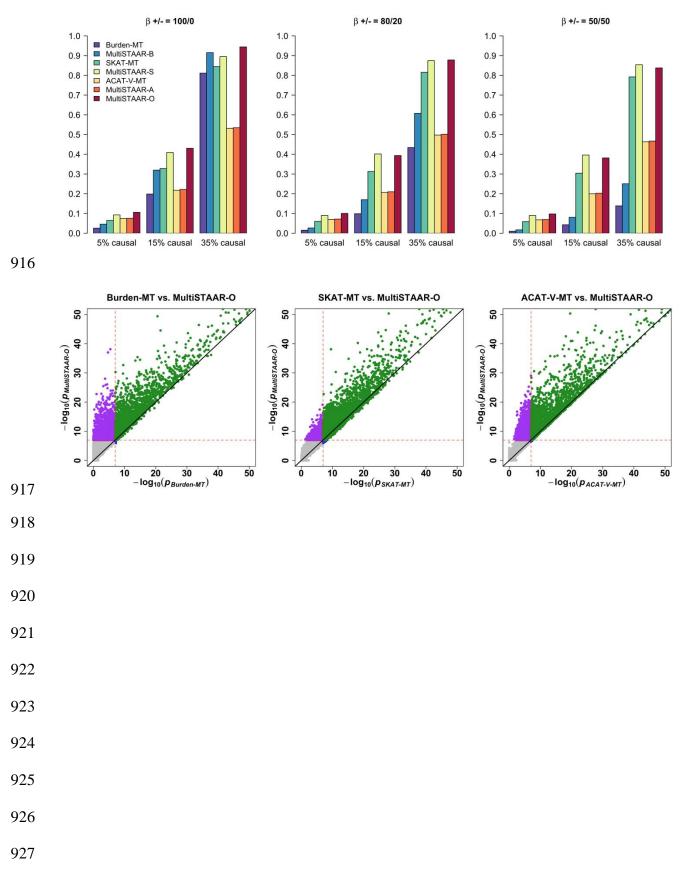
 c_0 was set to be 0.1. The barplot of power in the top panel consider settings in which the

- effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20%
- negative), and 50% positive (50% negative). The scatterplot of *P* values in the bottom
- panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of
- variants in the signal region are causal variants with all positive effect sizes. Power was
- estimated as the proportion of the *P* values less than $\alpha = 10^{-7}$ based on 10^4 replicates.
- 883 Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and
- 884 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.

885



899	Extended Data Fig. 5 Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT
900	(MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal
901	region are associated with three phenotypes. In each simulation replicate, a 5-kb
902	region was randomly selected as the signal region. Within each signal region, variants
903	were randomly generated to be causal based on the multivariate logistic model and on
904	average there were 5%, 15% or 35% causal variants in the signal region. The effect
905	sizes of causal variants were $\beta_j = c_0 \log_{10} MAF_j $, where c_0 was set to be 0.07. The
906	barplot of power in the top panel consider settings in which the effect sizes for the
907	causal variants are 100% positive (0% negative), 80% positive (20% negative), and
908	50% positive (50% negative). The scatterplot of P values in the bottom panel compare
909	MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the
910	signal region are causal variants with all positive effect sizes. Power was estimated as
911	the proportion of the <i>P</i> values less than $\alpha = 10^{-7}$ based on 10^4 replicates. Burden-MT,
912	SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and
913	MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.
914	



928 References

- 9291.Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI930TOPMed Program. Nature **590**, 290-299 (2021).
- 931 2. The "All of Us" Research Program. New England Journal of Medicine 381, 668932 676 (2019).
- 933 3. Halldorsson, B.V. *et al.* The sequences of 150,119 genomes in the UK Biobank.
 934 Nature **607**, 732-740 (2022).
- 4. Lee, S., Abecasis, Gonçalo R., Boehnke, M. & Lin, X. Rare-Variant Association
 Analysis: Study Designs and Statistical Tests. *The American Journal of Human Genetics* 95, 5-23 (2014).
- 5. Li, B. & Leal, S.M. Methods for Detecting Associations with Rare Variants for
 Common Diseases: Application to Analysis of Sequence Data. *The American Journal of Human Genetics* 83, 311-321 (2008).
- Madsen, B.E. & Browning, S.R. A Groupwise Association Test for Rare
 Mutations Using a Weighted Sum Statistic. *PLOS Genetics* 5, e1000384 (2009).
- Morris, A.P. & Zeggini, E. An evaluation of statistical approaches to rare variant
 analysis in genetic association studies. *Genetic Epidemiology* 34, 188-193
 (2010).
- 8. Wu, Michael C. *et al.* Rare-Variant Association Testing for Sequencing Data with
 the Sequence Kernel Association Test. *The American Journal of Human Genetics* 89, 82-93 (2011).
- 949
 9. Liu, Y. *et al.* ACAT: A Fast and Powerful p Value Combination Method for Rare950
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
 951
- Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M. & Smoller, J.W. Pleiotropy in complex traits: challenges and strategies. *Nature Reviews Genetics* 14, 483-495 (2013).
- 955 11. Sivakumaran, S. *et al.* Abundant Pleiotropy in Human Complex Diseases and
 956 Traits. *The American Journal of Human Genetics* **89**, 607-618 (2011).
- Abdellaoui, A., Yengo, L., Verweij, K.J.H. & Visscher, P.M. 15 years of GWAS
 discovery: Realizing the promise. *The American Journal of Human Genetics*(2023).
- Watanabe, K. *et al.* A global overview of pleiotropy and genetic architecture in complex traits. *Nature Genetics* 51, 1339-1348 (2019).
- 962 14. Wu, B. & Pankow, J.S. Sequence Kernel Association Test of Multiple Continuous
 963 Phenotypes. *Genetic Epidemiology* 40, 91-100 (2016).
- 964 15. Dutta, D., Scott, L., Boehnke, M. & Lee, S. Multi-SKAT: General framework to
 965 test for rare-variant association with multiple phenotypes. *Genetic Epidemiology*966 **43**, 4-23 (2019).
- 16. Luo, L. *et al.* Multi-trait analysis of rare-variant association summary statistics
 using MTAR. *Nature Communications* **11**, 2850 (2020).
- 969 17. Broadaway, K.A. *et al.* A Statistical Approach for Testing Cross-Phenotype
- 970 Effects of Rare Variants. *The American Journal of Human Genetics* **98**, 525-540 971 (2016).

972	18.	Li, X. et al. Dynamic incorporation of multiple in silico functional annotations
973		empowers rare variant association analysis of large whole-genome sequencing
974		studies at scale. Nature Genetics 52, 969-983 (2020).
975	19.	Sammel, M., Lin, X. & Ryan, L. Multivariate linear mixed models for multiple
976		outcomes. Statistics in Medicine 18, 2479-2492 (1999).
977	20.	Conomos, M.P., Miller, M.B. & Thornton, T.A. Robust Inference of Population
978		Structure for Ancestry Prediction and Correction of Stratification in the Presence
979		of Relatedness. Genetic Epidemiology 39 , 276-293 (2015).
980	21.	Conomos, Matthew P., Reiner, Alexander P., Weir, Bruce S. & Thornton,
981		Timothy A. Model-free Estimation of Recent Genetic Relatedness. The American
982	~~	Journal of Human Genetics 98, 127-148 (2016).
983	22.	Gogarten, S.M. <i>et al.</i> Genetic association testing using the GENESIS
984	00	R/Bioconductor package. <i>Bioinformatics</i> 35 , 5346-5348 (2019).
985 086	23.	Lee, P.H. <i>et al.</i> Principles and methods of in-silico prioritization of non-coding
986 087	24	regulatory variants. <i>Human Genetics</i> 137 , 15-30 (2018).
987	24.	Li, Z. <i>et al.</i> A framework for detecting noncoding rare-variant associations of
988 989		large-scale whole-genome sequencing studies. <i>Nature Methods</i> 19 , 1599-1611 (2022).
989 990	25.	Morrison, A.C. <i>et al.</i> Practical approaches for whole-genome sequence analysis
990 991	25.	of heart-and blood-related traits. The American Journal of Human Genetics 100 ,
992		205-215 (2017).
993	26.	Selvaraj, M.S. <i>et al.</i> Whole genome sequence analysis of blood lipid levels in
994	20.	>66,000 individuals. <i>Nature Communications</i> 13 , 5995 (2022).
995	27.	Liu, Z. & Lin, X. Multiple phenotype association tests using summary statistics in
996		genome-wide association studies. <i>Biometrics</i> 74 , 165-175 (2018).
997	28.	Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for
998		blood lipids. <i>Nature</i> 466 , 707 (2010).
999	29.	Schaffner, S.F. et al. Calibrating a coalescent simulation of human genome
1000		sequence variation. Genome research 15, 1576-1583 (2005).
1001	30.	Natarajan, P. et al. Deep-coverage whole genome sequences and blood lipids
1002		among 16,324 individuals. Nature Communications 9, 3391 (2018).
1003	31.	Stilp, A.M. et al. A System for Phenotype Harmonization in the National Heart,
1004		Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed)
1005	~~	Program. American Journal of Epidemiology (2021).
1006	32.	Frankish, A. <i>et al.</i> GENCODE reference annotation for the human and mouse
1007	22	genomes. <i>Nucleic acids research</i> 47 , D766-D773 (2019).
1008	33.	Dong, C. <i>et al.</i> Comparison and integration of deleteriousness prediction
1009		methods for nonsynonymous SNVs in whole exome sequencing studies. <i>Human</i>
1010 1011	34.	<i>Molecular Genetics</i> 24 , 2125-2137 (2014). Li, Z. <i>et al.</i> A framework for detecting noncoding rare variant associations of
1011	54.	large-scale whole-genome sequencing studies. <i>bioRxiv</i> , 2021.11.05.467531
1012		(2021).
1013	35.	Kircher, M. <i>et al.</i> A general framework for estimating the relative pathogenicity of
1014	00.	human genetic variants. <i>Nature Genetics</i> 46 , 310-315 (2014).
1010		

1016	36.	Huang, YF., Gulko, B. & Siepel, A. Fast, scalable prediction of deleterious
1010	00.	noncoding variants from functional and population genomic data. <i>Nature</i>
1017		<i>Genetics</i> 49 , 618-624 (2017).
1019	37.	Rogers, M.F. <i>et al.</i> FATHMM-XF: accurate prediction of pathogenic point
1020	0.11	mutations via extended features. <i>Bioinformatics</i> 34 , 511-513 (2017).
1021	38.	Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide
1022		association studies, targeted arrays and summary statistics 2019. Nucleic Acids
1023		Research 47 , D1005-D1012 (2019).
1024	39.	Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants
1025		of the Million Veteran Program. Nature Genetics 50, 1514-1523 (2018).
1026	40.	Forrest, A.R. et al. A promoter-level mammalian expression atlas. Nature 507,
1027		462 (2014).
1028	41.	Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and
1029		mouse genomes. <i>Nature</i> 583 , 699-710 (2020).
1030	42.	Andersson, R. et al. An atlas of active enhancers across human cell types and
1031		tissues. Nature 507 , 455-461 (2014).
1032	43.	Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and
1033		target genes in GeneCards. Database 2017(2017).
1034	44.	Li, Z. et al. Dynamic Scan Procedure for Detecting Rare-Variant Association
1035		Regions in Whole-Genome Sequencing Studies. <i>The American Journal of</i>
1036	45.	Human Genetics 104 , 802-814 (2019).
1037 1038	45.	McCaw, Z.R., Gao, J., Lin, X. & Gronsbell, J. Leveraging a machine learning derived surrogate phenotype to improve power for genome-wide association
1038		studies of partially missing phenotypes in population biobanks. <i>bioRxiv</i> ,
1037		2022.12.12.520180 (2022).
1041	46.	Li, X. <i>et al.</i> Powerful, scalable and resource-efficient meta-analysis of rare variant
1042		associations in large whole genome sequencing studies. <i>Nature Genetics</i> 55 ,
1043		154-164 (2023).
1044	47.	Chen, H. et al. Control for Population Structure and Relatedness for Binary Traits
1045		in Genetic Association Studies via Logistic Mixed Models. The American Journal
1046		of Human Genetics 98 , 653-666 (2016).
1047	48.	Chen, H. et al. Efficient Variant Set Mixed Model Association Tests for
1048		Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing
1049		Studies. The American Journal of Human Genetics 104 , 260-274 (2019).
1050	49.	Liu, Y. & Xie, J. Cauchy combination test: a powerful test with analytic p-value
1051		calculation under arbitrary dependency structures. Journal of the American
1052		Statistical Association 115, 393-402 (2020).
1053		
1054		
1055		
1056		
1057		

1058 Methods

1059 **Ethics statement**

- 1060 This study relied on analyses of genetic data from TOPMed cohorts. The study has
- 1061 been approved by the TOPMed Publications Committee, TOPMed Lipids Working
- 1062 Group and all the participating cohorts, including Old Order Amish (phs000956.v1.p1),
- 1063 Atherosclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe Biobank
- 1064 (phs001644), Coronary Artery Risk Development in Young Adults (phs001612),
- 1065 Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368),
- 1066 Diabetes Heart Study (phs001412), Framingham Heart Study (phs000974), Genetic
- 1067 Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of
- 1068 Arteriopathy (phs001345), Genetic Epidemiology Network of Salt Sensitivity
- 1069 (phs001217), Genetics of Lipid Lowering Drugs and Diet Network (phs001359),
- 1070 Hispanic Community Health Study Study of Latinos (phs001395), Hypertension
- 1071 Genetic Epidemiology Network and Genetic Epidemiology Network
- 1072 of Arteriopathy (phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study of
- 1073 Atherosclerosis (phs001416), San Antonio Family Heart Study (phs001215), Genome-
- 1074 wide Association Study of Adiposity in Samoans (phs000972), Taiwan Study of
- 1075 Hypertension using Rare Variants (phs001387), and Women's Health Initiative
- 1076 (phs001237), where the accession numbers are provided in parenthesis. The use of
- 1077 human genetics data from TOPMed cohorts was approved by the Harvard T.H. Chan
- 1078 School of Public Health IRB (IRB13-0353).
- 1079

1080 Notation and model

Suppose there are *n* subjects with a total of *M* variants sequenced across the whole genome. For the *i*-th subject, let $Y_i = (y_{i1}, y_{i2}, ..., y_{iK})^T$ denote a vector of *K* quantitative phenotypes; $X_i = (x_{i1}, x_{i2}, ..., x_{iq})^T$ denotes *q* covariates, such as age, gender and ancestral principal components; $G_i = (G_{i1}, G_{i2}, ..., G_{ip})^T$ denotes the genotype matrix of the *p* genetic variants in a variant set. Since these *K* phenotypes may be defined on different measurement scales, we assume that each phenotype has been rescaled to have zero mean and unit variance.

1088

When the data consist of unrelated samples, we consider the following MultivariateLinear Model (MLM)

$$\boldsymbol{Y}_{i} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iK} \end{bmatrix} = \begin{bmatrix} \alpha_{0,1} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{1} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{1} \\ \alpha_{0,2} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{2} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{2} \\ \vdots \\ \alpha_{0,K} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{K} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{K} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \vdots \\ \varepsilon_{iK} \end{bmatrix}, #(1)$$

1091 where $\alpha_{0,k}$ is an intercept, $\boldsymbol{\alpha}_{k} = (\alpha_{1,k}, \alpha_{2,k}, ..., \alpha_{q,k})^{T}$ and $\boldsymbol{\beta}_{k} = (\beta_{1,k}, \beta_{2,k}, ..., \beta_{p,k})^{T}$ are 1092 column vectors of regression coefficients for covariates \boldsymbol{X}_{i} and genotype \boldsymbol{G}_{i} in 1093 phenotype k, respectively. The error terms $\boldsymbol{\varepsilon}_{i} = (\varepsilon_{i1}, \varepsilon_{i2}, ..., \varepsilon_{iK})^{T}$ are independent and 1094 identically distributed and follow a multivariate normal distribution with mean a vector of 1095 zeros and variance-covariance matrix $\boldsymbol{\Sigma}_{K \times K}$, assumed identical for all subjects. For all n1096 subjects, using matrix notation we can write model (1) as

$$\boldsymbol{Y}_{n\times K} = \boldsymbol{1}_{n}\boldsymbol{\alpha}_{0}^{T} + \boldsymbol{X}_{n\times q}\boldsymbol{\alpha}_{q\times K} + \boldsymbol{G}_{n\times p}\boldsymbol{\beta}_{p\times K} + \boldsymbol{\varepsilon}_{n\times K}, \#(2)$$

1097 where $\mathbf{1}_n$ is a column vector of 1's with length n, $\boldsymbol{\alpha}_0 = (\alpha_{0,1}, \alpha_{0,2}, \dots, \alpha_{0,K})^T$ is a column 1098 vector of regression intercepts, the *k*-th columns of $\boldsymbol{\alpha}_{q \times K}$ and $\boldsymbol{\beta}_{p \times K}$ are $\boldsymbol{\alpha}_k$ and $\boldsymbol{\beta}_k$, 1099 respectively, and $\boldsymbol{\varepsilon}_{n \times K} = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \dots, \boldsymbol{\varepsilon}_n)^T \sim \text{MatrixNormal}_{n,K}(\mathbf{0}_{n \times K}, \mathbf{I}_{n \times n}, \boldsymbol{\Sigma}_{K \times K})$ follows a 1100 matrix normal distribution. We calculate the scaled residual for each subject on each phenotype, defined as $\hat{e}_{n \times K} = (Y_{n \times K} - \hat{\mu}_{n \times K}) \hat{\Sigma}_{K \times K}^{-1}$, where $\hat{\mu}_{n \times K}$ (a matrix of fitted 1101 values) and $\widehat{\Sigma}_{K \times K}$ are estimated under the null MLM $Y_{n \times K} = \mathbf{1}_n \alpha_0^T + X_{n \times q} \alpha_{q \times K} + \varepsilon_{n \times K}$, 1102 1103 where no variant has any effect on any outcome. 1104

1105 When the data consist of related samples, we consider the following Multivariate Linear Mixed Model (MLMM)^{19,47,48} 1106

$$\boldsymbol{Y}_{i} = \begin{bmatrix} \boldsymbol{y}_{i1} \\ \boldsymbol{y}_{i2} \\ \vdots \\ \boldsymbol{y}_{iK} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_{0,1} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{1} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{1} \\ \boldsymbol{\alpha}_{0,2} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{2} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{2} \\ \vdots \\ \boldsymbol{\alpha}_{0,K} + \boldsymbol{X}_{i}^{T}\boldsymbol{\alpha}_{K} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{K} \end{bmatrix} + \begin{bmatrix} \boldsymbol{b}_{i1} \\ \boldsymbol{b}_{i2} \\ \vdots \\ \boldsymbol{b}_{iK} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{i1} \\ \boldsymbol{\varepsilon}_{i2} \\ \vdots \\ \boldsymbol{\varepsilon}_{iK} \end{bmatrix}, \qquad \#(3)$$

where the random effects b_{ik} account for relatedness and remaining population 1107 structure unaccounted by ancestral PCs²⁰. We assume that $\boldsymbol{b}_{n \times K} = (b_{ik})_{n \times K} \sim$ 1108 MatrixNormal_{*n,K*}($\mathbf{0}_{n \times K}, \mathbf{\Phi}_{n \times n}, \mathbf{\Theta}_{K \times K}$) with a variance component matrix $\mathbf{\Theta}_{K \times K}$ and a 1109 sparse genetic relatedness matrix $\Phi_{n \times n}^{21,22}$. For all *n* subjects, using matrix notation we 1110 1111 can rewrite equation (3) as

$$\boldsymbol{Y}_{n\times K} = \boldsymbol{1}_n \boldsymbol{\alpha}_0^T + \boldsymbol{X}_{n\times q} \boldsymbol{\alpha}_{q\times K} + \boldsymbol{G}_{n\times p} \boldsymbol{\beta}_{p\times K} + \boldsymbol{b}_{n\times K} + \boldsymbol{\varepsilon}_{n\times K}. \#(4)$$

1112 We calculate the scaled residual for each subject on each phenotype, defined as
1113
$$\hat{e}_{n \times K} = (Y_{n \times K} - \hat{\mu}_{n \times K})\hat{\Sigma}_{K \times K}^{-1}$$
, where $\hat{\mu}_{n \times K}$ and $\hat{\Sigma}_{K \times K}$ are estimated under the null MLMM
1114 $Y_{n \times K} = \mathbf{1}_n \alpha_0^T + X_{n \times q} \alpha_{q \times K} + \mathbf{b}_{n \times K} + \mathbf{\epsilon}_{n \times K}$. Under both MLM and MLMM, our goal is to
1115 test for an association between a set of p genetic variants and K quantitative
1116 phenotypes, adjusting for covariates and relatedness. This corresponds to testing
1117 $H_0: \beta_1 = \beta_2 = \cdots \beta_K = \mathbf{0}.$
1118

1119 Multi-trait rare variant association tests using MultiSTAAR

Single-trait score-based aggregation methods⁵⁻⁹ can be extended to allow for jointly testing the association between rare variants in a variant set and multiple quantitative phenotypes. For a given variant set, let $S_{p \times K} = (S_{jk})_{p \times K} = (G_{n \times p})^T \hat{e}_{n \times K}$ denote the matrix of score statistics where S_{jk} is the score statistic for the *j*-th variant on the *k*-th phenotype. For multi-trait burden test using MultiSTAAR (Burden-MT), we consider test statistic

$$Q_{Burden-MT} = \left(\sum_{j=1}^{p} w_j \boldsymbol{S}_{j}\right) \widehat{\boldsymbol{V}}^{-1} \left(\sum_{j=1}^{p} w_j \boldsymbol{S}_{j}\right)^{T},$$

1126 where w_j is the weight defined as a function of the MAF for the *j*-th variant^{4,18}, $S_{j.} =$ 1127 $(S_{j1}, S_{j2}, ..., S_{jK})$ is the *j*-th row of S and \hat{V} is the estimated variance-covariance matrix of 1128 $\sum_{j=1}^{p} w_j S_{j.} = w^T S. Q_{Burden-MT}$ asymptotically follows a standard chi-square distribution 1129 with *K* degrees of freedom under the null hypothesis, and its *P* value can be obtained 1130 analytically while accounting for LD between variants and correlation between 1131 phenotypes.

1132

1133 For multi-trait SKAT using MultiSTAAR (SKAT-MT), we consider the statistic

$$Q_{SKAT-MT} = \sum_{k=1}^{K} \sum_{j=1}^{p} w_j^2 S_{jk}^2.$$

1134 $Q_{SKAT-MT}$ asymptotically follows a mixture of chi-square distributions under the null 1135 hypothesis, and its *P* value can be obtained analytically while accounting for LD 1136 between variants and correlation between phenotypes^{14,15}.

1137

1138 For multi-trait ACAT-V using MultiSTAAR (ACAT-V-MT), we propose test statistic

$$Q_{ACAT-V-MT} = \overline{w^2 \text{MAF}(1 - \text{MAF})} \tan((0.5 - p_0)\pi) + \sum_{j=1}^{p'} w_j^2 \text{MAF}_j (1 - \text{MAF}_j) \tan((0.5 - p_j)\pi),$$

where p' is the number of variants with a minor allele count (MAC) greater than 10 and p_j is the multi-trait association P value of individual variant j for those variants with a MAC > 10, whose test statistic is given by the K degrees of freedom multivariate score test

$$Q_j = \boldsymbol{S}_{j} \cdot \boldsymbol{\widehat{V}}_{\boldsymbol{S}_{j}}^{-1} \boldsymbol{S}_{j}^T$$

where $\hat{V}_{S_{j}}$ is the estimated variance-covariance matrix of S_{j} ; p_0 is the multi-trait burden 1143 1144 test P value of extremely rare variants with an MAC \leq 10 as described above and $\overline{w^2 \text{MAF}(1 - \text{MAF})}$ is the average of the weights $w_i^2 \text{MAF}_i (1 - \text{MAF}_i)$ among the 1145 extremely rare variants with an MAC \leq 10. $Q_{ACAT-V-MT}$ is approximated well by a scaled 1146 1147 Cauchy distribution under the null hypothesis, and its P value can be obtained analytically while accounting for LD between variants and correlation between 1148 phenotypes^{9,49}. Note that when K = 1, the multi-trait burden, SKAT, and ACAT-V tests 1149 1150 reduce to the original single-trait burden, SKAT and ACAT-V tests. 1151 Suppose we have a collection of L annotations, let A_{jl} denote the *l*-th annotation for the 1152 *i*th variant in the variant set. We define the functionally-informed multi-trait burden, 1153 1154 SKAT and ACAT-V test statistics weighted by the *l*-th annotation as follows

$$Q_{Burden-MT,l,(a_1,a_2)} = \left(\sum_{j=1}^{p} \hat{\pi}_{jl} w_{j,(a_1,a_2)} \boldsymbol{S}_{j}\right) \widehat{\boldsymbol{V}}_{l,(a_1,a_2)}^{-1} \left(\sum_{j=1}^{p} \hat{\pi}_{jl} w_{j,(a_1,a_2)} \boldsymbol{S}_{j}\right)^{T},$$
$$Q_{SKAT-MT,l,(a_1,a_2)} = \sum_{k=1}^{K} \sum_{j=1}^{p} \hat{\pi}_{jl} w_{j,(a_1,a_2)}^2 S_{jk}^2,$$

 $Q_{ACAT-V-MT,l,(a_1,a_2)}$

$$= \overline{\hat{\pi}_{.l} w_{(a_{1},a_{2})}^{2} \text{MAF}(1 - \text{MAF})} \tan\left(\left(0.5 - p_{0,l}\right)\pi\right)$$
$$+ \sum_{j=1}^{M'} \hat{\pi}_{jl} w_{j,(a_{1},a_{2})}^{2} \text{MAF}_{j}(1 - \text{MAF}_{j}) \tan\left(\left(0.5 - p_{j}\right)\pi\right),$$

1155 where $\hat{\pi}_{jl} = \frac{\operatorname{rank}(A_{jl})}{M}$, $w_{j,(a_1,a_2)} = Beta(\operatorname{MAF}_j; a_1, a_2)$ with $(a_1, a_2) \in \mathcal{A} = \{(1, 25), (1, 1)\},$

1156 $\hat{V}_{l,(a_1,a_2)}$ is the estimated variance-covariance matrix of $\sum_{j=1}^{p} \hat{\pi}_{jl} w_{j,(a_1,a_2)} S_{j}$. and

1157
$$\overline{\hat{\pi}_{.l}w_{(a_1,a_2)}^2}MAF(1 - MAF)$$
 is the average of the weights $\hat{\pi}_{jl}w_{j,(a_1,a_2)}^2MAF_j(1 - MAF)$

- 1158 MAF_i) among the extremely rare variants with MAC \leq 10. Finally, we define the
- 1159 omnibus MultiSTAAR-O test statistic as

$$T_{MultiSTAAR-O} = \frac{1}{3|\mathcal{A}|} \sum_{(a_1,a_2)\in\mathcal{A}} [T_{MultiSTAAR-B(a_1,a_2)} + T_{MultiSTAAR-S(a_1,a_2)} + T_{MultiSTAAR-A(a_1,a_2)}]$$

$$+ T_{MultiSTAAR-A(a_1,a_2)}]$$

$$= \frac{1}{3|\mathcal{A}|} \sum_{(a_1,a_2)\in\mathcal{A}} \sum_{l=0}^{L} \left[\frac{\tan\{(0.5 - p_{Burden-MT,l,(a_1,a_2)})\pi\}}{L+1} + \frac{\tan\{(0.5 - p_{SKAT-MT,l,(a_1,a_2)})\pi\}}{L+1} + \frac{\tan\{(0.5 - p_{ACAT-V-MT,l,(a_1,a_2)})\pi\}}{L+1} \right],$$

1160 and the *P* value of $T_{MultiSTAAR-0}$ can be calculated by

$$p_{MultiSTAAR-O} = \frac{1}{2} - \frac{\{\arctan(T_{MultiSTAAR-O})\}}{\pi}$$

1161

1162 **Data simulation**

- 1163 Type I error rate simulations
- 1164 We performed simulation studies to evaluate how accurately MultiSTAAR controls the
- 1165 type I error rate. We generated three quantitative traits from a multivariate linear model,
- 1166 conditional on two covariates

$$\boldsymbol{Y}_{i} = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ Y_{i3} \end{bmatrix} = \begin{bmatrix} 0.5X_{i1} + 0.5X_{i2} \\ 0.5X_{i1} + 0.5X_{i2} \\ 0.5X_{i1} + 0.5X_{i2} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \varepsilon_{i3} \end{bmatrix},$$

1167 where $X_{i1} \sim N(0,1), X_{i2} \sim \text{Bernoulli}(0.5)$ and

$$\begin{bmatrix} \epsilon_{i1} \\ \epsilon_{i2} \\ \epsilon_{i3} \end{bmatrix} \sim MVN \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.0 & -0.1 & 0.2 \\ -0.1 & 1.0 & -0.4 \\ 0.2 & -0.4 & 1.0 \end{bmatrix} \right).$$

1168

The correlation matrix of error terms $\varepsilon_i = (\varepsilon_{i1}, \varepsilon_{i2}, \varepsilon_{i3})^T$ was chosen to mimic the 1169 1170 correlations between three lipid traits LDL-C, HDL-C and TG, estimated from the TOPMed data²⁶. We considered a sample size of 10,000 and generated genotypes by 1171 1172 simulating 20,000 sequences for 100 different regions each spanning 1 Mb. The data generation used the calibration coalescent model (COSI)²⁹ with parameters set to mimic 1173 the LD structure of African Americans. In each simulation replicate, 10 annotations were 1174 generated as A_1, \dots, A_{10} all independently and identically distributed as N(0,1) for each 1175 1176 variant, and we randomly selected 5-kb regions from these 1-Mb regions for type I error 1177 rate simulations. We applied MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 1178 MultiSTAAR-O by incorporating MAFs and the 10 annotations together with Burden-MT,

1179 SKAT-MT and ACAT-V-MT tests. We repeated the procedure with 10⁸ replicates to

1180 examine the type I error rate at levels $\alpha = 10^{-4}$, 10^{-5} . and 10^{-6} .

1181

1182 Empirical power simulations

1183 Next, we carried out simulation studies under a variety of configurations to assess the

the power of MultiSTAAR-O, and how its incorporation of multiple functional annotations

affects power compared to the multi-trait burden, SKAT, and ACAT-V tests implemented

in MultiSTAAR. In each simulation replicate, we randomly selected 5-kb regions from a

1187 1-Mb region for power evaluations. For each selected 5-kb region, we generated three

1188 quantitative traits from a multivariate linear model

$$\boldsymbol{Y}_{i} = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ Y_{i3} \end{bmatrix} = \begin{bmatrix} 0.5X_{i1} + 0.5X_{i2} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{1} \\ 0.5X_{i1} + 0.5X_{i2} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{2} \\ 0.5X_{i1} + 0.5X_{i2} + \boldsymbol{G}_{i}^{T}\boldsymbol{\beta}_{3} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \varepsilon_{i3} \end{bmatrix},$$

1189 where X_{1i} , X_{2i} , ε_i were defined as in the type I error rate simulations,

1190 $\boldsymbol{G}_{i} = (G_{i1}, G_{i2}, \dots, G_{ip})^{T}$ and $\boldsymbol{\beta}_{k} = (\beta_{1,k}, \beta_{2,k}, \dots, \beta_{p,k})^{T}$ were the genotypes and effect sizes

1191 of the p genetic variants in the signal region.

1192

1193 The genetic effect of variant *j* on phenotype *k* was defined as $\beta_{j,k} = c_j d_k \gamma_j$ to allow for

1194 heterogeneous effect sizes among variants and phenotypes. Specifically, we generated

1195 the causal variant indicator c_i according to a logistic model

logit
$$P(c_j = 1) = \delta_0 + \delta_{l_1}A_{j,l_1} + \delta_{l_2}A_{j,l_2} + \delta_{l_3}A_{j,l_3} + \delta_{l_4}A_{j,l_4} + \delta_{l_5}A_{j,l_5}$$

1196 where $\{l_1, \dots, l_5\} \subset \{1, \dots, 10\}$ were randomly sampled for each region. For different

1197 regions, causality of variants depended on different sets of annotations. We set

1198 $\delta_l = \log(5)$ for all annotations and varied the proportions of causal variants in the signal

1199	region by setting $\delta_0 = \text{logit}(0.0015)$, $\text{logit}(0.015)$ and $\text{logit}(0.18)$ which corresponds to
1200	averaging 5%, 15% and 35% causal variants in the signal region, respectively. We
1201	considered four scenarios of phenotypic indicator d_k that reflect different underlying
1202	genetic architectures across phenotypes: $(d_1, d_2, d_3) = (1, 0, 0), (1, 0, 1), (1, 1, 0)$ and
1203	(1, 1, 1). These correspond to causal variants in the signal region being associated with
1204	(1) one phenotype only, (2) two positively correlated phenotypes, (3) two negatively
1205	correlated phenotypes and (4) all three phenotypes. We modeled the absolute effect
1206	sizes of causal variants using $ \gamma_j = c_0 \log_{10} MAF_j $, such that it was a decreasing
1207	function of MAF. c_0 was set to be 0.13, 0.1, 0.1 and 0.07, respectively, to ensure a
1208	decent power of tests under each scenario. We additionally varied the proportions of
1209	causal variant effect size directions (signs of r_j) by randomly generating 100%, 80%,
1210	and 50% variants on average to have positive effects. We applied MultiSTAAR-B,
1211	MultiSTAAR-S, MultiSTAAR-A, and MultiSTAAR-O using MAFs and all 10 annotations
1212	together with Burden-MT, SKAT-MT and ACAT-V-MT tests. We repeated the procedure
1213	with 10^4 replicates to examine the power at level $\alpha = 10^{-7}$. The sample size was 10,000
1214	across all scenarios.

1215

1216 Lipid Traits

1217 Conventionally measured plasma lipids, including LDL-C, HDL-C, and triglycerides,

1218 were included for analysis. LDL-C was either calculated by the Friedewald equation

- 1219 when triglycerides were <400 mg/dl or directly measured. Given the average effect of
- 1220 statins, when statins were present, LDL-C was adjusted by dividing by 0.7. Triglycerides

- 1221 were natural log transformed for analysis. Phenotypes were harmonized by each cohort
- 1222 and deposited into the dbGaP TOPMed Exchange Area.
- 1223

1224 Multi-trait analysis of lipid levels in the TOPMed WGS data

- 1225 The TOPMed WGS data consist of multi-ethnic related samples¹. Race/ethnicity was
- 1226 defined using a combination of self-reported race/ethnicity from participant
- 1227 questionnaires and study recruitment information (**Supplementary Note**)³¹. In this
- 1228 study, we applied MultiSTAAR to perform multi-trait rare variant analysis of three
- 1229 quantitative lipid traits (LDL-C, HDL-C and TG) using 20 study cohorts from the
- 1230 TOPMed Freeze 8 WGS data. LDL-C was adjusted for the presence of medications as
- 1231 before³⁰. For each study, we first fit a linear regression model adjusting for age, age²,
- 1232 sex for each race/ethnicity-specific group. In addition, for Old Order Amish (OOA), we
- also adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3
- 1234 p.R19Ter in TG and HDL-C analyses³⁰.
- 1235
- 1236 We performed rank-based inverse normal transformation of the residuals of LDL-C,
- 1237 HDL-C and TG within each race/ethnicity-specific group. We then fit a multivariate linear
- mixed model for the rank normalized residuals, adjusting for 11 ancestral principal
- 1239 components, ethnicity group indicators, and a variance component for empirically
- 1240 derived sparse kinship matrix to account for population structure, relatedness and
- 1241 correlation between phenotypes.
- 1242

1243	We next applied MultiSTAAR-O to perform multi-trait variant set analyses for rare
1244	variants (MAF < 1%) by scanning the genome, including gene-centric analysis of each
1245	protein-coding gene using five coding variant functional categories (putative loss-of-
1246	function rare variants, missense rare variants, disruptive missense rare variants,
1247	putative loss-of-function and disruptive missense rare variants and synonymous rare
1248	variants); seven noncoding variant functional categories (promoter rare variants overlaid
1249	with CAGE sites, promoter rare variants overlaid with DHS sites, enhancer rare variants
1250	overlaid with CAGE sites, enhancer rare variants overlaid with DHS sites, UTR rare
1251	variants, upstream region rare variants, downstream region rare variants) and rare
1252	variants in ncRNA genes; and genetic region analysis using 2-kb sliding windows
1253	across the genome with a 1-kb skip length. The WGS multi-trait rare variant analysis
1254	was performed using the R packages MultiSTAAR (version 0.9.7,
1255	https://github.com/xihaoli/MultiSTAAR) and STAARpipeline (version 0.9.7,
1256	https://github.com/xihaoli/STAARpipeline). The WGS rare variant single-trait analysis of
1257	LDL-C, HDL-C and TG was performed using the R package STAARpipeline (version
1258	0.9.7, https://github.com/xihaoli/STAARpipeline). Both multi-trait and single-trait
1259	analyses results were summarized and visualized using the R package
1260	STAARpipelineSummary (version 0.9.7,
1261	https://github.com/xihaoli/STAARpipelineSummary).
10.60	

1262

1263 Genome build

1264 All genome coordinates are given in NCBI GRCh38/UCSC hg38.

1265

1266 Statistics and reproducibility

1267 Sample size was not predetermined. The multi-trait analysis consists of 20 study

1268 cohorts of TOPMed Freeze 8 and had 61,838 samples with lipid traits. We did not use

1269 any study design that required randomization or blinding.

1270

1271 Data availability

1272 This paper used the TOPMed Freeze 8 WGS data and lipids phenotype data. Genotype

1273 and phenotype data are both available in database of Genotypes and Phenotypes. The

1274 TOPMed WGS data were from the following twenty study cohorts (accession numbers

1275 provided in parentheses): Old Order Amish (phs000956.v1.p1), Atherosclerosis Risk in

1276 Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), Coronary

1277 Artery Risk Development in Young Adults (phs001612), Cleveland Family Study

1278 (phs000954), Cardiovascular Health Study (phs001368), Diabetes Heart Study

1279 (phs001412), Framingham Heart Study (phs000974), Genetic Study of Atherosclerosis

1280 Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic

1281 Epidemiology Network of Salt Sensitivity (phs001217), Genetics of Lipid Lowering

1282 Drugs and Diet Network (phs001359), Hispanic Community Health Study - Study of

1283 Latinos (phs001395), Hypertension Genetic Epidemiology Network and Genetic

1284 Epidemiology Network of Arteriopathy (phs001293), Jackson Heart Study (phs000964),

1285 Multi-Ethnic Study of Atherosclerosis (phs001416), San Antonio Family Heart Study

1286 (phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972),

1287 Taiwan Study of Hypertension using Rare Variants (phs001387), and Women's Health

- 1288 Initiative (phs001237). The sample sizes, ancestry and phenotype summary statistics of
- 1289 these cohorts are given in **Supplementary Table 2**.
- 1290
- 1291 The functional annotation data are publicly available and were downloaded from the
- 1292 following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download);
- 1293 ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-
- 1294 guide/download); LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT); FATHMM-
- 1295 XF (<u>http://fathmm.biocompute.org.uk/fathmm-xf</u>); FANTOM5 CAGE
- 1296 (https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.genecards.org; v4.7 for
- 1297 hg38); and Umap/Bismap (https://bismap.hoffmanlab.org; 'before March 2020' version).
- 1298 In addition, recombination rate and nucleotide diversity were obtained from Gazal et
- 1299 al⁵⁰. The whole-genome individual functional annotation data was assembled from a
- 1300 variety of sources and the computed annotation principal components are available at
- 1301 the Functional Annotation of Variant-Online Resource (FAVOR) site
- 1302 (https://favor.genohub.org)⁵¹ and the FAVOR database
- 1303 (<u>https://doi.org/10.7910/DVN/1VGTJI</u>)⁵².
- 1304
- 1305 **Code availability**
- 1306 MultiSTAAR is implemented as an open source R package available at
- 1307 https://github.com/xihaoli/MultiSTAAR and
- 1308 <u>https://content.sph.harvard.edu/xlin/software.html</u>. Data analysis was performed in R
- 1309 (4.1.0). STAAR v0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real data
- 1310 analysis and implemented as open-source R packages available at

- 1311 https://github.com/xihaoli/STAAR and https://github.com/xihaoli/MultiSTAAR. The
- 1312 assembled functional annotation data were downloaded from FAVOR using Wget
- 1313 (https://www.gnu.org/software/wget/wget.html).
- 1314
- 1315 **References**
- 1316 50. Gazal, S. *et al.* Linkage disequilibrium–dependent architecture of human complex 1317 traits shows action of negative selection. *Nature Genetics* **49**, 1421-1427 (2017).
- 1318 51. Zhou, H. *et al.* FAVOR: functional annotation of variants online resource and 1319 annotator for variation across the human genome. *Nucleic Acids Research* **51**,
- 1319annotator for variation across the human genome. Nucleic Acids Research 51320D1300-D1311 (2023).
- 1321 52. Zhou, H., Arapoglou, T., Li, X., Li, Z. & Lin, X. FAVOR Essential Database. V1
- 1322 Edition (Harvard Dataverse, 2022).