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Summary 

Many biological signaling pathways employ proteins that competitively dimerize in diverse 

combinations. These dimerization networks can perform biochemical computations, in which the 

concentrations of monomers (inputs) determine the concentrations of dimers (outputs). Despite 

their prevalence, little is known about the range of input-output computations that dimerization 

networks can perform (their “expressivity”) and how it depends on network size and connectivity. 

Using a systematic computational approach, we demonstrate that even small dimerization 

networks (3-6 monomers) are expressive, performing diverse multi-input computations. Further, 

dimerization networks are versatile, performing different computations when their protein 

components are expressed at different levels, such as in different cell types. Remarkably, 

individual networks with random interaction affinities, when large enough (≥8 proteins), can 

perform nearly all (~90%) potential one-input network computations merely by tuning their 

monomer expression levels. Thus, even the simple process of competitive dimerization provides a 

powerful architecture for multi-input, cell-type-specific signal processing. 
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Introduction 1 

Many biochemical signal processing circuits employ families of proteins that competitively 2 

dimerize with one another in diverse combinations. For example, the motif of many-to-many 3 

dimerization can be found in transcription factor families such as the nuclear receptor (NR)1 4 

(Figure 1A), basic leucine zipper (bZIP),2–4 basic helix loop helix (bHLH),5 and MADS-box 5 

proteins,6 among others.7 These dimerization networks integrate a variety of signals from other 6 

cells, environmental cues, and the intracellular state to regulate genes involved in major cellular 7 

decisions such as cell proliferation,8–10 differentiation,11–13 and stress responses.14 Similar 8 

dimerization (or higher-order multimerization) networks also occur in ligand-receptor signaling,15–9 
17 adhesion,18,19 and other systems.20 In addition to their many-to-many patterns of dimerization 10 

(Figure 1B), these proteins commonly exhibit diverse but overlapping expression profiles across 11 

different cell types,21 calling into question how these cell types might interpret input signals 12 

differently (Figure 1C).  13 

The process of competitive dimerization can be thought of as a biochemical input-output 14 

computation.22 In this perspective, upstream signals modulate the concentrations or activities of 15 

specific monomers (inputs), altering the distribution of biologically active dimers (outputs).23,24 16 

For example, steroid hormones bind and activate cognate nuclear receptors (NRs), allowing them 17 

to dimerize with other NR monomers (Figure 1A). The resulting dimers can bind to sites across 18 

the genome to regulate downstream genes. In this work, we use the terms “computation” and 19 

“response function” to refer to the quantitative relationship between the concentrations of input 20 

monomer(s) and an output dimer.  21 

In 1993, Neuhold and Wold suggested that networks of dimerizing bHLH transcription 22 

factors could allow changes in just a few monomers (inputs) to “radiate” throughout the network, 23 

changing the concentrations of dimers (outputs) to generate “major changes in cellular 24 

phenotype.”25 Since then, signal integration and decision-making by dimerization networks have 25 

been documented in many other contexts. In lymphocyte development, two sets of bHLH proteins 26 

– E protein transcription factors (E12, E47, E2-22) and inhibitory Id proteins (Id2, Id3) – dimerize 27 

with one another to control multiple decisions, including the choice between innate and adaptive 28 

immune cell fates.11,26,27 These bHLH proteins are regulated by pre-T-cell receptor (pre-TCR) 29 

signaling,28,29 Notch signaling,30,31 and certain cytokines.32 Further, the effects of E proteins on 30 

gene expression are contextual, varying across developmental stages.11,27 Another example occurs 31 

in the BCL-2 family of apoptotic proteins, where BAX and BAK proteins homo-oligomerize to 32 

form pores in the mitochondrial outer membrane, inducing apoptosis.33 Anti-apoptotic proteins in 33 

this family (e.g., BCL-2, BCL-XL) heterodimerize with BAX and BAK, preventing their homo-34 

oligomerization, whereas pro-apoptotic BH3-only proteins (e.g., BAD, BID) can bind to and 35 

inactivate the anti-apoptotic proteins. Cellular stresses, such as DNA damage,34,35 hypoxia, and 36 

oxidative stress,36 as well as survival signals – such as those used in lymphocyte development37–40 37 

– regulate the balance between the pro- and anti-apoptotic proteins to control pore formation and 38 

apoptosis.41 Finally, dimerizing Arabidopsis bZIP transcription factors in the C and S1 families42–39 
45 integrate signals from “low-energy” abiotic stresses (such as drought, darkness, salinity, and 40 
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hypoxia, which all reduce sugar abundance) to slow growth and induce changes in 41 

metabolism.44,46–50 For instance, sucrose translationally represses all S1-family bZIPs,51,52 glucose 42 

represses the transcription of bZIP1 and bZIP63 through multiple mechanisms,47,53 and the stress 43 

response kinase SnRK1 activates bZIP63.54 Different tissues, such as roots and leaves, express the 44 

bZIP proteins at different levels,43,55 allowing them to play distinct roles in the plant’s metabolic 45 

response to stress.49,56–59 Thus, dimerization networks appear in diverse biological systems, 46 

integrate multiple inputs, and operate contextually. 47 

Despite their prevalence and significance, the computational capabilities of dimerization 48 

networks remain poorly understood. Dimerization is a relatively limited type of biochemical 49 

interaction that does not consume energy and is stoichiometric rather than catalytic. In contrast to 50 

enzymatic networks60–63 and transcriptional regulation,64,65 dimerization is incapable of amplifying 51 

the magnitude of input signals.23 While the experimental characterization of particular 52 

dimerization networks in nature has provided great insights,11 and some dimerization networks 53 

have recently been studied computationally,66–68 we lack a fundamental, systems-level 54 

understanding of dimerization network computation – including which computations are (and are 55 

not) possible, to what extent a single network can perform different computations in different cell 56 

contexts, and how parameters such as network size and connectivity influence their computational 57 

power. Addressing these questions is essential for understanding the prevalence, architectures, 58 

expression patterns, and signal-processing functions of natural dimerization networks, as well as 59 

for engineering synthetic dimerization networks. 60 

Here, to study dimerization network computation in general, we constructed a minimal 61 

model that captures the key features of natural dimerization networks: competitive, many-to-many 62 

dimerization interactions of varying strengths and cell-type-specific component expression levels 63 

(Figure 1D). We adopt the term expressivity from the field of neural network computation to 64 

describe the range of all quantitatively unique functions that may be performed by a class of 65 

dimerization networks across all physiologically reasonable parameter values (Figure 1E).69,70 66 

Further, we use the term versatility to describe the ability of the same network of proteins to 67 

perform different functions when network proteins are expressed at different abundances (such as 68 

in different cell types). Network versatility would allow different cell types to reuse the same set 69 

of proteins to perform different modes of signal interpretation. 70 

In this work, we use both random parameter screens and optimization to characterize the 71 

expressivity and versatility of competitive dimerization networks. We find that dimerization 72 

networks can compute a variety of non-monotonic functions on multiple inputs. We investigate 73 

how network expressivity and versatility vary with network size and connectivity (Figure 1F) and 74 

use our results to contextualize the features of natural dimerization networks. We then demonstrate 75 

that dimerization networks can readily perform computations on multiple inputs, including all 76 

three-input logic gates. Finally, we show that even networks with random protein-protein 77 

interaction affinities, when large enough, can perform a wide variety of functions solely by 78 

adjusting the expression levels of their monomer components.  79 
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Figure 1. Competitive dimerization networks compute. (A) In natural dimerization networks, such 

as the nuclear receptors (NRs), upstream signals regulate the activities of individual monomers, 

which dimerize to perform biochemical outputs. (B) Network monomers dimerize in a many-to-

many fashion, as shown for several NRs.1 (C) Different cell types, such as spermatids and Leydig 

cells, express NR monomers at different abundances, reported in normalized transcripts per million 

(TPM) from the Human Protein Atlas.125 (D) Dimerization networks are modeled here with 

pairwise affinities (shown as arrow widths) and monomer expression levels (shown as circle sizes) 

as parameters. Titrating input monomer(s), with a dimer as an output, yields an input-output 

function. (E) Here, expressivity refers to the collection of input-output functions that may be 

performed by all networks of a given class, while versatility refers to the functions that may be 

performed by a single set of proteins with fixed interactions but variable expression levels. (F) 

This work investigates how network expressivity and versatility scale with both network size and 

connectivity. 

 

Results 80 

Modeling competitive dimerization networks 81 

We first sought to establish a minimal modeling framework that captures the key features 82 

of natural dimerization networks described above: competitive, many-to-many dimerization 83 

interactions of varying strengths and variation among cell types in component expression levels. 84 

We consider networks of m interacting monomers M1, M2, … Mm. Each pair of monomers Mi and 85 

Mj may reversibly bind, with equilibrium constant Kij, to form the dimer Dij (Figure 1D).  86 

𝐾𝑖𝑗 =
[𝐷𝑖𝑗]

𝑒𝑞

[𝑀𝑖]𝑒𝑞[𝑀𝑗]
𝑒𝑞

 87 

The total concentration of each species is the sum of its free form and all of its dimers:  88 

[𝑀𝑖]total = [𝑀𝑖] + 2[𝐷𝑖𝑖] + ∑[𝐷𝑖𝑗]

𝑚

𝑗≠𝑖

 89 

To consider these networks as feed-forward computational systems, we designate a subset 90 

of monomers as inputs. The expression level of an input monomer depends on a corresponding 91 

input signal. We term non-input monomers accessories and assume that each accessory protein 92 

has a fixed total concentration in a given cell type. We consider dimer concentrations as the outputs 93 

directly, assuming that cells could use various dimerization-dependent biochemical activities to 94 

carry out downstream functions. 95 

In this framework, a given network in a given cell type is completely specified by its set of 96 

pairwise affinities, Kij, and the total concentrations of each of the accessory monomers, [Mi]total. 97 

To simulate the input-output function of a network, we determine the equilibrium concentrations 98 

of all network species across a titration of the input monomer(s) (see Methods). This framework 99 

does not consider the formation of higher-order oligomers, such as trimers,71,72 and also neglects 100 
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the potential impacts of DNA binding or subcellular localization on dimerization propensities.7 101 

These features could further expand the computational potential of these systems beyond what is 102 

described below. 103 

 104 

Networks of dimerizing proteins can compute a wide variety of functions 105 

What types of functions can dimerization networks compute? To address this question, we 106 

first analyzed the input-output behaviors of minimal, elementary networks. The simplest non-107 

trivial dimerization network comprises just two monomers (Figure 2A). In this network, increasing 108 

the total concentration of M1 induces the formation of D12 heterodimers, which in turn sequesters 109 

M2 and prevents the formation of the D22 homodimer. Thus, this network computes a switch-off 110 

function with output dimer D22.  111 

Adding an additional species can invert this circuit to compute a switch-on function (Figure 112 

2B). In such a network, increasing the input monomer M1 increases D12 dimers, reducing D23 113 

dimers, ultimately increasing the D33 dimer. This example illustrates the way in which 114 

concentration changes can propagate through a network.23,73 115 

When the switch-on and switch-off networks are combined, a biphasic bump function 116 

emerges, in which only intermediate concentrations of the input monomer promote formation of 117 

the output dimer (Figure 2C). In this network, the input M1 dimerizes strongly with M2 and weakly 118 

with M3. M2 and M3 strongly heterodimerize, and M3 homodimerizes to form the output dimer, 119 

D33. As total M1 levels increase, they initially form D12 heterodimers, thereby decreasing D23 120 

heterodimers and allowing the formation of the D33 output dimer. However, as M1 increases further 121 

it begins to form dimer D13 as well, thereby suppressing the formation of the D33 output dimer. 122 

Thus, the output dimer D33 can form only when M1 is present at intermediate concentrations. As 123 

with the switch-on and switch-off functions, adding an additional monomer can invert the response 124 

to produce an inverted bump function that responds only outside a window of intermediate input 125 

concentrations (Figure 2D). Taken together, these results provide an intuitive picture of how 126 

dimerization networks of increasing size can compute functions of increasing complexity.  127 

Many natural signaling networks respond to multiple input signals,15,74 provoking the 128 

question of whether dimerization networks can similarly compute functions on multiple inputs. 129 

Indeed, by considering two monomers as distinct inputs, combinatorial logic can emerge. For 130 

example, Figure 2E shows a network that computes a NIMPLY (“M1 AND NOT M2”) logic gate. 131 

Here, the output dimer D13 forms in the presence of input M1 alone, but not in the presence of input 132 

M2, which competes to dimerize with monomer M3. Similarly, Figure 2F shows a network 133 

computing a NAND logic gate, in which the output dimer D34 forms in the absence of inputs or 134 

the presence of a single input, but not in the combined presence of both inputs M1 and M2. 135 

Dimerization networks can also generate analog (non-Boolean) combinatorial responses. For 136 

example, the five-monomer network shown in Figure 2G combines two bump function motifs 137 

(Figure 2C) to create a two-input bump function, in which the output dimer D55 only forms in the 138 

presence of intermediate amounts of both inputs. Finally, larger networks can perform functions 139 

with even greater complexity. For example, a six-monomer network can compute an XOR logic  140 
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Figure 2. Competitive dimerization networks can compute diverse functions on one and two 

inputs. (A-D) Examples of one-input, one-output functions. From left to right, simulations of 

networks performing a switch-off function (A), a switch-on function (B), a bump function (C), and 

an inverted bump function (D) are shown. (E-H) Examples of two-input, one-output functions. 

From left to right, simulations of networks performing an M1 NOT M2 (NIMPLY) gate (E), an 

M1 NAND M2 gate (F), a two-input bump function (G), and an M1 XOR M2 gate (H) are shown. 

For all panels, the networks shown were inspired by networks from the random parameter screen 

(Figure 4) and rationally pruned to identify minimal topologies capable of computing each input-

output function. All input-output functions are displayed in unitless concentrations (see Methods). 

 
gate (Figure 2H). Other functions beyond those described here are possible and can be rationally 141 

understood; atlases of networks performing one- and two-input computations can be found in 142 

Figure S1 and Figure S2. 143 

This exploration of elementary dimerization networks demonstrates three key features of 144 

computation by dimerization. First, even relatively small networks can perform non-monotonic 145 

computations on one or multiple inputs. Second, many dimerization networks can be intuitively 146 

understood by analyzing the paths by which input perturbations propagate to affect output dimers. 147 

Third, networks of increasing size appear capable of performing increasingly complex input-148 

output responses.  149 

 150 

Monomer expression levels can modulate network computations 151 

A key feature of competitive dimerization networks is their computational versatility, 152 

defined as the ability of a single network to perform distinct input-output computations depending 153 

on the expression levels of its protein components. For example, the bump function shown 154 

previously in Figure 2C can be tuned by modulating the expression levels of the accessory 155 

monomers M2 and M3 (Figure 3A). In this case, the total abundance of M2 tunes the center of the 156 

bump because the input M1 must sequester M2 to induce the formation of the output dimer D33. 157 

Additionally, the abundance of M3 tunes the amplitude of the bump by directly promoting D33 158 

formation. In another three-component network, adjusting protein expression levels can change a 159 

switch-off to a switch-on response (Figure 3B). Thus, even simple networks can show both 160 

quantitative and qualitative versatility. 161 

Computational versatility extends to multi-input functions. For example, the midpoint of 162 

the two-input bump function shown previously in Figure 2G can be tuned by independently 163 

adjusting the concentration thresholds for inputs M1 and M2 (Figure 3B and Supplementary Video 164 

1). Biologically, these functions would allow different cell types to respond to different 165 

combinations of two inputs, a concept known as addressing.75 A single network can even be tuned 166 

to perform entirely different types of multi-input combinatorial logic. For example, the network 167 

shown in Figure 3D and Supplementary Video 2 computes an AND gate with dimer D37 with one 168 

set of monomer expression levels, but a NOR gate with another. A different network can compute 169 

both OR and NOR logic gates (Supplementary Video 3). These examples of two-input versatility  170 
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Figure 3. A single set of dimerizing proteins (left), when expressed at different abundances 

(middle), can perform different input-output functions (right). Accessory monomer expression 

levels can be used to (A) tune the midpoint of a bump function, to (B) transform a switch-on 

function to a switch-off function, to (C) tune the midpoint of a two-input bump function in both 

input dimensions, or to (D) transform an AND gate into a NOR gate. The network shown in (D) 

was identified by screening random interaction affinities for networks of eight monomers (see 

“Large random networks are expressive and versatile”). All input-output functions are displayed 

in unitless concentrations (see Methods). 

 
were identified simply by screening a small number of networks with random affinities, as 171 

described in the subsequent sections. Thus, these examples represent just a fraction of the potential 172 

versatility of dimerization networks. 173 

 174 

Expressivity grows with network size and connectivity 175 

Evidently, dimerization networks can perform complex and versatile computations. How 176 

do the computational capabilities of dimerization networks scale with their size and connectivity? 177 

To address this question, we combined computational screening with optimization trials to 178 

systematically analyze the scope of possible network computations. First, we simulated large sets 179 

of networks of different sizes, with randomly chosen affinities and component expression levels. 180 

To generate each network, we first randomly generated connected graphs with varying numbers 181 

of edges (heterodimerization interactions) and then sampled the particular affinity values for each 182 

edge. We sampled parameter values from broad ranges consistent with experimentally measured 183 

affinities and protein expression levels (see Methods). Overall, this screen included 1 million 184 

networks of each network size, from m=2 to m=12 monomers.  185 

For each random network, we determined the equilibrium concentrations of all species 186 

across a titration of the input monomer(s). By considering each dimer as a possible output, each 187 

network simulation produced multiple input-output responses. In order to classify these responses, 188 

we introduced a gridding scheme, binning the input and output into segments of equal size in 189 

logarithmic units (Figure 4A). With this scheme, two responses that pass through the same boxes 190 

are classified as the same function type. This allows a more tractable, discrete analysis of the 191 

continuous input-output response space.  192 

Unsurprisingly, larger networks performed more unique one-input and two-input functions 193 

(Figure 4B). For one-input functions, larger networks also exhibited a larger fraction of non-194 

monotonic responses, including functions with up to 4 local extrema (Figure S3A). However, 195 

beyond network sizes of about m=6, we observed diminishing returns in the number of unique 196 

functions discovered, and this trend was not impacted by the number of networks simulated (Figure 197 

S3C, Figure S3D). In larger networks, fewer dimers successfully form and respond to input 198 

perturbations (Figure S3B), reflecting quadratic growth in the number of potential dimers, which 199 

increases competition for the limited number of monomer constituents. Additionally, for a given   200 
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Figure 4. Dimerization network expressivity grows with both network size and connectivity. (A) 

n=106 networks of each network size with randomized parameters were simulated and their input-

output responses were categorized by discrete binning. (B) A bar graph shows how computational 

expressivity, measured as the number of unique, discretized response functions observed, increases 

with network size for both one-input and two-input functions. (C) Shown are the classes of 

response functions that become possible as network size is increased from three to six monomers, 

as determined by parameter optimization. See Figure S1 and Figure S2 for schematics and 

quantitative plots of each response function shown. (D) A plot shows, for different network sizes, 

how network expressivity grows with network connectivity, defined as the fraction of possible 

heterodimerization interactions in a network. 

 
network size, networks with higher connectivity (density of heterodimerization interactions) 201 

produced more unique functions in the parameter screen (Figure 4D). 202 

Within a network, each dimer represents a potential output. Can a single network use 203 

different dimers to compute multiple output functions? Or, does indirect coupling among dimers 204 

limit the repertoire of functions a single network can compute? To assess the range of possible 205 

two-output functions, we counted the number of unique two-output functions observed for every 206 

combination of dimers in every network of the parameter screen (Figure S3G). We then compared 207 

this number to a scrambled control in which an equal number of responses from the overall dataset 208 

were randomly paired together. Strikingly, the number of observed two-input functions closely 209 

approached that of the scrambled control, increasing with network size for both one-input (Figure 210 

S3H) and two-input functions (Figure S3I). This suggests that most combinations of two response 211 

functions can be implemented by two dimers in the same network. 212 

While screening many random networks allows for an unbiased exploration of possible 213 

response functions, this approach could fail to discover certain functions because of finite sampling 214 

depth. Thus, to gain more insight into the network size requirements for specific functions of 215 

interest, we turned to optimization approaches to identify parameter values that compute desired 216 

target functions. We found that both simulated annealing76 and genetic algorithm77 optimization 217 

could successfully optimize network parameters (see Methods). By defining an error threshold 218 

constituting a “successful” optimization, we optimized networks of decreasing size until no 219 

satisfactory parameter set could be identified. For example, while optimization could consistently 220 

identify four-monomer networks performing an inverted bump function, they consistently failed 221 

to optimize three-monomer networks, suggesting that the inverted bump function requires four 222 

network monomers. This approach revealed the network size requirements for the one- and two-223 

input functions shown in Figure 4C, Figure S1, and Figure S2. Together, the results of the 224 

parameter screen and optimizations suggest that most one- and two-input dimerization network 225 

computations can be performed by networks of just six monomers and, more generally, shows how 226 

expressivity grows as more monomers are added to a network. 227 
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Competitive dimerization networks can compute multi-input functions 228 

Cells commonly respond to many signals from other cells, their environment, and their 229 

own cell state.15,74 For example, cell fate decisions can depend on inputs from multiple 230 

developmental signaling pathways, which may activate a common set of dimerizing transcription 231 

factors.11,32 To understand how competitive dimerization networks could compute responses to 232 

multi-input signals, we used optimization to identify networks that perform various three- and 233 

four-input Boolean functions (logic gates). 234 

Dimerization networks were capable of computing diverse multi-input functions. For 235 

example, a network of ten monomers can compute an “any 2 or none” function, in which the output 236 

dimer is formed if exactly two (but any two) inputs are present or no inputs are present (Figure 237 

5A). This function would be difficult to implement by connecting elementary two-input functions, 238 

as it would require at least 11 AND and OR gates functioning orthogonally (Figure 5B). Thus, 239 

dimerization networks appear to offer the ability to compute multi-input functions in one 240 

computational layer, without the need for many orthogonal components. Using optimization trials, 241 

we demonstrated that dimerization networks of ten monomers can perform all 54 unique three-242 

input logic gates, and networks of just six monomers could compute half of such functions (Figure 243 

5C, Figure S4A). 244 

This result encouraged us to ask whether dimerization networks could perform Boolean 245 

functions on even more inputs. We thus defined a set of four-input Boolean functions, which we 246 

call the “at least n” functions, whose output is high when at least n inputs, but any n inputs, are 247 

present. For instance, the network shown in Figure 5D computes an “at least 3” function using ten 248 

monomers. This function would also be difficult to achieve using elementary two-input functions, 249 

requiring 11 AND and OR gates at minimum (Figure 5E). We found that dimerization networks 250 

could readily perform all of the four-input “at least n” gates as well as a four-input AND gate 251 

(Figure 5F, Figure S4B). 252 

Thus, competitive dimerization networks can integrate several inputs in multi-dimensional 253 

computations. Importantly, while such computations could be performed using many orthogonal 254 

two-input logic operations, dimerization networks perform them all in the same computational 255 

layer. Indeed, while increasingly complex Boolean functions require larger dimerization networks 256 

– defining complexity by the number of two-input AND and OR gates they require – this 257 

relationship appears nonlinear, eventually reaching a point at which fewer monomers than 258 

elementary logic gates are required (Figure 5F).  259 

 260 

Networks adapt over timescales of minutes to hours and function in the presence of noise 261 

 Competitive dimerization networks appear to compute diverse functions based on the 262 

equilibrium modeling described above. But how rapidly do these networks approach steady state, 263 

and can they continue to function despite various sources of biological noise? Deterministic 264 

simulations with physiologically reasonable parameters (Methods) suggest that networks re-265 

equilibrate on a timescale of 100 s to 2 h following a perturbation of the input monomer (Figure 266 

S5A), with only modest dependence on network size. This timescale, which is comparable to the  267 
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Figure 5. Competitive dimerization can integrate multiple inputs in multi-dimensional response 

functions. (A) A schematic is shown of a network computing a three-input logic gate, the “exactly 

any 2 or none” logic gate (explained in the text). Below is a heatmap of the simulated output 

concentrations for various input combinations (i.e., the truth table). (B) A schematic is shown 

decomposing the “exactly any 2 or none” logic gate into 11 elementary Boolean AND and OR 

gates. (C) A bar graph shows how the number of achievable three-input logic gates grows with 

network size. (D) A schematic is shown of a network computing a four-input logic gate, the “at 

least 3” logic gate (explained in the text). Below is a heatmap of the simulated output 

concentrations for various input combinations. (E) A schematic is shown decomposing the “at least 

3” logic gate into 11 elementary Boolean AND and OR gates. (F) A table displays the number of 

monomers required to compute the four-input Boolean “at least” functions. (G) Shown is a graph 

showing how the required network size grows with the Boolean complexity (measured as the 

number of elementary AND and OR gates required) of various logic gates. Colors denote the 

number of inputs used in each function. A jitter (random perturbation) was applied to each point 

to distinguish overlapping points. 

 
dissociation timescales of the highest-affinity dimers (koff ≈ 10-4 s-1 gives t1/2 ≈ 1.9 h) is faster than 268 

the hours to days timescales associated with transcriptional regulation.78,79 To test whether 269 

networks could remain at quasi-equilibrium as inputs change over time, we simulated network 270 

dynamics as the total concentration of one monomer was oscillated at varying frequencies. When 271 

the input monomer oscillated with a period of 27 h, over 80% of dimers remained near equilibrium 272 

(within 3-fold), whereas only 20-60% of dimers were at equilibrium when the same monomer 273 

oscillated every 100 s (Figure S5B). These results suggest that dimerization networks can remain 274 

at quasi-equilibrium when their components change on physiologically relevant timescales of 275 

hours to days.  276 

 Biological circuits must be robust to various sources of both intrinsic and extrinsic 277 

noise.80,81 In a cell, a competitive dimerization network would face both intrinsic noise from 278 

stochasticity in the dimerization equilibrium itself and extrinsic noise from fluctuations in the 279 

expression levels of network proteins. To characterize the impact of intrinsic noise, we performed 280 

stochastic Gillespie simulations of dimerization networks at equilibrium. Most species exhibited a 281 

noise coefficient of variation less than that of protein expression levels (0.2 to 0.5)80,82 (Figure 282 

S5C, Figure S5D). Low-abundance dimers were the most sensitive to intrinsic noise (Figure S5D), 283 

consistent with previous work,83,84 whereas most species with abundances above 100 molecules 284 

per cell exhibited noise coefficients of less than 0.1 (Figure S5C). To measure the effects of 285 

extrinsic fluctuations in monomer expression levels, we simulated networks performing each 286 

unique response function from the random parameter screen with 50 random perturbations of the 287 

accessory expression levels (see Methods).80,82 Most functions were robust to such perturbations, 288 

with the median root-mean-square deviation (RMSD) in the log-scaled input-output function being 289 

0.2 to 0.4, corresponding to a 1.5-fold to 2.5-fold change in the output (Figure S5E, Figure S5F).  290 
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Large random networks are expressive and versatile 291 

It is unlikely that all the pairwise interaction affinities of a network can be precisely fine-292 

tuned over evolution through protein mutations. However, protein expression levels could be tuned 293 

independently through several mechanisms, such as by adjusting promoter strength.85,86 In the field 294 

of neural computation, it has been shown that sufficiently complex networks with random weights 295 

can still achieve arbitrary levels of expressivity, provided that only the weights of the final output 296 

layer are tuned.87–90 Could dimerization networks with random interaction affinities similarly 297 

perform a wide variety of functions if only the expression levels of their accessory monomers can 298 

be tuned?  299 

To address this question, we asked whether random networks could compute sets of various 300 

one-input target functions (Figure 6A). We generated 50 networks with random interaction 301 

affinities at each network size from m=2 to m=12 monomers. As target functions, we selected 302 

representative subsets of the one-input functions previously identified in the parameter screen for 303 

networks of each size. We systematically optimized the accessory monomer expression levels for 304 

each possible output dimer in each random network to best fit each of the target functions. We 305 

used the Chebyshev distance to determine whether a particular target function was “achieved,” 306 

requiring that the optimized response be within 10-fold of the desired target function at every 307 

concentration of the input monomer (see Methods). 308 

The versatility of individual dimers in random networks was broadly distributed, with some 309 

dimers exhibiting much greater versatility than others (Figure 6B). However, some dimers were 310 

capable of fitting over 70% of the one-input target functions solely by adjusting their accessory 311 

monomer expression levels (Figure 6B, Figure S6B, Figure S6C). Versatility increased with 312 

network size, appearing to saturate at about m=6 monomers. In contrast, network connectivity did 313 

not appear to impact network versatility (Figure S6A). These results suggest that even random 314 

networks can potentially achieve versatile computation. 315 

This analysis focused on the versatility of a single output dimer within a network. However, 316 

a feature of natural dimerization networks is that multiple dimers can be biochemically active 317 

outputs; for example, different transcription factor dimers often bind to distinct DNA binding sites, 318 

activating different sets of downstream genes.2,91 We thus reasoned that the ability to use different 319 

output dimers in different contexts could further extend the versatility of random dimerization 320 

networks. 321 

To test this hypothesis, we re-analyzed the optimization results above, allowing each 322 

random network to use different output dimers for each target function. With this additional 323 

flexibility, individual random networks were remarkably versatile. Nearly all networks with as few 324 

as 8 monomers were able to perform 80% of the functions observed across all 8-monomer 325 

networks, and the best networks achieved over 95% of such functions (Figure 6C, Figure S6B, 326 

Figure S6C). This expanded form of versatility increased rapidly with network size (Figure 6C) 327 

but did not depend on network connectivity (Figure S6A). When switching between two target 328 

functions, the abundance of at least one monomer in the network almost always changed by at 329 

least 100-fold, but the magnitude of this change was not correlated with the Euclidean distance  330 
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Figure 6. Large random networks are expressive and versatile. (A) For each possible output dimer 

in each network with random interactions (n=50), accessory monomer expression levels were 

systematically optimized to best fit each of the target functions. (B) A violin plot with scattered 

points shows the versatility of individual dimers, measured as the fraction of targets each 

individual dimer in each random network could achieve, for each network size tested. (C) A violin 

plot with scattered points shows the versatility of random networks, for each network size tested, 

when different output dimers may be used for each target function. (D) An example of 2-input 

versatility, showing the most versatile of ten tested random networks. Shown is both a schematic 

of the network (left) as well as heatmaps of the simulated responses (bottom row) after its 

accessory expression levels were optimized to perform each target function (top row). (E) A 

heatmap shows, for all n=10 random networks optimized to perform t=10 named 2-input target 

functions, the Pearson correlation coefficient between the target function and the optimized 

responses. The top row corresponds to the responses shown in (D). The results described in the 

text define success using a threshold Pearson correlation of 0.85, although the results hold for other 

threshold values (Figure S6E). For the violin plots, the gray violins show the kernel density 

estimate of the data distributions, red lines show the median values, and only a random subset of 

the data is displayed as scattered points. 

 
between the two targets (Figure S6D). This suggests that such versatility does not necessarily 331 

confer fragility to small fluctuations in protein expression levels. 332 

 Finally, we pushed the limits of our optimization pipeline to test whether random networks 333 

could perform two-input target functions solely by optimizing the expression levels of their 334 

accessory proteins. Because larger networks require more computational resources to both 335 

simulate and optimize, we focused on n=10 networks of m=20 monomers and measured their 336 

ability to perform 10 of the two-input functions previously shown in Figure 4C, including seven 337 

two-input logic gates, a ratiometric function, an equality function, and a two-input bump function. 338 

The best network tested could perform nearly all 10 target functions (Figure 6D), and all 10 random 339 

networks could each perform between 6 and 9 target functions (Figure 6E, Figure S6E), using the 340 

Pearson correlation coefficient between the target functions and optimized responses as the metric 341 

of success (see Methods). All 10 networks were able to perform the ratiometric, NOR, OR, 342 

NIMPLY, and AND functions (Figure 6E, Figure S6F). While other functions, such as XOR and 343 

the two-input bump function, appeared more difficult to achieve, all functions were achieved by 344 

at least 2 of the 10 tested networks (Figure 6E, Figure S6F). Evidently, even random dimerization 345 

networks can perform a broad range of computations.  346 
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Discussion 347 

Across many biological contexts, protein dimerization networks interpret combinations of 348 

signals to control differentiation, proliferation, and stress responses. Here, we identify several 349 

powerful features of such networks that may explain their prominence in nature. More specifically, 350 

we demonstrate that competitive dimerization networks are computationally expressive, 351 

computing a wide variety of input-output functions, and versatile, performing different functions 352 

solely by tuning the expression levels of network monomers. Reusing a core set of signaling 353 

pathways in this way could enable cell-type-specific signaling in organisms with hundreds of cell 354 

types, in which it would be infeasible for each cell type to express unique signaling proteins.92 355 

Further, dimerization networks can use multiple monomers as inputs, allowing them to make 356 

complex decisions that consider multiple sources of information, as has been observed in many 357 

natural systems.15,74,93,94 Finally, we found that even networks with random interactions, such as 358 

those produced by evolutionary duplication and divergence,95 can perform near-complete 359 

repertoires of network computations simply by tuning their protein expression levels. Overall, 360 

these results could explain the ubiquity of transcription factor dimerization networks in natural 361 

signaling pathways. 362 

 Many natural networks appear to have sufficient size and connectivity to exhibit high 363 

expressivity and versatility. Although one- and two-input expressivity and versatility saturates at 364 

a network size of 6 monomers, more difficult tasks require larger networks; for example, 10-365 

monomer networks can compute all three-input logic gates (Figure 5C) and 20-monomer networks 366 

can compute two-input functions with random interactions (Figure 6D). By comparison, there are 367 

57 human bZIP transcription factors forming dimerization networks of at least 21 monomers,4 and 368 

30-50 bZIP proteins are co-expressed in various cell types (Figure S7). Similar statistics 369 

characterize the mouse and Arabidopsis thaliana bZIP families, the mouse and human nuclear 370 

receptor families, and the Arabidopsis thaliana MADS-box family (Figure S7B, Figure S7C). In 371 

the context of the results presented here, it thus appears that many natural networks have the 372 

potential to exhibit complex, cell-type-specific computations. 373 

Our results suggest specific experiments to understand computation by natural networks. 374 

For example, in the Arabidopsis low-energy stress response,44 bZIP1 and bZIP53 “inputs” are 375 

directly upregulated by salt stress in roots or by extended darkness in leaves, while bZIP10 and 376 

bZIP25 “accessories” are not.48,56,96 However, bZIP10 and bZIP25 still play a critical role in 377 

network function; whereas double null bzip1/bzip53 mutants can weakly activate downstream 378 

target genes in response to stress, quadruple null bzip1/bzip53/bzip10/bzip25 mutants cannot.48,56 379 

Our results demonstrate that even knowledge of all protein-protein interaction affinities43 is not 380 

sufficient to predict how dimerizing transcription factors respond to various inputs, as different 381 

accessory monomer abundances can produce vastly different input-output responses (Figure 3, 382 

Figure 6). bZIP protein (rather than mRNA) abundances in different Arabidopsis tissues have not 383 

been quantitatively measured55 but could be combined with our model to provide testable 384 

predictions for how different expression levels of bZIP10 and bZIP25, such as in roots versus 385 

leaves,43,55 would affect the relationship between the inputs and output gene expression. 386 
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Ultimately, this combination of experiments and modeling would provide a predictive 387 

understanding of how the bZIP proteins sense and coordinate responses to stress, potentially 388 

facilitating the engineering of drought-resistant crops50,97 or studies of how this network has 389 

evolved over time.4  390 

More broadly, fully understanding computation in natural dimerization networks will 391 

require the ability to measure the complete distribution of dimers and how it responds to 392 

perturbations. Techniques based on proximity labeling98 or split-pool barcoding,99 for instance, 393 

have the potential to reveal the abundances of many different endogenous dimers in plant or 394 

mammalian cells in high throughput. Such measurements would disentangle computations 395 

performed within the dimer network from those performed by other levels of regulation. 396 

Why are competitive dimerization networks such effective computational systems? Even 397 

a single dimerization reaction exhibits nonlinear input-output behavior, which can be accentuated 398 

by molecular titration100,101 and by chaining multiple dimerization reactions together in “paths.” 399 

Maslov and Ispolatov have demonstrated that certain conditions can allow input perturbations to 400 

propagate along paths as long as ~4 dimerization steps.23 In more complex networks, many such 401 

paths intersect, allowing for complex, non-monotonic responses. For example, in the simple 402 

network computing a bump function (Figure 2C), one path favors output dimer formation at 403 

medium input concentrations, but another path then disfavors the same dimer’s formation at high 404 

input concentrations. In this view, computational versatility is possible because one may tune the 405 

accessory monomer expression levels to leverage different paths in a network, thereby achieving 406 

different input-output functions. 407 

Not all functions can be computed by dimerization networks. Input signals necessarily 408 

decay as they propagate because changing the abundance of an input monomer by N molecules 409 

can, at most, change the abundance of another dimer by N molecules. While enzymatic catalysis 410 

or gene transcription could potentially be used to amplify the outputs of network computations, 411 

signal decay still poses limits on the complexity of their computations. For example, the inverted 412 

bump function (Figure 2D) requires paths of only three monomers, whereas more complex 413 

functions, such as the “up-down-up” function shown in Figure S1, require paths of up to four 414 

monomers and exhibit smaller output dynamic ranges. Some functions are likely too complex to 415 

be performed with a dynamic range larger than the intrinsic noise of the system. Nevertheless, as 416 

evidenced by the functions shown here, a wide variety of complex computations can still be 417 

computed without reaching this limit. Further, in large networks, a single input might coherently 418 

regulate multiple monomers to mitigate the challenge of signal decay. For instance, in Arabidopsis, 419 

sucrose translationally represses all five S1-family bZIPs.51,52 420 

Dimerization networks are versatile: tuning their accessory monomer expression levels 421 

modulates their input-input computations (Figure 3, Figure 6). However, the same property could 422 

also make these computations overly sensitive to protein expression noise. Our results suggest that 423 

networks can balance these opposing properties through a separation of concentration scales. For 424 

instance, the input-output computation shown in Figure S5E is robust to modest (<3-fold) 425 

perturbations of accessory expression levels, but qualitatively sensitive to larger (>10-fold) 426 
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perturbations (Figure 3B). More broadly, we found that the expression level of at least one 427 

monomer typically changed by at least 100-fold to achieve versatility (Figure S6D). This further 428 

suggests that dimerization networks can be robust to small fluctuations in accessory expression 429 

levels but versatile upon large changes in accessory expression levels. 430 

Beyond studies of natural networks, our results could be applied to synthetic biology and 431 

therapeutic development. Synthetic dimerization networks could be engineered by fusing synthetic 432 

transcription factors102,103 to dimerization domains, benefiting from “failed” attempts to engineer 433 

orthogonal dimerization domains.104–106 Such synthetic networks could sense multi-input features 434 

of cell state or, in CAR T-cells, detect combinations of multiple cell surface antigens.107 435 

Separately, our modeling framework could enable more predictable treatment of networks 436 

dysregulated in disease. For instance, non-canonical dimerization of nuclear receptors results in 437 

unwanted side effects when treating inflammatory disorders with ligands for glucocorticoid 438 

receptor.108,109 Understanding the full dimerization network could identify combinations of 439 

receptor agonists and antagonists, or even double-headed ligands inducing specific 440 

heterodimers,109 to treat nuclear receptor disorders while minimally perturbing other dimers in the 441 

network. 442 

It can be tempting to regard the complexity of protein interaction networks as an accidental 443 

byproduct of duplication and divergence during evolution. However, the field of neural network 444 

computation has shown that simple but nonlinear elements, when connected in a complex network, 445 

can act as powerful computational systems.110–112 Dimerization networks are prevalent across 446 

biological signaling pathways and, as seen here, offer powerful computational capabilities. These 447 

observations strongly suggest that many-to-many dimerization networks could be used as 448 

adaptable, multi-input computers whose specific functions can be readily tailored to diverse 449 

cellular needs. This system-level viewpoint, complemented with predictive mathematical models, 450 

should facilitate the control of natural cellular functions as well as the engineering of synthetic 451 

ones. 452 

 453 

Limitations of this work 454 

In the parameter screens, a wide range of affinity constants was chosen so as to capture 455 

many diverse network behaviors (see Methods). However, it is unlikely that real protein networks 456 

could exhibit such a wide range of interaction affinities. Thus, we performed a subsequent 457 

parameter screen using a restricted range of affinity values (four orders of magnitude) and still 458 

observed many complex input-output functions (containing up to 2 local extrema; Figure S3F). 459 

Secondly, this work analyzed network behaviors at equilibrium, whereas some natural networks 460 

function with fluctuating inputs or components.113 However, dynamical simulations suggest that 461 

our quasi-equilibrium assumption holds as long as there is a sufficient separation-of-timescales 462 

between the dimerization equilibration (minutes to hours) and fluctuations in network components 463 

(Figure S5B). Finally, dimerization networks likely possess additional capabilities beyond those 464 

examined here. Transcription factor dimers may regulate the expression of network monomers, 465 

generating feedback, which could produce dynamic behaviors such as oscillations and 466 
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multistability.102,113 This property could also allow the output of one network to activate the inputs 467 

of another. Additionally, multiple dimers could be used as outputs, such as in combination (to 468 

compute sums of dimer concentrations) or separately (to compute multi-output functions beyond 469 

those analyzed here).  470 
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Data and code availability 499 

All simulation data and all original code have been deposited at CaltechDATA and are publicly 500 

available as of the date of publication at https://doi.org/10.22002/hxnqz-4gv13. Any additional 501 

information required to reanalyze the data reported in this paper is available from the lead contact 502 

upon request. 503 

 504 

Method Details 505 

All analysis was performed in Python version 3.8.13. Parameter screens and optimization trials 506 

were performed using Amazon Web Services (AWS) c5.4xlarge and c6a.48xlarge EC2 instances, 507 

respectively.  508 

 509 

Network simulations 510 

The input-output functions of dimerization networks were simulated using the Equilibrium Toolkit 511 

(EQTK, version 0.1.3), a Python-based, computationally efficient numerical solver for systems of 512 

reversible biochemical reactions.114 To more precisely specify the problem of simulating a 513 

network’s input-output function, we consider the vector 𝒄, the concentrations of all species in the 514 

network, as described more thoroughly in the EQTK documentation 515 

(https://eqtk.github.io/user_guide/core_concepts.html). Thus,  516 

𝒄 = [[𝑀1], [𝑀2], … [𝑀𝑚], … [𝐷11], [𝐷12], … [𝐷𝑚𝑚]] 517 

This work presents results in unitless concentrations, as the results would remain the same for any 518 

scaling k of the concentrations so long as the affinities are also scaled by 1/k. Each dimerization 519 

network specifies a set of 𝑛𝑑𝑖𝑚𝑒𝑟 chemical reactions in which two monomers dimerize, e.g.,  520 

𝑀1 + 𝑀1 ⇌ 𝐷11. All such dimerization reactions can be written as a stoichiometric matrix 𝑵, 521 

whose rows correspond to dimerization reactions and whose columns correspond to chemical 522 

species. Each row specifies how the counts of each chemical species increase or decrease with 523 

each chemical reaction.  524 

 525 

EQTK seeks to identify the unique set of species concentrations 𝒄𝑒𝑞 at equilibrium. To do this, it 526 

imposes two constraints. Firstly, for each reaction involving monomers 𝑖 and 𝑗, we define the 527 

equilibrium (or affinity) constant that must be satisfied: 528 

𝐾𝑖𝑗 =
[𝐷𝑖𝑗]

𝑒𝑞

[𝑀𝑖]𝑒𝑞[𝑀𝑗]
𝑒𝑞

 529 

Secondly, we impose the conservation of mass according to the stoichiometry matrix 𝑵; the total 530 

abundance of all monomers must remain constant. The total concentration of each species is the 531 

sum of its free form and all of its dimers:  532 

[𝑀𝑖]total = [𝑀𝑖] + 2[𝐷𝑖𝑖] + ∑[𝐷𝑖𝑗]

𝑚

𝑗≠𝑖

 533 
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To do this, EQTK defines the conservation matrix 𝑨 (using notation consistent with the EQTK 534 

documentation; not to be confused with the accessory protein expression levels 𝒂), such that the 535 

quantity 𝑨 ⋅ 𝒄 is conserved. For this to be true, 𝑨 must satisfy 𝑨 ⋅ 𝑵⊤ = 𝟎.  536 

 537 

Given the total monomer concentrations as the initial condition, EQTK then uses trust region 538 

optimization to identify the equilibrium concentrations of all species consistent with both the 539 

dimerization affinities 𝐾𝑖𝑗 and the conservation of 𝑨 ⋅ 𝒄. Thus, to simulate the input-output 540 

computation performed by a particular network, the equilibrium species concentrations were 541 

solved over a titration of the input monomer(s), holding the total abundance of the accessory (non-542 

input) monomers constant.  543 

 544 

Parameter screen 545 

To perform the large parameter screen, networks of two to twelve monomers were generated, with 546 

equal numbers of networks of each possible connectivity. In this parameter screen, approximately 547 

106 networks were generated for one-input simulations, 250,000 of which were used for two-input 548 

simulations. For example, a network of eight proteins can have between 7 and 28 heterodimer 549 

“edges,” (22 options); thus, for each number of edges, 45,455 networks were generated for a total 550 

of 1,000,010 networks. We later sub-sampled these networks to assess whether the number of 551 

networks sampled impacted the analysis. When more networks were sampled, the log of the 552 

number of unique functions discovered increased linearly with the log of the number of networks 553 

sampled (Figure S3C, Figure S3D), but the expressivity trends presented in Figure 4B remained 554 

consistent. The networkx Python package (version 2.7.1) was used to randomly generate graphs 555 

with a desired number of edges from an Erdős–Rényi model; each graph was checked for 556 

connectedness (i.e., that there are no fully separate networks) and re-generated if necessary to 557 

achieve connectedness. Homodimer edges were chosen with a probability of 75% (i.e., 558 

approximately 75% of monomers across the parameter screen were allowed to homodimerize). 559 

This fraction is within the range observed in natural dimerization networks, such as bZIP proteins 560 

(70-80%)4 and nuclear receptor proteins (68%).1 Upon choosing which edges would be present in 561 

a network, the values of the edge affinities were randomly chosen on a log-uniform range of 562 

dimensionless values 10-5 to 107 using Latin hypercube sampling (LHS). Finally, the expression 563 

levels of network proteins were also randomly chosen on a log-uniform range of dimensionless 564 

values 10-3 to 103 using LHS.  565 

 566 

The aforementioned parameter ranges were defined generously so as to encompass as many 567 

biologically feasible behaviors as possible, including those that may require extreme parameters. 568 

However, the parameter ranges are biologically inspired. Protein expression levels in whole 569 

mammalian cells, as well as of transcription factors in the nuclei, have been observed to vary over 570 

six orders of magnitude,115–117 ranging from approximately 5.5 × 10-13 M (one copy per cell) to 5.5 571 

× 10-7 M (106 copies per cell), assuming cell volumes of approximately 3 pL.116,118 The wide range 572 

for dimerization affinities was chosen such that the strongest affinity sampled (107) would be 573 
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strong enough to dimerize 99% of monomers at the lowest concentration sampled (10-3), and the 574 

weakest affinity sampled (10-5) would be weak enough such that only 1% of monomers at the 575 

highest concentration sampled (103) would be dimerized. Biological affinity values span an 576 

enormous range, with dissociation constants (KD) from approximately 10-3 M (mM) to 10-12 M 577 

(pM),119 and certain RNase inhibitor proteins have been reported with even stronger affinities (KD 578 

< 2 × 10-16 M).120 While we acknowledge that the affinities characterizing competitive 579 

dimerization networks are unlikely to take on such a wide range due to biochemical constraints on 580 

affinity and multi-specificity,121 many-to-many interactions of SYNZIP coiled-coil proteins have 581 

been observed to vary in affinity (KD) over four orders of magnitude from approximately 10-10 M 582 

(100 pM) to 10-6 M (1 μM).104 583 

 584 

All generated parameter sets were simulated over a titration of the input monomer(s), with 30 585 

titration points for one-input functions and 12 titration points for two-input functions; titration 586 

points were spaced evenly in log space from 10-3 to 103 (the same range as for the accessory 587 

monomers). The ray Python package (version 1.11.1) was used for parallelization. For each 588 

network, the concentrations of each dimer over this input titration constituted the “responses.” Any 589 

concentrations below 10-3 were rounded to 10-3, as we consider such concentrations outside of the 590 

biochemically feasible window (i.e., less than one molecule of dimer per cell). The dataset was 591 

filtered to include only responses with a dynamic range greater than 10-fold; all other dimers either 592 

did not form at all or did not change significantly in response to the input monomer(s). The 593 

remaining responses were categorized into “unique” functions by discretizing the space of possible 594 

outputs into ten-fold bins (i.e., bin edges at 10-3, 10-2, 10-1, 1, 101, 102, and 103, for both input and 595 

output). For each input bin (e.g., input between 10-3 and 10-2), the response points were averaged 596 

in log space, and this value was categorized into one of the output bins (e.g., 0.5 is categorized 597 

into the 10-1 to 1 bin). Thus, each response was transformed into a sequence, such as [0, 0, 0, 1, 1, 598 

1], constituting its unique response function. To analyze expressivity, all unique response functions 599 

for a given dataset were counted. Lastly, we used these unique functions to create a library of target 600 

functions for optimization (see sections below). For each unique function observed, all responses 601 

categorized as performing that function were averaged in log space to create the corresponding 602 

target function in the library. 603 

 604 

To count the number of two-output functions observed in the parameter screen, we iterated through 605 

all combinations of dimers in each network, identified which discretized function they were 606 

categorized as (using the same discretization scheme as described above), and tabulated the 607 

number of unique combinations of discretized functions observed. We compared our results to a 608 

scrambled control, in which we randomly sampled the same number of response functions with 609 

replacement from our overall dataset, paired them together randomly, and counted the number of 610 

unique discretized functions observed. We sampled with replacement because the number of 611 

response combinations that needed to be sampled was always larger than the number of responses. 612 

 613 
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Dual Annealing Optimizations 614 

Two classes of optimization algorithms were used in this work: (1) a dual annealing algorithm was 615 

used to identify optimal parameter sets for particular functions, testing the minimum number of 616 

monomers required to achieve each; (2) a genetic algorithm was used in the much larger effort 617 

characterizing the versatility of networks with random interaction affinities. In both cases, the ray 618 

Python package (version 1.11.1) was used for parallelization. 619 

 620 

Dual annealing optimization was used to determine whether networks of a particular size could 621 

achieve pre-defined target functions (in Figure 4C) or logic gates (in Figure 5). A dual annealing 622 

algorithm was used to optimize the affinities (𝑲) and accessory monomer expression levels (𝒂) of 623 

networks with a defined size to best fit a target function, with the loss defined as the sum of squares 624 

of residuals in log space: 625 

𝐹𝑖 = log(𝑓(𝑥𝑖)) 626 

𝐺𝑖 = log (𝑔𝑗(𝑥𝑖; 𝑲, 𝒂)) 627 

ℒ𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ∑ (𝐹𝑖 − 𝐺𝑖)2

𝑛titration

𝑖=0

 628 

where 𝐹𝑖 is the log-scaled target function and 𝐺𝑖 is the log-scaled equilibrium concentration 𝑔𝑗 of 629 

the 𝑗'th dimer at a particular input concentration 𝑥𝑖. Networks are simulated with 𝑛titration titration 630 

points. The optimize.dual_annealing function in the scipy Python package (version 1.10.1) was 631 

used to perform such optimizations. The dual annealing algorithm combines simulated annealing 632 

with a local search algorithm.76 In simulated annealing, a perturbation of the parameter set (a 633 

“step”) is proposed based on a visiting distribution. If the proposed step improves the loss function, 634 

it is accepted; otherwise, it may still be accepted with some probability based on a “temperature” 635 

factor (which decreases over the course of the optimization) so as to promote the identification of 636 

globally optimal solutions. In dual annealing, a local search is subsequently performed on the 637 

solutions identified by simulated annealing.  638 

 639 

To optimize networks for three- and four-input logic gates, four titration points in each input 640 

dimension were used, at concentrations of 10-3, 10-1, 101, and 103. The lower two concentrations 641 

were considered “off,” and the higher two concentrations were considered “on.” The optimization 642 

was considered successful if the highest response of any input combination in which the output 643 

should be “off” is less than the lowest response of any input combination in which the output 644 

should be “on.”  645 

 646 

Genetic Algorithm Optimizations 647 

Separately, a genetic algorithm was used to measure the versatility of networks with random 648 

binding affinities 𝑲 (Figure 6). In this process, we define a library of target functions and evaluate 649 

the ability of each sampled network to reproduce each target by optimizing the accessory protein 650 

expression levels 𝒂. In a genetic algorithm, an initial population of parameter sets is generated and 651 
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the best of these sets are allowed to “reproduce,” producing a new population of parameter sets. 652 

This new population is then “mutated” (perturbed) and the process is repeated. All optimizations 653 

in this section were performed using the genetic algorithm (GA) function of the pymoo Python 654 

package (version 0.5.0)122; all 1-d input functions were optimized using 20 iterations and a 655 

population size of 100, and all 2-d input functions were optimized using 200 iterations and a 656 

population size of 1000. 657 

 658 

For each network size m, we defined a library of 𝑁𝑚 target functions 𝑓 from the unique functions 659 

that were identified in the parameter screen (see “Parameter screen”). Note that each network size 660 

𝑚 thus has a distinct library of size; this allows us to study versatility as a fraction of functions we 661 

know to be possible for a given network size.  662 

 663 

We consider three loss metrics for evaluating the ability of a network, with affinities 𝑲 and 664 

accessory monomer expression levels 𝒂, to perform a target 𝑓 using dimer index 𝑗: 665 

𝐹𝑖 = log(𝑓(𝑥𝑖)) 666 

𝐺𝑖 = log (𝑔𝑗(𝑥𝑖; 𝑲, 𝒂)) 667 

ℒ𝑀𝑆𝐸(𝒂; 𝑗, 𝑲, 𝑓) =
1

𝑛titration
∑ (𝐹𝑖 − 𝐺𝑖)2

𝑛titration

𝑖=0

 (1) 668 

ℒ∞(𝒂;  𝑗, 𝑲,  𝑓)  =   max
𝑖

|𝐹𝑖 − 𝐺𝑖|   (2) 669 

ℒ𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝒂; 𝑗, 𝑲, 𝑓) =
∑ [(𝐹𝑖 − mean

𝑖
(𝐹𝑖)) (𝐺𝑖 − mean

𝑖
(𝐺𝑖))]

𝑛titration
𝑖=0

√∑ (𝐹𝑖 − mean
𝑖

(𝐹𝑖))
2

𝑛titration

𝑖=0
√∑ (𝐺𝑖 − mean

𝑖
(𝐺𝑖))

2
𝑛titration

𝑖=0

 (3) 670 

 671 

where 𝐹𝑖 is the log-scaled target function and 𝐺𝑖 is the log-scaled equilibrium concentration 𝑔𝑗 of 672 

the 𝑗'th dimer at a particular input concentration 𝑥𝑖. Networks are simulated with 𝑛titration titration 673 

points. 674 

 675 

In our experiments, we tune 𝒂 in order to optimize the mean squared error ℒ𝑀𝑆𝐸  (Equation 1) but 676 

evaluate the quality of the resulting fit using the infinity norm ℒ∞ (Equation 2, for one-input 677 

functions) or ℒ𝑃𝑒𝑎𝑟𝑠𝑜𝑛 (Equation 3, for two-input functions). This was done because ℒ∞ (also 678 

known as the Chebyshev distance) measures the loss at the “worst point,” which is the strictest 679 

metric for whether a response would be acceptable in practice. That is, we have the following: 680 

𝒂∗ = argmin
𝒂

(ℒMSE(𝒂; 𝑗, 𝑲, 𝑓)) 681 

We then define a versatility metric 𝒱𝓂 measuring the fraction of targets each network could 682 

perform with a loss below the tolerance γ = 1. For a given 𝑲 ∈ 𝑅𝑑, where d is the number of 683 

dimers, and each particular 𝑗'th dimer, versatility is calculated as 684 
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𝒱𝓂(𝑗, 𝑲) ≔
1

𝑁𝑚
∑ [ℒ∞ (𝒂∗(𝑗, 𝑲, 𝑓𝑛

(𝑚)
);  𝑗, 𝐾, 𝑓𝑛

(𝑚)
) ≤ γ]

𝑁𝑚

𝑛=1

 685 

We term 𝒱𝓂 as versatility because it reports the fraction of target functions that dimer 𝑗 in a 686 

network with affinities 𝑲 can perform simply by tuning 𝒂. This definition requires that the same 687 

dimer must always be used, such that no “rewiring” would be required at the molecular level. 688 

 689 

We sampled 50 networks from 𝑲 ∼ 𝒰𝑙𝑜𝑔([10−7, 105]𝑑) and subsequently performed the 690 

necessary inner optimizations of 𝑎 to measure 𝒱𝓂 for each dimer.  691 

 692 

In Figure 6C, we broaden our definition of versatility to allow a network to perform different target 693 

functions using different output dimers. In this case, we first redefine versatility as the following: 694 

𝒂∗, 𝑗∗ = argmin
𝒂,𝑗

ℒMSE(𝒂; 𝑗, 𝑲, 𝑓) 695 

which yields a versatility metric 𝒱 that is independent of dimer index: 696 

𝒱𝓂(𝑲) ≔
1

𝑁𝑚
∑ [ℒ∞(𝒂∗;  𝑗∗, 𝑲, 𝑓𝑛

(𝑚)
) ≤ γ]

𝑁𝑚

𝑛=1

 697 

This metric allows us to quantify the ability of a single network 𝑲 to perform different functions 698 

by tuning 𝒂 when given the freedom to use different dimers for each function. 699 

 700 

When measuring the versatility of two-input functions, we found the ℒ∞ loss function to be 701 

unnecessarily strict, as even a one-pixel shift in the response function could increase the loss 702 

beyond the threshold γ. As such, for two-input functions, we used ℒ𝑃𝑒𝑎𝑟𝑠𝑜𝑛 to compare the target 703 

function to simulated responses in a more holistic manner. We tested a variety of other metrics as 704 

well; we found that the structural similarity index measure (SSIM) and the Wasserstein distance 705 

gave results similar to the Pearson correlation, whereas the Hausdorff distance and ℒ𝑀𝑆𝐸  loss, like 706 

the ℒ∞ loss, were unnecessarily strict. For the results described in the text, a threshold Pearson 707 

correlation of 0.85 was used to assess whether a target function was achieved, although our results 708 

hold for different choices of this threshold (Figure S6E). 709 

 710 

Simulating the Kinetics of Network Re-equilibration 711 

Dimerization network re-equilibration kinetics were simulated by numerical integration of 712 

ordinary differential equations (ODEs) using the integrate.odeint function of the scipy Python 713 

package (version 1.10.1). The ODEs were of the following form: 714 

𝑑[𝑀𝑖]

𝑑𝑡
= (2𝑘off

𝑖𝑖 [𝐷𝑖𝑖] + ∑ 𝑘off
𝑖𝑗

[𝐷𝑖𝑗]

𝑚

𝑗≠𝑖

) − (2𝑘on[𝑀𝑖]
2 + ∑ 𝑘on[𝑀𝑖][𝑀𝑗]

𝑚

𝑗≠𝑖

) 715 

𝑑[𝐷𝑖𝑗]

𝑑𝑡
= 𝑘on[𝑀𝑖][𝑀𝑗] − 𝑘off

𝑖𝑗
[𝐷𝑖𝑗] 716 

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2024. ; https://doi.org/10.1101/2023.10.30.564854doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564854
http://creativecommons.org/licenses/by-nc-nd/4.0/


The rate of change in the concentration of monomer 𝑀𝑖 is the rate of all dimer dissociation 717 

reactions involving monomer 𝑀𝑖 minus the rate of all dimer association reactions involving 718 

monomer 𝑀𝑖, adjusted for stoichiometry. The rate of change in the concentration of dimer 𝐷𝑖𝑗 is 719 

the rate of the 𝐷𝑖𝑗 association reaction minus the rate of the 𝐷𝑖𝑗 dissociation reaction. We assume 720 

that all association reactions have similar rate constants, following a minimal kinetic model in 721 

which there is a single high-energy transition state for dimerization. In this model, various dimers 722 

only differ in the free energy of their dimerized states and thus only differ in their dissociation 723 

rates. We chose an association rate constant of 5 × 105 M-1 s-1, following experimental 724 

measurements of coiled-coil dimerization kinetics.123 The dissociation rate constants were chosen 725 

randomly on a log scale between 10-4 and 1 s-1, giving dimerization affinity constants (KD) of about 726 

200 pM to 2 μM, matching experimental measurements of coiled-coil interaction affinities.104 727 

These real-unit KD values correspond to 𝑲 values in our dimensionless units ranging from about 728 

10-3 to 101. All parameters were made unitless by converting concentration units into “molecules 729 

per cell” counts, assuming a cellular volume of about 3 pL.116,118  730 

 731 

20 random networks were simulated for each network size from m=2 to m=12 monomers. The 732 

initial state of each network was the equilibrium state in which the input monomer was at its lowest 733 

concentration (1 molecule per cell), but the concentration of the input monomer was then set to its 734 

maximum concentration (106 molecules per cell). Networks were simulated with time increments 735 

of 10 s until equilibrium, with a maximum simulation time of 107 s. The exact equilibrium 736 

concentrations were calculated using EQTK (see “Network Simulations”), and a network species 737 

was defined as having reached equilibrium when its concentration was within 1 molecule per cell 738 

of the exact equilibrium concentration.  739 

 740 

To assess whether the dimerization reactions can be at quasi-equilibrium despite changing input 741 

abundances, we simulated network dynamics as the total concentration of one monomer was 742 

oscillated sinusoidally. The oscillating monomer was made to have a total concentration oscillating 743 

between 1 and 106 molecules/cell, using the same affinity parameters and concentration 744 

conventions as above. n=10 different networks of each network size from 2 to 12 monomers were 745 

simulated. For each dimer, we compared the dynamical trajectory of its concentration to the 746 

calculated equilibrium concentration of the dimer at each timepoint. We calculated the fraction of 747 

dimers for which the dynamical and equilibrium concentrations matched at every timepoint within 748 

0.5 log units (i.e., with less than a ~3-fold difference). 749 

 750 

Assessing the Intrinsic Noise of Dimerization Equilibria 751 

The intrinsic noise of the dimerization equilibria was simulated using stochastic Gillespie 752 

simulations, implemented using a modified version of the code from the biocircuits python 753 

package (version 0.1.14), using the numba Python package (version 0.55.1) to speed up simulation 754 

functions and the ray Python package (version 1.11.1) for parallelization. In the Gillespie 755 

algorithm, a population of molecules as well as a set of possible reactions among those molecules 756 
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(with rates calculated from the current population) is first defined. To perform a step of the 757 

simulation, the time until the next reaction is sampled from an exponential distribution based on 758 

the rates of all reactions. The identity of the reaction that occurs is chosen based on the relative 759 

rates of all the possible reactions, and the population is updated to reflect that reaction. 760 

 761 

Using the same parameter ranges as in the deterministic simulations of network equilibration, 20 762 

random networks were simulated for 1000 s for each network size from m=2 to m=12 monomers. 763 

The noise η in the concentration of each species was defined as the coefficient of variation in the 764 

number of molecules per cell n over time80,82: 765 

η =
⟨𝑛2⟩ − ⟨𝑛⟩2

⟨𝑛⟩2
 766 

 767 

Assessing Robustness to Extrinsic Monomer Expression Noise 768 

Protein expression levels are subject to both intrinsic expression noise, which independently 769 

affects different genes, as well as extrinsic expression noise, in which overall fluctuations in 770 

machinery for transcription and translation could affect the expression of all genes in a concerted 771 

manner. The steady-state distribution of mRNA counts produced by bursty transcription is 772 

negative binomial,124 and steady-state protein concentrations appear similarly distributed.82 Thus, 773 

expression noise was modeled here using a gamma distribution, the continuous analog of the 774 

negative binomial distribution, using the probability density function below: 775 

𝑃(𝑥) =
𝑥𝑘−1𝑒−𝑥/θ

Γ(𝑘)θ𝑘
 776 

where k is the shape parameter, θ is the scale parameter, and Γ(k) is the Gamma function of k. This 777 

distribution was parameterized to produce expression noise coefficients similar to those observed 778 

experimentally (0.4 for intrinsic and 0.6 for extrinsic).82 To accomplish this, the shape parameter 779 

was set to 1/η2 and the scale parameter was set to η2.  780 

 781 

We simulated both cases in which there was either purely intrinsic (independent) or purely 782 

extrinsic (concerted) expression noise. For each unique function identified in the aforementioned 783 

parameter screen, a network performing that function was randomly selected and simulated for 50 784 

random perturbations (independent or concerted, for intrinsic or extrinsic noise) of the accessory 785 

monomer expression levels. Each of the 50 resulting input-output functions (simulated at 30 input 786 

points) was compared to the original input-output response using the root-mean-square difference 787 

(RMSD) in log space: 788 

RMSD = √ ∑ (log10(original𝑖) − log10(perturbed𝑖))2

𝑛titration

𝑖

 789 

The RMSD is one metric for the typical difference, in log space, between the original and perturbed 790 

responses at each input point.  791 

 792 
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Transcriptomics data for analysis of transcription factor co-expression 793 

To characterize how many dimerizing transcription factors are potentially co-expressed in 794 

individual cell types, two pre-existing datasets were used: the integrated mouse transcriptomics 795 

dataset from Granados et al.,21 which integrated multiple pre-existing mouse datasets, and the 796 

Human Protein Atlas (version 23.0) “RNA consensus tissue gene data” dataset125 797 

(https://www.proteinatlas.org), which reports normalized expression levels from a consensus of 798 

multiple scRNA-seq datasets. The Human Protein Atlas dataset was used to demonstrate the cell-799 

type-specific expression of nuclear receptor proteins in Figure 1C. The names of genes belonging 800 

to the bZIP and nuclear receptor families in mice and humans were obtained from Uniprot,126 801 

Reinke et al.,4 and Amoutzias et al.1 802 

 803 

Quantification and Statistical Analysis 804 

The numbers of samples (n) used in each analysis are described in the Method Details section as 805 

well as the figure captions. In analyses involving the comparison of data distributions, such as the 806 

comparisons of versatility scores in Figure 6, violin plots were used to show the distribution of 807 

data points. More specifically, violins show the kernel density estimate calculated using the 808 

kdeplot function of seaborn (version 0.12.2). Points were also directly plotted with the violins; 809 

points were sub-sampled if it was not practical to display all data points. On such violin plots, the 810 

medians of the data are displayed as red lines. 811 

 812 

Additional Resources 813 

An interactive notebook hosted on Google Colaboratory, in which users can simulate the input-814 

output functions of arbitrary dimerization networks, can be found at the following link: 815 

https://bxky.short.gy/interactive_dimerization_networks  816 
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Key Resources Table 

 

Deposited data 

 Human Protein Atlas 125Uhlén et al., 2015 https://doi.org/10.1

126/science.126041

9 

Integrated Mouse Atlas 21Granados et al., 

2024 

https://doi.org/10.1

016/j.xgen.2023.10

0463 

Software and algorithms 

 Simulation, optimization, and analysis code This paper https://doi.org/10.2

2002/hxnqz-4gv13 

Supplemental Figures  
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Figure S1. An atlas of elementary dimerization network computations, part 1. Shown for each 

function is a schematic of the network parameters and a plot of the corresponding input-output 

function, for both one-input functions (top) and a partial set of two-input functions (bottom). The 

remaining two-input functions can be found in Figure S2. For all panels, the networks shown were 

inspired by networks from the random parameter screen (Figure 4) and rationally pruned to 

identify minimal topologies capable of computing each input-output function. All results are 

displayed in unitless concentrations (see Methods). 
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Figure S2. An atlas of elementary network computations, part 2. Shown for each function is a 

schematic of the network parameters and a plot of the corresponding input-output function. 

Displayed are the two-input computations not included in Figure S1. For all panels, the networks 

shown were inspired by networks from the random parameter screen (Figure 4) and rationally 

pruned to identify minimal topologies capable of computing each input-output function. All results 

are displayed in unitless concentrations (see Methods). These computations can be rationally 

understood. For instance, considering the XOR network, heterodimerization of M3 and M4 in the 

absence of either input allows M5 to heterodimerize with M6, limiting the formation of the D66 

output dimer. Adding either input alone sequesters either M3 or M4, allowing the other of the two 

to dimerize with M5, freeing M6 to form the D66 output dimer. When both inputs are present, 

though, sequestration of both M3 and M4 allows M5 to again dimerize with M6, reducing the D66 

output.  
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Figure S3, related to Figure 4. A global parameter screen reveals the diversity and nature of 

dimerization network computations. (A) A bar graph shows, for each network size, the fraction of 

responses with zero to four local extrema (i.e., local minima and maxima). (B) A bar graph shows, 

for each network size, the fraction of dimers that both form at significant concentrations and are 

perturbed more than 10-fold by a titration of the input monomer. (C-D) The number of unique one-

input (C) and two-input (D) functions observed is plotted versus the number of networks sampled 

in the random parameter screen. (E) A bar graph shows, for increasing distances between the input 

monomer and output dimer, the fraction of dimers (out of all dimers that form at appreciable 

concentrations) that are perturbed more than 10-fold in response to a titration of the input 

monomer. (F) A bar graph shows, for a parameter screen of 12-monomer networks using a more 

limited range of affinities (Kij) from 10-3 to 101, the fraction of responses with zero to four local 

extrema (i.e., local minima and maxima). (G) A schematic depicting how two dimers within the 

same network could be used to compute two-output functions. (H-I) Bar graphs show, for each 

network size, the number of unique, discretized, one-input, two-output functions (H) or two-input, 

two-output functions (I), as well as the number of unique functions for a scrambled control in 

which random pairs of response functions were selected from the overall dataset. The outlier for 

the two-input m=2 scrambled data appears to be due to the m=2 dataset having a more even 

distribution of unique functions among the whole set of responses. 
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Figure S4, related to Figure 5. Competitive dimerization networks can compute multi-input 

functions. (A) Dimerization networks can perform all three-input logic gates. (left) Rows represent 

different combinations of inputs that are presented to each network. (right) A heatmap of responses 

is shown, where each column represents a unique logic gate and the color of the response heatmap 

represents the output dimer concentration. The number of network monomers required to perform 

each gate is noted below each column. (B) Dimerization networks can further perform four-input 

logic gates. Shown are four examples, the AND and “at least n” gates, which output 1 if at least n 

inputs are present.   
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Figure S5. Competitive dimerization networks exhibit biologically reasonable equilibration 

kinetics and robustness to noise. (A) Network equilibration kinetics were simulated by numerically 

integrating ordinary differential equations (ODEs) describing dimer association and dissociation 

kinetics. The time for each species in n=20 networks to re-equilibrate after a perturbation of an 

input monomer is displayed as a violin plot with scattered points. (B) To assess the timescale at 

which a dynamical dimerization network can no longer be assumed to be at equilibrium, we 

simulated network equilibration as the total concentration of one monomer was oscillated 

sinusoidally. For each dimer, we compared the dynamical trajectory of its concentration to the 

calculated equilibrium concentration of the dimer at that timepoint. Shown is the fraction of dimers 

(out of all dimers whose concentrations change significantly over the course of the simulation) for 

which the dynamical and equilibrium concentrations matched at every timepoint (within 0.5 log 

units, or less than ~3-fold difference), for various network sizes m as well as different timescales 

at which one monomer was perturbed sinusoidally. n=10 different networks of each network size 

were simulated; the error bars show the 1st and 3rd quartiles of the data across different networks. 

Points for the 100 s timescale with network sizes 4-10 were not shown, as 40-70% of these 

simulations failed numerically. (C-D) The intrinsic noise of the binding equilibrium was simulated 

using the Gillespie algorithm with 100 steps of 10 s each. (C) A violin plot (light gray) with 

scattered points shows the coefficient of variation, a measure of noise, for each species. A dark 

gray violin shows the data specifically for species present at high abundances (>100 

molecules/cell, median shown by the orange line). (D) A scatterplot shows the relationship 

between the equilibrium abundance (in molecules/cell) and the intrinsic noise measured for each 

simulated species. (E) The versatile switch-off function from Figure 3B (right, black) was 

perturbed with typical protein expression noise (probability density function shown in the middle), 

and each perturbed computation is shown (right, green, n=50 perturbations). The median root-

mean-square deviation (RMSD), in log space, between the original and the perturbed curves was 

0.18, corresponding to a 1.5-fold change in output. (F) Networks performing each unique function 

from the parameter screen were perturbed with noise affecting the expression level of each 

monomer independently (n=50 perturbations). A violin plot with scattered points shows the RMSD 

in log space between the original and perturbed input-output functions, with an inverted y-axis to 

emphasize that low RMSD values correspond to high robustness. For all violin plots, the violins 

show the kernel density estimate of the data distributions, red lines show the median values, and 

only a random subset of the data is displayed as scattered points.   
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Figure S6, related to Figure 6. The versatility of random networks increases with network size. 

(A) A scatter plot shows how network versatility using only a single output dimer (left) or any 

output dimer (right) varies with network connectivity. (B) To show how difficult each target 

function was to achieve, a violin plot with scattered points shows the fraction of random networks 

that could achieve each target function, separated by network size and whether only a single dimer 

(left) or any dimer (right) may be used as the output. (C) While Figure 6B shows only the fraction 

of targets that could be achieved by each network, plotted here is the projected total number of 

targets each network is expected to achieve – accounting for differences in the overall 

expressivities of networks differing in size – for both cases in which only a single dimer (top) or 

any dimer (bottom) may be used as the output. (D) A scatterplot showing, for all combinations of 

target functions achieved in the versatility analysis by networks with m=8 monomers, both the 

maximum log fold change in accessory expression level (maximum over all accessory monomers) 

and the Euclidean distance between the two target functions. (E) A violin plot with scattered points 

shows the versatility of n=10 random networks with m=20 monomers toward t=10 2-input target 

functions at different thresholds of the Pearson correlation coefficient. (F) An array showing the 

responses of all n=10 random networks optimized to perform t=10 named 2-input target functions. 

For the violin plots, the gray violins show the kernel density estimate of the data distributions, red 

lines show the median values, and only a random subset of the data is displayed as scattered points.  
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Figure S7. Natural dimerization networks are of sufficient size to exhibit high expressivity and 

versatility. (A, B) Co-expression of bZIP (A) and nuclear receptor (NR) (B) transcription factors 

was assessed for many cell types across both mouse and human datasets. A violin plot with 

scattered points shows the number of network proteins co-expressed in each cell type. Gray violins 

show the kernel density estimate of the data distributions, red lines show the median values, and 

black dotted lines indicate the total number of genes assessed. (C) Table summarizing the size, 

number of known interacting members, number of co-expressed members, and connectivity of 

several natural dimerization networks. N.D. indicates that an entry was not determined. 
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