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Abstract

Traditional models of speech perception posit that neural activity sequentially
encodes speech through a hierarchy of cognitive processes, from early represen-
tations of acoustic and phonetic features to late semantic encoding. Yet the
mechanisms by which neural representations are transformed across the speech
hierarchy remain poorly specified. Here, we analyzed unique microelectrode array
recordings of neuronal spiking activity from the human left anterior superior
temporal gyrus, a brain region at the interface between phonetic and semantic
auditory processing, during a semantic categorization task and natural speech
perception. In both conditions, low-dimensional neuronal population dynamics

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.30.564638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564638
http://creativecommons.org/licenses/by-nc-nd/4.0/


revealed a distributed and parallel encoding of phonetic and semantic represen-
tations. During natural speech, the low-dimensional dynamics were simultaneous
to a power increase in the beta and low-gamma local field potentials, reflecting
concurrent instantiation of top-down predictive and bottom-up cumulative pro-
cesses. Our results support a mechanism for phonetic-to-semantic transformations
encoded at the neuronal population level.

Keywords: speech perception, phonetic, semantic, neuronal population dynamics,
neural manifold

Introduction

How does the brain transform sounds into meanings? Most cognitive models of speech

perception propose that speech sounds are processed sequentially by distinct neural

modules. Semantic and conceptual representations emerge at the end of a sequence

along the ventral stream (i.e., the ”what” stream) (Hickok and Poeppel, 2007), where

perceived speech is sequentially transformed from spectro-temporal encoding of sounds

in Heschl’s gyrus, over phonetic features in the superior temporal gyrus (STG) and

sulcus, to lexical and combinatorial semantics in the anterior temporal lobe (ATL)

(Mesgarani et al, 2014; Pylkkänen, 2020). The ATL is seen as a conceptual semantic

hub, connected to modality-specific sources of information (Patterson et al, 2007;

Ralph et al, 2017). This modular and sequential perspective implies that a complex

neural process transforms speech features from one functional brain region to the next

up to lexical and multimodal conceptual representations.

However, recent neuroimaging findings suggested that these transformations across

brain regions might be much less modular and sequential than predicted by the

classical modular view of language processing (Ralph et al, 2017). Fine-grained electro-

corticography (ECoG) recordings from the middle and posterior STG reveal encoding

of phonetic features without strict spatial segregation, but rather mixed interleaved

representations (Hamilton et al, 2021). At the semantic level, the anterior superior
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temporal gyrus, as a part of the ATL, responds more specifically to semantic deci-

sions from heard speech, without a clear anatomo-functional separation from the

middle STG (Visser and Lambon Ralph, 2011). In functional MRI (fMRI) data, neural

activity recorded through incrementally higher cognitive brain regions correlates with

increasingly deeper layers of large language models (Caucheteux et al, 2022). These

findings suggest that some brain regions represent multiple speech features, making

them suitable candidates for housing the transformations across the speech hierarchy.

Studies using time-resolved recording techniques such as intracranial EEG, EEG,

or MEG, additionally show simultaneous encoding of features across the speech hier-

archy, organized by increasingly larger time scales (Heilbron et al, 2022; Gwilliams

and King, 2020; Keshishian et al, 2023). For instance, phonetic features are short-

lived and typically processed around 100-200 ms in the STG (Mesgarani et al, 2014;

Hamilton et al, 2021), while syntactic and semantic composition activity appears in

the ATL as early as 200-250 ms (Pylkkänen, 2020; Friederici and Kotz, 2003). Other

semantic aspects are encoded later around 400 ms with a large integration time, as

reflected in EEG and MEG recordings by the well-characterized N400 event-related

potential for both semantic composition and lexical decision (Borghesani et al, 2019;

Kutas and Federmeier, 2011; Dikker et al, 2020; López Zunini et al, 2020; Bentin et al,

1985; Barber et al, 2013; Vignali et al, 2023; Rahimi et al, 2022). Those neuroimaging

methods, however, have not so far elucidated the precise mechanisms of how phonetic

features are transformed into semantic representations.

A prominent mechanism for the instantiation of these transformations is the

long-standing analysis-by-synthesis framework. It suggests that speech comprehension

combines several sequential stages (Bever and Poeppel, 2010): incoming speech inputs

are first sequentially processed, e.g. at the phonological level, and combined into a

first semantic guess based on prior knowledge and context. A word proposition cor-

responding to this semantic representation is then generated and directly compared
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to the actual acoustic input. Depending on the comparison, the proposition is either

accepted or rejected in favor of new updated hypotheses. These hierarchical interac-

tions are typically reflected in the power of different LFP frequency bands: bottom-up

processes have been associated with the low-gamma and theta bands, and top-down

ones with the beta band (Arnal and Giraud, 2012).

To identify the mechanisms underlying speech transformations, it might be nec-

essary to investigate speech processing at a smaller spatial scale giving access to the

neuronal spiking level, an endeavor that is hindered by the invasiveness of single neu-

ron sampling in humans. Speech encoding has thus never been characterized at the

level of neuronal population dynamics. However, recent findings suggest that complex

cognitive processes are encoded at a local scale by low-dimensional functional spaces,

also called neural manifolds, whose main property is to encode behavioral features in

a highly compact way (Pillai and Jirsa, 2017; Gallego et al, 2017; Jazayeri and Osto-

jic, 2021; Vyas et al, 2020; Chung and Abbott, 2021; Truccolo, 2016; Aghagolzadeh

and Truccolo, 2016). In the primate cortex, neuronal dynamics trajectories on the

manifolds characterize functionally distinct behaviors and conditions, such as sen-

sorimotor computations, decision making, or working memory (Mante et al, 2013;

Remington et al, 2018; Markowitz et al, 2015). It is thus plausible that different aspects

of speech, including transformations across the speech hierarchy, are encoded in such

local multidimensional neuronal population dynamics. Moreover, the condition- and

history-dependent organization of these neuronal trajectories on the manifold could

ideally serve the purpose of integrating phonetic features into higher-level represen-

tations (Pulvermüller, 2018; Yi et al, 2019). To date, however, only a few studies

have reported single unit activity associated with speech processing (Chan et al, 2014,

2011; Ossmy et al, 2015; Lakretz et al, 2021). One of those reported the tuning of

single units for phonetic features (Chan et al, 2014). We re-analyzed those data in
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the light of the neuronal manifold framework to address the mechanisms underlying

phonetic-to-semantic transformations.

These unique recordings come from a microelectrode array (MEA) implanted in the

left anterior STG of a patient with pharmacologically resistant epilepsy, while he per-

formed an auditory semantic categorization task and engaged in a spontaneous natural

conversation. The MEA was placed at the intersection of areas traditionally associ-

ated with the processing of phonetic and semantic information, while an ECoG grid

simultaneously recorded LFP activity along the temporal lobe. Despite the absence

of detectable power effects on the most proximal ECoG channels, we observed a dis-

tributed encoding of phonemes at the local neuronal population scale as probed by

the MEA. Phoneme-related neuronal dynamics were organized by their correspond-

ing phonetic content during specific periods of speech processing. Critically, the same

phonetic organization generalized to natural speech, with different speakers and a vari-

ety of complex linguistic and predictive processes. During natural speech processing,

population encoding of phonetic features occurred in parallel with the encoding of

semantic features, both culminating around 400 ms after word onset, and with peaks

in low-gamma and beta power. These findings suggest that phonetic features directly

interact with semantic representations by the simultaneous instantiation of predictive

bottom-up and top-down mechanisms, in agreement with the analysis-by-synthesis

framework (Bever and Poeppel, 2010).

Results

Semantic and phonetic neuronal encodings in the aSTG

We recorded microelectrode array and ECoG signals of a 31-year-old patient with

pharmacologically resistant epilepsy (Fig. 1a). The 10x10 MEA was located in the

left anterior superior temporal gyrus (aSTG) (square on Fig. 1a). 23 ECoG electrodes

of interest covered a large portion of the left temporal cortical surface (circles on
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Fig. 1 | Semantic and phonetic encoding at the single-unit level in the aSTG. a. Loca-
tions of the microelectrode array (square) and the ECoG array (circles) on the cortical surface. b.
Experimental design of the auditory semantic categorization task. The participant heard 400 nouns
that denoted either animals or objects and was instructed to press a button if the item he heard was
bigger than a foot in size. c. fMRI correlates of phonetic processing obtained from fMRI large-scale
databases. d. fMRI correlates of semantic categorization. e. mTRF features for the example word
”llama”. The time series at the top indicates the speech envelope. The features used in the baseline
model are indicated by a dotted square. f. Pearson correlation coefficient (r) for each model and 23
single units with the highest firing rates in the ensemble. The traces for different units are color-
coded based on their firing rate, from lower (blue) to higher (yellow). Red stars indicate model-unit
pairs that were significantly higher than the baseline in a permutation test. g-j Encoding of phoneme
onsets, phonemes, phonetic categories, and semantic decision across ECoG channels. Colors indicate
differences in r values compared to the baseline model. Red stars indicate ECoG channels that were
significantly higher than the baseline in a permutation test.

Fig. 1a). The participant performed an auditory semantic categorization task, and

later engaged in a spontaneous conversation. In the auditory task, the participant was
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instructed to indicate, by pressing a button, whether the word he heard was smaller or

bigger than a foot (Fig 1b). 400 unique nouns were presented, half of which indicated

objects (e.g. chair), and the other half animals or body parts (e.g. donkey, eyebrow).

In both groups (object, animal), words were equally divided between two categories,

either bigger or smaller than a foot, resulting in a balanced 2-by-2 design.

We used multivariate temporal response function (mTRF) models to contrast the

encoding of different linguistic processes and speech features (Methods). To obtain an

initial list of relevant linguistic processes for the mTRF analysis, we also used large-

scale databases of fMRI and lesion data to identify the cognitive processes associated

with the aSTG where the intracortical MEA was located (Yarkoni et al, 2011a; Dockès

et al, 2020). Nearby brain regions have been indicated to process both phonetics

(middle STG) (Fig. 1c) and semantic categorization (anterior superior temporal sulcus,

anterior middle temporal gyrus) (Fig. 1d).

Next, for each word, we identified the following speech features (Fig 1e): (i) acous-

tic, including word onset and acoustic edges (envelope rate peaks) (Oganian and

Chang, 2019); (ii) phonemic, including phoneme onset and each phoneme identity;

(iii) phonetic, including features based on vowel first and second formants, and conso-

nant manner and place of articulation; (iv) semantic, including the word’s conceptual

category (object vs. animal), perceptual category (bigger or smaller than a foot),

and semantic decision (participant’s response about whether the object was bigger

or smaller than a foot) (Supplementary tables 1 and 2). The semantic decision fea-

ture was regressed separately from the perceptual category feature as the participant

responded correctly in 80.25% of the trials. We constructed a baseline model based

on the acoustic features, and for each feature of interest, we compared the baseline

model performance with the performance of a mTRF model containing the feature of

interest and the baseline features. The model performance was computed as Pearson’s
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correlation between the model prediction and the neuronal activity in a 5-fold nested

cross-validation procedure (Methods).

We fitted the mTRF encoding models to the soft-normalized firing rate of single

units recorded with the MEA (Methods, signal processing). We considered the 23

(over a total of 176) spike-sorted units) with an average firing rate higher than 0.3

spikes/second (mean: 1.6, sd: 1.39, range 0.43 - 5.27 spikes/second, Methods). We

observed that only a few units significantly responded to different features. Specifically,

eight units responded significantly to phoneme onset (p < 0.05 based on chance level

performance of a surrogate distribution, see Methods), one to phonetic features, one

to conceptual category, and two to perceptual categories (Fig. 1f).

By contrast, the broadband high-frequency activity (BHA, as a proxy for local fir-

ing rate activity (Crone et al, 2001)) of the ECoG electrode in the immediate vicinity

of the MEA did not correlate significantly to any features. Six ECoG electrodes sig-

nificantly correlated to phoneme onset (Fig. 1g) and two for phonetic features (Fig.

1i) in the posterior middle and superior temporal gyrus, and two electrodes in the

aTL significantly activated to semantic decision (Fig. 1j). No other electrodes showed

significant correlations (Supplementary Fig. 3).

Additionally, we investigated the encoding of phonetic features. To this aim, we

separated phonetic features into four different groups (vowel first formant, vowel sec-

ond formant, consonant manner of articulation, and consonant place of articulation)

and separately contrasted a model for each phonetic feature group with a base model

including only phoneme onsets and acoustic features. We found that two units were sig-

nificant for consonant manner and vowel first formant models, and none for the other

two models (Supplementary Fig. 3g). None of the individual phonetic categories were

significantly correlated at the ECoG electrode adjacent to the MEA (Supplementary

Fig. 14).
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Distributed phonetic encoding

We showed that only a few single units, when taken independently, encoded phonetic

features. However, several other units showed some non-significant changes (permuta-

tion test, Fig. 1f) that might have contributed to the overall encoding through neuronal

population dynamics. Indeed, the time course of the phoneme kernels averaged across

all units compared to the distribution of surrogate (chance-level) kernels showed two

significant periods, centered around 200 and 400 ms, suggesting a mean-field popula-

tion effect (Fig. 2a). We therefore hypothesized that a read-out of phonetic encoding

emerged at the level of the neuronal population dynamics and could be described by

a low-dimensional neural manifold.

To confirm our hypothesis, we performed principal component analysis (PCA)

on all concatenated phoneme kernels obtained with mTRF (Fig. 2b). The first four

principal components (PCs) accounted for about 50% of phoneme feature variance

(Fig 2c), and were distributed across five different units (Fig 2d). This confirmed that

a large part of the variance is explained by the low-dimensional and correlated activity

of several units, indicating the presence of a manifold supporting phoneme neuronal

representations.

We then asked whether the obtained low-dimensional neural manifold carried a

functional read-out for phonetic encoding. For this, we analyzed the time course of

phoneme kernels projected to the neural manifold (Fig 2d) and investigated whether

the phonemes grouped according to phonetic categories. Thus, for each group of

phonetic features (vowels first formant, vowels second formant, consonants manner,

consonants place), we clustered the corresponding phoneme kernel trajectories at each

time point in the low-dimensional space spanned by the first two PCs. Then, we com-

puted a clustering index as the difference of between- and intra-cluster distances (Fig

2e) and compared it against the surrogate distribution (Methods).
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Fig. 2 | Distributed encoding and clustering of phonemes along phonetic categories.
a. Average mTRF kernel for phoneme feature. The shaded area indicates the 95% confidence region
of the surrogate (chance-level) distribution. The phoneme kernel was significant at two time periods,
centered around 200 and 400 ms. b. mTRF kernels identified on each single unit for one example
phoneme /k/. The units are sorted increasingly by their mean firing rate. Brighter colors indicate
higher values of the kernel. These kernels are then projected into a two-dimensional space using
principal component analysis (PCA), resulting in one phoneme trajectory. Numbers along the trajec-
tory indicate the time at which the trajectory reached the corresponding location. c. PCA variance
explained. Four PCs explain 50% of variance (dotted line) and 15 explain 90% (dashed line). d. Prin-
cipal component (PC) coefficients of isolated single units. Several units are represented in the first
PCs, indicating distributed encoding of phonemes. e. The schematics show how the clustering index
is computed as intra-cluster distance (full lines) subtracted from between-cluster distances (bold
lines). f. Clustering index for vowels grouped by the first formant (high and low tongue position).
The shaded area represents the 95% confidence region of the surrogate (chance-level) distribution.
This clustering index is significant during a time interval centered around 200 ms. g. Distribution of
vowels in the two-dimensional PC space at 0 and 200 ms. Vowels are color-coded based on their first
formant (high and low tongue position). Mirroring the increase in the clustering index, the separation
between those two phonetic features in the PC space is absent at time 0, becoming evident at 200
ms. h. Clustering index for vowels grouped by the second formant. i. Clustering index for consonants
grouped by the manner of articulation revealed two significant periods, centered around 200 and 400
ms. j. Clustering index for consonants grouped by the place of articulation.
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We observed significant clustering within the vowel first formant group between the

two phonetic features that reflects the high and low position of the tongue (Fig. 2f).

The clustering specifically occurred at a time window centered around 200 ms, which

was apparent in the position of the vowels in the two-dimensional PC space (Fig. 2g).

We replicated our findings using higher dimensional PC spaces (Supplementary Fig.

4). Contrary to the vowel first formant group, we observed no significant clustering

between phonetic features of the vowel second formant group (front and back position

of the tongue, Figure 2h, Supplementary Fig. 5 and Fig. 6). We next investigated the

organization of consonant trajectories in the low-dimensional space. The clustering

index based on the manner of articulation (plosive, nasal, fricative, approximant, and

lateral approximant features) indicated two significant periods centered around 200

ms and 400 ms (Fig. 2h). The same two peaks persisted independently of the chosen

number of dimensions (Supplementary Fig. 7). Clustering using consonant place of

articulations (bilabial, labiodental, dental, alveolar, velar, uvular, and glottal features)

was not significant in any low-dimensional space (Fig 2l, Supplementary Fig. 8).

We replicated the observed clustering by vowels first formant and consonant man-

ner of articulation, as well as the lack of clustering by vowel second formant and

consonant place of articulation with additional control analyses (Supplementary Mate-

rial, illustrated in Supplementary Figures 7-10, and summarized in Supplementary

Table 3). Linear discriminant analysis (LDA) classifier revealed linear separability of

the same two phonetic categories in the same time windows (i.e., around 200 ms for

vowels first formant and both around 200 and 400 ms for consonants manner of artic-

ulation, Supplementary Figure 7). Similarly, a rank-regression approach, where the

ranks indicate the first or second formant value, showed significant ordering of the

vowels along the first formant at 200 ms, and no ordering along the second formant.

(This analysis cannot be performed for consonants, where no ranking is possible across
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the different phonetic groups). Finally, we observed similar organizational patterns

through k-means clustering, an unsupervised data-driven approach.

To summarize, we observed a significant clustering of phoneme trajectories on a

low-dimensional neural manifold: vowel trajectories clustered along first formants at

200 ms, while consonant trajectories clustered by manner of articulation at 200 and

400 ms.

Generalization to natural speech perception

To investigate whether our results generalize to natural speech perception, we analyzed

neuronal recordings from the same intracortical MEA during a spontaneous conversa-

tion between the participant and another person recorded in a separate experimental

session. As for the auditory task, we performed spike sorting and selected the 23 most

spiking units (mean: 0.58 spikes/second, sd: 0.89, range 0.1 - 3.39) out of 212 clustered

single units. We identified 664 words (272 unique) pronounced by the other person in

the recording. From those words, we segmented the same 32 phonemes as in the task.

We designed two high-level features, namely word class (e.g. noun, adjective, conjunc-

tion, etc), and lexical semantics, computed as the Lancaster sensorimotor norms of

each word (Lynott et al, 2019). We then fitted the mTRF encoding models as in the

auditory task dataset. Similarly to the task, we observed that only a few units were

significantly correlated with speech features (Fig. 3a), and that the average phoneme

kernel became significant compared to its surrogate distribution around 200 and 400

ms, suggesting again a population effect (Fig. 3b).

We thus proceeded as before by performing PCA on the kernels. As in the task,

50% of the variance was explained by 5 PCs (Fig. 3c), and the processing of phonemes

was distributed across units (Figure 3d). We further computed the clustering index

for phonetic features in the low-dimensional neural manifold spanned by the first two

PCs. Remarkably, we observed clustering index profiles similar to the auditory task.
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Fig. 3 | Generalization to natural speech perception a. r values for each model and 23 most-
spiking units. The units are color-coded based on their firing rate, from blue (lower) to yellow (higher).
Red stars indicate model-unit pairs significantly higher than the baseline in a permutation test. b.
Average mTRF kernel for phoneme feature. The shaded area indicates the 95% confidence region
of the surrogate (chance-level) distribution. Phoneme kernel was significant at two time periods,
centered around 250 and 450 ms. c. PCA variance explained. Four PCs explain 50% of variance
(dotted line) and 15 explain 90% (dashed line). d. Principal component (PC) coefficients of identified
units. Several units are represented in the first PCs, indicating distributed encoding of phonemes
also during natural speech perception. e-h. Clustering index for the four groups of phonetic features.
i. Overview of the significant clustering peaks observed both during the auditory task and natural
speech perception. j. Canonical correlation analysis (CCA) between the PC projections of phoneme
kernels obtained during the auditory task and natural speech perception. The shaded area indicates
the 95% confidence region of the surrogate distribution. CCA revealed significant correlations for the
first nine PCs.

For vowel first formants, we observed a peak of the clustering index at around 200

ms (Fig. 3e). Although this peak was not significant for the two-dimensional space, it
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was present for all dimensions, and reached significance for the one-dimensional space

(Supplementary Fig. 15). This peak was also significant in all control analyses (LDA

classifier, rank regression, and k-means, Supplementary Fig. 16). For vowel second for-

mants, a trend consistent across dimensions was observed at 200 ms (Fig. 3f). The

second formant phonetic features also clustered before the phoneme onset, specifically

at -100 ms, possibly related to prediction mechanisms present in natural speech per-

ception but not during the auditory task. For consonant manner of articulation, we

observed significant clustering indices around 400 ms, as well as an additional peak

around -100 ms that was possibly related to prediction mechanisms (Fig. 3g). The peak

at 200 ms that was observed in the task did not occur here. Finally, for consonants

place of articulation, no significant peak of clustering index was observed (Fig. 3h). We

performed the same control analyses as before (LDA classifier, rank regression, and k-

means clustering), and could replicate all the findings described here (Supplementary

Material, illustrated in Supplementary Figures 12-19, and summarized in Supplemen-

tary Table 4). Timeline on Fig. 3i summarizes the significant clustering peaks across

the two datasets.

Finally, we compared the similarity of low-dimensional phoneme trajectories

obtained in the auditory task versus natural speech. To that aim, we performed canon-

ical correlation analysis (CCA) between the projected phoneme kernels of the two

datasets, and compared it against the surrogate distribution of canonical correlations

obtained by shuffling the kernels for natural speech. We observed a significant canoni-

cal correlation between the individual phoneme kernels for the first nine PC dimensions

(Fig 3j). This shows that although the phonemes in the auditory task and natural

speech perception are encoded by different units (as both recordings are separated

by a few hours), the neuronal population dynamics are encoded in a similar way -

individual phonemes trace highly similar trajectories in the low-dimensional neural

manifold.
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Encoding of semantic features

Fig. 4 | Encoding of semantic features. a. Auditory task semantic feature kernels. The shaded
areas indicate the 95% confidence regions of the surrogate (chance-level) distribution. The perceptual
category feature is significantly encoded during a time window centered around 400 ms. b. Euclidean
distances in the PC space between the auditory task feature kernels. The perceptual semantic feature
kernels are separated in the PC space slightly before the categorical semantic feature kernels (around
400 and 450 ms, respectively). c. Natural speech perception semantic kernels. Word class is processed
around 150 ms, and lexical semantics is processed in a wide window around 400 ms. d. Euclidean
distances in the PC space between the semantic features during natural speech perception are maximal
around 150 ms and 400 ms respectively.

Considering that the MEA is implanted in a cortical area involved in auditory

semantic processing (Ralph et al, 2017), we repeated the same analyses for the

semantic kernels, both for the auditory task and natural speech perception. We first

considered the time course of the semantic kernels averaged across all units, and com-

pared it to the surrogate distribution (Fig 4a). The perceptual category kernel showed

a significant period at around 400 ms after word onset, while other kernels were not

significant. We also repeated the same analysis for natural speech perception. The
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word class kernel (nouns, verbs, etc.) averaged across units showed a significant period

at 150 ms (Fig 4b). The lexical semantic kernel averaged across units also showed a

significant activation at 400 ms, consistent with our findings on the auditory task.

We then turned to the neuronal population dynamics. We projected the three

semantic kernels of the auditory task to the low-dimensional neural manifold. Because

we only have two categories for each of the semantic features, we could not perform

clustering analysis as for the phonemic features. Instead, at each time point, we com-

puted the Euclidean distance between the projected trajectories and compared the

resulting distance against its surrogate distribution (Fig 4c, Supplementary Fig. 24).

We observed a significant separation of perceptual category kernels (bigger vs. smaller)

at 400 ms. Interestingly, we also observed a significant separation for the conceptual

category kernels (object vs. animal) at around 450 ms, even though the averaged per-

ceptual category kernel was never significant, highlighting that the relevant functional

read-out of certain aspects of semantic processing might be emerging only at the level

of the neuronal population dynamics. Finally, the Euclidean distance for semantic

decision was not significant. For natural speech perception, projecting those kernels to

the low-dimensional neural manifold (Fig 4d), we found a strong separation between

word classes at 150-200 ms, possibly reflecting syntactic processing, and a significant

separation between lexical semantics kernels around 400 ms.

Parallel encoding of bottom-up phonetic and top-down

semantic features

To further investigate the mechanisms underlying the integration of phonetic and

semantic features, we explored the timing of their representations in more detail.

Specifically, we hypothesized that phonetic features might be represented with shorter

delays as the phoneme position in the word increases, resulting in simultaneous
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Fig. 5 | Parallel encoding of bottom-up phonetic and top-down semantic features a.
Kernels for phoneme positions (blue) within a word shifted by average phoneme duration (80 ms)
and aligned with the lexical semantic kernel at word onset (red). Aligned phoneme position kernels
peaked simultaneously with the onset of the lexical semantic kernel peak. b. Beta band kernel for
word onset is indicated in red, and low-gamma kernels for phoneme positions are indicated in blue
and shifted by average phoneme duration. The late peak in the beta word-onset kernel occurred
simultaneously with the aligned low-gamma phoneme onset peaks. c. Granger causality between
phonetic and semantic low-dimensional representations. The left plot shows a 1.5-second snippet of
the spiking data recorded during natural speech perception. These are projected onto three PCs to
obtain time-varying phonetic (P) and semantic (S) features, which are then used in the Granger
causality analysis. Matrices indicate p-values of Granger’s F-test for a causal relationship from the
dimensions indicated on the x-axis to the dimensions indicated on the y-axis. The stars indicate
significant relationships at the 0.05 threshold. There was a significant causal relationship in both
directions (i.e., phonetic to semantic and vice versa).

activation of all past phonemes at 400 ms after word onset, in parallel to semantic pro-

cessing. To verify this hypothesis, we created additional mTRF features that regressed

phoneme positions within each word (i.e., phoneme order). We then aligned phoneme

position kernels with word onset by shifting each position for the corresponding mul-

tiple of the average phoneme duration (80 ms). If our hypothesis is true, a significant

period of activations should align across the shifted kernels. For the auditory task, we
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did not find strong significant peaks for the distinct phoneme positions, which pre-

cluded making strong conclusions about the validity of our hypothesis (Supp. Fig. 25).

For natural speech perception, however, we did observe such an alignment of significant

peaks for phoneme positions 1-5 at 400 ms, simultaneously to semantic encoding (Fig.

5a). This suggests that our hypothesis might hold true for natural speech perception.

We then asked whether this parallel encoding reflected the bottom-up and top-

down predictive processes of the analysis-by-synthesis framework (Bever and Poeppel,

2010). For this, we focused on natural speech perception, where more semantic top-

down processes are expected, and where there are no predictability biases related

to the task design, such as fixed stimulus onset timing. The occurrence of bottom-

up processes is typically accompanied by low-gamma peaks in the LFP power, while

top-down processes are reflected in LFP beta power peaks (Arnal and Giraud, 2012).

To identify the timing of bottom-up and top-down processes, we thus extracted and

averaged the LFP power across the MEA contacts for both the low-gamma (30-50 Hz)

and beta (15-25 Hz) bands. We then fitted an mTRF model to these two variables using

word onset features for the beta band (reflecting word-level top-down processing) and

phoneme positions for the low-gamma band (reflecting position-dependent bottom-

up processing). For the beta band, we found two significant positive peaks at 100

before word onset and 400 ms after word onset (Fig. 5b, red traces). In the low-

gamma band, we aligned phoneme position kernels based on word onset as before,

and found an alignment of positive significant peaks at 400 ms after word onset (Fig.

5b, blue traces). This finding suggests that both bottom-up phonetic and top-down

semantic processing occur at 400 ms, in agreement with the analysis-by-synthesis

framework. We observed other negative and positive significant peaks before 400 ms

in the low-gamma band that were not accompanied by a beta peak. Following the

analysis-by-synthesis framework, these peaks might reflect bottom-up-only processes

that contribute to information build-up leading to the 400-ms beta top-down peak.
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Moreover, they might correspond to the early significant negative peaks observed for

phoneme positions one and two at the neuronal level (compare Fig. 5a and b).

Finally, we investigated whether the phonetic low-dimensional neural dynamics

were time causally predictive of the semantic low-dimensional dynamics (reflecting a

bottom-up process) or, inversely, the semantic trajectories predicted the phonetic ones

(for a top-down process). For this, we projected the neuronal firing rate during natural

speech to the first three dimensions of the phonetic and semantic PC spaces and

investigated Granger causality between the projected time series. We found significant

effects in both directions, indicating a bidirectional causal relationship between low-

dimensional semantic and phonetic processing (Fig. 5c).

Together, these findings suggest that neuronal population dynamics in aSTG

encode semantic features in parallel to phonetic features through simultaneous

bottom-up and top-down processes.

Discussion

In this study, we showed that the low-dimensional neuronal population dynam-

ics recorded in the aSTG during speech processing encoded phonetic and semantic

features during both a semantic categorization auditory task and natural speech

perception. We identified a neural manifold for both features and observed a func-

tional separation of their corresponding trajectories across time. Specifically, phoneme

trajectories clustered according to their phonetic features in both conditions, while

semantic trajectories separated based on their perceptual and conceptual features

during the auditory task, and on lexical semantic and word class features during nat-

ural speech. Moreover, the low-dimensional phoneme representations traced highly

correlated feature-specific trajectories during both conditions. During natural speech,

semantic and phonetic encoding occurred in parallel at 400 ms after word onset. Specif-

ically, the timing of phonetic encoding was increasingly shorter for successive phoneme
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positions within the word, such that processing of all phonemes simultaneously culmi-

nated at 400 ms after word onset. This parallel encoding of phonemes and semantics

was mirrored in the bottom-up and top-down processes as measured by peaks in the

low-gamma and beta power, and there was a bidirectional causal relationship between

their low-dimensional representations.

We observed simultaneous encoding of phonetic and semantic features in the same

focal cortical area of the aSTG. This finding extends the traditional models of speech

processing (Hickok and Poeppel, 2007) that posit a distinct modular processing of

different levels across the speech hierarchy. Specifically, we observed that the average

activity of the same neuronal population encoded both phonemes (time-locked to

each phoneme onset), and semantic information (time-locked to each word onset).

On average, phonemes were encoded in two time windows centered around 200 and

400 ms after the phoneme onset (Figure 2a), and semantic information around 400

ms after the word onset (Figure 4a). To investigate whether there is a relationship

between these two effects, we then time-locked phonemes to the word onset as well and

observed that the later they occurred within the word, the sooner they were processed.

Moreover, when aligned to the word onset, the processing of phonemes overlapped

with the semantic processing window at 400 ms (Fig. 5a). This shows that the two

processing peaks observed on the average phoneme kernel in fact represent one peak

that is divided in time as a function of phoneme position within the word and suggests

that there might be a functional relationship between these two processes.

Previous studies suggest that interactions between phonetic and semantic pro-

cessing could be instantiated through recurrent neural networks, where phonetic

activations persist or are reactivated at the timing of semantic processing (Bever

and Poeppel, 2010). Others suggest that phonetic representations might successively

change a unique representation that correlates with each previous phonetic feature at

the time of semantic processing (Perdikis et al, 2011; Yi et al, 2019; Martin, 2020).
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Finally, according to the prominent analysis-by-synthesis framework, the two levels

are related through dynamic bottom-up and top-down predictive mechanisms (Arnal

and Giraud, 2012). One feature of this framework’s proposal is that supportive evi-

dence can be obtained by investigating the power increase in different LFP frequency

bands - namely, top-down processes have been shown to be associated with the beta

band, and bottom-up with the low-gamma increases (Arnal and Giraud, 2012). Here,

we followed the same approach and investigated the increase in the beta and the

(shifted) low-gamma band corresponding to word onset. Replicating our firing rate

findings, we observed significant alignments of top-down and bottom-up processes, as

indicated by transients in these two frequency bands, around 400 ms post-word-onset

(Fig. 5b). Moreover, we observed several significant low-gamma increases occurring

before the 400-ms alignment. This suggests that, following the word onset, the popu-

lation activity first encodes phonemes in a bottom-up fashion, which might lead to a

build-up of information necessary for semantic processing that occurs at 400 ms. Once

enough bottom-up phonetic information is accumulated, a top-down semantic process

is initiated at 400 ms, which then initiates a new wave of bottom-up processes at

the phoneme level. We further confirmed the existence of a bidirectional relationship

between phonetic and semantic processing through Granger causality analysis (Fig.

5c).

Our findings in a controlled auditory semantic categorization task generalized to

a natural conversation. This is particularly remarkable, as the two datasets have sev-

eral important differences. In the controlled task, the participant heard isolated word

recordings, all of which were nouns of similar duration and normalized for sound inten-

sity, and focused on a simple cognitive task – assessing the size of the heard objects

and animals. Contrary to the controlled task, natural speech perception involves many

other cognitive and perceptual mechanisms. First, the natural conversation included

sentences and all word types, not just isolated nouns. This allowed us to generalize our
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semantic findings from the narrow and carefully-defined task scenario (i.e., animals-

vs-objects) to a much larger category of lexical semantics, as well as to word class

encoding that is suggestive of syntactic processing. Second, even though speech was

uttered by another speaker, we still retrieved invariant phonetic representations, both

in time and in the shape of the low-dimensional trajectories. This indicates that the

phonetic representations we found are speaker-normalized, similar to previous results

at the LFP level (Sjerps et al, 2019). Third, sounds were much more varied in their

durations and intensities as compared to the controlled task, likely entailing other

variations, e.g. prosody, accents, intonation, etc. Finally, natural speech involves a

whole range of predictive processes spanning the entire speech hierarchy from low-level

acoustics to syntax and semantics, including context effects, which were only present

for natural speech. These strong predictive processes were revealed by our LFP anal-

ysis, showing significant beta power bands at -100 ms and 400 ms, in agreement with

the parallel encoding periods we found in the neural manifold.

Another interesting aspect of natural speech is that it allows us to contrast semantic

and syntactic features. While we found that syntactic and semantic are both encoded

by the same neuronal population dynamics, they were differentiated by their timings,

with the syntactic processing occurring at around 150 - 200 ms, while the semantic

processing occurred later, at around 400 ms. This syntactic processing might be a sign

of early combinatorial processing, as reported with MEG (Pylkkänen, 2020). It might

also help in participating in early conceptual and perceptual categorization in the ATL

at around 200 ms (Borghesani et al, 2019; Chan et al, 2011; Chen et al, 2016; Dehaene,

1995; Hinojosa et al, 2001). We found that other semantic categorization occurred

later, around 400 ms, which is reminiscent of the N400 reported in the ATL, for both

semantic composition and lexical decision (Kutas and Federmeier, 2011; Dikker et al,

2020; López Zunini et al, 2020; Bentin et al, 1985; Barber et al, 2013; Vignali et al,

2023; Rahimi et al, 2022; Lau et al, 2008; Kutas and Federmeier, 2000). In particular,

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.30.564638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564638
http://creativecommons.org/licenses/by-nc-nd/4.0/


the perceptual aspect of semantics occurred slightly before the conceptual one, in

accordance with previous results (Borghesani et al, 2019)

Our work extends and experimentally supports the neural manifold framework

for neural speech processing. Indeed, we found that a large amount of the neuronal

variance related to phonetic and semantic encoding could be accounted for by a low-

dimensional space, where the functional read-out emerges at the level of the neuronal

population dynamics (Vyas et al, 2020; Jazayeri and Ostojic, 2021; Chung and Abbott,

2021). The neural manifold hypothesis is an efficient encoding method that allows rich

dynamics to be encoded in noise-resilient latent dynamics. We provided evidence that

speech encoding at the phonetic and semantic level operates at the level of neuronal

population dynamics, akin to many other cognitive processes, such as sensorimotor

processing, decision making, or object recognition (Gallego et al, 2017; Mante et al,

2013; DiCarlo and Cox, 2007). In particular, we observed that the encoding of speech

features became more prominent when considering the coordinated dynamics of the

PCs, as opposed to the kernel activity simply averaged across units. This might explain

why we did not observe such encoding in aSTG ECoG signals, which roughly corre-

spond to the average firing rate over a large population of neurons (Leszczyński et al,

2020). Further, we found that the low-dimensional phoneme features traced highly

correlated trajectories across two conditions (auditory task and natural speech) up to

the 9th PC (Figure 3j). This is remarkable considering that the two conditions were

separated by more than two hours and that the spike sorting procedure identified dif-

ferent units on the same array. This shows that despite the difference in the underlying

units, the common population patterns remain preserved. Collectively, our findings

illustrate that the neural manifold framework is particularly suitable for investigating

neuronal dynamics during speech processing, as it allows for a subtle characterization

of intricate dynamical processes spanned across the speech hierarchy.
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Another important finding that was facilitated through the neural manifold frame-

work is that low-dimensional phoneme trajectories cluster according to their phonetic

features. Specifically, vowels clustered based on their first formant feature and con-

sonants based on their manner of articulation. This extends previous works that

described the encoding of phonetic features across the temporal lobe (Mesgarani et al,

2014; Hamilton et al, 2021) by demonstrating that these features can be constructed at

a more fine-grained level through the coordinated dynamics of individual phoneme rep-

resentations. Moreover, the time windows in which these clusterings occurred matched

the periods in which the average phoneme kernel was significant (200 and 400 ms),

again pointing to the importance of fine-tuned coordinated activity of individual neu-

rons. Importantly, we found this effect to be very robust, as it generalized from

auditory task to natural speech perception and was replicated through different anal-

ysis approaches in both conditions (i.e., linear discriminant analysis, rank regression,

k-means clustering).

There are a few limitations and open questions related to our findings. First, our

dataset is limited to one participant and we thus cannot assess the generalizability

of these findings to other participants. However, human intracortical MEA recordings

are extremely rare and such datasets represent an invaluable opportunity to investi-

gate cognitive mechanisms at the level of ensembles of single-unit action potentials

recorded from neuronal populations. In fact, we observed speech encodings that were

not detectable even at the most adjacent ECoG contact, demonstrating the unique

advantages of this approach. Second, such high precision comes with the price of low

spatial generalizability. Namely, our findings are specific to a small 4-by-4 mm area

of aSTG encompassed by the implantation site of the MEA. This might explain why

we observed very specific phonetic effects - e.g. vowels clustering according to the first

and not the second format. It is possible that aSTG is organized into small functional

subdivisions and that we would observe significant clustering based on other phonetic
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features if the array was implanted elsewhere. Finally, the population of recorded neu-

rons is also limited by the design of the MEA. Interestingly, only a few tens of units over

around two hundred identified responded to different speech features, showing that the

neuronal population encoding is relatively sparse. However, this further demonstrates

the importance of investigating the coordinated activity of neuronal population firing,

as it is able to reveal patterns that are absent at the level of isolated neuronal activity.

To conclude, our study provides evidence for a parallel, distributed, and low-

dimensional encoding of phonetic and semantic features, that is specific to neuronal

population firing patterns in a focal region in the aSTG. Extending the rapidly emerg-

ing neural manifold framework to speech processing, these findings shed new light on

the brain mechanisms underlying phonetic and semantic integration and pave the way

toward the elucidation of the intricacies behind the complex transformations across

the speech processing hierarchy.

Methods

The data used in this study appeared first in (Chan et al, 2014).

Participant

The study participant, a male in his thirties with pharmacologically resistant epilepsy,

underwent intracranial electrode implantation as part of his clinical epilepsy treat-

ment. He was a native English speaker with normal sensory and cognitive functions and

demonstrated left-hemisphere language dominance through a WADA test. The patient

experienced partial complex seizures originating from mesial temporal region electrode

contacts. The surgical intervention involved the removal of the left anterior temporal

lobe, along with the microelectrode implantation site, left parahippocampal gyrus, left

hippocampus, and left amygdala. The patient achieved seizure-free status one-year
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post-surgery, with no significant changes in language functions observed in formal neu-

ropsychological testing conducted at that time. Informed consent was obtained, and

the study was conducted under the oversight of the Massachusetts General Hospital

Institutional Review Board (IRB). The study included both the intracortical implan-

tation of a microelectrode array (MEA) and the performance of an auditory task

and natural conversation. The MEA recordings were used only for scientific research

purposes only and played no role in the clinical assessments and decisions.

Neural recordings

Cortical local field potentials were recorded with an 8-by-8, 1-cm electrode distance,

subdural ECoG array (Adtech Medical) implanted above the left lateral cortex, includ-

ing frontal, temporal, and anterior parietal areas. For the purpose of this article, only

the electrodes covering the lateral temporal lobe were included in the analysis. The

signal was recorded with a sampling rate of 500 Hz, with a bandpass filter spanning 0.1

to 200 Hz. All electrode positions were accurately localized relative to the participant’s

reconstructed cortical surface (Dykstra et al, 2012).

Single-unit action potentials were recorded with a 10-by-10, 400 µm electrode dis-

tance, microelectrode array (Utah array, Blackrock Neurotech) surgically implanted

within the left anterior superior temporal gyrus (aSTG). Electrodes were 1.5 mm long

and contained a 20-µm platinum tip. The implantation site was excised and the subse-

quent histological analysis revealed the spatial orientation of the electrode tips within

the depths of cortical layer III, proximal to layer IV, with no notable histological

abnormalities in the neighboring cortical environment. Data acquisition was acquired

on a Blackrock NeuroPort system, with a sampling frequency of 30 kilosamples per

second, and an analog bandpass filter ranging from 0.3 Hz to 7.5 kHz for antialiasing.

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.30.564638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564638
http://creativecommons.org/licenses/by-nc-nd/4.0/


The location of the recording arrays was based on clinical considerations. In par-

ticular, the MEA was placed in the superior temporal gyrus because this was a region

within a larger area anticipated to be resected based on prior imaging data.

Signal preprocessing

Spike detection and sorting were performed with the semi-automatic wave clus algo-

rithm (Quiroga et al, 2004). Across 96 active electrodes, we identified 176 and 212

distinct units for the sessions with the auditory task and the natural conversation

respectively. In both sessions and for a fair comparison, the analysis was done on the

23 most-spiking units (task: 0.43 – 5.27 spikes/second; speech: 0.1 – 3.39 spikes/sec-

ond). For the auditory task, we considered the units with hiring rates higher than 0.3

spikes/second. For the natural speech, we kept the same number of units as in the

auditory task.

The spike train of each unit was smoothed with a 25 ms wide Gaussian kernel to

obtain the firing rate time series. Firing rate time series were then soft-normalized by

the range of the unit increased with a constant 5, following previous studies (Church-

land et al, 2012), and downsampled at 200 Hz. For the task session, firing rate time

series were split into 400 trials. Each trial lasted 1.5 seconds and included 0.5-second

periods before and after the word presentation. For the natural conversation session,

we selected 91 segments of the firing rate where a person was talking to the participant

(see below).

The signals from the ECoG grid were first filtered to remove line noise using a notch

filter at 60 Hz and harmonics (120, 180 Hz, and 240 Hz). We then applied common-

average referencing. For each channel, we extracted broadband high-frequency activity

(BHA) in the 70-150 Hz range (Crone et al, 2001). BHA was computed as the aver-

age z-scored amplitude of eight band-pass Gaussian filters with center frequencies
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and bandwidth increasing logarithmically and semilogarithmically respectively. The

resulting BHA was downsampled to 100 Hz.

Auditory stimuli

Neuronal data was recorded during two separate experimental sessions, that took place

on the same day, two hours apart. In the first session, the participant performed an

auditory semantic categorization task. The stimuli were standalone audio files of 400

words pronounced by a male speaker and normalized for intensity and duration (500

ms). The participant was presented with 800 noun words in a randomized order, and

with 2.2 s stimulus onset asynchrony. Out of 800 words, 400 were presented only once,

while the remaining 400 consisted of 10 words repeated 40 times each. In order to avoid

biasing effects, in our analysis, we considered only the 400 words that were repeated

only once. Specifically, the inclusion of repeated words leads to the overrepresentation

of a few phonemes compared to other phonemes, biasing the regression analyses. Half

of the 400 unique words referred to objects and half to animals. Following a word

presentation, the participant was instructed to press a button if the referred item was

bigger than a foot in size. Half of the items in each group (animals, objects) were

bigger than a foot, resulting in a balanced 2-by-2 design.

In the second session, the participant engaged in a natural conversation with

another person present in the room. The conversation was recorded using a far-field

microphone and manually transcribed. The recording was split into 91 segments that

contained clear speech recordings of the other person talking (i.e. without overlapping

speech or other background sounds). Each segment was cleaned for background noise

and amplified to 0 dBFS in Audacity software. We used a total of 664 words (272

unique) across all trials of the natural conversation.
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Phoneme segmentation and categorization

Audio files and corresponding transcripts were segmented both into words and

phonemes by creating PRAAT TextGrid files (Boersma, 2001) through WebMAUS

software (Kisler et al, 2017). Phonetic symbols in the resulting files were encoded in

X-SAMPA, a phonetic alphabet designed to cover the entire range of characters in

the 1993 version of the International Phonetic Alphabet (IPA) in a computer-readable

format. All TextGrids were manually inspected and converted into tabular formats

using the TEICONVERT tool. Diphtongues and phonemes that occurred less than 5

times throughout the entire session were removed from the analysis.

We used 32 segmented phonemes, divided into 11 vowels and 21 consonants, and

further labeled according to the standard IPA phonetic categorizations: vowels first for-

mant (open, close), vowels second formant (front, back), consonants articulation place

(bilabial, labiodental, alveolar, velar, uvular, glottal), consonants articulation manner

(plosive, nasal, fricative, approximant, lateral approximant). See also Supplementary

Table 1 for vowels and Supplementary Table 2 for consonants).

mTRF features

For both sessions, we extracted the following features: word onsets, acoustic edges

(envelope rate peaks), phoneme onsets, phonemes, and phonetic categories. For the

auditory task, we additionally computed the following semantic features: perceptual

category, conceptual category, and semantic decision. For the natural conversation,

we additionally created word class and lexical semantics features. All stimuli were

designed as Dirac functions centered at the onset of the corresponding feature.

Word onset was marked by a Dirac function centered at the onset of each word.

Acoustic edges were defined as local maxima in the derivative of the speech envelope

(Oganian and Chang, 2019). Speech envelope was computed as the logarithmically
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scaled root mean square of the audio signal using the MATLAB mTRFenvelope func-

tion. Phoneme onset feature indicated onsets of all phonemes in a word. Phoneme

identity was multivariable with 32 regressors, each indicating onsets of a different

phoneme, as defined by the IPA table. Phonetic categories was multivariable, and

defined as described in the Secion 5. All other features are multivariables with a Dirac

function centered at the corresponding word onset. Perceptual category, conceptual

category, and semantic decision had two regressors, defined respectively as bigger and

smaller, animal and object, and decision on whether the object/animal was bigger or

smaller than a foot. Word class had 13 regressors, indicating different word classes

(noun, verb, adjective, adverb, article, auxiliary, demonstrative, quantifier, preposi-

tion, pronoun, conjunction, interjection, number). Finally, the lexical semantics feature

was multivariable, designed by regressing each of the 11 sensorimotor norms at the

corresponding word onset (Lynott et al, 2019). All stimuli were smoothed with a 25-

ms-wide Gaussian kernel and downsampled to either 200 Hz (to match single unit

firing rates) or 100 Hz (to match BHA from ECoG channels) before fitting the mTRF

models.

mTRF estimation

mTRFs were estimated using the mTRF MATLAB toolbox (Crosse et al, 2016). All

mTRFs were always of encoding type, relating the stimulus features to neuronal data

(firing rates or BHA), with resulting kernels in the time range between -200 and 600 ms.

The first and last 50 ms were not considered in the analysis, in order to avoid possible

edge effects resulting from regressing Dirac stimuli to continuous neuronal data. For

both task and conversation sessions, the baseline model contained the word onset and

the acoustic onset edge features. All other models included the baseline features and

one of the additional target features defined above. Estimation was performed by a
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ridge regression, using a nested cross-validation procedure (see below). The goodness

of fit was defined as Pearson’s correlation between model prediction and neuronal data.

Cross-validation

For the auditory task, we performed a nested cross-validation. In the outer cross-

validation loop, we split the 400 words randomly into 5 sets of 80 (20% of the words

each). Thus, in each fold, 80 trials belonged to a hold-out test set, while the remaining

320 words belonged to the train set. The 5 folds were identical across all models. For

a given outer fold, among the 320 train-set trials, we performed another 8-fold inner

cross-validation loop for the ridge regression hyperparameter tuning, chosen among

the following 13 lambda values: (10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 1, 10, 102, 103, 104,

105 ,106). The optimal lambda is then used to retrain the model on the 320 words of

the training set of the outer cross-validation loop fold. The model predictions are then

computed for the 80 words of the test set. Pearson’s correlation with the neuronal

data is then computed for these 80 worlds. Across the 5 folds, we thus obtain 5 values

of Pearson’s correlation, of which we report the average.

For the natural conversation, we also used nested cross-validation. The 5-fold outer

cross-validation loop is performed by splitting the 91 segments into five folds of approx-

imately similar duration (mean: 393.28 sec; sd: 6.73), chosen through random shuffling

across the five folds until the standard deviation was smaller than 10 seconds. We

applied a similar procedure for the inner cross-validation loop in each of the five folds.

Surrogate distributions and statistical significance

For each model of the auditory task, we created a distribution of 1000 surrogate

models by shuffling the target feature across words, and keeping the baseline features

constant. For instance, in the model that contains the phoneme onset feature together

with the baseline features, the surrogate model is created by randomly shuffling the

400 phoneme onset features across 400 words independently, while keeping the order
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of the baseline features (e.g. word onset and acoustic edges) constant. In this way, the

baseline features are properly regressed to the neuronal data, while the target feature

(e.g. phoneme onset) is randomly assigned to neuronal data.

For the natural speech, it was not possible to shuffle trials in the same way, as each

auditory segment was of a different duration. This poses a problem because the mTRF

features have to be of the same length as the neuronal data, which is not the case for

natural speech, contrary to the auditory task where each word was standardized for

the duration. Instead, we used the following method: for multivariable features, the

surrogates were computed by randomly assigning each Dirac to a particular regressor

(e.g., for the phoneme feature, the first phoneme is randomly assigned to any of the

32 regressors, the second to any of the remaining 31, etc). For features with a single

variable, surrogates were computed by performing a circular shift with a random onset.

For instance, for the phoneme onset feature, which has only one regressor, we would

randomly split the trace into 2 parts and switch the order of the parts.

A model was considered to be statistically significant if the original model per-

formed better compared to the 95th percentile of the surrogate distribution. The same

statistical principle was used to determine the significant periods of the shape of the

feature’s kernel.

Clustering of phoneme kernels in the PC space

Clustering was performed by assigning each phoneme to a particular phonetic class and

computing the clustering index, defined as the difference between between-cluster and

intra-cluster distances. Specifically, for each cluster, we first found the location of the

centroid by averaging the coordinates of all cluster elements. Between-cluster distance

is defined as the average Euclidean distance between all pairs of cluster centroids.

Intra-cluster distance is defined as the Euclidean distance of each cluster element

to the corresponding centroid. By subtracting intra- from between-cluster distance,
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our index rewards cluster separability (between-cluster distance) and penalizes spatial

dispersion (intra-cluster distance).

We performed clustering in the two-dimensional PC space (Results section 5),

but systematically confirmed our results in the PC spaces using up to six dimensions

(Supplementary Material).

To confirm our clustering results, we performed several control analyses, described

here shortly and in detail in Supplementary Materials:

1. linear discriminant analysis (LDA) classifier: at each time point and for each pho-

netic feature group, we first ran an LDA classifier to compute the means of the

multivariate normal distributions of phonemes sharing the same phonetic feature.

Then, we computed the average Euclidean distance between all phonetic feature

means and compared it against the distribution of 1000 surrogates.

2. rank regression for vowels: we additionally explored whether the actual first and

second formant frequency values were encoded in the low-dimensional space. To

that aim, we assigned a rank value (1-7) to each vowel, based on the formant values

indicated in the standard IPA table (Supplementary Figure 11 c). At each time

point, the ranked order of vowels was correlated with their coordinates on the first

three PCs, and compared against a distribution of 1000 surrogates.

3. correlation with K-means connectivity matrices: to investigate whether the same

results would emerge in a data-driven fashion, for each time point, we first ran

K-means clustering 1000 times, as the clustering results slightly differ based on

the algorithm’s random initialization. Then, we computed an average N-by-N con-

nectivity matrix that indicated how often each of the N phonemes was clustered

together. Finally, we correlated the resulting connectivity matrix with the con-

nectivity matrix of the actual, linguistically-based clusters (vowel first formant,

vowel second formant, consonants manner, consonants place), and compared the

correlation value against the distribution of 1000 surrogates.
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Separability of semantic feature kernels in the PC space

Semantic features only have two regressors, hence not allowing any clustering. To

identify the periods during which the two kernels of each semantic feature were sig-

nificantly separated in the PC space, we computed the average Euclidean distance

between the two. The same process was repeated for each of the 1000 surrogate mod-

els, and the distance was considered significant if it was higher than the 95th percentile

of the surrogate distribution.

Comparison between the shapes of auditory task and natural

conversation trajectories

To investigate whether the trajectories of the phoneme kernels projected to the low-

dimensional space were similar between the auditory task and the natural conversation,

we computed the canonical correlation between each kernel pair (e.g. kernel of phoneme

/k/ extracted during the auditory task and the /k/ kernel from the natural conver-

sation). The canonical correlation was compared against the distribution of surrogate

model canonical correlations for all 23 dimensions. Particularly, the surrogate distri-

bution was computed by shuffling the kernel in the natural conversation, rendering

the test more difficult to pass. The correlation is considered significant if it is higher

than the value of the 95th percentile of the surrogate correlation distribution.

Phoneme position kernels

To investigate whether there are any interactions between the encoding of phonetic

and semantic features, we first created mTRF kernels for each phoneme position within

the word and then aligned the resulting kernels with the lexical semantics kernel.

Phoneme position was thus a multivariable with five regressors, each indicating the

onset of the corresponding phoneme position across all words. For instance, phoneme

position 2 indicates the onset of all second phonemes in all words, regardless of the
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phoneme type. The resulting kernels were then shifted by the multiples of 80 ms,

which is a rounded value of average phoneme duration (mean: 82.6 ms, sd: 3.1 ms).

Thus, the kernel for position two was shifted by 80 ms, the one for position three by

160 ms, etc. Surrogate kernel distributions were computed as described above. This

allowed us to observe when significant peaks for each phoneme occurred with respect

to the same time reference: word onset.

LFP low-beta and gamma power analysis

We further investigated the nature of these kernels within the analysis-by-synthesis

framework, by fitting mTRF encoding-type models with either word onset or phoneme

position as stimulus, and either beta (30-50 Hz) or low-gamma (15-25 Hz) LFP power

as response. Word onset and phoneme position stimuli were the same as the ones used

before. For each microelectrode channel, LFP power bands were computed by first

applying a 9-order bandpass Butterworth filter with zero-phase forward and reverse

digital filtering, then subtracting the mean from the resulting trace, and finally com-

puting the absolute value of its Hilbert transform. The resulting LFP powers were

then averaged across all channels and entered into the mTRF models. Finally, we com-

pared the significant periods of the word-onset beta-power kernel and phoneme-order

low-gamma kernels with the same aligning procedure as described above.

Granger causality

To investigate the causality between the low-dimensional phonetic and semantic

projections, we used the Multivariate Granger causality toolbox that is based on

state-space Granger causal analysis (Barnett and Seth, 2014; Pesaran et al, 2018).

We first applied a half-Gaussian filter 25 ms wide to the spiking traces of individual

units to obtain a causal firing rate estimate. The resulting firing rate was then pro-

jected into the 3D phonetic and semantic PC spaces, constructed by performing PCA

on the corresponding phonetic and semantic mTRF kernels as described above. The
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Granger models were created by separately predicting each of the 3 PCs of one fea-

ture (e.g. phonetic) from all 3 dimensions of another feature (e.g. semantic). We then

combined the resulting Granger coefficients into two 3-by-3 matrices, one for phonetic-

to-semantic and another for semantic-to-phonetic predictions. Autoregression model

parameters are estimated from data with the Levinson-Wiggins-Robinson algorithm

and the Granger’s F-test was used to assess the model’s significance.

fMRI databases

Functional classification of the cortical surface surrounding the MEA with respect to

different linguistic processes was performed using NeuroSynth (Yarkoni et al, 2011b)

and NeuroQuery (Dockès et al, 2020) databases. They use text mining and meta-

analysis techniques to automatically produce large-scale mappings between fMRI brain

activity and a cognitive process of interest. We were primarily interested in observ-

ing the proximity of phonetic and semantic processing close to the microelectrode

implantation site. As keywords, we used ”phonetics” and ”semantic categorization”.
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