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ABSTRACT 43 

Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from 44 

microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex 45 

spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 46 

proteins at subcellular resolution in 103–107 cells per specimen. Despite extensive work on methods for 47 

extracting single-cell data from these images, all tissue images contain artefacts such as folds, debris, antibody 48 

aggregates, optical aberrations and image processing errors that arise from imperfections in specimen 49 

preparation, data acquisition, image assembly, and feature extraction. We show that these artefacts dramatically 50 

impact single-cell data analysis, obscuring meaningful biological interpretation. We describe an interactive 51 

quality control software tool, CyLinter, that identifies and removes data associated with imaging artefacts. 52 

CyLinter greatly improves single-cell analysis, especially for archival specimens sectioned many years prior to 53 

data collection, such as those from clinical trials.  54 
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INTRODUCTION 55 

Tissues are complex assemblies of many cell types whose proportions and properties are controlled by 56 

cell-intrinsic molecular programs and interactions with the tumor microenvironment. Recently developed 57 

highly multiplexed tissue imaging methods (e.g., MxIF, CyCIF, CODEX, 4i, mIHC, MIBI, IBEX, and IMC)1–7 58 

have made it possible to collect single-cell data on 20-100 proteins and other biomolecules in preserved 2D and 59 

3D tissue microenvironments4,8–11. Such data are powerful complements to data obtained using dissociative 60 

methods such as scRNA-Seq12–14. Imaging approaches compatible with formaldehyde-fixed, paraffin-61 

embedded (FFPE) specimens are particularly powerful because they can tap into large archives of human 62 

biopsy and resection specimens15,16 and also assist in the study of mouse models of disease17.  63 

Generating single cell data from high-plex images requires segmenting images18 to produce single-cell 64 

“spatial feature tables” that are analogous to count tables in scRNA-Seq18. In their simplest form, each row in a 65 

spatial feature table contains the X,Y coordinate of a cell (commonly the centroid of the nucleus) and 66 

integrated signal intensities for each protein marker19. Cell types (e.g., cytotoxic T cells immunoreactive to 67 

CD45, CD3 and CD8 antibodies) are then inferred from these tables and spatial analysis is performed to 68 

identify recurrent short- and long-range interactions significantly associated with an independent variable such 69 

as drug response, disease progression, or genetic perturbation. 70 

High-plex spatial analysis has been performed using both tissue microarrays (TMAs), which comprise 71 

0.3 to 1.5 mm diameter “cores” (~104 cells) from dozens to hundreds of clinical specimens arrayed on a slide, 72 

and whole-slide imaging, which can involve areas of tissue as large as 4-6 cm2 (~107 cells). Whole slide 73 

imaging is an FDA requirement20 for clinical diagnosis, research, and spatial power21, but TMAs are 74 

nonetheless in widespread use. In this paper, we show that accurate processing of images from both types of 75 

specimens is complicated by the presence of imaging artefacts such as tissue folds, slide debris (e.g., lint), and 76 

staining artefacts. The problem impacts all data we have examined but is particularly acute with specimens 77 

stored for extended periods on glass slides. In our study, this scenario is represented by 25 specimens from the 78 

TOPACIO clinical trial of Niraparib in Combination with Pembrolizumab in Patients with Triple-negative 79 

Breast Cancer or Ovarian Cancer (NCT02657889)22, which was completed in 2021. We demonstrate the 80 

impact of artefacts on analysis of CyCIF images of TOPACIO tissue specimens and high-plex CyCIF, 81 

CODEX, and mIHC datasets from several recently published studies. We then develop a human-in-the loop 82 

approach to remove single-cell data affected by microscopy artefacts using a software tool, CyLinter (code and 83 

documentation at https://labsyspharm.github.io/cylinter/), that is integrated into the Python-based Napari image 84 

viewer23. We demonstrate that CyLinter can salvage otherwise uninterpretable multiplex imaging data, 85 

including those from the TOPACIO trial. Finally, we demonstrate progress on a deep-learning (DL) model for 86 

automated artefact detection; libraries of artefacts identified using CyClinter represent ideal training data for 87 
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this model. Our findings suggest that artefact removal should be a standard component of processing pipelines 88 

for image-based spatial profiling data. 89 

 90 

RESULTS 91 

Identifying recurrent image artefacts in multiplex IF images 92 

To categorize imperfections and image artefacts commonly encountered in high-plex images of tissue, 93 

we examined seven datasets collected using three different imaging methods: (1) 20-plex CyCIF24 images of 25 94 

triple-negative breast cancer (TNBC) specimens collected from TOPACIO clinical trial patients22; (2) a 22-plex 95 

CyCIF image of a colorectal cancer (CRC) resection21; (3) a 21-plex CyCIF TMA dataset25 comprising 123 96 

healthy and cancerous tissue cores; (4) two 16-plex CODEX26 images of a single head and neck squamous cell 97 

carcinoma (HNSCC) specimen; (5) a 19-plex mIHC27 image of normal human tonsil25; (6) 59-plex and (7) 54-98 

plex independent CODEX images of normal large intestine (Supplementary Fig. 1a-g and Supplementary 99 

Table 1). Raw image tiles were processed using MCMICRO28 to generate stitched and registered multi-tile 100 

image files and their associated single-cell spatial feature tables. Single-cell data were visualized as UMAP 101 

embeddings clustered with HDBSCAN—an algorithm for hierarchical density-based clustering29. Images were 102 

also inspected by experienced microscopists and board-certified pathologists to identify imaging artefacts.  103 

All specimens comprised 5 µm-thick tissue sections mounted on slides in the standard manner. This 104 

involves cutting FFPE blocks with a microtome and floating sections on water prior to capturing them on glass 105 

slides. Even in the hands of skilled histologists, this process can introduce folds in the tissue. We identified 106 

multiple instances of tissue folds in whole-slide and TMA specimens (Fig. 1a, Extended Data Fig. 1a and 107 

Online Supplementary Fig. 1a). Moreover, we found that cells within tissue folds gave rise to discrete 108 

clusters in UMAP feature space due to higher-than-average signals relative to unaffected regions of tissue (Fig. 109 

1a,b, Extended Data Fig. 1a,b).  110 

Bright antibody aggregates were common and also formed discrete clusters in UMAP space (Fig. 1c), 111 

as were debris in the shape of lint fibers and hair (Fig. 1d and Online Supplementary Fig. 1b). Despite having 112 

relatively low numbers of segmented cells, regions of necrotic tissue also exhibited high levels of background 113 

antibody labeling (Fig. 1e). Some specimens contained air bubbles likely introduced when coverslips were 114 

overlayed on specimens prior to imaging (Fig. 1f and Online Supplementary Fig. 1c). In principle, artefacts 115 

such as tissue folds and air bubbles can be reduced by skilled experimentalists, but access to the original tissue 116 

blocks is required. 117 

Additional artefacts were introduced at the time of image acquisition. These included out-of-focus 118 

image tiles due to sections not lying completely flat on the slide (Fig. 1g and Online Supplementary Fig. 1d), 119 

fluctuations in background intensity between image tiles (Fig. 1h), and miscellaneous aberrations that 120 
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significantly increased signal intensities over image background (Fig. 1i) and generated discrete clusters in 121 

UMAP space (Fig. 1j and Extended Data Fig. 1c). In some cases, removal of artefacts revealed more subtle 122 

problems such as the presence of cells stained non-specifically by all antibodies (e.g., in CODEX Dataset 6; 123 

Extended Data Fig. 1d,e). Errors were also observed in tile stitching (Fig. 1k) and registration (Fig. 1l); in 124 

some cases, these problems can be addressed by reprocessing the data, but over-saturation of nuclear stain used 125 

for stitching and registration can limit accuracy of even reprocessed data. 126 

Some artefacts were specific to cyclic imaging methods such as CyCIF24,30, CODEX26, and mIHC27 that 127 

generate high-plex images through multiple rounds of lower-plex imaging followed by fluorophore dissociation 128 

or inactivation. For example, tissue movement (Fig. 1m) and tissue damage (Fig. 1n) caused cells present in 129 

early rounds of imaging to be lost at later cycles. These cells appear negative for all markers after movement or 130 

loss, confounding cell type assignment and leading to artefactual clusters in feature space (Fig. 1o). The extent 131 

of tissue loss varies between specimens and seems to arise during tissue dewaxing and antigen retrieval31 due to 132 

low tissue area (e.g., the TOPACIO fine-needle biopsies from patients 70, 89, 95, 96) and cellularity (e.g., 133 

adipose tissue). 134 

The origins of some artefacts remain unknown, but likely arise from a combination of (i) pre-analytical 135 

variables—generally defined as variables arising prior to specimen staining, (ii) unwanted fluorescent objects 136 

(e.g., lint and antibody aggregates) introduced during staining, imaging, and washing steps, (iii) errors in data 137 

acquisition, and (iv) the intrinsic properties of the tissue itself32,33. The TOPACIO specimens (Dataset 1) were 138 

the most severely affected by these artefacts, whereas the CRC specimen (Dataset 2)21, which had been freshly-139 

sectioned and carefully processed, was much less affected. However, only one slide was available from each 140 

TOPACIO patient, making repeat imaging impossible. 141 

 142 

Microscopy artefacts obscure analysis and interpretation of tissue-derived, single-cell data  143 

 Clustering Dataset 2 (CRC, CyCIF, ~9.8x105 total cells) with HDBSCAN yielded 22 clusters with 144 

0.7% of cells remaining unclustered (Fig. 2a). Silhouette analysis34 showed that four clusters (6, 15, 17, and 145 

21) remained under-clustered despite parameter tuning (Fig. 2b). Agglomerative hierarchical clustering of 146 

HDBSCAN clusters based on mean marker intensities revealed four meta-clusters (Fig. 2c) corresponding to 147 

tumor (meta-clusters A, B), stromal (C), and immune (D) cell populations. To study these 22 HDBSCAN 148 

clusters, cells from each cluster were selected at random and organized into galleries of 20 x 20 µm (30 x 30 149 

pixel) image patches centered on reference nuclei (Online Supplementary Fig. 2). To facilitate interpretation, 150 

only the three most highly expressed protein markers were shown per cluster (based on channel intensities 151 

normalized across clusters; Fig. 2c). Inspection of these galleries showed that many clusters contained mixed 152 

cell types. For example, cluster 6 contained B cells, T cells, and stromal cells (Fig. 2d). The formation of 153 
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clusters 9 and 11 were driven by bright antibody aggregates in the desmin and vimentin channels (Fig. 2e, f), 154 

respectively, whereas contaminating lint fibers led to the formation of cluster 12 (Fig. 2g). Cell loss was 155 

evident in cluster 14 (Fig. 2h), and cluster 10 comprised a domain of vimentin-positive tissue of unknown 156 

origin (Fig. 2i). Three additional clusters (2, 8, and 19; Fig. 2j) were caused by a region of tissue unexposed to 157 

antibodies during imaging cycle 3 as evidenced by a sharp cutoff in immunolabeling in this area. We reasoned 158 

that this artefact was likely due to human error during the performance of a complex 3D imaging experiment21. 159 

Clustering of Dataset 6 (CODEX, large intestine) also revealed clusters in which the expected separation of cell 160 

types was confounded by antibody aggregates, tissue folds, and image blur (Extended Data Fig. 2a-f and 161 

Online Supplementary Fig. 3). We conclude that the presence of image artefacts, even in relatively unaffected 162 

specimens, can drive formation of clusters that contain cells of different type (see Supplementary Note 1 for a 163 

discussion of problems associated with background subtraction). 164 

Many other clusters in Dataset 2 (e.g., 0, 1, 3, 7, and 16) contained few obvious artefacts. For example, 165 

cluster 0 comprised a phenotypically homogenous group of keratinocytes (Fig. 2k), while cluster 1 represented 166 

normal crypt-forming epithelial cells (Fig. 2l). Cluster 3 consisted of CD4, CD45, and CD45RO+ memory T 167 

cells distributed throughout the tissue (Extended Data Fig. 2g). Cells in this cluster appeared remarkably non-168 

uniform (Fig. 2m and Extended Data Fig. 2h), despite their occupying a discrete region of the UMAP 169 

embedding (Fig. 2a) and having CD4, CD45, and CD45RO levels well above background (Fig. 2n). Protein 170 

expression among these cells was also well correlated (R=0.56 to 0.59; Extended Data Fig. 2i), suggesting 171 

that cluster 3 encompassed a single cell population. Consistent with this conclusion, adjusting image intensity 172 

on a per-channel and per-cell basis resulted in a more uniform appearance (Fig. 2o and Extended Data Fig. 173 

2j,k). Cells in cluster 7 (Tregs, Extended Data Fig. 2l) also formed a tight cluster (Fig. 2a) with good 174 

correlation in expression of CD4, CD45, and CD45RO (R=0.51 to 0.62; Extended Data Fig. 2m) but weak 175 

correlation with FOXP3, the defining transcription factor for Tregs (R=0.13 to 0.31; Extended Data Fig. 2n).  176 

We conclude that nonuniformity in the appearance of these cells likely arises from natural cell-to-cell variation 177 

in protein levels35— not simply dataset noise—but that multidimensional clustering correctly groups such cells 178 

into biologically meaningful subtypes. Thus, visual review must be performed with care, and ideally in 179 

conjunction with data-driven approaches such as HDBSCAN. 180 

 Clustering Dataset 1 (25 TOPACIO specimens) gave rise to 492 HDBSCAN clusters with ~29% of 181 

cells remaining unclustered (Fig. 3a) and exhibiting no discernible spatial pattern in the underlying images 182 

(Extended Data Fig. 3a). Most clusters were associated with positive silhouette scores, indicating a good fit 183 

(Fig. 3b). While a few small clusters contained cells from a single tissue specimen (e.g., cluster 75 with 418 184 

cells and cluster 146 with 2140 cells), most clusters (441/492) contained cells from more than half of the 25 185 

TOPACIO specimens (Extended Data Fig. 3b); nevertheless, even these clusters often contained fewer than 186 
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3,000 cells (Fig. 3c). Agglomerative hierarchical clustering generated six meta-clusters (Fig. 3d), but the 187 

heatmap revealed an unusual dichotomy of very bright signals for some markers and dim signals for others. 188 

Only meta-cluster C, which comprised 57% of the cells exhibited graded signals across all channels (Fig. 3d,e). 189 

Image patches from a random set of 48 clusters revealed the presence of numerous tissue and imaging artefacts, 190 

including bright fluorescent signals, over-saturated nuclear stains, and poor segmentation (Fig. 3f-h and Online 191 

Supplementary Fig. 4). Cluster 15 (meta-cluster A) arose from an image alignment error at the bottom of 192 

TOPACIO specimen 55 (Extended Data Fig. 3c) and meta-clusters B, D, E, and F were caused by the 193 

presence of cells with channel intensities at or near zero as a result of image background subtraction (see 194 

Supplementary Note 1 and Supplementary Fig. 2).  195 

To estimate the prevalence of visible artefacts in Dataset 1, we generated a set of down-sampled single-196 

channel images with tile gridlines superimposed and manually estimated the number of tiles impacted by overt 197 

artefacts (Online Supplementary Fig. 5). This showed that ~5,490 of 156,300 tiles (3.5%) were affected by 198 

antibody aggregates, folds, illumination aberrations, or slide debris. The FOXP3 channel was the worst affected 199 

(>30% of tiles; Fig. 3i) involving streaks of non-specific antibody signal. Artefacts were less abundant in tissue 200 

resections as compared to fine-needle and punch-needle biopsies (one-way ANOVA, Tukey's HSD: p-adj = 201 

0.0029 to 0.0145) but there was no correlation with response to therapy (F = 0.40, p = 0.67, Fig. 3j). We 202 

concluded that the presence of imaging artefacts causes single-cell analysis methods to fail with TOPACIO 203 

data, but that errors were not preferentially biased with respect to patient response. 204 

 205 

Identifying and removing noisy single-cell data with CyLinter 206 

To remove imaging artefacts from tissue images via computer-assisted human review, we developed 207 

CyLinter as a plugin for the Napari23 multi-channel image viewer (Fig. 4a and Extended Data Fig. 4). 208 

CyLinter consists of a set of QC software modules written in the Python programming language that process 209 

images and corresponding single-cell data in a flexible manner in which modules can be run iteratively while 210 

bookmarking progress within and between modules. CyLinter takes four files as input for each tissue specimen: 211 

1) a stitched and registered multiplex image (TIFF/OME-TIF), 2) a cell identification mask generated by a 212 

segmentation algorithm, 3) a binary image showing the boundaries between segmented cells, and 4) a spatial 213 

feature table19 in CSV format comprising the location and computed signal intensities for each segmented cell 214 

(Fig. 4b-e, respectively). With a dataset comprising multiple images and spatial feature tables, CyLinter 215 

automatically aggregates the data into a single Pandas (Python) dataframe36 for efficient processing (Extended 216 

Data Fig. 4a). CyLinter then removes of artefactual cells from the dataframe (see 217 

https://labsyspharm.github.io/cylinter/ for implementation details) with no attempt to infer missing values.  218 
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The first CyLinter module, selectROIs (Extended Data Fig. 4b), lets the user view a multi-channel 219 

image and manually identify artefacts such as regions of tissue damage, antibody aggregates, and large 220 

illumination aberrations. Lasso tools native to the Napari image viewer are used to define regions of interest 221 

(ROIs) corresponding to artefacts. We found that negative selection (in which highlighted cells are dropped 222 

from further analysis) worked effectively for Dataset 2 (CRC, Fig. 4f), but Dataset 1 (TOPACIO) was affected 223 

by too many artefacts for this approach to be efficient. Thus, CyLinter implements an optional positive ROI 224 

selection mode, in which users select tissue regions devoid of artefacts for retention in the dataset (Fig. 4g). 225 

CyLinter also includes an automated companion algorithm that works with the selectROIs module to 226 

programmatically flag likely artefacts for human review (Extended Data Fig. 4b and Methods). This 227 

efficiently identifies features with intensities outside the distribution of biological signals.  228 

CyLinter’s dnaIntensity module (Extended Data Fig. 4c) allows users to inspect histogram 229 

distributions of per-cell mean nuclear intensities. Nuclei at the extreme left side of the distribution often 230 

correspond to cells lying outside of the focal plane (Fig. 4h) and those to the right side correspond to cells 231 

oversaturated with DNA dye or found in tissue folds (Fig. 4i). This module redacts data based on lower and 232 

upper thresholds initially defined by Gaussian Mixture Models (GMMs) that can be manually refinement if 233 

necessary. Instances of substantial over and under-segmentation can be identified based on the area of each 234 

segmentation instance followed by removal using the dnaArea module (Extended Data Fig. 4d). This method 235 

was particularly effective at removing many over-segmented cells in the CRC image (Fig. 4j) and under-236 

segmented cells frequently encountered among tightly-packed columnar epithelial cells in normal colon 237 

specimens (e.g., EMIT TMA core 84; Fig. 4k).  238 

In cyclic imaging methods, nuclei are re-imaged every cycle and individual cells are sometimes lost due 239 

to tissue movement or degradation37,38. CyLinter’s cycleCorrelation module (Extended Data Fig. 4e) 240 

computes histograms of log10-transformed DNA intensity ratios between the first and last imaging cycles 241 

(log10[DNA1/DNAn]); cells that remain stable give rise to ratios around zero, whereas those that are lost give 242 

rise to a discrete peak with ratios > 0. Gating the resulting histogram on stable cells eliminates unstable cells 243 

from the data table (Fig. 4l). Protein signals are then log-transformed (Extended Data Fig. 4f). The 244 

pruneOutliers module makes it possible to visualize scatter plots of per-cell signals from all specimens in a 245 

multi-image dataset and remove residual artefacts (e.g., small antibody aggregates) based on lower and upper 246 

percentile cutoffs (Fig. 4m and Extended Data Fig. 4g). Cells falling outside of the thresholds can be 247 

visualized to ensure that selected data points are indeed artefacts. 248 

The dnaIntensity, dnaArea, cycleCorrelation and pruneOutliers modules all provide a linked view of 249 

the original image in which cells to be included or excluded by the user’s chosen threshold settings are directly 250 

overlaid for visual confirmation of threshold accuracy. These labels are dynamically updated as the thresholds 251 
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are adjusted. This “visual review” is crucial to ensuring that true cell populations that happen to have extreme 252 

variations in size or signal intensity are not accidentally removed. 253 

 254 

Correcting for bias in user-guided histology QC via unsupervised cell clustering  255 

Human-guided artefact detection is subject to errors and biases and the metaQC module (Extended 256 

Data Fig. 4h) addresses this by performing unsupervised clustering on equal size combinations of redacted and 257 

retained data. Cells flagged for redaction that fall within predominantly clean clusters in retained data can be 258 

added back to the dataset, while those retained in the dataset that co-cluster with predominantly noisy cells 259 

(presumed to have been missed during QC) can be removed from the data table. The PCA module (Extended 260 

Data Fig. 4i) performs Horn’s parallel analysis to help the user determine whether 2 or 3 principal components 261 

should be used in the clustering module (described below). The setContrast module (Extended Data Fig. 4j) 262 

allows users to adjust per-channel image contrast on a reference image and then apply these settings to all 263 

images in a batch. Like the metaQC module, CyLinter’s clustering module (Extended Data Fig. 4k) allows 264 

users to perform UMAP39 or t-SNE40 data dimensionality reduction and HDBSCAN29 density-based clustering 265 

to identify discrete cell populations in high-dimensional feature space; the clustermap module (Extended Data 266 

Fig. 4l) generates high-dimensional protein expression profiles for each cluster. To test for statistical 267 

differences in cell type frequency between tissues associated with test and control conditions (e.g., treated vs. 268 

untreated) the sampleMetadata field in CyLinter’s configuration file can be populated and the frequencyStats 269 

module (Extended Data Fig. 4m) can be run. The curateThumbnails module (Extended Data Fig. 4n) 270 

automatically draws cells at random from each identified cluster and generates image galleries for efficient 271 

visual inspection. Together, these QC steps allow a user to apply a series of objective criteria to redacted and 272 

retained data to revise the output of the prior data filtration modules. On completion of the QC pipeline, 273 

CyLinter returns a single redacted spatial feature table together with a QC report for reproducibly and 274 

transparency of the analysis. Artefacts identified by CyLinter are ideal for training machine learning models 275 

that can automate artefact detection; we have therefore created a public repository for CyLinter QC reports and 276 

artefact libraries (see Supplementary Note 2 and Supplementary Fig. 3).  277 

 278 

Impact of CyLinter-based quality control on the CRC and TOPACIO datasets 279 

Applying CyLinter to Dataset 2 (CRC) resulted in the removal of ~23% of total cells (Fig. 5a). Over- 280 

segmentation was the largest problem, affecting ~16% of cells (Extended Data Fig. 5a), with ~4% or less 281 

dropped by the other QC modules. Thus, better segmentation would in principle have allowed ~93% of the data 282 

to be retained. Using HDBSCAN in CyLinter’s clustering module, we identified 78 clusters (Fig. 5b), 56 more 283 

than pre-QC data (Fig. 2a). Silhouette scores were predominantly positive, suggesting effective clustering (Fig. 284 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2024. ; https://doi.org/10.1101/2023.11.01.565120doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565120
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                 An Interactive Quality Control Tool for Highly Multiplex Microscopy 

 11 

5c). Agglomerative hierarchical clustering yielded six meta-clusters with marker expression patterns 285 

corresponding to populations of tumor cells (meta-cluster A; Fig. 5d), stromal cells (B), memory T cells (C), 286 

macrophages (D), B cells (E), and effector T cells (F). Using the curateThumbnails module, we confirmed that 287 

all 78 clusters were largely free of visual artefacts (Fig. 5e-g and Online Supplementary Fig. 6). The increase 288 

in the number of clusters in the post-QC CRC embedding appeared to be due to the removal of pre-QC outliers 289 

that constrained the remainder of cells to a relatively narrow region of UMAP feature space. For example, by 290 

coloring the pre-QC embedding by post-QC CRC clusters, we found that pre-QC cluster 6 (Fig. 2a-d) 291 

consisted of nine different cell populations in the post-QC embedding (Fig. 5h-j). These included vimentin+ 292 

mesenchymal cells (post-QC cluster 9), memory CD8+ T cells (post-QC cluster 51), and collagen IV+ stromal 293 

cells (post-QC cluster 54). Similar analyses performed on Dataset 6 (CODEX) showed comparable 294 

improvements in the post-QC UMAP embedding, HDBSCAN clustering, and associated heatmap of cluster 295 

protein expression profiles (Extended Data Fig. 5b-h and Online Supplementary Fig. 7). We conclude that 296 

post-QC clusters represent bona fide cell states that are better distributed across biologically meaningful 297 

regions of the UMAP embedding.  298 

Despite improvements in post-QC clustering of Dataset 2 (CRC), visual inspection of the clustered 299 

heatmap (Fig. 5d) continued to reveal cells with unexpected marker expression patterns. For example, post-QC 300 

cluster 13 contained cells with epithelial markers such as Keratin and ECAD and T cell markers such as CD3, 301 

CD45RO, CD45, and CD8α (Fig. 5k). There is no known cell type that expresses this marker combination. 302 

Visual inspection showed that cluster 13 consisted of CD8+ T cells surrounded by keratin positive tumor cells 303 

(Fig. 5l). Because segmentation is not perfect, pixels from CD8+ T cells were incorrectly assigned to 304 

neighboring epithelial cells and vice versa, a phenomenon known as spatial crosstalk (or lateral spillover)41. 305 

Tools such as REDSEA41 attempt to address this problem, but instances of crosstalk must currently be 306 

identified in post-QC data through inspection of heatmaps and cell image galleries.  307 

 In the case of Dataset 1 (TOPACIO), CyLinter removed 84% of cells, with most (~53%) removed 308 

during positive ROI selection (Fig. 6a). Bright outliers primarily attributed to antibody aggregates (~14% of 309 

cells), cell detachment with increasing cycle number (12%), segmentation errors (4%), and dim/over-saturated 310 

nuclei (1%) were also common in this dataset. Cells redacted by CyLinter for both the CRC and TOPACIO 311 

datasets exhibited no discernable pattern in spatial location (Extended Data Fig. 6a,b) and data redacted from 312 

the TOPACIO specimens was not biased with respect to biopsy type (one-way ANOVA, F = 1.93, p = 0.17) or 313 

treatment response (F = 0.71, p = 0.50). Overall, the post-QC TOPACIO dataset comprised 43 clusters among 314 

~3.0x106 cells (Fig. 6b). Silhouette analysis revealed positive scores for all clusters except 42 which 315 

represented the majority of tumor cells in these specimens (Fig. 6c). We found that tumor cell populations 316 

tended to cluster by patient, whereas immune cell populations tended to be more heterogenous with respect to 317 
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patient ID (Extended Data Fig. 6c). Agglomerative hierarchical clustering based on mean marker intensities 318 

yielded four meta-clusters corresponding to stromal (meta-cluster A; Fig. 6d), tumor (B), lymphoid (C), and 319 

myeloid (D) cells. CyLinter’s curateThumbnails module revealed that most cells had a high degree of 320 

concordance in morphology and marker expression and were consistent with known cell types (Fig. 6e-i and 321 

Online Supplementary Fig. 8). For example, post-QC TOPACIO cluster 0 corresponded to cells with small, 322 

round, nuclei with intense plasma membrane staining for CD4 and nuclear staining for FOXP3, consistent with 323 

T regulatory cells (Tregs, Fig. 6e), cells in cluster 21 were high in panCK and γH2AX, indicative of breast 324 

cancer cells containing DNA damage (Fig. 6g), and cells in cluster 35 were conventional CD4+ helper T cells 325 

adjacent to panCK+ tumor cells (captured as a manifestation of spatial crosstalk; Fig. 6h). Like in Dataset 2 326 

(CRC), by coloring the post-QC embedding by pre-QC cluster labels, we found that many pre-QC clusters 327 

were composed of different post-QC cell types (Fig. 6j). For example, pre-QC cluster 404 consisted of CD8+ T 328 

cells (which mapped to post-QC cluster 5), CD4+ T cells (post-QC cluster 10), αSMA+ stromal cells (post-QC 329 

cluster 24), and CD68+ macrophages (post-QC cluster 39). Thus, imaging artefacts in the TOPACIO data not 330 

only resulted in an unrealistically large number of clusters, but these clusters still contained mixed cell types. 331 

 332 

DISCUSSION 333 

In this paper we show that artefacts commonly present in highly multiplexed tissue images have a 334 

dramatic impact on single-cell analysis. These artefacts can be broadly subdivided into: (i) those intrinsic to the 335 

specimen itself such as tissue folds and hair or lint, (ii) those arising during staining and image acquisition such 336 

as antibody aggregates, and (iii) those arising during image-processing such as cell segmentation errors. The 337 

first class is unavoidable and does not usually interfere with visual review by human experts. The second and 338 

third classes can be minimized but not fully eliminated by good experimental practices. However, even 339 

relatively infrequent artefacts as in datasets 2 (CyCIF) and 6 (CODEX) can strongly impact clustering and 340 

other types of single cell analysis. Archival specimens stored in paraffin blocks or mounted on slides years 341 

prior to imaging and are even more problematic insofar as artefacts are common and only one slide may be 342 

available for each specimen; unfortunately, this is not unusual in correlative studies of completed clinical trials.  343 

The presence of cells affected by imaging artefacts has complex effects on clustering algorithms used to 344 

identify cell types and states. It can generate large numbers of spurious clusters but also cause these clusters to 345 

contain cells of multiple types. Removing the problematic cells using CyLinter solves this problem. When data 346 

are removed, there is always concern that findings will be biased. CyLinter addresses this in several ways, 347 

including by visual review of filtered cells against the image itself, performing meta-analysis of redacted 348 

features (metaQC), performing specimen subgroup analysis, and by generating a QC report for each specimen 349 

or set of specimens; the latter should ideally be included with all datasets. Similar issues arise with single cell 350 
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sequencing, although much of the problem occurs during tissue dissociation, microfluidic or flow cytometry 351 

sorting, and library preparation42,43. An advantage of tissue imaging is that redacted data can be inspected in the 352 

context of the original image to identify patterns indicative of selection bias.  353 

 Quality control is recognized as a critical step in the acquisition of scRNA-Seq data and a robust 354 

ecosystem of QC tools has therefore been developed42,44. In contrast, CyLinter is among the first tools for QC 355 

of highly multiplexed tissue images. CyLinter is designed to accelerate and systematize human visual review, 356 

making it compatible with a wide range of tissue types. Efficiency is increased through automated ROI 357 

curation, smart thresholding using GMMs, and use of multi-specimen dataframes. We found that even the 358 

badly affected set of 25 specimens representing the TOPACIO dataset took a single reviewer less than a week 359 

to clean, which compares favorably with several weeks needed collect the data and several months or more to 360 

perform detailed spatial analysis. More automated approaches would nonetheless be valuable, and in 361 

Supplementary Note 2 we describe a proof-of-concept DL model for artefact identification. The area under 362 

the receiver operator curve (ROC) of ~0.73 shows that the approach is feasible, but that performance is not yet 363 

adequate for general use. It seems highly likely that this reflects insufficient and insufficiently diverse training 364 

data. CyLinter is the ideal way to generate this training data and we have therefore created a public artefact 365 

repository linked to the CyLinter website to collect data that can be used for progressive improvement of our 366 

DL model or models developed by others. 367 

Microscopy is traditionally a visual field and our experience with over 1,000 whole-slide high-plex 368 

images from dozens of tissue and tumor types has demonstrated that spatial feature tables generated using 369 

existing algorithms not only contain errors and omissions, but they also poorly represent much of the 370 

morphological information in images. This emphasizes the necessity of visual review: any hypothesis 371 

generated through analysis of data in a spatial feature table must be confirmed through inspection of the 372 

underlying images. At the same time, visual review must be backed up by objective methods that detect and 373 

correct for human errors and biases. The QC tools in CyLinter achieve this combination of human review and 374 

algorithmic backup and represent one key step in making single cell analysis of high-plex spatial profiles more 375 

interpretable and reproducible.    376 
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Supplementary Note 1: Impact of image background subtraction on derived single-cell data. 377 

Background subtraction is commonly used with multiplexed imaging to remove autofluorescence and 378 

fluorescence arising from non-specific antibody binding to the specimen. However, we identified a number of 379 

challenges associated with this approach. For example, plotting histograms of the distribution of per-cell signal 380 

intensities channel in the pre-QC TOPACIO dataset revealed small numbers of cells with zero-valued signal 381 

intensities in all channels (Supplementary Fig. 2a). We reasoned that this effect was due to rolling ball image 382 

background subtraction45 which was used to increase antibody signal-to-noise, but which had the unanticipated 383 

consequence of creating cells with signal intensities equal to zero that, after log-transformation, were far lower 384 

than values associated with other cells in the image. This effect was readily observed when the UMAP 385 

embedding was colored by channel signal intensity, as it revealed small clusters of extremely dim cells among 386 

much larger numbers of clusters whose signals were comparatively bright (Supplementary Fig. 2b,c). Using 387 

the panCK channel to better understand how cells with low signal intensities impacted the TOPACIO 388 

clustering result, we found that clusters within meta-cluster B (e.g., cluster 14) were exclusively composed of 389 

cells with zero-valued signals, while those in meta-cluster C (e.g., cluster 174) had signals that were all > 0, 390 

and those in meta-cluster F (e.g., cluster 197) were comprised of a mixture of cells with zero and non-zero 391 

signals (Supplementary Fig. 2d). The simple removal of cells with zero-value signal intensities from the pre-392 

QC TOPACIO dataset (with no other quality control measures) eliminated small dark clusters characterized by 393 

very low signal intensities and significantly increased the resolution between immunopositive and 394 

immunonegative cell populations as seen in both the channel intensity histograms (Supplementary Fig. 2e) 395 

and UMAP embeddings colored by channel (Supplementary Fig. 2f). Resolution between positive and 396 

negative cells was further improved in the post-QC TOPACIO clustering after the removal of cells with near-397 

zero signal intensities in addition to other artefacts (Supplementary Fig. 2g,h). This was also true of Dataset 6 398 

(CODEX; Supplementary Fig. 2i,j). Thus, while background subtraction is useful for improving data quality, 399 

especially for low signal-to-noise antibodies, our analysis shows that it can skew the natural distribution of 400 

protein signals in an image and have a profound effect on the interpretation of single-cell data due to the 401 

spurious formation of irrelevant cell clusters. When using background subtraction, it is important to control for 402 

these problems.  403 
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Supplementary Note 2: Developing a DL model for automated artefact detection. 404 

Although tools based on visual review are common in microscopy, there are obvious benefits to 405 

machine learning approaches46–49. To generate initial training data for a DL model to automatically flag 406 

arbitrary artefacts in multiplex IF images, three human annotators assembled ground truth artefact masks for 24 407 

CyCIF channels in 11 serial tissue sections of the CRC dataset analyzed in this study (Dataset 2, 408 

Supplementary Fig. 1b). Single channel images (and their corresponding ground truth artefact masks) were 409 

cropped into 2048x2048-pixel image tiles. After class balancing, a total of 3,787 tiles were split 9:1 into 410 

training (3,409) and validation (378) sets. Tissue images differed with respect to the channels that were 411 

affected by artefacts (Supplementary Fig. 3a). The number of tiles containing artefacts also differed between 412 

images, ranging from as many as 463 tiles in image 59 to as few as 129 in image 64 (Supplementary Fig. 3b). 413 

Of the 3,787 total tiles, 1,734 contained pixels annotated as artefacts. Across all tiles, the average percentage of 414 

pixels affected by artefacts was ~6.7% (Supplementary Fig. 1c). 415 

Our DL model comprised a pretrained ResNet34 encoder50 coupled to a Feature Pyramid Network 416 

(FPN)51 decoder (ResNet-FPN). The input of the model were image tiles and its output was predicted binary 417 

artefact masks. To assess the technical reproducibility of artefact predictions, three independent ResNet-FPN 418 

models were trained to convergence starting from FPN network weights initialized using different random 419 

seeds. Validation loss (measured via Dice similarity coefficient) ranged from 0.426 to 0.459 (mean = 0.444). 420 

To determine the ability of the trained models to generalize across different marker channels, testing was 421 

performed on channel 29 of tissue section 54 (Supplementary Fig. 3d), which contained artefacts not found in 422 

other sections or channels (Supplementary Fig. 3a). Performance was assessed by precision-recall (PR) and 423 

receiver operating characteristic (ROC) curve analysis. Average precision (AP) ranged from 0.30 to 0.33 for 424 

the three models (Supplementary Fig. 3e) and area under the ROC curve (AUC) ranged between 0.71 and 425 

0.75 (Supplementary Fig. 3f). This demonstrates that the assembly of a DL model for artefact detection in 426 

high-plex tissue images is feasible. However, we judge the overall level of performance relative to human 427 

reviewers to be inadequate and we strongly suspect that this is due to insufficient training data. CyLinter is 428 

nevertheless an ideal way to generate additional training data. Thus, we have established a deposition site at the 429 

Synapse data repository (Sage Bionetworks, https://www.synapse.org/#!Synapse:syn24193163/wiki/624232) 430 

for collecting CyLinter-curated image artefacts. We anticipate that further training of our ResNet-FPN model 431 

on this corpus of collected artefacts will ultimately yield a highly-performant model for integration into future 432 

iterations of the CyLinter workflow.  433 
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FIGURES/LEGENDS 434 

 435 
Supplementary Fig. 1 | Overview of the seven multiplex IF datasets analyzed in this study.  436 

a, Dataset 1 (TOPACIO, CyCIF): 25 human TNBC clinical trial specimens (~6-353 mm2). Numbers in upper 437 

left of each panel indicate specimen number. Channels shown are Hoechst (gray), 53BP1 (green), panCK (red), 438 

and αSMA (blue). b, Dataset 2 (CRC, CyCIF): an ~172 mm2 whole-slide section of primary human colorectal 439 

adenocarcinoma. Channels shown are Hoechst (gray), αSMA (red), CD45 (orange), ECAD (blue), and PCNA 440 

(green). c, Dataset 3 (EMIT TMA22, CyCIF): 123 healthy and diseased human tissue cores each ~2 mm2 441 

arranged on a single microscope slide. Channels shown are Hoechst (gray), panCK (blue), CD45 (red), αSMA 442 

(purple), and CD32 (green). d, Dataset 4 (HNSCC, CODEX): two ~42 mm2 whole-slide sections of human 443 

HNSCC. Channels shown are DAPI (gray), CD8 (green), panCK (red), vimentin (blue), and CD20 (orange). e, 444 

Dataset 5 (Tonsil, mIHC): an ~92 mm2 whole-slide section of normal human tonsil. Channels shown are 445 

Hoechst (gray), CD3 (red), CD20 (green), panCK (blue). f, Dataset 6 (Large intestine, CODEX, specimen 1): 446 

an ~7 mm2 whole-slide section of normal human large intestine from a 78-year-old African American male. 447 

Channels shown are Hoechst (gray), CD31 (orange), CD49f (blue), CD45 (red), CD49a (green). g, Dataset 7 448 
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(Large intestine, CODEX, specimen 2): an ~12 mm2 whole-slide section of normal human large intestine from 449 

a 24-year-old white male. Channels shown are Hoechst (gray), Vimentin (red), ITLN1 (blue), CD38 (orange), 450 

αSMA (green), Cytokeratin (purple). Markers to the right of each dataset indicate the full marker set captured 451 

in the corresponding image(s). See Supplementary Table 1 for specimen identifiers and data access 452 

information.  453 
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454 
Fig. 1 | Recurring artefacts in whole slide immunofluorescence images of tissue and their effects on 455 

tissue-derived single-cell data. a, Top: Field of view from Dataset 6 (large intestine, CODEX, specimen 1) 456 

with a tissue fold (ROI, dashed white outline) as viewed in channels SOX9 (colormap) and Hoechst (gray). 457 

Bottom: UMAP embedding of 57-channel single-cell data from the image above colored by SOX9 intensity 458 

(top left), cells contained fall within the ROI (top right), and HDBSCAN cluster (bottom center). Cluster 1 cells 459 

(labeled) are those affected by the tissue fold and form a discrete cluster in UMAP space. b, Clustered heatmap 460 
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showing channel z-scores for HDBSCAN clusters from panel (a) demonstrating that cluster 1 cells (those 461 

affected by the tissue fold) are artificially bright for all channels presumably due to a combination of tissue 462 

overlap and insufficient antibody washing. c, Left: Antibody aggregate in the CD63 channel (colormap) of 463 

Dataset 3 (EMIT TMA, core 68, normal tonsil). Hoechst (gray), Ki67 (red), CD32 (green), αSMA (orange), 464 

and panCK (blue) are shown for context. Right: UMAP embedding of 20-channel single-cell data from the 465 

image shown at left colored by CD63 intensity (top) and whether cells fall within the ROI (bottom). d, 466 

Autofluorescent fiber in Dataset 1 (TOPACIO, specimen 128) as seen in channels 53BP1 (green) and Hoechst 467 

(gray). e, Necrosis in a region of tissue from Dataset 1 (TOPACIO, specimen 39) as seen in the CD3 channel 468 

(green). f, Coverslip air bubbles (green asterisks) in Dataset 1 (TOPACIO, specimen 48) as seen in the Hoechst 469 

channel (gray). g, Out-of-focus region of tissue in Dataset 1 (TOPACIO, specimen 55) as seen in the Hoechst 470 

channel (gray). h, Uneven tile illumination in Dataset 4 (HNSCC, CODEX, section 1) as seen in an empty Cy5 471 

channel (green); Hoechst (gray) shown for tissue context. The standard deviation among per-tile median signal 472 

intensities was 19.9 arbitrary fluorescence units (AFU), 27.6% of the range (134-206 AFU). i, Bottom: 473 

Illumination aberration in the pCREB channel (colormap) of Dataset 3 (EMIT TMA, core 95, dedifferentiated 474 

liposarcoma) with nuclear segmentation outlines (translucent contours) shown for reference. Top: Line plot 475 

demonstrating that artificial pCREB signals of single cells affected by the aberration reach an order of 476 

magnitude above background. j, Top: Field of view from Dataset 7 (large intestine, CODEX, specimen 2) 477 

showing five illumination aberrations (ROIs, dashed white outlines) as viewed in channels CD3 (colormap) and 478 

Hoechst (gray). Bottom: UMAP embedding of 52-channel single-cell data from the image above colored by 479 

CD3 intensity (left) and whether the cells fall within one of the five different ROIs (right). k, Tile stitching 480 

errors in Dataset 5 (mIHC, normal human tonsil) as seen in the PD1 (green) channel. l, Cross-cycle image 481 

registration error in Dataset 3 (EMIT TMA, core 64, leiomyosarcoma) as demonstrated by the superimposition 482 

of cycle 1 Hoechst signal (gray) and cycle 9 pCREB signal (green). m, Cross-cycle tissue movement in Dataset 483 

1 (TOPACIO, specimen 80) as demonstrated by the superimposition of Hoechst signals from three different 484 

imaging cycles: 1 (red), 2 (green), 3 (blue). n, Progressive tissue loss in Dataset 3 (EMIT TMA, core 1, normal 485 

kidney cortex) across 10 imaging cycles as observed in the Hoechst channel (gray) where overt tissue loss can 486 

be seen by cycle 8. o, UMAP embedding of cells from Dataset 3 (EMIT TMA, core 1, normal kidney cortex) 487 

colored by whether cells remained stable (gray data points) or became detached (blue data points) over the 488 

course of imaging demonstrating that unstable cells form discrete clusters in UMAP space.  489 
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 490 
Extended Data Fig. 1 | Recurring artefacts in whole slide immunofluorescence images of tissue and their 491 

effects on tissue-derived single-cell data. a, Left: Field of view from Dataset 1 (TOPACIO, specimen 110) 492 

showing a tissue fold (ROI, dashed white outline) as viewed in channels PDL1 (colormap) and Hoechst (gray). 493 

Right: UMAP embedding of 19-channel single-cell data from the image at left colored by PDL1 intensity (top 494 

left), cells contained within the ROI (bottom left), and HDBSCAN cluster (center right). Cells in cluster 5 495 

(labeled) are those affected by the tissue fold and form of a discrete cluster in UMAP space.  496 
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b, Clustered heatmap showing channel z-scores for HDBSCAN clusters from panel (a) demonstrating that 497 

cluster 5 cells (those affected by the tissue fold) are artificially bright for all channels presumably due to a 498 

combination of tissue overlap and insufficient antibody washing. c, Left: Field of view from Dataset 2 (CRC) 499 

showing two illumination aberrations (ROIs, dashed white outlines) as viewed in channels CD163 (colormap) 500 

and Hoechst (gray). Right: UMAP embedding of 21-channel single-cell data from the image at left colored by 501 

CD163 intensity (left) and whether the cells fall within one of the two ROIs (right). d, UMAP embedding of 502 

the 52-channel single-cell data shown in Fig. 1j (Dataset 7, large intestine, CODEX) after cells affected by the 503 

five illumination aberrations have been removed. Three groups of cells bright for CD3 remain (groups 1-3). 504 

Image galleries at right show 4 examples of each cell type in representative channels: group 1 = CD8+ T cells, 505 

group 2 = CD4+ T cells, group 3 = undefined cells immunoreactive to all 52 channels (not due to microscopy 506 

artefacts). e, Clustered heatmap showing channel z-scores for HDBSCAN clusters from panel (d) 507 

demonstrating that group 3 cells are bright for all 52 channels despite not being affected by microscopy 508 

artefacts. 509 
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 510 
Fig. 2 | Evaluation of pre-QC cell clustering results from Dataset 2 (CRC). a, UMAP embedding of CRC 511 

data showing ~9.8x105 cells colored by HDBSCAN cluster (numbered 0-21). Black scatter points represent 512 

unclustered (ambiguous) cells. b, Silhouette scores for CRC clusters shown in panel (a). Clusters 6, 15, 17, and 513 

21 exhibit cells with negative silhouette scores indicative of under-clustering. c, Clustered heatmap for CRC 514 

data showing mean signals of clustering cells normalized across clusters (row-wise). Four (4) meta-clusters 515 

defined by the heatmap dendrogram are highlighted. d, Cluster 6 cells (yellow dots) in a region of the CRC 516 

image demonstrating the co-clustering of distinct populations of B cells (CD20, blue), memory T cells 517 

(CD45RO, red), and stromal cells (desmin, green); Hoechst (gray) shown for reference. e, Anti-desmin 518 

antibody aggregates (red) in a region of the CRC image. Yellow dots highlight cluster 9 cells which have 519 

formed due to this artefact; Hoechst (gray) shown for reference. f, Anti-vimentin antibody aggregates (red) in a 520 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2024. ; https://doi.org/10.1101/2023.11.01.565120doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565120
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                 An Interactive Quality Control Tool for Highly Multiplex Microscopy 

 23 

region of the CRC image. Yellow dots highlight cluster 11 cells that have formed due to this artefact; Hoechst 521 

(gray) shown for reference.  g, Autofluorescent fiber in a region of the CRC image as seen in channels PD1 522 

(magenta) and PD-L1 (green). Yellow dots highlight cluster 9 cells which have formed due to this artefact; 523 

Hoechst (gray) shown for reference. h, Cell loss in a region of the CRC image as indicated by anucleate 524 

segmentation outlines (green). Yellow dots highlight cluster 14 cells which have formed due to this artefact; 525 

Hoechst (gray) shown for reference. i, Contaminating (non-colonic) tissue at the top of the CRC image 526 

immunoreactive to anti-vimentin antibodies (cyan) comprising CRC cluster 10 (yellow dots); Hoechst (gray) 527 

shown for reference. j, Region of tissue at the bottom-left of the CRC image unexposed to antibodies during 528 

imaging cycle 3 which led to the formation of CRC clusters 2, 8, and 19; channels CD3 (colormap) and 529 

Hoechst (gray) shown for reference. k-m, Top three most highly expressed markers (1: green, 2: red, 3: blue) 530 

for clusters 0 (keratinocytes, k), 1 (crypt-forming mucosal epithelial cells, l), and 3 (memory helper T cells, m). 531 

A single white pixel at the center of each image patch highlights the reference cell. Nuclear segmentation 532 

outlines (translucent white outlines) and Hoechst (gray) shown for reference. n, Density histograms showing 533 

the distribution of cluster 3 cells according to channels CD4 (green outline), CD45 (red outline), and CD45RO 534 

(blue outline) superimposed on distributions of total cells according to the same channels (gray outlines). 535 

Rugplots at the bottom of each histogram show where 25 members of cluster 3 shown in panel (m) and 536 

Extended Data Fig. 2h reside in each distribution. o, Cluster 3 cells shown in panel (m) and Extended Data 537 

Fig. 2h after signal intensity cutoffs have been adjusted per image to improve the homogeneity of their 538 

appearance. 539 
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 540 
Extended Data Fig. 2 | Evaluation of pre-QC cell clustering results from Dataset 6 (large intestine, 541 

CODEX) and Dataset 2 (CRC, CyCIF). a, UMAP embedding of Dataset 6 showing ~3.8x104 cells colored 542 
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by HDBSCAN cluster (numbered 0-31). Black scatter points represent unclustered cells (10.5% of cells). b, 543 

Silhouette scores for CODEX clusters shown in panel (a). Cluster 29 exhibits cells with negative silhouette 544 

scores indicative of under-clustering. c, Clustered heatmap of clusters from Dataset 6 showing mean signal 545 

intensities of clustering cells normalized across clusters (row-wise). d, Correlated, non-specific signals in a 546 

region of Dataset 6 as seen in channels MUC6 (red), CD154 (green), and NKG2D (blue). Yellow dots highlight 547 

cluster 0 cells which have formed due to this artefact; Hoechst (gray) shown for reference. e, Tissue fold in a 548 

region of Dataset 6 as seen in channels GATA3 (red), CD68 (green), and CD66 (blue). Yellow dots highlight 549 

cluster 9 cells which have formed due to this artefact; Hoechst (gray) shown for reference. f, Image blur in a 550 

region of Dataset 6 as seen in channels HLADR (red), CD206 (green), and CD38 (blue). Yellow dots highlight 551 

cluster 13 cells which have formed due to this artefact; Hoechst (DNA, gray) shown for reference. g, Location 552 

of CRC cluster 3 cells shown in panel (g) revealing no regional bias in the distribution of cells. h, Top three 553 

most highly expressed markers (1: green, 2: red, 3: blue) for the 25 members of CRC cluster 3 (memory helper 554 

T) cells represented by the rugplots of Fig. 2n. White asterisks highlight cells shown in enlarged format in Fig. 555 

2m. A single white pixel at the center of each image patch highlights the reference cell. Nuclear segmentation 556 

outlines (translucent white outlines) and Hoechst (gray) shown for reference. i, Regression plots showing 557 

correlation (two-sided, Pearson R, p < 0.05) among CD4, CD45, and CD45RO marker expression by 1.9x103 558 

CRC cluster 3 cells. j, CRC cluster 3 cells shown in panel (h) after signal intensity cutoffs have been adjusted 559 

per image to improve the homogeneity of their appearance. White asterisks highlight cells shown in enlarged 560 

format in (Fig. 2o).  k, CRC cluster 3 cells shown in panels (h) and (j) with channels shown separately for 561 

clarity: Hoechst (gray), CD4 (green), CD45 (red), CD45RO (blue). Top panels show cells before contrast 562 

adjustment (panel h), bottom panels show cells after contrast adjustment (panel j). l, Top three most highly 563 

expressed markers (1: green, 2: red, 3: blue) for 25 CRC cluster 7 (Treg) cells. A single white pixel at the 564 

center of each image patch highlights the reference cell. Nuclear segmentation outlines (translucent white 565 

outlines); Hoechst (gray) shown for reference. m, Regression plots showing strong correlation (two-sided, 566 

Pearson R, p < 0.05) among CD4, CD45, and CD45RO marker expression of 1.9x103 CRC cluster 7 cells. n, 567 

Regression plots showing weak correlation (two-sided, Pearson R, p < 0.05) between FOXP3 and CD4, CD45, 568 

and CD45RO marker expression of 1.9x103 CRC cluster 7 cells. 569 
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 570 
Fig. 3 | Evaluation of pre-QC cell clustering results from Dataset 1 (TOPACIO). a, UMAP embedding of 571 

~3x106 cells from the TOPACIO dataset colored by HDBSCAN cluster. Black scatter points represent 572 
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unclustered (ambiguous) cells. b, Silhouette scores for TOPACIO clusters shown in panel (a). c, Line plot 573 

showing cell counts per TOPACIO cluster. Clusters with cell counts below the horizonal dashed red line are 574 

those with fewer than 3K cells which are highlighted in the TOPACIO embedding (inset) by red scatter points 575 

at their relative positions. d, Clustered heatmap of clusters from TOPACIO data showing mean signal 576 

intensities of clustering cells normalized across clusters (row-wise). Six (6) meta-clusters defined by the 577 

heatmap dendrogram at the left are highlighted. e, TOPACIO embedding colored by meta-clusters shown in 578 

panel (d). f-h, Top three most highly expressed markers (1: green, 2: red, 3: blue) for TOPACIO clusters 4 (f), 579 

174 (g), and 197 (h) which were all severely affected by dataset noise. A single white pixel at the center of 580 

each image highlights the reference cell. Nuclear segmentation outlines (translucent white outlines) and 581 

Hoechst (gray) are shown for reference. i, Bar chart showing the average percentage of image tiles affected by 582 

a visual artefact across the 25 TOPACIO specimens; marker identities at left denote the affected channel. j, 583 

Stacked bar chart showing the cumulative percentage of channel-specific image tiles per TOPACIO specimen 584 

affected by miscellaneous visual artefacts. Because these artefacts can impact multiple channels at the same 585 

time, cumulative percentages can be higher than 100%. Inset shows an example illumination aberration in the 586 

CD163 channel of TOPACIO specimen 73. Categories for tissue biopsy method and patient treatment response 587 

are indicated below each bar. Artefacts were found to be less abundant in tissue resections as compared to fine-588 

needle and punch-needle biopsies as determined by one-way ANOVA followed by pairwise Tukey's HSD (F = 589 

10.27, p = 0.0007; fine-needle vs. resection mean difference = 204.83, p-adj = 0.0145; resection vs. punch-590 

needle mean difference = -283.0, p-adj: 0.0029).  591 
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 592 
Extended Data Fig. 3 | Evaluation of pre-QC cell clustering results from Dataset 1 (TOPACIO). a, Spatial 593 

distribution of unclustered (ambiguous) cells (green dots) from the pre-QC TOPACIO embedding shown in 594 
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Fig. 3a as represented by specimen 55, which exhibits no discernable spatial pattern of sampling bias; Hoechst 595 

(gray) shown for reference. b, Stacked bar charts showing the relative contribution of each patient specimen to 596 

each cluster. c, TOPACIO specimen 55 at low (left) and high (right) magnification showing Hoechst signals for 597 

the first three imaging cycles: cycles 1 (green), 2 (red), and 3 (blue) have been superimposed to demonstrate a 598 

cross-cycle image alignment problem at the bottom of this specimen. Small white box at the bottom-right of the 599 

low magnification image shows the location of the higher magnification image. White dots in the high 600 

magnification image highlight TOPACIO cluster 15 cells which have formed due to this image alignment 601 

artefact.   602 
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 603 
Fig. 4 | Identifying and removing noisy single-cell data points with CyLinter. a, Schematic representation 604 

of the CyLinter workflow. Modules are colored by type: data filtration (red), metaQC (green), cell 605 

clustering/visualization (blue). b-e, CyLinter input: b, Multiplex image file, c, Cell ID mask, d, Cell 606 

segmentation outlines, e, Single-cell feature table. f, Negative ROI selection in CyLinter. Dataset 2 (CRC) is 607 

shown with ROIs (yellow outlines) applied to various artefacts in the CD163 channel which will be dropped 608 
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from subsequent analysis. g, Positive ROI selection in CyLinter. Dataset 1 (TOPACIO, specimen 152) is 609 

shown with ROIs (yellow outlines) applied to regions devoid of artefacts in the FOXP3 channel which will be 610 

retained for further analysis. h, Filtering dim nuclei. Top: Density histogram of mean Hoechst signal for cells 611 

in Dataset 3 (EMIT TMA, core 12, non-neoplastic lung). Bottom: Hoechst (colormap) in a region of the same 612 

core demonstrating dim nuclei (green dots) falling to the left of the red gate in the corresponding histogram. 613 

Nuclear segmentation outlines are shown for reference (translucent outlines). i, Filtering bright nuclei. Top: 614 

Density histogram of mean Hoechst signal for Dataset 1(TOPACIO, specimen 110). Bottom: Hoechst 615 

(colormap) in a region of the same specimen demonstrating bright nuclei (green dots) caused by tissue 616 

bunching that fall to the right of the gate in the corresponding histogram. Nuclear segmentation outlines are 617 

shown for reference (translucent outlines). j, Filtering over-segmented cells. Top: Density histogram of mean 618 

Hoechst signal for Dataset 2 (CRC). Bottom: Hoechst (colormap) in a region of the specimen demonstrating 619 

over-segmented cells (green dots) falling to the left of the red gate in the corresponding histogram. Nuclear 620 

segmentation outlines are shown for reference (translucent outlines). k, Filtering under-segmented cells. Top: 621 

Density histogram of mean Hoechst signal for Dataset 3 (EMIT TMA, core 84, non-neoplastic colon). Bottom: 622 

Hoechst (colormap) in a region of the specimen demonstrating under-segmented cells (green dots) falling to the 623 

right of the red gate in the corresponding histogram. Nuclear segmentation outlines are shown for reference 624 

(translucent outlines). l, Filtering unstable cells. Top: Density histogram of the log(ratio) between Hoechst 625 

signals from the first and last CyCIF imaging cycles for Dataset 3 (EMIT TMA, core 74, renal cell carcinoma). 626 

Bottom: Hoechst (last cycle, colormap) superimposed on Hoechst (first cycle, gray) in a region of the specimen 627 

demonstrating the selection of stable cells (green dots) falling to the left of the red gate in the corresponding 628 

histogram. Nuclear segmentation outlines are shown for reference (translucent outlines). Note: unlike panels 629 

(h-k) which highlight cells that will be excluded from an analysis, cells highlighted in this panel will be 630 

retained for further analysis. m, Filtering channel outliers. Top: Scatter plot showing CD3 (x-axis) vs. nuclear 631 

segmentation area (y-axis) of cells from Dataset 1 (TOPACIO, specimen 152) before (left) and after (right) 632 

outlier removal and signal rescaling (0-1). Bottom: CD3 (colormap) and Hoechst (gray) signals in a region of 633 

the same specimen with CD3+ cells (green dots) falling to the right of the red gate in the scatter plot in which 634 

outliers have been removed. Nuclear segmentation outlines are shown for reference (translucent outlines). 635 
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 636 
Extended Data Fig. 4 | Identifying and removing noisy single-cell data points with CyLinter. CyLinter 637 

workflow (see project website for implementation details: https://labsyspharm.github.io/cylinter/modules/). a, 638 

Aggregate data (automated): raw spatial feature tables for all specimens in a batch are merged into a single 639 
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Pandas (Python) dataframe. b, ROI selection (interactive or automated): multi-channel images are viewed to 640 

identify and gate on regions of tissue affected by microscopy artefacts (negative selection mode) or areas of 641 

tissue devoid of artefacts (positive selection mode. b1-b4, Demonstration of automated artefact detection in 642 

CyLinter: b1, CyLinter’s selectROIs module showing artefacts in the CDKN1A (green) channel of Dataset 3 643 

(EMIT TMA, core 18, mesothelioma). b2, Transformed version of the original CDKN1A image such that 644 

artefacts appear as large, bright regions relative to channel intensity variations associated with true signal of 645 

immunoreactive cells which are suppressed. b3, Local intensity maxima are identified in the transformed image 646 

and a flood fill algorithm is used to create a pixel-level binary mask indicating regions of tissue affected by 647 

artefacts. In this example, the method identifies three artefacts in the image: one fluorescence aberration at the 648 

top of the core, and two tissue folds at the bottom of the core. b4, CyLinter’s selectROIs module showing the 649 

binary artefact mask (translucent gray shapes) and their corresponding local maxima (red dots) defining each of 650 

the three artefacts. c, DNA intensity filter (interactive): histogram sliders are used to define lower and upper 651 

bounds on nuclear counterstain single intensity. Cells between cutoffs are visualized as scatter points at their 652 

spatial coordinates in the corresponding tissue for gate confirmation or refinement. d, Segmentation area filter 653 

(interactive): histogram sliders are used to define lower and upper bounds on cell segmentation area (pixel 654 

counts). Cells between cutoffs are visualized as scatter points at their spatial coordinates in the corresponding 655 

tissue for gate confirmation or refinement. e, Cross-cycle correlation filter (interactive): applicable to multi-656 

cycle experiments. Histogram sliders are used to define lower and upper bounds on the log-transformed ratio of 657 

DNA signals between the first and last imaging cycles. Cells between cutoffs are visualized as scatter points at 658 

their spatial coordinates in their corresponding tissues for gate confirmation or refinement. f, Log 659 

transformation (automated): single-cell data are log-transformed. g, Channel outliers filter (interactive): the 660 

distribution of cells according to antibody signal intensity is viewed for all specimens as a facet grid of scatter 661 

plots (or hexbin plots) against cell area (y-axes). Lower and upper percentile cutoffs are applied to remove 662 

outliers. Outliers are visualized as scatter points at their spatial coordinates in their corresponding tissues for 663 

gate confirmation or refinement. h, MetaQC (interactive): unsupervised clustering methods (UMAP or TSNE 664 

followed by HDBSCAN clustering) are used to correct for gating bias in prior data filtration modules by 665 

thresholding on the percent of each cluster composed of clean (maintained) or noisy (redacted) cells. i, 666 

Principal component analysis (PCA, automated): PCA is performed and Horn’s parallel analysis is used to 667 

determine the number of PCs associated with non-random variation in the dataset. j, Image contrast adjustment 668 

(interactive): channel contrast settings are optimized for visualization on reference tissues which are applied to 669 

all specimens in the cohort. k, Unsupervised clustering (interactive): UMAP (or TSNE) and HDBSCAN are 670 

used to identify unique cell states in a given cohort of tissues. Manual gating can also be performed to identify 671 

cell populations. l, Compute clustered heatmap (automated): clustered heatmap is generated showing channel z-672 
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scores for identified clusters (or gated populations). m, Compute frequency statistics (automated): pairwise t 673 

statistics on the frequency of each identified cluster or gated cell population between groups of tissues specified 674 

in CyLinter’s configuration file (cylinter_config.yml, e.g., treated vs. untreated, response vs. no response, etc.) 675 

are computed. n, Evaluate cluster membership (automated): cluster quality is checked by visualizing galleries 676 

of example cells drawn at random from each cluster identified in the clustering module (panel k).  677 
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 678 
Fig. 5 | Cleaning Dataset 2 (CRC) with CyLinter. a, Fraction of cells in Dataset 2 redacted by each QC filter 679 

in the CyLinter pipeline. Dropped ROIs = cells dropped by selectROIs module), Dim/over-saturated nuclei = 680 

cells dropped by dnaIntensity module, Segmentation errors = cells dropped by areaFilter module, Unstable 681 

cells = cells dropped by cycleCorrelation module, Channel outliers = cells dropped by pruneOutliers module, 682 

Artefact-free = cells remaining after QC. b, UMAP embedding of post-QC CRC data showing ~9.3x105 cells 683 

colored by HDBSCAN cluster. Black scatter points represent unclustered (ambiguous) cells. c, Silhouette 684 

scores for post-QC CRC clusters shown in panel (b), d, Clustered heatmap of post-QC CRC clusters showing 685 

mean signal intensities of clustered cells normalized across clusters (row-wise). Six (6) meta-clusters defined 686 
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by the clustered heatmap dendrogram at the left are highlighted. e-g, Top three most highly expressed markers 687 

(1: green, 2: red, 3: blue) for post-QC CRC clusters 42 (B cells, e), 52 (CD8+ T cells near blood vessels—688 

formed as a side effect of spatial crosstalk, f), and 74 (vascular endothelial cells, g). A single white pixel at the 689 

center of each image highlights the reference cell. Nuclear segmentation outlines (translucent outlines) and 690 

Hoechst (gray) shown for reference. h, Overlap between pre-QC CRC clusters (rows) and post-QC CRC 691 

clusters (columns) showing pre- and post-QC clusters have a one-to-many correspondence. i, Pre-QC CRC 692 

embedding showing the position of cluster 6 (red, inset) and its composition according to post-QC CRC 693 

clusters. j, Locations of cells in pre-QC cluster 6 colored by their post-QC cluster label showing that pre-QC 694 

cluster 6 is composed of cells occupying distinct regions throughout the muscularis propria of the CRC 695 

image—a non-cancerous, smooth muscle-rich region of tissue. k, Mean signal intensities for post-QC CRC 696 

cluster 13 cells. Black arrows point to bright channels consistent with both epithelial cells and CD8+ T cells. l, 697 

Post-QC CRC cluster 13 cells (white dots) shown in context of the CRC image demonstrating spatial crosstalk 698 

between keratin+ tumor cells (blue) and CD8+ T cells (orange). Nuclear segmentation outlines (translucent 699 

outlines) shown for reference. 700 
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 701 
Extended Data Fig. 5 | Over-segmentation in Dataset 2 (CRC, CyCIF) and Cleaning of Dataset 6 (large 702 

intestine, CODEX) with CyLinter. a, Gating of cells in the CRC image (Dataset 2) image according to 703 

nuclear segmentation area shows that this image contains several over-segmented nuclei (i.e., nuclei split into 704 

multiple segmentation objects). b, Fraction of cells in Dataset 6 (large intestine, CODEX, specimen 1) redacted 705 

by each QC filter in the CyLinter pipeline. Dropped ROIs = cells dropped by selectROIs module), Dim/over-706 

saturated nuclei = cells dropped by dnaIntensity module), Segmentation errors = cells dropped by areaFilter 707 

module, Unstable cells = cells dropped by cycleCorrelation module, Channel outliers = cells dropped by 708 
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pruneOutliers module, Artefact-free = cells remaining after QC. c, UMAP embedding of post-QC CODEX 709 

clusters showing ~3.1x104 cells colored by HDBSCAN cluster. Black scatter points represent unclustered cells 710 

(10.1% of cells). d, Silhouette scores for post-QC CODEX clusters shown in panel (c). e, Post-QC CODEX 711 

clustered heatmap showing mean signal intensities of clustering cells normalized across clusters (row-wise). 712 

Five (5) meta-clusters defined by the clustered heatmap dendrogram at the left are highlighted. f-h, Top three 713 

most highly expressed markers (1: green, 2: red, 3: blue) for clusters 0 (lymphatic endothelial cells, f), 15 (mast 714 

cells, g), and 17 (M2 macrophages, h). A single white pixel at the center of each image highlights the reference 715 

cell. Nuclear segmentation outlines (translucent outlines) and Hoechst (gray) shown for reference.  716 
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 717 
Fig. 6 | Cleaning Dataset 1 (TOPACIO) with CyLinter. a, Fraction of cells in the TOPACIO dataset 718 

redacted by each QC filter in the CyLinter pipeline. Dropped ROIs = cells dropped by selectROIs module, 719 

Dim/over-saturated nuclei = cells dropped by dnaIntensity module, Segmentation errors = cells dropped by 720 

areaFilter module, Unstable cells = cells dropped by cycleCorrelation module, Channel outliers = cells 721 

dropped by pruneOutliers module, Artefact-free = cells remaining after QC. b, UMAP embedding of 722 

TOPACIO data showing ~3.0x106 cells colored by HDBSCAN cluster. Black scatter points represent 723 

unclustered (ambiguous) cells. c, Silhouette scores for post-QC TOPACIO clusters shown in panel (b). Cluster 724 

42 is an under-clustered population. d, Clustered heatmap for clusters from post-QC TOPACIO data showing 725 

mean signal intensities of clustered cells normalized across clusters (row-wise). Four (4) meta-clusters defined 726 
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by the clustered heatmap dendrogram at the left are highlighted. e-i, Top three most highly expressed markers 727 

(1: green, 2: red, 3: blue) for clusters 0 (Tregs: phenotype 1, e), 17 (Tregs: phenotype 2, f), 21 (breast cancer 728 

cells with DNA damage, g), 35 (CD4+ T cells near breast cancer cells, h), and 42 (breast cancer cells without 729 

DNA damage, i). A single white pixel at the center of each image highlights the reference cell. Nuclear 730 

segmentation outlines (translucent outlines) and Hoechst (gray) shown for reference. j, Left: Pre-QC 731 

TOPACIO UMAP embedding (also shown in Fig. 3a) with the location of five clusters selected and 732 

highlighted at random. Right: Location of the cells from the four pre-QC clusters shown in the embedding at 733 

left in the context of the post-QC TOPACIO UMAP embedding (also shown in panel b) demonstrating that 734 

these pre-QC clusters actually consisted of different cell types. Image patches of cells representing post-QC 735 

clusters are shown at far right.  736 
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 737 
Extended data Fig. 6 | Location of cells redacted by CyLinter in Dataset 2 (CRC) and Dataset 1 738 

(TOPACIO) and Post-QC TOPACIO UMAP embedding colored by patient ID. a, Cells redacted by 739 

CyLinter from the Dataset 2 (CRC) demonstrating no discernable bias in the removal of cells from the image 740 

with the exception of those areas highlighted by the white arrows which were affected by focal artefacts and 741 

removed using CyLinter’s selectROIs module. b, Cells redacted by CyLinter from three arbitrary specimens 742 

from Dataset 1 (TOPACIO) demonstrating no discernable bias in the removal of cells from the images with the 743 

exception of those areas highlighted by the white arrows which were affected by focal artefacts and removed 744 

using CyLinter’s selectROIs module. c, UMAP embedding of post-QC TOPACIO data shown in (Fig. 6b) 745 

colored by specimen ID demonstrating patient-specific clustering in tumor cell populations, but not immune 746 

and stromal populations (refer to Fig. 6b,d,e-i and Online Supplementary Fig. 8 for cluster phenotype 747 

identities).   748 
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 749 
Supplementary Fig. 2 | Impact of image background subtraction on derived single-cell data. a, Ridge 750 

plots showing the distribution of cells according to channel signal intensities in the pre-QC TOPACIO dataset 751 
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showing the presence of zero-valued cells in each channel (vertical lines at far left). b, Channel colormaps 752 

applied to cells in the pre-QC TOPACIO embedding showing the presence of small, dark clusters 753 

corresponding to cells with at or near-zero signal intensities in the corresponding channel which by contrast 754 

makes all other cells appear bright for a given marker. c, PanCK channel from panel (b) enlarged to show 755 

detail. d, Histogram distribution of cells in the pre-QC TOPACIO dataset according to panCK signal. Rugplot 756 

plots (vertical ticks at bottom of histogram) show where randomly selected cells from cluster 14 (meta-cluster 757 

B, red), cluster 174 (meta-cluster C, blue), and cluster 197 (meta-cluster F, green) reside in the distribution. e, 758 

Ridge plots showing the distribution of cells according to channel signal intensities in the pre-QC TOPACIO 759 

dataset after the removal of zero-valued cells. f, Channel colormaps applied to cells in the pre-QC TOPACIO 760 

embedding after the removal of zero-valued cells showing that small, dark populations of cells are abrogated by 761 

the removal of zero-valued outliers. g, Ridge plots showing the distribution of cells according to channel signal 762 

intensities in the post-QC TOPACIO dataset allowing the natural distribution of signals to become apparent. h, 763 

Channel colormaps applied to cells in the post-QC TOPACIO embedding showing high contrast between 764 

populations of immunonegative and immunopositive cells for each marker. i, Channel colormaps applied to 765 

cells in the pre-QC CODEX embedding (Dataset 6) showing scant dim outliers (circles) which, in contrast, 766 

make other cells in the embedding appear bright for each marker. See Online Supplementary Fig. 9 for full 767 

set of marker channels. j, Channel colormaps applied to cells in the post-QC CODEX embedding showing high 768 

contrast between immunopositive and immunonegative cell populations cells after dim outliers have been 769 

removed. See Online Supplementary Fig. 10 for full set of marker channels. 770 
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 771 
Supplementary Fig. 3 | Developing a DL model for automated artefact detection tissue. a, Binary matrix 772 

showing the channels impacted by visual artefacts (e.g., illumination aberrations, slide debris, etc.) in 11 773 

sections of the same CRC specimen. b, Barchart showing the number of 2048x2048-pixel image tiles affected 774 

by artefacts per tissue section. c, Pie chart showing the percentage of image tiles used for model training and 775 

validation (inner percentages) containing different percentages of artefactual pixels (outer percentages). d, 776 

CRC tissue section 54, channel 29 was used for model testing. e, Precision-recall plot showing the average 777 

precision (AP) for three replicates of the ResNet-FPN model architecture whose FPN network was initialized 778 

with different model weights to evaluate technical reproducibility. f, Receiver operating characteristic (ROC) 779 
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curve showing the area under the curve (AUC) values for the same three replicates of the ResNet-FPN model 780 

shown in panel (e). g, Ground truth artefact mask (far left) and predicted artefact masks from the three replicate 781 

ResNet-FPN models.  782 
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Online Supplementary Fig. 1 | Example artefacts in Dataset 1 (TOPACIO) 783 

(https://www.synapse.org/#!Synapse:syn53781614).  a, Twelve (12) examples of tissue folds. b, Twelve (12) 784 

examples of slide debris. c, Four (4) examples of coverslip air bubbles. d, Twelve (12) examples of image blur. 785 

 786 

Online Supplementary Fig. 2 | Image galleries of clustering cells from pre-QC Dataset 2 (CRC) 787 

(https://www.synapse.org/#!Synapse:syn53781627).  Twenty (20) examples of cells from each of 22 clusters 788 

identified in the pre-QC CRC dataset showing the top three most highly expressed markers (1: green, 2: red, 3: 789 

blue) and Hoechst dye (gray). A single white pixel at the center of each image highlights the reference cell. 790 

Nuclear segmentation outlines are superimposed to show segmentation quality. 791 

 792 

Online Supplementary Fig. 3 | Image galleries of clustering cells from pre-QC Dataset 6 (CODEX) 793 

(https://www.synapse.org/#!Synapse:syn53781635).  Twenty (20) examples of cells from each of 32 clusters 794 

identified in the pre-QC CODEX dataset (normal large intestine, specimen 1) showing the top three highly 795 

expressed markers (1: green, 2: red, 3: blue) and Hoechst dye (gray). A single white pixel at the center of each 796 

image highlights the reference cell. Nuclear segmentation outlines are superimposed to show segmentation 797 

quality. 798 

 799 

Online Supplementary Fig. 4 | Image galleries of clustering cells from pre-QC Dataset 1 (TOPACIO) 800 

(https://www.synapse.org/#!Synapse:syn53782191). Twenty (20) examples of cells from each of 48 (of 492) 801 

clusters identified in the pre-QC TOPACIO dataset showing the top three most highly expressed markers (1: 802 

green, 2: red, 3: blue) and Hoechst dye (gray). A single white pixel at the center of each image highlights the 803 

reference cell. Nuclear segmentation outlines are superimposed to show segmentation quality.  804 

 805 

Online Supplementary Fig. 5 | Image tiles from Dataset 1 (TOPACIO) 806 

(https://www.synapse.org/#!Synapse:syn53779745).  Down-sampled, single-channel images from the 25 807 

TNBC tissue specimens analyzed in this study used to estimate the number of image tiles impacted by 808 

microscopy artefacts. Artefact counts table and patient metadata table are also provided. 809 

 810 

Online Supplementary Fig. 6 | Image galleries of clustered cells from post-QC Dataset 2 (CRC) 811 

(https://www.synapse.org/#!Synapse:syn53781719). Twenty (20) examples of cells from each of 78 clusters 812 

identified in the post-QC CRC dataset showing the top three most highly expressed markers (1: green, 2: red, 3: 813 

blue) and Hoechst dye (gray). A single white pixel at the center of each image highlights the reference cell. 814 

Nuclear segmentation outlines are superimposed to show segmentation quality. 815 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2024. ; https://doi.org/10.1101/2023.11.01.565120doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565120
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                 An Interactive Quality Control Tool for Highly Multiplex Microscopy 

 47 

 816 

Online Supplementary Fig. 7 | Image galleries of clustered cells from post-QC Dataset 6 (CODEX) 817 

(https://www.synapse.org/#!Synapse:syn53781730). Twenty (20) examples of cells from each of 28 clusters 818 

identified in the post-QC CODEX dataset showing the top three most highly expressed markers (1: green, 2: 819 

red, 3: blue) and Hoechst dye (gray). A single white pixel at the center of each image highlights the reference 820 

cell. Nuclear segmentation outlines are superimposed to show segmentation quality. 821 

 822 

Online Supplementary Fig. 8 | Image galleries of clustered cells from post-QC Dataset 1 (TOPACIO) 823 

(https://www.synapse.org/#!Synapse:syn53781892). Twenty (20) examples of cells from each of 43 clusters 824 

identified in the post-QC TOPACIO dataset showing the top three highly expressed markers (1: green, 2: red, 825 

3: blue) and Hoechst dye (gray). A single white pixel at the center of each image highlights the reference cell. 826 

Nuclear segmentation outlines are superimposed to show segmentation quality. 827 

 828 

Online Supplementary Fig. 9 | Channel colormaps applied to cells in the pre-QC Dataset 6 (CODEX) 829 

embedding (https://www.synapse.org/#!Synapse:syn53781812).  830 

 831 

Online Supplementary Fig. 10 | Channel colormaps applied to cells in the post-QC Dataset 6 (CODEX) 832 

embedding (https://www.synapse.org/#!Synapse:syn53781819).   833 
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METHODS 834 

Software Implementation  835 

CyLinter software is written in Python3, archived on the Anaconda package repository, versioned controlled on 836 

Git/GitHub (https://github.com/labsyspharm/cylinter), instantiated as a configurable Python Class object, and 837 

validated for Mac, PC, and Linux operating systems. The tool can be installed at the command line using the 838 

Anaconda package installer (see the CyLinter website: https://labsyspharm.github.io/cylinter/ for details) and is 839 

executed with the following command: cylinter configuration.yml, where configuration.yml is an experiment-840 

specific YAML configuration file. An optional --module flag can be passed before specifying the path to the 841 

configuration file to begin the pipeline at a specified module. More details on configuration settings can be 842 

found at the CyLinter website and GitHub repository (https://github.com/labsyspharm/cylinter52). The tool uses 843 

the Napari image viewer53 for image browsing and annotation tasks. The tool also uses numerical and image-844 

processing routines from multiple Python data science libraries, including pandas, numpy, matplotlib, seaborn, 845 

SciPy, scikit-learn, and scikit-image. OME-TIFF files are read using tifffile and processed into multi-resolution 846 

pyramids using a combination of Zarr and dask routines that allow for rapid panning and zooming of large 847 

(hundreds of GB) images. The CyLinter pipeline consists of multiple QC modules, each implemented as a 848 

Python function, that perform different visualization, data filtration, or analysis tasks. Several modules return 849 

redacted versions of the input spatial feature table, while others perform analysis tasks such as cell clustering. 850 

CyLinter is freely-available for academic re-use under the MIT license. A minimal example dataset consisting 851 

of 4 tissue cores from the EMIT TMA22 dataset can be downloaded from the Synapse data repository (Synapse 852 

ID: syn52468155) by following instructions at the CyLinter website 853 

(https://labsyspharm.github.io/cylinter/exemplar/). All CyLinter analyses presented in this work were 854 

performed on a commercially available 2019 MacBook Pro equipped with eight 2.4 GHz Intel Core i9 855 

processors (5.0GHz Turbo Boost) and 32GB 2400MHz DDR4 memory. Imaging data analyzed in this study 856 

were stored on and accessed from an external hard drive with 12TB capacity. Implemented software versions 857 

are as follows: Python 3.11.5, CyLinter 0.0.47. 858 

 859 

t-CyCIF 860 

The CyCIF approach to multiplex imaging involves iterative cycles of antibody incubation with tissue, 861 

imaging, and fluorophore deactivation as described previously24; protocols and methods related to CyCIF are 862 

available on Protocols.io (see “Detailed Experimental Protocols” below). Briefly, multiplex CyCIF images 863 

were collected using a RareCyte CyteFinder II HT Instrument equipped with a 20x (0.75 NA) objective and 864 

2x2 pixel binning. This setup allowed for the acquisition of 4-channel image tiles with dimensions 1280x1080 865 

pixels and a corresponding pixel size of 0.65 μm/pixel. All four channels are imaged during each round of 866 
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CyCIF, one of which is always reserved for nuclear counterstain (Hoechst or DAPI) to visualize cell nuclei. 867 

RCPNL files containing 16-bit imaging data were generated (one per image tile) during each imaging cycle. 868 

 869 

Image Processing 870 

Raw microscopy image tiles (RCPNL files) for the datasets described in this study were processed into 871 

stitched, registered, and segmented OME-TIFF54 files using the MCMICRO image-processing pipeline28. 872 

Corresponding cell x feature CSV files (i.e., spatial feature tables) were also generated by MCMICRO. Specific 873 

algorithms implemented in MCMICRO for the processing of each dataset are as follows: BaSiC—a Fiji/ImageJ 874 

plugin for background and shading correction used to perform flatfield and darkfield image correction55;  875 

ASHLAR—a program for seamless mosaic image processing across imaging cycles37; Coreograph (used for 876 

the EMIT dataset,  https://github.com/HMS-IDAC/UNetCoreograph)—for dearraying the mosaic TMA image 877 

into individual TIFF and CSV files per core; UnMICST38—used for cell segmentation; employs the U-Net56 878 

deep learning architecture for semantic segmentation; S3segmenter (https://github.com/HMS-879 

IDAC/S3segmenter); MCQuant (https://github.com/labsyspharm/quantification) for per cell feature extraction 880 

including X,Y spatial coordinates, segmentation areas, mean marker intensities, and nuclear morphology 881 

attributes. 882 

 883 

Automated Artefact Detection in CyLinter with Classical Algorithms 884 

An algorithm consisting of classical image analysis steps was designed to automatically identify prevalent 885 

artefacts commonly found in highly multiplexed images (e.g., illumination aberrations, antibody aggregates, 886 

and tissue folding). The model is applied on a channel-by-channel basis and works on down-sampled versions 887 

of each channel, rescaling pixel values to uint8 bit depth for efficient processing. A series of operations in 888 

mathematical morphology consisting of erosion and local mean smoothing followed by dilation are applied to 889 

transform each down-sampled image channel. These three steps utilize a disk kernel, where the kernel size is a 890 

user-defined parameter assumed to have a diameter on the order of 3-5 single cells, conditional on image pixel 891 

size. This kernel is then expanded to find local maxima seed points corresponding to putative artefacts. Each 892 

artefact is extracted via a flood fill operation according to a specific tolerance parameter that is adjusted in real-893 

time by the user. The union of the flood fill regions produces a binary artefact mask that is resized to the 894 

original image dimensions; cells falling within mask boundaries are then dropped from the corresponding 895 

spatial feature table. 896 

 897 

Deep Learning-based Automated Artefact Detection 898 
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The machine learning artefact detection model implemented in this study derives from the Feature Pyramid 899 

Network (FPN)51, a fully convolutional encoder-decoder architecture designed for object detection tasks 900 

applicable to semantic image segmentation. The encoder network is implemented using a ResNet34 backbone50 901 

with model parameters initialized from the pretraining weights on ImageNet. Input image tiles of size 902 

2048x2048-pixels (acquired at a nominal resolution of 0.65µm/pixel) were down-sampled to 256x256-pixels 903 

and fed into the encoder network to produce low-resolution feature maps. Resulting feature maps were then 904 

decoded into feature pyramids through iterated up-sampling using a bilinear interpolation and combined with 905 

the original feature maps. Each layer of the feature pyramid was up-sampled to the same resolution and 906 

segmented such that all resulting predicted artefact masks were combined to yield the final composite 907 

prediction mask. The FPN architecture is implemented using the Segmentation Models library for image 908 

segmentation based on the Python and PyTorch frameworks57. The model was trained using the Adam 909 

optimizer with a DICE loss function and a fixed learning rate (1x10-4) using a batch size of 16 image tiles for 910 

10 epochs. 911 

 912 

Dataset 1 (TOPACIO, CyCIF)  913 

The TOPACIO dataset used in this study consists of 25 de-identified formalin-fixed, paraffin embedded 914 

(FFPE) tissue sections (5 μm thick) of triple-negative breast cancer from patients enrolled in the TOPACIO 915 

clinical trial (ClinicalTrials.gov Identifier: NCT02657889). Specimens were collected via one of three different 916 

biopsy methods: fine needle, punch needle, or gross tumor resection and procured from Tesaro and Merck & 917 

Co., Inc., Rahway, NJ, USA as part of the recently-completed trial. Slides were mounted onto Superfrost Plus 918 

glass microscope slides (Fisher Scientific, 12-550-15) then dewaxed and antigen-retrieved using a Leica 919 

BOND RX Fully Automated Research Stainer prior to multiplex data acquisition by CyCIF. Images were 920 

acquired at 20x magnification with 2x2 binning (0.65 μm/pixel nominal resolution) over 10 CyCIF cycles using 921 

27 markers (19 plus Hoechst evaluated in this study); see Supplementary Table 1 for further details. 922 

Clustering of cells in this dataset (totaling ~1.9x107 segmented nuclei) was performed on a randomly selected 923 

subset of ~3x106 cells to reduce computing time.  924 

 925 

Dataset 2 (CRC, CyCIF) 926 

The CRC dataset consists of a whole-slide section (1.6cm2) of human colorectal adenocarcinoma tissue   927 

(section# 097) from a 69-year-old white male imaged at 20x magnification with 2x2 binning (0.65 μm/pixel 928 

nominal resolution) over 10 CyCIF cycles using 24 markers across 10 CyCIF cycles (21 plus Hoechst 929 

evaluated in the current study) collected as part of the Human Tumor Atlas Network (HTAN); see 930 

Supplementary Table 1 for further details. 931 
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 932 

Dataset 3 (EMIT TMA22, CyCIF) 933 

The EMIT TMA dataset consists of human tissue specimens from 42 patients organized as a multi-tissue 934 

microarray (HTMA427) under an excess tissue protocol (clinical discards) approved by the IRB at Brigham 935 

and Women's Hospital (BWH IRB 2018P001627). Two (2) 1.5 mm diameter cores were acquired from each of 936 

60 tissue regions with the goal of acquiring one or two examples of as many tumors as possible (with matched 937 

normal tissue from the same resection when feasible). Overall, the TMA contains 123 cores including 3 938 

“marker cores” consisting of normal kidney cortex which were added to the TMA in an arrangement that 939 

makes it possible to orient the overall TMA image. Not including the marker cores 44 cores were from males 940 

and 76 were from females between 21 and 86 years-of-age. The EMIT TMA22 dataset was acquired at 20x 941 

magnification with 2x2 binning (0.65 μm/pixel nominal resolution) over 10 CyCIF cycles using 27 markers (20 942 

plus Hoechst evaluated in the current study) and is available for download from the Synapse data repository 943 

(https://www.synapse.org/#!Synapse:syn22345750); see Supplementary Table 1 for further details.  944 

 945 

Dataset 4 (HNSCC, CODEX) 946 

The HNSCC CODEX dataset consists of two sections of the same deidentified specimen of head & neck 947 

squamous carcinoma (HNSCC) imaged at 20x magnification with 2x2 binning (0.65 μm/pixel nominal 948 

resolution) over 9 imaging cycles using 15 markers plus DAPI; see Supplementary Table 1 for further details. 949 

 950 

Dataset 5 (normal tonsil, mIHC) 951 

The mIHC dataset consists of a deidentified whole-slide tonsil specimen from a 4-year-old female of European 952 

ancestry procured from the Cooperative Human Tissue Network (CHTN), Western Division, as part of the 953 

HTAN SARDANA Trans-Network Project and imaged at 20x magnification with 2x2 binning (0.5 μm/pixel 954 

nominal resolution) over 5 mIHC cycles using 18 markers plus Hoechst; see Supplementary Table 1 for 955 

further details. 956 

 957 

Dataset 6 (normal large intestine, CODEX, specimen 1) 958 

A single section of deidentified human tissue from a 78-year-old African American male imaged at 20x 959 

magnification (0.75NA, 0.38 μm/pixel nominal resolution) over 23 imaging cycles using 59 markers (58 960 

evaluated in this study, as DRAQ5 was excluded due to its overlap with Hoechst). These data were collected at 961 

Stanford University as part of the Human BioMolecular Atlas Program (HuBMAP); see Supplementary Table 962 

1 for further details. 963 

 964 
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Dataset 7 (normal large intestine, CODEX, specimen 2) 965 

The large intestine CODEX dataset consists of a single section of deidentified human tissue from a 24-year-old 966 

white male imaged at 20x magnification (0.75NA, 0.38 μm/pixel nominal resolution) over 24 imaging cycles 967 

using 54 markers (53 evaluated in this study, as DRAQ5 was excluded due to its overlap with Hoechst). These 968 

data were collected at Stanford University as part of the Human BioMolecular Atlas Program (HuBMAP); see 969 

Supplementary Table 1 for further details. 970 

 971 

Detailed Experimental Protocols 972 

1. FFPE Tissue Pre-treatmet Before t-CyCIF on Leica Bond RX V.2 973 

(dx.doi.org/10.17504/protocols.io.bji2kkge) 974 

2. Tissue Cyclic Immunofluorescence (t-CyCIF) V.2 (dx.doi.org/10.17504/protocols.io.bjiukkew) 975 

 976 

Ethics and IRB Statement 977 

Tissue specimens from the recently completed TOPACIO clinical trial (ClinicalTrials.gov Identifier: 978 

NCT02657889) which was conducted in accordance with ethical principles founded in the Declaration of 979 

Helsinki. This study received central approval by the Dana-Farber institutional review board, and/or relevant 980 

competent authorities at each site. All patients provided written informed consent to participate in the study. 981 

All specimens and data have been deidentified for the work performed at Harvard Medical School, approved 982 

under Institutional Review Boards (IRB) protocol 19-0186. The research complies with all relevant ethical 983 

regulations, was reviewed and approved by the IRBs at HMS and DFCI and is considered Non-Human 984 

Subjects Research. 985 

 986 

Reporting Summary 987 

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this 988 

article. 989 

 990 

Data Availability Statement  991 

New data associated with this paper is available at the HTAN Data Portal (https://data.humantumoratlas.org). 992 

Previously published data is through public repositories. See Supplementary Table 1 for a complete list of 993 

datasets and their associated identifiers and repositories. Online Supplementary Figures 1-4 and the CyLinter 994 

demonstration dataset can be accessed at Sage Synapse 995 

(https://www.synapse.org/#!Synapse:syn24193163/files) 996 
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Code Availability Statement 998 

CyLinter source code is available for academic re-use under the MIT open-source license agreement at Github 999 

(https://github.com/labsyspharm/cylinter)52. Python code used to generate the findings of the study is available 1000 

at https://github.com/labsyspharm/cylinter-paper which is archived on Zenodo at 1001 

https://zenodo.org/doi/10.5281/zenodo.10067803. 1002 
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