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Abstract 1 

Large-scale whole-genome sequencing (WGS) studies have improved our 2 

understanding of the contributions of coding and noncoding rare variants to complex 3 

human traits. Leveraging association effect sizes across multiple traits in WGS rare 4 

variant association analysis can improve statistical power over single-trait analysis, and 5 

also detect pleiotropic genes and regions. Existing multi-trait methods have limited 6 

ability to perform rare variant analysis of large-scale WGS data. We propose 7 

MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for 8 

functionally-informed multi-trait rare variant analysis in large-scale WGS studies. 9 

MultiSTAAR accounts for relatedness, population structure and correlation among 10 

phenotypes by jointly analyzing multiple traits, and further empowers rare variant 11 

association analysis by incorporating multiple functional annotations. We applied 12 

MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-13 

density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the 14 

Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new 15 

associations with lipid traits missed by single-trait analysis, including rare variants within 16 

an enhancer of NIPSNAP3A and an intergenic region on chromosome 1. 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Advances in next generation sequencing technologies and the decreasing cost of 24 

whole-exome/whole-genome sequencing (WES/WGS) have made it possible to study 25 

the genetic underpinnings of rare variants (i.e. minor allele frequency (MAF) < 1%) in 26 

complex human traits. Large nationwide consortia and biobanks, such as the National 27 

Heart, Lung and Blood Institute (NHLBI)’s Trans-Omics for Precision Medicine 28 

(TOPMed) Program1, the National Human Genome Research Institute’s Genome 29 

Sequencing Program (GSP) , the National Institute of Health’s All of Us Research 30 

Program2, and the UK’s Biobank WGS Program3, are expected to sequence more than 31 

a million of individuals in total, at more than 1 billion genetic variants in both coding and 32 

noncoding regions of the human genome, while also recording thousands of 33 

phenotypes. To mitigate the lack of power of single-variant analyses to identify rare 34 

variant associations4, variant set tests have been proposed to analyze the joint effects 35 

of multiple rare variants 5-9, where most of the work has focused single trait analysis.  36 

 37 

Pleiotropy occurs when genetic variants influence multiple traits10. There is growing 38 

empirical evidence from genome-wide association studies (GWASs) that many variants 39 

have pleiotropic effects11,12. Identifying these effects can provide valuable insights into 40 

the genetic architecture of complex traits13. As such, it is of increasing interest to identify 41 

pleiotropic rare variants by jointly analyzing multiple traits in WGS rare variant 42 

association studies (RVASs). 43 

 44 

Several existing methods for multi-trait rare variant association analysis, such as 45 

MSKAT14, Multi-SKAT15 and MTAR16, have shown that leveraging the cross-phenotype 46 
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correlation structure can improve the power of multi-trait analyses compared to single-47 

trait analyses when analyzing pleiotropic genes14-17. However, existing methods do not 48 

scale well, and are not feasible when analyzing large-scale WGS studies with hundreds 49 

of millions of rare variants in samples exhibiting relatedness and population structure. 50 

Furthermore, none of the existing multi-trait rare variant analysis methods leverages 51 

functional annotations that predict the biological functionality of variants, resulting in 52 

limited interpretability and power loss. While the STAAR method18 dynamically 53 

incorporates multiple variant functional annotations to maximize the power of rare 54 

variant association tests, it is designed for single-trait analysis and cannot be directly 55 

applied to multiple traits. 56 

 57 

To overcome these limitations, we propose the Multi-trait variant-Set Test for 58 

Association using Annotation infoRmation (MultiSTAAR), a statistical framework for 59 

multi-trait rare variant analyses of large-scale WGS studies and biobanks. It has several 60 

features. First, by fitting a null Multivariate Linear Mixed Model (MLMM)19 for multiple 61 

quantitative traits simultaneously, adjusting for ancestry principal components (PCs)20 62 

and using a sparse genetic relatedness matrix (GRM)21,22, MultiSTAAR scales well but 63 

also accounts for relatedness and population structure, as well as correlations among 64 

the multiple traits. Second, MultiSTAAR enables the incorporation of multiple variant 65 

functional annotations as weights to improve the power of RVASs. Furthermore, we 66 

provide MultiSTAAR via a comprehensive pipeline for large-scale WGS studies, that 67 

facilitates functionally-informed multi-trait analysis of both coding and noncoding rare 68 
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variants. Third, MultiSTAAR enables conditional multi-trait analysis to assess rare 69 

variant association signals beyond known common and low frequency variants. 70 

 71 

In the current study, we conducted extensive simulation studies to demonstrate the 72 

validity of MultiSTAAR and to assess the power gain of MultiSTAAR by incorporating 73 

multiple relevant variant functional annotations, and its ability in preserving Type I error 74 

rates. We then applied MultiSTAAR to perform WGS RVAS of 61,838 ancestrally 75 

diverse participants from 20 studies from NHLBI’s TOPMed consortium by jointly 76 

analyzing three circulating lipid traits: low-density lipoprotein cholesterol (LDL-C), high-77 

density lipoprotein cholesterol (HDL-C) and triglycerides (TG). We show that 78 

MultiSTAAR is computationally feasible for large-scale WGS multi-trait rare variant 79 

analysis, and in conditional analysis of LDL-C, HDL-C and TG, MultiSTAAR identifies 80 

signals that were missed either by the existing multi-trait rare variant analysis methods 81 

that overlook variant functional annotations, or by single-trait functionally-informed 82 

analysis that ignore correlations between phenotypes. 83 

 84 

Results 85 

Overview of the methods 86 

MultiSTAAR is a statistical framework and an analytic pipeline for jointly analyzing 87 

multiple traits in large-scale WGS rare variant association studies. There are two main 88 

components in the MultiSTAAR framework: (i) fitting null MLMMs using ancestry PCs 89 

and sparse GRMs to account for population structure, relatedness and the correlation 90 

between phenotypes, and (ii) testing for associations between each aggregated variant 91 
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set and multiple traits by dynamically incorporating multiple variant functional 92 

annotations18 (Fig. 1a). 93 

 94 

In WGS RVASs, an important but often underemphasized challenge is selecting 95 

biologically-meaningful and functionally-interpretable analysis units, especially for the 96 

noncoding genome23,24. In gene-centric analyses of multiple traits, MultiSTAAR provides 97 

five functional categories (masks) to aggregate coding rare variants of each protein-98 

coding gene, as well as an additional eight masks of regulatory regions to aggregate 99 

noncoding rare variants. In non-gene-centric analyses of multiple traits, MultiSTAAR 100 

performs agnostic genetic region analyses using sliding windows18,25 (Fig. 1b). 101 

 102 

For each rare variant set analyzed, MultiSTAAR first constructs the multi-trait burden, 103 

SKAT and ACAT-V test statistics (Methods). For each type of rare variant test, 104 

MultiSTAAR calculates multiple candidate P values using different variant functional 105 

annotations as weights, following the STAAR framework18. MultiSTAAR then 106 

aggregates the association strength by combining the P values from all annotations 107 

using the ACAT method, that provides robustness to correlation between tests9, and 108 

proposes an omnibus test, MultiSTAAR-O, that leverages the advantages of different 109 

type of tests (Methods). Furthermore, MultiSTAAR can test multi-trait rare variants’ 110 

associations conditional on a set of known associations (Fig. 1b). 111 

 112 

Simulation studies 113 
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To evaluate the type I error rates and the power of MultiSTAAR, we performed 114 

simulation studies under several configurations. Following the steps described in Data 115 

Simulation (Methods), we generated three quantitative traits with a correlation matrix 116 

similar to the empirical correlation in the three lipid traits26-28. We then generated 117 

genotypes by simulating 20,000 sequences for 100 different 1 megabase (Mb) regions, 118 

each of them were generated to mimic the linkage disequilibrium structure of an African 119 

American population by using the calibration coalescent model29. Throughout the 120 

simulation studies, we randomly and uniformly selected 5-kilobase (kb) regions from 121 

these 1-Mb regions and considered sample sizes of 10,000 for each replicate. The 122 

simulation studies focused on aggregating uncommon variants with an MAF < 5%. 123 

 124 

Type I error rate evaluations 125 

We performed 10� simulations to evaluate the type I error rates of the multi-trait burden, 126 

SKAT, ACAT-V and MultiSTAAR-O tests at � � 10��, 10��,  and 10�� (Supplementary 127 

Table 1). The results show that, for multi-trait rare variant analysis, all four MultiSTAAR 128 

tests controlled the type I error rates at very close to the nominal � levels. 129 

 130 

Empirical power simulations 131 

We next assessed the power of MultiSTAAR-O for the analysis of multiple phenotypes 132 

under different genetic architectures, while also comparing its power with existing 133 

methods. Specifically, we considered four models, in which variants in the signal region 134 

(variant-phenotype association regions) were associated with (1) one phenotype only, 135 

(2) two positively correlated phenotypes, (3) two negatively correlated phenotypes and 136 
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(4) all three phenotypes. In addition, we considered different proportions (5%, 15% and 137 

35% on average) of causal variants in the signal region, where causality of variants 138 

depended on different sets of annotations, and the effect size directions of causal 139 

variants were allowed to vary (Methods). Power was evaluated as the proportions of P 140 

values less than � � 10�� based on 10� simulations. Overall, MultiSTAAR-O 141 

consistently delivered higher power to detect signal regions compared to multi-trait 142 

burden, SKAT and ACAT-V tests, through its incorporation of multiple annotations 143 

(Extended Data Figs. 2-5, Supplementary Figs. 1-4). This power advantage was also 144 

robust to the existence of noninformative annotations.  145 

 146 

Application to the TOPMed lipids WGS data 147 

We applied MultiSTAAR to identify rare variant associations with three quantitative lipid 148 

traits (LDL-C, HDL-C and TG) through a multi-trait analysis using TOPMed Freeze 8 149 

WGS data, comprising 61,838 individuals from 20 multi-ethnic studies (Supplementary 150 

Note). LDL-C values were adjusted for the usage of lipid-lowering medication26,30 151 

(Methods), and DNA samples were sequenced at >30x target coverage. Sample- and 152 

variant-level quality control were performed for each participating study1,26,30. 153 

 154 

Race/ethnicity was measured using a combination of self-reported race/ethnicity and 155 

study recruitment information31 (Supplementary Note). Of the 61,838 samples, 15,636 156 

(25.3%) were Black or African American, 27,439 (44.4%) were White, 4,461 (7.2%) 157 

were Asian or Asian American, 13,138 (21.2%) were Hispanic/Latino American and 158 

1,164 (1.9%) were Samoans. There were 414 million single-nucleotide variants (SNVs) 159 
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observed overall, with 6.5 million (1.6%) common variants (MAF > 5%), 5.2 million 160 

(1.2%) low-frequency variants (1% � MAF � 5%) and 402 million (97.2%) rare variants 161 

(MAF < 1%). The study-specific demographics and baseline characteristics are given in 162 

Supplementary Table 2. 163 

 164 

Gene-centric multi-trait analysis of coding and noncoding rare variants 165 

We applied MultiSTAAR-O on gene-centric multi-trait analysis of coding and noncoding 166 

rare variants of genes with lipid traits in TOPMed. For coding variants, rare variants 167 

(MAF < 1%) from five coding functional categories (masks) were aggregated, 168 

separately, and analyzed using a joint model for LDL-C, HDL-C and TG, including (1) 169 

putative loss-of-function (stop gain, stop loss and splice) rare variants, (2) missense 170 

rare variants, (3) disruptive missense rare variants, (4) putative loss-of-function and 171 

disruptive missense rare variants and (5) synonymous rare variants of each protein-172 

coding gene. The putative loss-of-function, missense and synonymous RVs were 173 

defined by GENCODE Variant Effect Predictor (VEP) categories32. The disruptive 174 

variants were further defined by MetaSVM33, which measures the deleteriousness of 175 

missense mutations. We incorporated 9 annotation principal components (aPCs)18,26,34, 176 

CADD35, LINSIGHT36, FATHMM-XF37 and MetaSVM33 (for missense rare variants only) 177 

along with the two MAF-based weights4 in MultiSTAAR-O (Supplementary Table 3). 178 

The overall distribution of MultiSTAAR-O P values was well-calibrated for the multi-trait 179 

analysis of coding rare variants (Extended Data Fig. 1b). At a Bonferroni-corrected 180 

significance threshold of � � 0.05/�20,000 
  5� � 5.00 
 10��, accounting for five 181 

different coding masks across protein-coding genes, MultiSTAAR-O identified 51 182 
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genome-wide significant associations using unconditional multi-trait analysis (Extended 183 

Data Fig. 1a, Supplementary Table 4). After conditioning on previously reported 184 

variants associated with LDL-C, HDL-C or TG located within a 1 Mb broader region of 185 

each coding mask in the GWAS Catalog and Million Veteran Program (MVP)26,38,39, 34 186 

out of the 51 associations remained significant at the Bonferroni-corrected threshold of 187 

� � 0.05/51 � 9.80 
 10�� (Table 1). 188 

 189 

For non-coding variants, rare variants from eight noncoding masks were analyzed in a 190 

similar fashion, including (1) promoter rare variants overlaid with CAGE sites40, (2) 191 

promoter rare variants overlaid with DHS sites41, (3) enhancer rare variants overlaid 192 

with CAGE sites42,43, (4) enhancer rare variants overlaid with DHS sites41,43, (5) 193 

untranslated region (UTR) rare variants, (6) upstream region rare variants, (7) 194 

downstream region rare variants of each protein-coding gene and (8) rare variants in 195 

ncRNA genes24. The promoter rare variants were defined as rare variants in the ±3-196 

kilobase (kb) window of transcription start sites with the overlap of CAGE sites or DHS 197 

sites. The enhancer rare variants were defined as RVs in GeneHancer-predicted 198 

regions with the overlap of CAGE sites or DHS sites. The UTR, upstream, downstream 199 

and ncRNA rare variants were defined by GENCODE VEP categories32. With a well-200 

calibrated overall distribution of MultiSTAAR-O P values (Extended Data Fig. 1d) and 201 

at a Bonferroni-corrected significance threshold of � � 0.05/�20,000 
  7� � 3.57 
202 

 10��, accounting for seven different noncoding masks across protein-coding genes, 203 

MultiSTAAR-O identified 76 genome-wide significant associations using unconditional 204 

multi-trait analysis (Extended Data Fig. 1c, Supplementary Table 5). After 205 
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conditioning on known lipids-associated variants26,38,39, 6 out of the 76 associations 206 

remained significant at the Bonferroni-corrected threshold of � � 0.05/76 � 6.58 
207 

 10�� (Table 2). These included promoter CAGE and enhancer CAGE rare variants in 208 

APOA1, promoter DHS rare variants in CETP, enhancer CAGE rare variants in SPC24, 209 

and enhancer DHS rare variants in NIPSNAP3A and LIPC.  210 

 211 

MultiSTAAR-O further identified 6 genome-wide significant associations using 212 

unconditional multi-trait analysis at � � 0.05/20,000 � 2.50 
 10�� accounting for 213 

ncRNA genes (Extended Data Fig. 1e, Supplementary Table 5), with 3 rare variant 214 

associations in RP11-15F12.3, RP11-310H4.2 and MIR4497 remained significant at 215 

� � 0.05/6 � 8.33 
 10�� after conditioning on known lipids-associated variants26,38,39 216 

(Table 2).  217 

 218 

Notably, among the 9 conditionally significant noncoding rare variants associations with 219 

lipid traits, 4 of them were not detected by any of the three single-trait analysis (LDL-C, 220 

HDL-C or TG) using unconditional analysis of STAAR-O, including the associations of 221 

enhancer DHS rare variants in NIPSNAP3A and LIPC as well as ncRNA rare variants in 222 

RP11-310H4.2 and MIR4497 (Supplementary Table 5). These results demonstrate 223 

that MultiSTAAR-O can increase power over existing methods, and identify additional 224 

trait-associated signals by leveraging cross-phenotype correlations between multiple 225 

traits. 226 

 227 

Genetic region multi-trait analysis of rare variants 228 
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We next applied MultiSTAAR-O to perform genetic region multi-trait analysis to identify 229 

rare variants associated with lipid traits in TOPMed. Rare variants residing in 2-kilobase 230 

(kb) sliding windows with a 1-kb skip length were aggregated and analyzed using a joint 231 

model for LDL-C, HDL-C and TG. We incorporated 12 quantitative annotations, 232 

including 9 aPCs, CADD, LINSIGHT, FATHMM-XF along with the two MAF weights in 233 

MultiSTAAR-O (Methods). The overall distribution of MultiSTAAR-O P values was well-234 

calibrated for the multi-trait analysis (Fig. 2b). At a Bonferroni-corrected significance 235 

threshold of � � 0.05/�2.65 
 10�� � 1.89 
 10�� accounting for 2.65 million 2-kb 236 

sliding windows across the genome, MultiSTAAR-O identified 502 genome-wide 237 

significant associations using unconditional multi-trait analysis (Fig. 2a, Supplementary 238 

Table 6). By dynamically incorporating multiple functional annotations capturing 239 

different aspects of variant function, MultiSTAAR-O detected more significant sliding 240 

windows and showed consistently smaller P values for top sliding windows compared 241 

with multi-trait analysis using only MAFs as the weight (Fig. 2c). After conditioning on 242 

known lipids-associated variants26,38,39, 7 out of the 502 associations remained 243 

significant at the Bonferroni-corrected threshold of � � 0.05/502 � 9.96 
 10�� (Table 244 

3), including two sliding windows in DOCK7 (chromosome 1: 62,651,447 - 62,653,446 245 

bp; chromosome 1: 62,652,447 - 62,654,446 bp) and an intergenic sliding window 246 

(chromosome 1: 145,530,447 - 145,532,446 bp) that were not detected by any of the 247 

three single-trait analysis (LDL-C, HDL-C or TG) using STAAR-O (Supplementary 248 

Table 6). Notably, all known lipids-associated variants indexed in the previous literature 249 

were at least 1-Mb away from the intergenic sliding window. 250 

 251 
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Comparison of MultiSTAAR-O with existing multi-trait rare variant tests 252 

Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of coding rare 253 

variants identified 34 conditionally significant associations with lipid traits (Table 1), 254 

including NPC1L1 and SCARB1 missense rare variants that were missed by multi-trait 255 

burden, SKAT and ACAT-V tests (Supplementary Table 4). Among the 9 and 7 256 

conditionally significant associations detected in gene-centric multi-trait analysis of 257 

noncoding rare variants and genetic region multi-trait analysis, MultiSTAAR-O identified 258 

1 and 2 associations, respectively, that were missed by multi-trait burden, SKAT and 259 

ACAT-V tests (Supplementary Tables 5-6). These associations included enhancer 260 

CAGE rare variants in SPC24 and two sliding windows in LDLR (chromosome 19: 261 

11,104,367 - 11,106,366 bp; chromosome 19: 11,105,367 - 11,107,366 bp). 262 

 263 

Computation cost 264 

The computational cost for MultiSTAAR-O to perform WGS multi-trait rare variant 265 

analysis of n = 61,838 related TOPMed lipids samples was 2 hours using 250 2.10-GHz 266 

computing cores with 12-GB memory for gene-centric coding analysis; or 20 hours 267 

using 250 2.10-GHz computing cores with 24-GB memory for gene-centric noncoding 268 

analysis; 2 hours using 250 2.10-GHz computing cores with 12-GB memory of ncRNA 269 

analysis; and 20 hours using 500 2.10-GHz computing cores with 24-GB memory for 270 

sliding window analysis. Runtime for all analyses scales linearly with the sample size24. 271 

 272 

Discussion 273 
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In this study, we have introduced MultiSTAAR as a general statistical framework and a 274 

flexible analytical pipeline for performing functionally-informed multi-trait RVAS in large-275 

scale WGS studies. MultiSTAAR improves power by analyzing multiple traits 276 

simultaneously and dynamically incorporating multiple functional annotations, while 277 

accounting for relatedness and population structure among study samples.  278 

 279 

By jointly analyzing multiple quantitative traits using a multivariate linear mixed model, 280 

MultiSTAAR explicitly leverages the correlation among multiple phenotypes to enhance 281 

power for detecting additional association signals, outperforming single-trait analyses of 282 

the individual phenotypes. MultiSTAAR also enables conditional multi-trait analysis to 283 

identify putatively novel rare variant associations independent of a set of known 284 

variants. Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of 285 

noncoding rare variants identified 9 conditionally significant associations with lipid traits 286 

(Table 2), including 4 noncoding associations that were missed by single-trait analysis 287 

using STAAR (Supplementary Table 5). Our genetic region multi-trait analysis of rare 288 

variants identified 7 conditionally significant 2-kb sliding windows associated with lipid 289 

traits (Table 3), including 3 associations that were missed by single-trait analysis using 290 

STAAR (Supplementary Table 6). 291 

 292 

By dynamically incorporating multiple annotations capturing diverse aspects of variant 293 

biological function in the second step, MultiSTAAR further improves power over existing 294 

multi-trait rare variant analysis methods. Our simulation studies demonstrated that 295 

MultiSTAAR-O maintained accurate type I error rates while achieving considerable 296 
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power gains over multi-trait burden, SKAT and ACAT-V tests that do not incorporate 297 

functional annotation information (Extended Data Figs. 2-5, Supplementary Figs. 1-298 

4). Notably, the existing ACAT-V method9 does not support multi-trait analysis. We 299 

extended it to accommodate multi-trait settings and incorporated the multi-trait ACAT-V 300 

test into the MultiSTAAR framework (Methods). 301 

 302 

Implemented as a flexible analytical pipeline, MultiSTAAR allows for customized input 303 

phenotype selection, variant set definition and user-specified annotation weights to 304 

facilitate functionally-informed multi-trait analyses. In addition to rare variant association 305 

analysis of coding and noncoding regions, MultiSTAAR also provides single-variant 306 

multi-trait analysis for common and low-frequency variants under a given MAF or minor 307 

allele count (MAC) cutoff (e.g. MAC � 20). Using 61,838 TOPMed lipids samples, it took 308 

8 hours using 250 2.10-GHz computing cores with 12-GB memory for single-variant 309 

multi-trait analysis, which is scalable for large WGS/WES datasets. On the other hand, 310 

MultiSTAAR could be further extended to allow for dynamic windows with data-adaptive 311 

sizes in genetic region analysis24,44, to properly leverage synthetic surrogates in the 312 

presence of partially missing phenotypes45, and to incorporate summary statistics for 313 

meta-analysis of multiple WGS/WES studies46. 314 

 315 

In summary, MultiSTAAR provides a powerful statistical framework and a 316 

computationally scalable analytical pipeline for large-scale WGS multi-trait analysis with 317 

complex study samples. Compared to single-trait analysis, MultiSTAAR offers a notable 318 

increase in statistical power when analyzing multiple moderately to highly correlated 319 
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traits, all while maintaining control over type I error rates across various genetic 320 

architectures. As the sample sizes and number of available phenotypes increase in 321 

biobank-scale sequencing studies, our proposed method may contribute to a better 322 

understanding of the genetic architecture of complex traits by elucidating the role of rare 323 

variants with pleiotropic effects. 324 
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TABLES 687 

Table 1 | TOPMed Gene-centric coding multi-trait analysis results of both 688 

unconditional analysis and analysis conditional on known lipids-associated 689 

variants. A total of 61,838 samples from the TOPMed Program were considered in the 690 

analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O 691 � � 5.00 
 10��; conditional MultiSTAAR-O � � 9.80 
 10��) are presented in the 692 

table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome number; Category, 693 

functional category; No. of SNVs, number of rare variants (MAF < 1%) of the particular 694 

coding functional category in the gene; MultiSTAAR-O, MultiSTAAR-O P value; Variants 695 

(adjusted), adjusted variants in the conditional analysis. 696 

 697 

Gene Chr. 
no. Category No. of 

SNVs 
MultiSTAAR-O 
(Unconditional) 

MultiSTAAR-O 
(Conditional) Variants (adjusted) 

PCSK9 1 
Putative loss-

of-function 
14 1.14E-115 2.66E-08 

rs12117661, rs2495491, rs11591147, 
rs67608943, rs72646508, rs693668, 

rs28362261, rs28362263, rs141502002, 
rs505151, rs28362286  

APOB 2 
Putative loss-

of-function 29 8.04E-28 5.76E-27 
rs12478327, rs72654432, rs1042034, 

rs676210, rs533617, rs17240441, 
rs34722314, rs563290, rs10692845 

ABCA1 9 Putative loss-
of-function 

28 2.04E-21 5.41E-21 
rs2150867, rs33918808, rs112853430, 

rs4149307, rs9282541, rs1883025, 
rs1800978 

LDLR 19 Putative loss-
of-function 

19 8.81E-21 7.16E-21 

rs140753491, rs138294113, 
rs17242353, rs17242843, rs10422256, 
rs72658860, rs11669576, rs2738447, 
rs72658867, rs2738464, rs6511728, 
rs3760782, rs59168178, rs2278426, 

rs112942459 

PCSK9 1 Missense 271 8.94E-71 1.29E-10 

rs12117661, rs2495491, rs11591147, 
rs67608943, rs72646508, rs693668, 

rs28362261, rs28362263, rs141502002, 
rs505151, rs28362286 

APOB 2 Missense 1407 5.57E-08 4.31E-08 
rs12478327, rs72654432, rs1042034, 

rs676210, rs533617, rs17240441, 
rs34722314, rs563290, rs10692845 

ABCG5 2 Missense 242 5.75E-08 9.81E-08 rs114780578, rs11887534, rs4245791 

NPC1L1 7 Missense 477 3.10E-08 1.60E-07 rs217381 

LPL 8 Missense 149 9.57E-19 7.14E-04 
rs6996383, rs268, rs328, rs3289, 
rs13702, rs15285, rs78810414, 

rs28550053, rs12676079, rs55682243 

ABCA1 9 Missense 597 3.63E-46 1.75E-33 
rs2150867, rs33918808, rs112853430, 

rs4149307, rs9282541, rs1883025, 
rs1800978 

SCARB1 12 Missense 192 6.77E-15 3.55E-15 
rs6488913, rs4765127, rs1716407, 
rs825456, rs1672875, rs10846744, 

rs10773112, rs187471874, rs10773119 

LIPC 15 Missense 246 2.54E-20 6.66E-15 

rs1973688, rs1601935,  
rs2043082, rs10468017,  

rs1532085, rs436965, rs35980001, 
rs1800588, rs2070895, rs113298164 

CETP 16 Missense 168 8.84E-14 2.09E-04 

rs35571500, rs247617, rs17231506, 
rs34498052, rs34119551, rs34065661, 

rs1597000001*, rs7499892, rs5883, 
rs289719, rs11860407, rs189866004, 
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rs5880 

LCAT 16 Missense 107 9.18E-14 3.06E-17 
rs111315946, rs150660813, rs4986970,  
rs35673026, rs1109166, rs548291389 

LDLR 19 Missense 342 7.92E-58 2.12E-57 

rs140753491, rs138294113, 
rs17242353, rs17242843, rs10422256, 
rs72658860, rs11669576, rs2738447, 
rs72658867, rs2738464, rs6511728, 
rs3760782, rs59168178, rs2278426, 

rs112942459 

TM6SF2 19 Missense 120 7.06E-08 6.16E-07 rs3761077, rs150641967, rs187429064, 
rs2074304 

PCSK9 1 

Putative loss-
of-function 

and disruptive 
missense 

71 1.14E-107 8.22E-17 

rs12117661, rs2495491, rs11591147, 
rs67608943, rs72646508, rs693668, 

rs28362261, rs28362263, rs141502002, 
rs505151, rs28362286 

APOB 2 

Putative loss-
of-function 

and disruptive 
missense 

75 9.96E-12 9.86E-12 
rs12478327, rs72654432, rs1042034, 

rs676210, rs533617, rs17240441, 
rs34722314, rs563290, rs10692845 

NPC1L1 7 

Putative loss-
of-function 

and disruptive 
missense 

303 1.79E-09 8.29E-09 rs217381 

ABCA1 9 

Putative loss-
of-function 

and disruptive 
missense 

357 7.85E-33 2.66E-33 
rs2150867, rs33918808, rs112853430, 

rs4149307, rs9282541, rs1883025, 
rs1800978 

APOC3 11 

Putative loss-
of-function 

and disruptive 
missense 

15 2.86E-126 3.01E-06 

rs509728, rs61905072, rs66505542, 
rs7102314, rs964184, rs75198898, 

rs142958146, rs2075291, rs3135506, 
rs651821, rs45611741, rs662799, 

rs10750097, rs9804646, rs978880643, 
rs2070669, rs76353203, rs138326449, 
rs147210663, rs140621530, rs525028, 

rs141469619, rs188287950, 
rs202207736 

SCARB1 12 

Putative loss-
of-function 

and disruptive 
missense 

60 3.49E-17 2.14E-17 
rs6488913, rs4765127, rs1716407, 
rs825456, rs1672875, rs10846744, 

rs10773112, rs187471874, rs10773119 

LIPC 15 

Putative loss-
of-function 

and disruptive 
missense 

130 1.01E-19 1.49E-17 

rs1973688, rs1601935,  
rs2043082, rs10468017,  

rs1532085, rs436965, rs35980001, 
rs1800588, rs2070895, rs113298164 

LCAT 16 

Putative loss-
of-function 

and disruptive 
missense 

88 2.38E-16 5.07E-17 rs111315946, rs150660813, rs4986970,  
rs35673026, rs1109166, rs548291389 

LDLR 19 

Putative loss-
of-function 

and disruptive 
missense 

221 6.97E-72 1.57E-71 

rs140753491, rs138294113, 
rs17242353, rs17242843, rs10422256, 
rs72658860, rs11669576, rs2738447, 
rs72658867, rs2738464, rs6511728, 
rs3760782, rs59168178, rs2278426, 

rs112942459 

PCSK9 1 Disruptive 
missense 

57 7.03E-19 1.33E-12 

rs12117661, rs2495491, rs11591147, 
rs67608943, rs72646508, rs693668, 

rs28362261, rs28362263, rs141502002, 
rs505151, rs28362286 

APOB 2 Disruptive 
missense 

46 5.78E-09 4.48E-09 
rs12478327, rs72654432, rs1042034, 

rs676210, rs533617, rs17240441, 
rs34722314, rs563290, rs10692845 

NPC1L1 7 
Disruptive 
missense 

276 3.34E-09 1.57E-08 rs217381 

ABCA1 9 
Disruptive 
missense 329 1.17E-22 1.59E-23 

rs2150867, rs33918808, rs112853430, 
rs4149307, rs9282541, rs1883025, 

rs1800978 

APOC3 11 
Disruptive 
missense 

6 2.38E-29 3.93E-04 
rs509728, rs61905072, rs66505542, 
rs7102314, rs964184, rs75198898, 

rs142958146, rs2075291, rs3135506, 
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rs651821, rs45611741, rs662799, 
rs10750097, rs9804646, rs978880643, 
rs2070669, rs76353203, rs138326449, 
rs147210663, rs140621530, rs525028, 

rs141469619, rs188287950, 
rs202207736 

SCARB1 12 
Disruptive 
missense 51 4.44E-16 2.86E-16 

rs6488913, rs4765127, rs1716407, 
rs825456, rs1672875, rs10846744, 

rs10773112, rs187471874, rs10773119 

LIPC 15 
Disruptive 
missense 112 2.19E-18 2.65E-16 

rs1973688, rs1601935,  
rs2043082, rs10468017,  

rs1532085, rs436965, rs35980001, 
rs1800588, rs2070895, rs113298164 

LCAT 16 
Disruptive 
missense 84 2.85E-14 6.44E-15 

rs111315946, rs150660813, rs4986970,  
rs35673026, rs1109166, rs548291389 

LDLR 19 Disruptive 
missense 

203 2.22E-59 5.13E-59 

rs140753491, rs138294113, 
rs17242353, rs17242843, rs10422256, 
rs72658860, rs11669576, rs2738447, 
rs72658867, rs2738464, rs6511728, 
rs3760782, rs59168178, rs2278426, 

rs112942459 
* Samoan-specific missense variant. 698 

 699 

 700 

 701 

 702 

 703 
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Table 2 | TOPMed Gene-centric noncoding multi-trait analysis results of both 705 

unconditional analysis and analysis conditional on known lipids-associated 706 

variants. A total of 61,838 samples from the TOPMed Program were considered in the 707 

analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O 708 � � 3.57 
 10�� and conditional MultiSTAAR-O � � 6.58 
 10�� for 7 different 709 

noncoding masks across protein-coding genes; unconditional MultiSTAAR-O � �710 2.50 
 10�� and conditional MultiSTAAR-O � � 8.33 
 10�� for ncRNA genes) are 711 

presented in the table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome 712 

number; Category, functional category; No. of SNVs, number of rare variants (MAF < 713 

1%) of the particular noncoding functional category in the gene; MultiSTAAR-O, 714 

MultiSTAAR-O P value; Variants (adjusted), adjusted variants in the conditional 715 

analysis; n/a, no variant adjusted in the conditional analysis. 716 

 717 

Gene Chr. 
no. Category No. of 

SNVs 
MultiSTAAR-O 
(Unconditional) 

MultiSTAAR-O 
(Conditional) Variants (adjusted) 

APOA1 11 
Promoter 
(CAGE) 

230 2.33E-07 9.45E-07 

rs509728, rs61905072, rs66505542, 
rs7102314, rs964184, rs75198898, 

rs142958146, rs2075291, rs3135506, 
rs651821, rs45611741, rs662799, 

rs10750097, rs9804646, rs978880643, 
rs2070669, rs76353203, rs138326449, 
rs147210663, rs140621530, rs525028, 

rs141469619, rs188287950, 
rs202207736 

CETP 16 
Promoter 

(DHS) 411 1.21E-12 5.75E-04 

rs35571500, rs247617, rs17231506, 
rs34498052, rs34119551, rs34065661, 

rs1597000001*, rs7499892, rs5883, 
rs289719, rs11860407, rs189866004, 

rs5880 

APOA1 11 Enhancer 
(CAGE) 

642 1.88E-24 6.23E-04 

rs509728, rs61905072, rs66505542, 
rs7102314, rs964184, rs75198898, 

rs142958146, rs2075291, rs3135506, 
rs651821, rs45611741, rs662799, 

rs10750097, rs9804646, rs978880643, 
rs2070669, rs76353203, rs138326449, 
rs147210663, rs140621530, rs525028, 

rs141469619, rs188287950, 
rs202207736 

SPC24 19 
Enhancer 
(CAGE) 366 1.33E-08 4.88E-04 

rs140753491, rs138294113, 
rs17242353, rs17242843, rs10422256, 
rs72658860, rs11669576, rs2738447, 
rs72658867, rs2738464, rs6511728, 
rs3760782, rs59168178, rs2278426, 

rs112942459 

NIPSNA
P3A 9 

Enhancer 
(DHS) 767 2.63E-08 8.46E-06 

rs2150867, rs33918808, rs112853430, 
rs4149307, rs9282541, rs1883025, 

rs1800978 

LIPC 15 
Enhancer 

(DHS) 3714 4.26E-08 1.25E-04 

rs1973688, rs1601935,  
rs2043082, rs10468017,  

rs1532085, rs436965, rs35980001, 
rs1800588, rs2070895, rs113298164 

RP11-
310H4.2 

7 ncRNA 154 1.69E-06 1.69E-06 n/a 
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MIR4497 12 ncRNA 23 1.37E-06 1.42E-06 rs5800864 

RP11-
15F12.3 

18 ncRNA 64 7.53E-11 7.50E-03 
rs77960347, rs117623631, rs9958734, 
rs7229562, rs8086351, rs10048323, 

rs8084172 
* Samoan-specific missense variant. 718 

 719 

 720 
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Table 3 | TOPMed Genetic region (2-kb sliding window) multi-trait analysis results 729 

of both unconditional analysis and analysis conditional on known lipid-730 

associated variants. A total of 61,838 samples from the TOPMed Program were 731 

considered in the analysis. Results for the conditionally significant sliding windows 732 

(unconditional MultiSTAAR-O � � 1.89 
 10�� and conditional MultiSTAAR-O � �733 9.96 
 10��) are presented in the table. MultiSTAAR-O is a two-sided test. Chr. no., 734 

chromosome number; Start location, start location of the 2-kb sliding window; End 735 

location, end location of the 2-kb sliding window; No. of SNVs, number of rare variants 736 

(MAF < 1%) in the 2-kb sliding window; MultiSTAAR-O, MultiSTAAR-O P value; 737 

Variants (adjusted), adjusted variants in the conditional analysis; n/a, no variant 738 

adjusted in the conditional analysis. Physical positions of each window are on build 739 

hg38. 740 

 

Chr. 
no. 

Start 
location 

End 
location Gene No. of 

SNVs 
MultiSTAAR-O 
(Unconditional) 

MultiSTAAR-O 
(Conditional) Variants (adjusted) 

1 55,051,447 55,053,446 PCSK9 327 7.11E-11 6.60E-08 

rs12117661, rs2495491, 
rs11591147, rs67608943, 

rs72646508, rs693668, 
rs28362261, rs28362263, 
rs141502002, rs505151, 

rs28362286 

1 55,052,447 55,054,446 PCSK9 320 9.37E-09 9.07E-06 

rs12117661, rs2495491, 
rs11591147, rs67608943, 

rs72646508, rs693668, 
rs28362261, rs28362263, 
rs141502002, rs505151, 

rs28362286 

1 62,651,447 62,653,446 DOCK7 277 5.08E-09 7.56E-10 rs67461605 

1 62,652,447 62,654,446 DOCK7 257 4.87E-09 7.24E-10 rs67461605 

1 145,530,447 145,532,446 intergenic 233 5.12E-09 5.12E-09 n/a 

19 11,104,367 11,106,366 LDLR 336 1.15E-12 8.33E-13 

rs140753491, 
rs138294113, 

rs17242353, rs17242843, 
rs10422256, rs72658860, 
rs11669576, rs2738447, 
rs72658867, rs2738464, 
rs6511728, rs3760782, 
rs59168178, rs2278426, 

rs112942459 

19 11,105,367 11,107,366 LDLR 338 5.97E-14 5.55E-15 

rs140753491, 
rs138294113, 

rs17242353, rs17242843, 
rs10422256, rs72658860, 
rs11669576, rs2738447, 
rs72658867, rs2738464, 
rs6511728, rs3760782, 
rs59168178, rs2278426, 

rs112942459 
* Samoan-specific missense variant. 741 

 742 
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FIGURES 744 

Fig. 1 | MultiSTAAR framework and pipeline. a, MultiSTAAR framework. (i) Fit null 745 

Multivariate Linear Mixed Models (MLMMs) using sparse GRM and ancestry PCs to 746 

account for population structure, relatedness and the correlation between phenotypes. 747 

(ii) Test for associations between each variant set and multiple traits by dynamically 748 

incorporating multiple variant functional annotations. b, MultiSTAAR pipeline. (i) Prepare 749 

the input data of MultiSTAAR, including genotypes, multiple phenotypes and covariates. 750 

(ii) Calculate sparse GRM, ancestry PCs and annotate all variants in the genome. (iii) 751 

Perform single variant analysis for common variants. (iv) Define the rare variant analysis 752 

units, including gene-centric analysis of five coding functional categories and eight 753 

noncoding functional categories and non-gene-centric analysis of sliding windows. (v) 754 

Provide result summarization and perform analytical follow-up via conditional analysis. 755 

 756 

 757 

 758 

 759 
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Fig. 2 | TOPMed Genetic region (2-kb sliding window) unconditional multi-trait 760 

analysis results of low-density lipoprotein cholesterol (LDL-C), high-density 761 

lipoprotein cholesterol (HDL-C) and triglycerides (TG) using TOPMed data. a, 762 

Manhattan plot showing the associations of 2.65 million 2-kb sliding windows versus 763 � log�	��� of MultiSTAAR-O. The horizontal line indicates a genome-wide P value 764 

threshold of 1.89 
 10�� (n = 61,838). b, Quantile-quantile plot of 2-kb sliding window 765 

MultiSTAAR-O P values (n = 61,838). c, Scatterplot of P values for the 2-kb sliding 766 

windows comparing MultiSTAAR-O with Burden-MT, SKAT-MT and ACAT-V-MT tests 767 

(MT is short for Multi-Trait). Each dot represents a sliding window with x-axis label being 768 

the � log�	��� of the conventional multi-trait test and y-axis label being the � log�	��� of 769 

MultiSTAAR-O (n = 61,838). Burden-MT, SKAT-MT, ACAT-V-MT and MultiSTAAR-O 770 

are two-sided tests. Int*, intergenic sliding window. 771 

 772 

 773 
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EXTENDED DATA FIGURES 775 

Extended Data Fig. 1 | Manhattan plots and Q-Q plots for unconditional 776 

gene-centric coding, noncoding and ncRNA analysis of low-density lipoprotein 777 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerids 778 

(TG) using TOPMed data (n = 61,838). a, Manhattan plots for unconditional gene-779 

centric coding analysis of protein-coding gene. The horizontal line indicates a genome-780 

wide MultiSTAAR-O P value threshold of 5.00 
 10��. The significant threshold is 781 

defined by multiple comparisons using the Bonferroni correction (0.05/�20,000 
 5� �782 5.00 
 10��). Different symbols represent the MultiSTAAR-O P value of the protein-783 

coding gene using different functional categories (putative loss-of-function, putative 784 

loss-of-function and disruptive missense, missense, disruptive missense, synonymous). 785 

b, Quantile-quantile plots for unconditional gene-centric coding analysis of protein-786 

coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using 787 

different functional categories. c, Manhattan plots for unconditional gene-centric 788 

noncoding analysis of protein-coding gene. The horizontal line indicates a genome-wide 789 

MultiSTAAR-O P value threshold of 3.57 
 10��. The significant threshold is defined by 790 

multiple comparisons using the Bonferroni correction (0.05/�20,000 
 7� � 3.57 
 10��). 791 

Different symbols represent the MultiSTAAR-O P value of the protein-coding gene using 792 

different functional categories (upstream, downstream, UTR, promoter_CAGE, 793 

promoter_DHS, enhancer_CAGE, enhancer_DHS). Promoter_CAGE and 794 

promoter_DHS are the promoters with overlap of Cap Analysis of Gene Expression 795 

(CAGE) sites and DNase hypersensitivity (DHS) sites for a given gene, respectively. 796 

Enhancer_CAGE and enhancer_DHS are the enhancers in GeneHancer predicted 797 

regions with the overlap of CAGE sites and DHS sites for a given gene, respectively. d, 798 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of protein-799 

coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using 800 

different functional categories. e, Manhattan plots for unconditional gene-centric 801 

noncoding analysis of ncRNA gene. The horizontal line indicates a genome-wide 802 

MultiSTAAR-O P value threshold of 2.50 
 10��. The significant threshold is defined by 803 

multiple comparisons using the Bonferroni correction (0.05/20,000 � 2.50 
 10��). f, 804 

Quantile-quantile plots for unconditional gene-centric noncoding analysis of ncRNA 805 
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gene. In panels, a, c and e, the chromosome number are indicated by the colors of 806 

dots. In all panels, MultiSTAAR-O is a two-sided test. 807 

 808 

 809 

 810 
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Extended Data Fig. 2 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT 811 

(MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal 812 

region are associated with one phenotype. Multi-trait Burden, SKAT and ACAT-V 813 

tests implemented in MultiSTAAR are denoted by Burden-MT, SKAT-MT and ACAT-V-814 

MT. MultiSTAAR methods incorporating ten functional annotations are denoted by 815 

MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O. In each simulation 816 

replicate, a 5-kb region was randomly selected as the signal region. Within each signal 817 

region, variants were randomly generated to be causal based on the multivariate logistic 818 

model and on average there were 5%, 15% or 35% causal variants in the signal region. 819 

The effect sizes of causal variants were �
 � �	| log�	 �� 
 |, where �	 was set to be 820 

0.13. The barplot of power in the top panel consider settings in which the effect sizes for 821 

the causal variants are 100% positive (0% negative), 80% positive (20% negative), and 822 

50% positive (50% negative). The scatterplot of P values in the bottom panel compare 823 

MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the 824 

signal region are causal variants with all positive effect sizes. Power was estimated as 825 

the proportion of the P values less than � � 10�� based on 10� replicates. Burden-MT, 826 

SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 827 

MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000. 828 
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Extended Data Fig. 3 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT 841 

(MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal 842 

region are associated with two positively correlated phenotypes. In each 843 

simulation replicate, a 5-kb region was randomly selected as the signal region. Within 844 

each signal region, variants were randomly generated to be causal based on the 845 

multivariate logistic model and on average there were 5%, 15% or 35% causal variants 846 

in the signal region. The effect sizes of causal variants were �
 � �	| log�	 �� 
 |, where 847 

�	 was set to be 0.1. The barplot of power in the top panel consider settings in which the 848 

effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20% 849 

negative), and 50% positive (50% negative). The scatterplot of P values in the bottom 850 

panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of 851 

variants in the signal region are causal variants with all positive effect sizes. Power was 852 

estimated as the proportion of the P values less than � � 10�� based on 10� replicates. 853 

Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 854 

MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000. 855 

 856 
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Extended Data Fig. 4 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT 870 

(MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal 871 

region are associated with two negatively correlated phenotypes. In each 872 

simulation replicate, a 5-kb region was randomly selected as the signal region. Within 873 

each signal region, variants were randomly generated to be causal based on the 874 

multivariate logistic model and on average there were 5%, 15% or 35% causal variants 875 

in the signal region. The effect sizes of causal variants were �
 � �	| log�	 �� 
 |, where 876 

�	 was set to be 0.1. The barplot of power in the top panel consider settings in which the 877 

effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20% 878 

negative), and 50% positive (50% negative). The scatterplot of P values in the bottom 879 

panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of 880 

variants in the signal region are causal variants with all positive effect sizes. Power was 881 

estimated as the proportion of the P values less than � � 10�� based on 10� replicates. 882 

Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 883 

MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000. 884 

 885 

 886 
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Extended Data Fig. 5 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT 899 

(MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal 900 

region are associated with three phenotypes. In each simulation replicate, a 5-kb 901 

region was randomly selected as the signal region. Within each signal region, variants 902 

were randomly generated to be causal based on the multivariate logistic model and on 903 

average there were 5%, 15% or 35% causal variants in the signal region. The effect 904 

sizes of causal variants were �
 � �	| log�	 �� 
 |, where �	 was set to be 0.07. The 905 

barplot of power in the top panel consider settings in which the effect sizes for the 906 

causal variants are 100% positive (0% negative), 80% positive (20% negative), and 907 

50% positive (50% negative). The scatterplot of P values in the bottom panel compare 908 

MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the 909 

signal region are causal variants with all positive effect sizes. Power was estimated as 910 

the proportion of the P values less than � � 10�� based on 10� replicates. Burden-MT, 911 

SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 912 

MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000. 913 
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Methods 1058 

Ethics statement 1059 

This study relied on analyses of genetic data from TOPMed cohorts. The study has 1060 

been approved by the TOPMed Publications Committee, TOPMed Lipids Working 1061 

Group and all the participating cohorts, including Old Order Amish (phs000956.v1.p1), 1062 

Atherosclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe Biobank 1063 

(phs001644), Coronary Artery Risk Development in Young Adults (phs001612), 1064 

Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368), 1065 

Diabetes Heart Study (phs001412), Framingham Heart Study (phs000974), Genetic 1066 

Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of 1067 

Arteriopathy (phs001345), Genetic Epidemiology Network of Salt Sensitivity 1068 

(phs001217), Genetics of Lipid Lowering Drugs and Diet Network (phs001359), 1069 

Hispanic Community Health Study - Study of Latinos (phs001395), Hypertension 1070 

Genetic Epidemiology Network and Genetic Epidemiology Network 1071 

of Arteriopathy (phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study of 1072 

Atherosclerosis (phs001416), San Antonio Family Heart Study (phs001215), Genome-1073 

wide Association Study of Adiposity in Samoans (phs000972), Taiwan Study of 1074 

Hypertension using Rare Variants (phs001387), and Women’s Health Initiative 1075 

(phs001237), where the accession numbers are provided in parenthesis. The use of 1076 

human genetics data from TOPMed cohorts was approved by the Harvard T.H. Chan 1077 

School of Public Health IRB (IRB13-0353). 1078 

 1079 

Notation and model 1080 
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Suppose there are ! subjects with a total of � variants sequenced across the whole 1081 

genome. For the "-th subject, let #� � �$��, $��, … , $�
�� denote a vector of & quantitative 1082 

phenotypes; '� � ()��, )��, … , )��*� denotes + covariates, such as age, gender and 1083 

ancestral principal components; ,� � (-��, -��, … , -��*� denotes the genotype matrix of 1084 

the . genetic variants in a variant set. Since these & phenotypes may be defined on 1085 

different measurement scales, we assume that each phenotype has been rescaled to 1086 

have zero mean and unit variance. 1087 

 1088 

When the data consist of unrelated samples, we consider the following Multivariate 1089 

Linear Model (MLM) 1090 

#� � /$��$��0$�
1 � 233
34 �	,� 5 '�

�6� 5 ,�
�7��	,� 5 '�

�6� 5 ,�
�7�0�	,
 5 '�

�6
 5 ,�
�7
899

9: 5 /;��;��0;�
1 , #�1�  

where �	,� is an intercept, 6� � (��,� , ��,�, … , ��,�*� and 7� � (��,�, ��,�, … , ��,�*�are 1091 

column vectors of regression coefficients for covariates '� and genotype ,� in 1092 

phenotype =, respectively. The error terms >� � �;��, ;��, … , ;�
�� are independent and 1093 

identically distributed and follow a multivariate normal distribution with mean a vector of 1094 

zeros and variance-covariance matrix ?
�
, assumed identical for all subjects. For all ! 1095 

subjects, using matrix notation we can write model (1) as 1096 

#��
 � @�6	
� 5 '���6��
 5 ,���7��
 5 >��
, #�2�  

where @� is a column vector of 1’s with length !, 6	 � (�	,�, �	,�, … , �	,
*� is a column 1097 

vector of regression intercepts, the =-th columns of 6��
 and 7��
 are 6� and 7�, 1098 

respectively, and >��
 � �>�, >�, … , >��� A MatrixNormal�,
�J��
, K���, ?
�
� follows a 1099 
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matrix normal distribution. We calculate the scaled residual for each subject on each 1100 

phenotype, defined as LM��
 � �#��
 � NO��
�?P
�
�� , where NO��
 (a matrix of fitted 1101 

values) and ?P
�
 are estimated under the null MLM #��
 � @�6	
� 5 '���6��
 5 >��
, 1102 

where no variant has any effect on any outcome. 1103 

 1104 

When the data consist of related samples, we consider the following Multivariate Linear 1105 

Mixed Model (MLMM)19,47,48  1106 

#� � /$��$��0$�
1 � 233
34 �	,� 5 '�

�6� 5 ,�
�7��	,� 5 '�

�6� 5 ,�
�7�0�	,
 5 '�

�6
 5 ,�
�7
899

9: 5 /Q��Q��0Q�
1 5 /;��;��0;�
1 , #�3�  

where the random effects Q�� account for relatedness and remaining population 1107 

structure unaccounted by ancestral PCs20. We assume that R��
 � �Q�����
 A1108 

MatrixNormal�,
�J��
, S���, T
�
� with a variance component matrix T
�
 and a 1109 

sparse genetic relatedness matrix S���
21,22. For all ! subjects, using matrix notation we 1110 

can rewrite equation (3) as 1111 

#��
 � @�6	
� 5 '���6��
 5 ,���7��
 5 R��
 5 >��
. #�4�  

We calculate the scaled residual for each subject on each phenotype, defined as 1112 

LM��
 � �#��
 � NO��
�?P
�
�� , where NO��
 and ?P
�
 are estimated under the null MLMM 1113 

#��
 � @�6	
� 5 '���6��
 5 R��
 5 >��
. Under both MLM and MLMM, our goal is to 1114 

test for an association between a set of . genetic variants and & quantitative 1115 

phenotypes, adjusting for covariates and relatedness. This corresponds to testing 1116 

V	: 7� � 7� � X 7
 � J. 1117 

 1118 
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Multi-trait rare variant association tests using MultiSTAAR 1119 

Single-trait score-based aggregation methods5-9 can be extended to allow for jointly 1120 

testing the association between rare variants in a variant set and multiple quantitative 1121 

phenotypes. For a given variant set, let Y��
 � (Z
�*
��


� (,���*�LM��
 denote the 1122 

matrix of score statistics where Z
� is the score statistic for the [-th variant on the =-th 1123 

phenotype. For multi-trait burden test using MultiSTAAR (Burden-MT), we consider test 1124 

statistic 1125 

\��������� � ]^ _
Y
·�


��

` aP�� ]^ _
Y
·�


��

`�, 
where _
 is the weight defined as a function of the MAF for the [-th variant4,18, Y
· �1126 

(Z
�, Z
�, … , Z

* is the [-th row of Y and aP is the estimated variance-covariance matrix of 1127 

∑ _
Y
·�

�� � c�Y. \��������� asymptotically follows a standard chi-square distribution 1128 

with & degrees of freedom under the null hypothesis, and its P value can be obtained 1129 

analytically while accounting for LD between variants and correlation between 1130 

phenotypes. 1131 

 1132 

For multi-trait SKAT using MultiSTAAR (SKAT-MT), we consider the statistic 1133 

\�
����� � ^ ^ _
�Z
���


��




���

. 
\�
����� asymptotically follows a mixture of chi-square distributions under the null 1134 

hypothesis, and its P value can be obtained analytically while accounting for LD 1135 

between variants and correlation between phenotypes14,15. 1136 
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 1137 

For multi-trait ACAT-V using MultiSTAAR (ACAT-V-MT), we propose test statistic 1138 

\����� ��� � _�MAF�1 � MAF�ffffffffffffffffffffffff tan(�0.5 � .	�h*
5 ^ _
�MAF
(1 � MAF
* tan i(0.5 � .
*hj��


��

, 
where .! is the number of variants with a minor allele count (MAC) greater than 10 and 1139 

.
 is the multi-trait association P value of individual variant [ for those variants with a 1140 

MAC k 10, whose test statistic is given by the & degrees of freedom multivariate score 1141 

test 1142 

\
 � Y
·aP"�·��Y
·� , 
where aP"�· is the estimated variance-covariance matrix of Y
·; .	 is the multi-trait burden 1143 

test P value of extremely rare variants with an MAC � 10 as described above and 1144 

_�MAF�1 � MAF�ffffffffffffffffffffffff is the average of the weights _
�MAF
(1 � MAF
* among the 1145 

extremely rare variants with an MAC � 10. \����� ��� is approximated well by a scaled 1146 

Cauchy distribution under the null hypothesis, and its P value can be obtained 1147 

analytically while accounting for LD between variants and correlation between 1148 

phenotypes9,49. Note that when & � 1, the multi-trait burden, SKAT, and ACAT-V tests 1149 

reduce to the original single-trait burden, SKAT and ACAT-V tests. 1150 

 1151 

Suppose we have a collection of l annotations, let �
# denote the m-th annotation for the 1152 

[th variant in the variant set. We define the functionally-informed multi-trait burden, 1153 

SKAT and ACAT-V test statistics weighted by the m-th annotation as follows 1154 
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���
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���

, 
\����� ���,#,$%�,%�&

� hM '#_$%�,%�&
� MAF�1 � MAF�ffffffffffffffffffffffffffffffff tan i(0.5 � .	,#*hj

5 ^ hM
#_
,$%�,%�&� MAF
(1 � MAF
* tan i(0.5 � .
*hj��


��

, 
where  hM
# � ()*+,���-

�
, _
,$%�,%�& � nopq(MAF
; q�, q�* with �q�, q�� s t � u�1,25�, �1,1�v, 1155 

aP#,$%�,%�& is the estimated variance-covariance matrix of ∑ hM
#_
,$%�,%�&Y
·�

��  and 1156 

hM '#_$%�,%�&
� MAF�1 � MAF�ffffffffffffffffffffffffffffffff is the average of the weights hM
#_
,$%�,%�&� MAF
(1 �1157 

MAF
� among the extremely rare variants with MAC � 10. Finally, we define the 1158 

omnibus MultiSTAAR-O test statistic as  1159 

w��#.�����/�0 � 13|t| ^ xw��#.�����/��$%�,%�& 5 w��#.�����/��$%�,%�&
$%� ,%�&125 w��#.�����/��$%�,%�&y

� 13|t| ^ ^ ztan{(0.5 � .���������,#,$%�,%�&*h|l 5 1
3

#�	$%�,%�&12

5 tan{(0.5 � .�
�����,#,$%�,%�&*h|l 5 1 5 tan{(0.5 � .����� ���,#,$%�,%�&*h|l 5 1 }, 
and the P value of w��#.�����/�0 can be calculated by  1160 

.��#.�����/�0 � 12 � uarctan�w��#.�����/�0�vh . 
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 1161 

Data simulation 1162 

Type I error rate simulations 1163 

We performed simulation studies to evaluate how accurately MultiSTAAR controls the 1164 

type I error rate. We generated three quantitative traits from a multivariate linear model, 1165 

conditional on two covariates 1166 

#� � ����������� � �0.5��� 5 0.5���0.5��� 5 0.5���0.5��� 5 0.5���� 5 �;��;��;���, 
where ��� A ��0,1�, ��� A Bernoulli�0.5� and 1167 

����������� A ��� ��000� , � 1.0 �0.1 0.2�0.1 1.0 �0.40.2 �0.4 1.0 ��. 
 1168 

The correlation matrix of error terms >� � �;��, ;��, ;���� was chosen to mimic the 1169 

correlations between three lipid traits LDL-C, HDL-C and TG, estimated from the 1170 

TOPMed data26. We considered a sample size of 10,000 and generated genotypes by 1171 

simulating 20,000 sequences for 100 different regions each spanning 1 Mb. The data 1172 

generation used the calibration coalescent model (COSI)29 with parameters set to mimic 1173 

the LD structure of African Americans. In each simulation replicate, 10 annotations were 1174 

generated as ��, … , ��	 all independently and identically distributed as ��0,1� for each 1175 

variant, and we randomly selected 5-kb regions from these 1-Mb regions for type I error 1176 

rate simulations. We applied MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and 1177 

MultiSTAAR-O by incorporating MAFs and the 10 annotations together with Burden-MT, 1178 
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SKAT-MT and ACAT-V-MT tests. We repeated the procedure with 10� replicates to 1179 

examine the type I error rate at levels � � 10��, 10��. and 10��. 1180 

 1181 

Empirical power simulations 1182 

Next, we carried out simulation studies under a variety of configurations to assess the 1183 

the power of MultiSTAAR-O, and how its incorporation of multiple functional annotations 1184 

affects power compared to the multi-trait burden, SKAT, and ACAT-V tests implemented 1185 

in MultiSTAAR. In each simulation replicate, we randomly selected 5-kb regions from a 1186 

1-Mb region for power evaluations. For each selected 5-kb region, we generated three 1187 

quantitative traits from a multivariate linear model 1188 

#� � ����������� � �0.5��� 5 0.5��� 5 ,�
�7�0.5��� 5 0.5��� 5 ,�
�7�0.5��� 5 0.5��� 5 ,�
�7�

� 5 �;��;��;���, 
where ��� , ��� , >� were defined as in the type I error rate simulations, 1189 

,� � (-��, -��, … , -��*� and 7� � (��,� , ��,�, … , ��,�*� were the genotypes and effect sizes 1190 

of the . genetic variants in the signal region. 1191 

 1192 

The genetic effect of variant [ on phenotype = was defined as �
,� � �
���
 to allow for 1193 

heterogeneous effect sizes among variants and phenotypes. Specifically, we generated 1194 

the causal variant indicator �
 according to a logistic model 1195 

logit �(�
 � 1* � �	 5 �#��
,#� 5 �#��
,#� 5 �#��
,#� 5 �#��
,#� 5 �#	�
,#	 , 
where um�, X , m�v � u1, X ,10v were randomly sampled for each region. For different 1196 

regions, causality of variants depended on different sets of annotations. We set 1197 

�#
 � log�5� for all annotations and varied the proportions of causal variants in the signal 1198 
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region by setting �	 � logit�0.0015�, logit�0.015� and logit�0.18� which corresponds to 1199 

averaging 5%, 15% and 35% causal variants in the signal region, respectively. We 1200 

considered four scenarios of phenotypic indicator �� that reflect different underlying 1201 

genetic architectures across phenotypes: ���, ��, ��� � �1, 0, 0�, �1, 0, 1�, �1, 1, 0� and 1202 

�1, 1, 1�. These correspond to causal variants in the signal region being associated with 1203 

(1) one phenotype only, (2) two positively correlated phenotypes, (3) two negatively 1204 

correlated phenotypes and (4) all three phenotypes. We modeled the absolute effect 1205 

sizes of causal variants using ��
� � �	| log�	 �� 
 |, such that it was a decreasing 1206 

function of MAF. �	 was set to be 0.13, 0.1, 0.1 and 0.07, respectively, to ensure a 1207 

decent power of tests under each scenario. We additionally varied the proportions of 1208 

causal variant effect size directions (signs of �
) by randomly generating 100%, 80%, 1209 

and 50% variants on average to have positive effects. We applied MultiSTAAR-B, 1210 

MultiSTAAR-S, MultiSTAAR-A, and MultiSTAAR-O using MAFs and all 10 annotations 1211 

together with Burden-MT, SKAT-MT and ACAT-V-MT tests. We repeated the procedure 1212 

with 10� replicates to examine the power at level � � 10��. The sample size was 10,000 1213 

across all scenarios. 1214 

 1215 

Lipid Traits 1216 

Conventionally measured plasma lipids, including LDL-C, HDL-C, and triglycerides, 1217 

were included for analysis. LDL-C was either calculated by the Friedewald equation 1218 

when triglycerides were <400 mg/dl or directly measured. Given the average effect of 1219 

statins, when statins were present, LDL-C was adjusted by dividing by 0.7. Triglycerides 1220 
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were natural log transformed for analysis. Phenotypes were harmonized by each cohort 1221 

and deposited into the dbGaP TOPMed Exchange Area. 1222 

 1223 

Multi-trait analysis of lipid levels in the TOPMed WGS data 1224 

The TOPMed WGS data consist of multi-ethnic related samples1. Race/ethnicity was 1225 

defined using a combination of self-reported race/ethnicity from participant 1226 

questionnaires and study recruitment information (Supplementary Note)31. In this 1227 

study, we applied MultiSTAAR to perform multi-trait rare variant analysis of three 1228 

quantitative lipid traits (LDL-C, HDL-C and TG) using 20 study cohorts from the 1229 

TOPMed Freeze 8 WGS data. LDL-C was adjusted for the presence of medications as 1230 

before30. For each study, we first fit a linear regression model adjusting for age, age2, 1231 

sex for each race/ethnicity-specific group. In addition, for Old Order Amish (OOA), we 1232 

also adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3 1233 

p.R19Ter in TG and HDL-C analyses30. 1234 

 1235 

We performed rank-based inverse normal transformation of the residuals of LDL-C, 1236 

HDL-C and TG within each race/ethnicity-specific group. We then fit a multivariate linear 1237 

mixed model for the rank normalized residuals, adjusting for 11 ancestral principal 1238 

components, ethnicity group indicators, and a variance component for empirically 1239 

derived sparse kinship matrix to account for population structure, relatedness and 1240 

correlation between phenotypes. 1241 

 1242 
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We next applied MultiSTAAR-O to perform multi-trait variant set analyses for rare 1243 

variants (MAF < 1%) by scanning the genome, including gene-centric analysis of each 1244 

protein-coding gene using five coding variant functional categories (putative loss-of-1245 

function rare variants, missense rare variants, disruptive missense rare variants, 1246 

putative loss-of-function and disruptive missense rare variants and synonymous rare 1247 

variants); seven noncoding variant functional categories (promoter rare variants overlaid 1248 

with CAGE sites, promoter rare variants overlaid with DHS sites, enhancer rare variants 1249 

overlaid with CAGE sites, enhancer rare variants overlaid with DHS sites, UTR rare 1250 

variants, upstream region rare variants, downstream region rare variants) and rare 1251 

variants in ncRNA genes; and genetic region analysis using 2-kb sliding windows 1252 

across the genome with a 1-kb skip length. The WGS multi-trait rare variant analysis 1253 

was performed using the R packages MultiSTAAR (version 0.9.7, 1254 

https://github.com/xihaoli/MultiSTAAR) and STAARpipeline (version 0.9.7, 1255 

https://github.com/xihaoli/STAARpipeline). The WGS rare variant single-trait analysis of 1256 

LDL-C, HDL-C and TG was performed using the R package STAARpipeline (version 1257 

0.9.7, https://github.com/xihaoli/STAARpipeline). Both multi-trait and single-trait 1258 

analyses results were summarized and visualized using the R package 1259 

STAARpipelineSummary (version 0.9.7, 1260 

https://github.com/xihaoli/STAARpipelineSummary). 1261 

 1262 

Genome build 1263 

All genome coordinates are given in NCBI GRCh38/UCSC hg38. 1264 

 1265 
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Statistics and reproducibility 1266 

Sample size was not predetermined. The multi-trait analysis consists of 20 study 1267 

cohorts of TOPMed Freeze 8 and had 61,838 samples with lipid traits. We did not use 1268 

any study design that required randomization or blinding. 1269 

 1270 

Data availability 1271 

This paper used the TOPMed Freeze 8 WGS data and lipids phenotype data. Genotype 1272 

and phenotype data are both available in database of Genotypes and Phenotypes. The 1273 

TOPMed WGS data were from the following twenty study cohorts (accession numbers 1274 

provided in parentheses): Old Order Amish (phs000956.v1.p1), Atherosclerosis Risk in 1275 

Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), Coronary 1276 

Artery Risk Development in Young Adults (phs001612), Cleveland Family Study 1277 

(phs000954), Cardiovascular Health Study (phs001368), Diabetes Heart Study 1278 

(phs001412), Framingham Heart Study (phs000974), Genetic Study of Atherosclerosis 1279 

Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic 1280 

Epidemiology Network of Salt Sensitivity (phs001217), Genetics of Lipid Lowering 1281 

Drugs and Diet Network (phs001359), Hispanic Community Health Study - Study of 1282 

Latinos (phs001395), Hypertension Genetic Epidemiology Network and Genetic 1283 

Epidemiology Network of Arteriopathy (phs001293), Jackson Heart Study (phs000964), 1284 

Multi-Ethnic Study of Atherosclerosis (phs001416), San Antonio Family Heart Study 1285 

(phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972), 1286 

Taiwan Study of Hypertension using Rare Variants (phs001387), and Women’s Health 1287 
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Initiative (phs001237). The sample sizes, ancestry and phenotype summary statistics of 1288 

these cohorts are given in Supplementary Table 2. 1289 

 1290 

The functional annotation data are publicly available and were downloaded from the 1291 

following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download); 1292 

ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-1293 

guide/download); LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT); FATHMM-1294 

XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOM5 CAGE 1295 

(https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.genecards.org; v4.7 for 1296 

hg38); and Umap/Bismap (https://bismap.hoffmanlab.org; ‘before March 2020’ version). 1297 

In addition, recombination rate and nucleotide diversity were obtained from Gazal et 1298 

al50. The whole-genome individual functional annotation data was assembled from a 1299 

variety of sources and the computed annotation principal components are available at 1300 

the Functional Annotation of Variant-Online Resource (FAVOR) site 1301 

(https://favor.genohub.org)51 and the FAVOR database 1302 

(https://doi.org/10.7910/DVN/1VGTJI)52. 1303 

 1304 

Code availability 1305 

MultiSTAAR is implemented as an open source R package available at 1306 

https://github.com/xihaoli/MultiSTAAR and 1307 

https://content.sph.harvard.edu/xlin/software.html. Data analysis was performed in R 1308 

(4.1.0). STAAR v0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real data 1309 

analysis and implemented as open-source R packages available at 1310 
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https://github.com/xihaoli/STAAR and https://github.com/xihaoli/MultiSTAAR. The 1311 

assembled functional annotation data were downloaded from FAVOR using Wget 1312 

(https://www.gnu.org/software/wget/wget.html). 1313 

 1314 
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