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Abstract 19 

During both sleep and awake immobility, hippocampal place cells reactivate time-20 
compressed versions of sequences representing recently experienced trajectories in a 21 
phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to 22 
forthcoming trajectories in novel environments experienced later, in a phenomenon known 23 
as preplay. Here, we present a model showing that sequences of spikes correlated with the 24 
place fields underlying spatial trajectories in both previously experienced and future novel 25 
environments can arise spontaneously in neural circuits with random, clustered 26 
connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields 27 
themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay 28 
quality depends on the network’s balance of cluster isolation and overlap, with optimal 29 
preplay occurring in small-world regimes of high clustering yet short path lengths. We 30 
validate the results of our model by applying the same place field and preplay analyses to 31 
previously published rat hippocampal place cell data. Our results show that clustered 32 
recurrent connectivity can generate spontaneous preplay and immediate replay of novel 33 
environments. These findings support a framework whereby novel sensory experiences 34 
become associated with preexisting “pluripotent” internal neural activity patterns. 35 
 36 

Impact Statement 37 

Neural circuits with small-world connectivity spontaneously emit sequences of spikes that 38 
are correlated with any of the distinct sequences of realistic place fields produced by 39 
location-modulated, monotonically varying input. 40 
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Introduction 53 

The hippocampus plays a critical role in spatial and episodic memory in mammals (Morris 54 
et al., 1982; Squire et al., 2004). Place cells in the hippocampus exhibit spatial tuning, firing 55 
selectively in specific locations of a spatial environment (Moser et al., 2008; O’Keefe and 56 
Nadel, 1978). During sleep and quiet wakefulness, place cells show a time-compressed 57 
reactivation of spike sequences corresponding to recent experiences (Wilson and 58 
McNaughton, 1994; Foster and Wilson, 2006), known as replay. These replay events are 59 
thought to be important for memory consolidation, often referred to as memory replay 60 
(Carr et al., 2011). 61 

The CA3 region of the hippocampus is a highly recurrently connected region that is the 62 
primary site of replay generation in the hippocampus. Input from CA3 supports replay in 63 
CA1 (Csicsvari et al., 2000; Yamamoto and Tonegawa, 2017; Nakashiba et al., 2008; 64 
Nakashiba et al., 2009), and peri-ripple spiking in CA3 precedes that of CA1 (Nitzan et al., 65 
2022). The recurrent connections support intrinsically generated bursts of activity that 66 
propagate through the network. 67 

Most replay models rely on a recurrent network structure in which a map of the 68 
environment is encoded in the recurrent connections of CA3 cells, such that cells with 69 
nearby place fields are more strongly connected. Some models assume this structure is pre-70 
existing (Haga and Fukai, 2018; Pang and Fairhall, 2019), and some show how it could 71 
develop over time through synaptic plasticity (Theodoni et al., 2018; Jahnke et al., 2015). 72 
Related to replay models based on place-field distance-dependent connectivity is the 73 
broader class of synfire-chain-like models. In these models, neurons (or clusters of 74 
neurons) are connected in a 1-dimensional feed-forward manner (Diesmann et al., 1999; 75 
Chenkov et al., 2017). The classic idea of a synfire-chain has been extended to included 76 
recurrent connections, such as by Chenkov et al., 2017, however such models still rely on 77 
an underlying 1-dimensional sequence of activity propagation. 78 

A problem with these models is that in novel environments place cells remap immediately 79 
in a seemingly random fashion (Leutgeb et al., 2005; Muller and Kubie, 1987). The CA3 80 
region, in particular, undergoes pronounced remapping (Leutgeb et al., 2004; Leutgeb et al., 81 
2005; Alme et al., 2014). A random remapping of place fields in such models that rely on 82 
environment-specific recurrent connectivity between place cells would lead to recurrent 83 
connections that are random with respect to the novel environment, and thus would not 84 
support replay of the novel environment.  85 

Rather, these models require a pre-existing structure of recurrent connections to be 86 
created for each environment. A proposed solution to account for remapping in 87 
hippocampal models is to assume the existence of multiple independent and uncorrelated 88 
spatial maps stored within the connections between cells. In this framework, the maximum 89 
number of maps is reached when the noise induced via connections needed for alternative 90 
maps becomes too great for a faithful rendering of the current map (Samsonovich and 91 
McNaughton, 1997; Battaglia and Treves, 1998; Azizi et al., 2013). However, experiments 92 
have found that hippocampal representations remain uncorrelated, with no signs of 93 
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representation re-use, after testing as many as 11 different environments in rats (Alme et 94 
al., 2014). 95 

Rather than re-using a previously stored map, another possibility is that a novel map for a 96 
novel environment is generated de novo through experience-dependent plasticity while in 97 
the environment. Given the timescales of synaptic and structural plasticity, one might 98 
expect that significant experience within each environment is needed to produce each new 99 
map. However, replay can occur after just 1-2 laps on novel tracks (Foster and Wilson, 100 
2006; Berners-Lee et al., 2022), which means that the synaptic connections that allow the 101 
generation of the replayed sequences must already be present. Consistent with this 102 
expectation, it has been found that decoded sequences during sleep show significant 103 
correlations when decoded by place fields from future, novel environments. This 104 
phenomenon is known as preplay and has been observed in both rodents (Dragoi and 105 
Tonegawa, 2011; Dragoi and Tonegawa, 2013; Grosmark and Buzsaki, 2016; Liu et al., 106 
2018) and humans (Vaz et al., 2023). 107 

The existence of both preplay and immediate replay in novel environments suggests that 108 
the preexisting recurrent connections in the hippocampus that generate replay are 109 
somehow correlated with the pattern of future place fields that arise in novel 110 
environments. To reconcile these experimental results, we propose a model of intrinsic 111 
sequence generation based on randomly clustered recurrent connectivity, wherein place 112 
cells are connected within multiple overlapping clusters that are random with respect to 113 
any future, novel environment. Such clustering is a common motif across the brain, 114 
including the CA3 region of the hippocampus (Guzman et al., 2016) as well as cortex (Song 115 
et al., 2005; Perin et al., 2011), naturally arises from a combination of Hebbian and 116 
homeostatic plasticity in recurrent networks (Bourjaily and Miller, 2011; Litwin-Kumar 117 
and Doiron, 2014; Lynn et al., 2022), and spontaneously develops in networks of cultured 118 
hippocampal neurons (Antonello et al., 2022).  119 

As an animal gains experience in an environment, the pattern of recurrent connections of 120 
CA3 would be shaped by Hebbian plasticity (Debanne et al., 1998; Mishra et al., 2016). 121 
Relative to CA1, which has little recurrent connectivity, CA3 has been found to have both 122 
more stable spatial tuning and a stronger functional assembly organization, consistent with 123 
the hypothesis that spatial coding in CA3 is influenced by its recurrent connections 124 
(Sheintuch et al., 2023). Gaining experience in different environments would then be 125 
expected to lead to individual place cells participating in multiple formed clusters. Such 126 
overlapping clustered connectivity may be a general feature of any hippocampal and 127 
cortical region that has typical Hebbian plasticity rules. Sadovsky and MacLean, 2014, 128 
found such structure in the spontaneous activity of excitatory neurons in primary visual 129 
cortex, where cells formed overlapping but distinct functional clusters. Further, such 130 
preexisting clusters may help explain the correlations that have been found in otherwise 131 
seemingly random remapping (Kinsky et al., 2018; Whittington et al., 2020) and support 132 
the rapid hippocampal representations of novel environments that are initially generic and 133 
become refined with experience (Liu et al., 2021). Such clustered connectivity likely 134 
underlies the functional assemblies that have been observed in hippocampus, wherein 135 
groups of recorded cells have correlated activity that can be identified through 136 
independent component analysis (Peyrache et al., 2010; Farooq et al., 2019). 137 
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Since our model relies on its random recurrent connections for propagation of activity 138 
through the network during spontaneous activity, we also sought to assess the extent to 139 
which the internal activity within the network can generate place cells with firing rate 140 
peaks at a location where they do not receive a peak in their external input. While the total 141 
input to the network is constant as a function of position, each cell only receives a peak in 142 
its spatially linearly varying feedforward input at one end of the track. Our reasoning is that 143 
landmarks in the environment, such as boundaries or corners, provide location-specific 144 
visual input to an animal, but locations between such features are primarily indicated by 145 
their distance from them, which in our model is represented by reduction in the landmark-146 
specific input. One can therefore equate our model’s inputs as corresponding to boundary 147 
cells (Savelli et al., 2008; Solstad et al., 2008; Bush et al., 2014), and the place fields 148 
between boundaries are generated by random internal structure within the network. 149 
Further, variations in spatial input forms do not affect the consistency and robustness of 150 
the model. 151 

In our implementation of this model, we find that spontaneous sequences of spikes 152 
generated by a randomly clustered network can be decoded as spatial trajectories without 153 
relying on pre-configured, environment-specific maps. Because the network contains 154 
neither a preexisting map of the environment nor experience-dependent plasticity, we 155 
refer to the spike-sequences it generates as preplay. However, the model can also be 156 
thought of as a preexisting network in which immediate replay in a novel environment can 157 
be expressed and then reinforced through experience-dependent plasticity. We find that 158 
preplay in this model occurs most strongly when the network parameters are tuned to 159 
generate networks that have a small-world structure (Watts and Strogatz, 1998; 160 
Humphries et al., 2006; Humphries et al., 2008). Our results support the idea that preplay 161 
and immediate replay could be a natural consequence of the preexisting recurrent 162 
structure of the hippocampus.163 
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Results 164 

The model 165 

 166 

Figure 1: Illustration of the randomly clustered model 167 
(a) Schematic diagram of prior replay models that rely on preexisting environment-specific 168 
structure, wherein each cell receives uniquely tuned Gaussian-shaped feed-forward inputs 169 
to define the place fields, and cells with nearby place fields are recurrently connected. Pairs 170 
of cells with closest place fields are connected most strongly (thicker arrows). (b) 171 
Schematic diagram of our model, where neurons are randomly placed into clusters and all 172 
neurons receive the same spatial and contextual information but with random, cluster-173 
dependent input strengths. (c) Example representation of the network (8 clusters, mean 174 
cluster participation per cell of 1.5). Excitatory cells (each symbol) are recurrently 175 
connected with each other and with inhibitory cells (“Feedback inhibition”, individual 176 
inhibitory cells not shown) and receive feed forward input (“Sensory input”). Symbol color 177 
indicates neurons’ membership in clusters 1 and 2, with ~ meaning not in the cluster. 178 
Symbol size scales with the number of clusters a neuron is in. Lines show connections 179 
between neurons that are in cluster 2. Symbol positions are plotted based on a t-180 
distributed stochastic neighbor embedding (t-SNE) of the connection matrix, which reveals 181 
the randomly overlapping clusters. (d-f) Histograms based on the network in (c) of: (d) the 182 
distribution of input strengths; (e) the number of clusters that each neuron is a member of; 183 
and (f) the fraction of the excitatory cells to which each excitatory cell connects. (g) The 184 
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Small-World Index (SWI) of the excitatory connections varies with the number of clusters 185 
and the mean number of clusters of which each neuron is a member (“cluster 186 
participation”). The median value of the SWI from 10 networks at each parameter point is 187 
plotted. The red dashed line shows a contour line where SWI = 0.4. Regions in white are 188 
not possible due to either cluster participation exceeding the number of clusters (lower 189 
right) or cells not being able to connect to enough other cells to reach the target global 190 
connectivity 𝑝𝑐 (upper left). 191 

 192 

We propose a model of preplay and immediate replay based on randomly clustered 193 
recurrent connections (Figure 1). In prior models of preplay and replay, a preexisting map 194 
of the environment is typically assumed to be contained within the recurrent connections 195 
of CA3 cells, such that cells with nearby place fields are more strongly connected (Figure 196 
1a). While this type of model successfully produces replay (Haga and Fukai, 2018; Pang and 197 
Fairhall, 2019), such a map would only be expected to exist in a familiar environment, after 198 
experience-dependent synaptic plasticity has had time to shape the network (Theodoni et 199 
al., 2018). It remains unclear how, in the absence of such a preexisting map of the 200 
environment, the hippocampus can generate both preplay and immediate replay of a novel 201 
environment.  202 

Our proposed alternative model is based on a randomly clustered recurrent network with 203 
random feed-forward inputs (Figure 1b). In our model, all excitatory neurons are randomly 204 
assigned to overlapping clusters that constrain the recurrent connectivity, and they all 205 
receive the same linear spatial and contextual input cues which are scaled by randomly 206 
drawn, cluster-dependent connection weights (see Methods). This bias causes cells that 207 
share cluster memberships to have more similar place fields during the simulated run 208 
period, but, crucially, this bias is not present during sleep simulations so that there is no 209 
environment-specific information present when the network generates preplay. 210 

An example network with 8 clusters and cluster participation of 1.5 (the mean number of 211 
clusters to which an excitatory neuron belongs) is depicted in Figure 1c. Excitatory neurons 212 
are recurrently connected to each other and to inhibitory neurons. Inhibitory cells have 213 
cluster-independent connectivity, such that all E-to-I and I-to-E connections exist with a 214 
probability of 0.25. Feed-forward inputs are independent Poisson spikes with random 215 
connection strength for each neuron (Figure 1d). Excitatory cells are randomly, 216 
independently assigned membership to each of the clusters in the network. All neurons are 217 
first assigned to one cluster, and then randomly assigned additional clusters to reach the 218 
target cluster participation (Figure 1e). Given the number of clusters and the cluster 219 
participation, the within-cluster connection probability is calculated such that the global 220 
connection probability matches the parameter 𝑝𝑐 = 0.08 (Figure 1f). The left peak in the 221 
distribution shown in Figure 1f is from cells in a single cluster and the right peak is from 222 
cells in two clusters, with the long tail corresponding to cells in more than two clusters. 223 

For a given 𝑝𝑐, excitatory connectivity is parameterized by the number of clusters in the 224 
network and the mean cluster participation. The small-world index (SWI; Neal, 2015; Neal, 225 
2017) systematically varies across this 2-D parameterization (Figure 1g). A high SWI 226 
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indicates a network with both clustered connectivity and short path lengths (Watts and 227 
Strogatz, 1998). A ring lattice network (Figure 1—figure supplement 1a) exhibits high 228 
clustering but long path lengths between nodes on opposite sides of the ring. In contrast, a 229 
randomly connected network (Figure 1—figure supplement 1c) has short path lengths but 230 
lacks local clustered structure. A network with small world structure, such as a Watts-231 
Strogatz network (Watts and Strogatz, 1998) or our randomly clustered model (Figure 1—232 
figure supplement 1b), combines both clustered connectivity and short path lengths. In our 233 
clustered networks,  for a fixed connection probability, SWI increases with more clusters 234 
and lower cluster participation, so long as cluster participation is greater than one to 235 
ensure sparse overlap of (and hence connections between) clusters. Networks in the top 236 
left corner of Figure 1g are not possible, since in that region all within-cluster connections 237 
are not sufficient to match the target global connectivity probability, 𝑝𝑐. Networks in the 238 
bottom right are not possible because otherwise mean cluster participation would exceed 239 
the number of clusters. The dashed red line shows an example contour line where 𝑆𝑊𝐼 =240 
0.4. 241 

Example activity 242 

 243 

Figure 2: Spatially correlated reactivations in networks without environment-244 
specific connectivity or plasticity 245 
(a-f) Example activity from the fiducial parameter set (15 clusters, mean cluster 246 
participation of 1.25). (a) Example raster plot from one place-field trial. Cells sorted by trial 247 
peak. (b) Example membrane traces from two of the cells in (a). (c) Place fields from 10 248 
different networks generated from the same parameter set, sorted by peak location and 249 
normalized by peak rate. (d) Example raster plot (top) and population firing rate (bottom; 250 
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blue line) showing preplay in a simulation of sleep. Horizontal dashed black line is the 251 
mean population rate across the simulation. Horizontal dashed red line is the threshold for 252 
detecting a population-burst event (PBE). PBEs that exceeded the threshold for at least 50 253 
ms and had at least 5 participating cells were included in the preplay decoding analysis. 254 
Grey bars highlight detected events. (e) Example preplay event (Top, raster plot. Bottom, 255 
Bayesian decoding of position). Event corresponds to the center event in (d). Raster 256 
includes only participating cells. The blue line shows the weighted correlation of decoded 257 
position across time. (f) Nine example decoded events from the same networks in (c). The 258 
width of each time bin is 10 ms. The height spans the track length. Same color scale as in 259 
(e). r is each event’s absolute weighted correlation. jd is the maximum normalized jump in 260 
peak position probability between adjacent time bins. The same event in (e) is shown with 261 
its corresponding statistics in the center of the top row. Preplay statistics calculated as in 262 
Farooq et al., 2019.263 

 264 

Our randomly clustered model produces both place fields and preplay with no 265 
environment-specific plasticity or preexisting map of the environment (Figure 2). Example 266 
place cell activity shows spatial specificity during linear track traversal (Figure 2a-c). 267 
Although the spatial tuning is noisy, this is consistent with the experimental finding that 268 
the place fields that are immediately expressed in a novel environment require experience 269 
in the environment to stabilize and improve decoding accuracy (Tang and Jadhav, 2022; 270 
Shin et al., 2019; Hwaun and Colgin, 2019). Raster plots of network spiking activity (Figure 271 
2a) and example cell membrane potential traces (Figure 2b) demonstrate selective firing in 272 
specific track locations. Place fields from multiple networks generated from the same 273 
parameters, but with different input and recurrent connections, show spatial tuning across 274 
the track (Figure 2c). 275 

To test the ability of the model to produce preplay, we simulated sleep sessions in the same 276 
networks. Sleep sessions were simulated in a similar manner to the running sessions but 277 
with no location cue inputs active and a different, unique set of context cue inputs active to 278 
represent the sleep context. The strength of the context cue inputs to the excitatory and 279 
inhibitory cells were scaled in order to generate an appropriate level of network activity, to 280 
account for the absence of excitatory drive from the location inputs (see Methods). During 281 
simulated sleep, sparse, stochastic spiking spontaneously generates sufficient excitement 282 
within the recurrent network to produce population burst events resembling preplay 283 
(Figure 2d-f). Example raster and population rate plots demonstrate spontaneous transient 284 
increases in spiking that exceed 1 standard deviation above the mean population rate 285 
denoting population burst events (PBEs; Figure 2d). We considered PBEs that lasted at 286 
least 50 ms and contained at least 5 participating cells candidates for Bayesian decoding 287 
(Shin et al., 2019). Bayesian decoding of an example PBE using the simulated place fields 288 
reveals a spatial trajectory (Figure 2e). We use the same two statistics as Farooq et al. 289 
(2019) to quantify the quality of the decoded trajectory: the absolute weighted correlation 290 
(r) and the maximum jump distance (jd; Figure 2f). The absolute weighted correlation of a 291 
decoded event is the absolute value of the linear Pearson’s correlation of space-time 292 
weighted by the event’s derived posteriors. Since sequences can correspond to either 293 
direction along the track, the sign of the correlation simply indicates direction while the 294 
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absolute value indicates the quality of preplay. The maximum jump distance of a decoded 295 
event is the maximum jump in the location of peak probability of decoded position across 296 
any two adjacent 10-ms time bins of the event’s derived posteriors. A high-quality event 297 
will have a high absolute weighted correlation and a low maximum jump distance. 298 

Together, these results demonstrate that the model can reproduce key dynamics of 299 
hippocampal place cells, including spatial tuning and preplay, without relying on 300 
environment-specific recurrent connections. 301 

Place Fields 302 

 303 

Figure 3: The model produces place fields with similar properties to hippocampal 304 
place fields 305 
(a) Place field statistics for hippocampal place fields recorded in rats upon their first 306 
exposure to a W-track (Shin et al., 2019). Left, place-field peak rate (Hz). Center, place-field 307 
specificity (fraction of track). Right, place-field spatial information (bits/spike). (b) Same as 308 
(a) but for place fields from a set of 10 simulated networks at one parameter point (15 309 
clusters and mean cluster participation of 1.25). (c) Network parameter dependence of 310 
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place-field statistics. For each parameter point, the color indicates the mean over all place 311 
fields from all networks. Top row: mean statistics corresponding to the same measures of 312 
place fields used in panels (a, b). Bottom left: mean firing rate of the inhibitory cells. Bottom 313 
center: the KL-divergence of the distribution of place-field peaks relative to a uniform 314 
spatial distribution. Bottom right: fraction of place-field peaks peaked in the central third of 315 
the track. 316 

 317 

To compare the place fields generated by the model to those from hippocampal place cells 318 
of rats, we calculated several place-field statistics for both simulated and experimentally 319 
recorded place fields (Figure 3). Because our model assumes no previous environment-320 
specific plasticity, we analyzed data from place cells in rats on their first exposure to a W-321 
track (Shin et al., 2019). Equivalent statistics of place-field peak rate, sparsity, and spatial 322 
information are shown for experimental data (Figure 3a) and simulations (Figure 3b). We 323 
found that the model produces qualitatively similar (but not quantitatively identical) 324 
distributions for the fiducial parameter set. 325 

These place-field properties depend on the network parameters (Figure 3c). With fewer 326 
clusters and lower cluster overlap (lower cluster participation), place fields have higher 327 
peak rates, sparsity, and spatial information (Figure 3c, top row and bottom left). However, 328 
lower overlap reduces the uniformity of place-field locations, measured by KL-divergence 329 
(Figure 3c bottom middle) and the fraction of place fields in the central third of the track 330 
(Figure 3c bottom right). 331 

To verify that our simulated place cells were more strongly coding for spatial location than 332 
for elapsed time, we performed simulations with additional track traversals at different 333 
speeds and compared the resulting place fields and time fields in the same cells. We find 334 
that there is significantly greater place information than time information (Figure 3—335 
figure supplement 1) 336 
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Preplay 337 

 338 

Figure 4: Preplay depends on modest cluster overlap 339 
(a,c) The cumulative distribution function (CDF) of the absolute weighted correlations for 340 
actual events (blue line) versus shuffled events (red dashed line) of experimental data from 341 
Shin at al., 2019  (a; KS-test, p=2×10-12, KS-statistic=0.078) and simulated data (c; KS-test, 342 
p=3×10-16, KS-statistic=0.29) reveal results similar to those in Figure 1h of Farooq et al., 343 
2019. *** p<0.001. (b,d) P-value grids (p-value indicated logarithmically by color) showing 344 
that the actual decoded events are higher quality sequences than shuffles across a wide 345 
range of quality thresholds for both experimental data from Shin et al., 2019 (b) and 346 
simulated data (d). For each point on the grid the fraction of events that exceed the 347 
absolute weighted correlation threshold (y-axis) and don’t exceed the maximum jump 348 
distance (x-axis) is calculated, and the significance of this fraction is determined by 349 
comparison against a distribution of corresponding fractions from shuffled events. Black 350 
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squares indicate criteria that were not met by any events (either shuffled or actual). The 351 
panel is equivalent to Figure 1e of Farooq et al., 2019. (e) Network parameter dependence 352 
of several statistics quantifying the population-burst events. Top left, fraction of excitatory 353 
cells firing per event. Top right, mean excitatory cell firing rate (Hz). Bottom left, mean 354 
event duration (s). Bottom right, mean event frequency (Hz). Each point is the mean of data 355 
combined across all population-burst events of all  networks at each parameter point. Data 356 
from the same simulations as Figure 3. (f) Network parameter dependence of several 357 
statistics quantifying the Bayesian decoding. Top left, p-value of the absolute weighted 358 
correlations (from a KS-test as calculated in (c)). Top right, the shift in the median absolute 359 
weighted correlation of actual events relative to shuffle events. Bottom left, the fraction of 360 
events with significant absolute weighted correlations relative to the distribution of 361 
absolute weighted correlations from time bin shuffles of the event. Bottom right, the mean 362 
entropy of the position probability of all time bins in decoded trajectories. 363 

 364 

Having found that the model produces realistic place-field representations with neither 365 
place-field like inputs nor environment-specific spatial representation in the internal 366 
network connectivity (Figure 3), we next examined whether the same networks could 367 
generate spontaneous preplay of novel environments. To test this, for the same set of 368 
networks characterized by place-field properties in Figure 3, we simulated sleep activity by 369 
removing any location-dependent input cues and analyzed the resulting spike patterns for 370 
significant sequential structure resembling preplay trajectories (Figure 4). We find 371 
significant preplay in both our reference experimental data set (Shin et al., 2019; Figure 4a, 372 
b; see Figure 4—figure supplement 1 for example events) and our model (Figure 4c, d) 373 
when analyzed by the same methods as Farooq et al., 2019, wherein the significance of 374 
preplay is determined relative to time-bin shuffled events (see Methods). The distribution 375 
of absolute weighted correlations of actual events was significantly greater than the 376 
distribution of absolute weighted correlations of shuffled events for both the experimental 377 
data (Figure 4a, KS-test, p=2x10-12, KS-statistic=0.078) and the simulated data (Figure 4c, 378 
KS-test, p=3x10-16, KS-statistic=0.29). Additionally, we found that this result is robust to 379 
random subsampling of cells in our simulated data (Figure 4—figure supplement 2). Our 380 
analyses of the hippocampal data produce similar results when analyzing each trajectory 381 
independently (Figure 4—figure supplement 3). 382 

For each event, we also calculated the maximum spatial jump of the peak probability of 383 
decoded position between any two adjacent time bins as a measure of the continuity of the 384 
decoded trajectory. The absolute weighted correlation (high is better) and maximum jump 385 
(low is better) were then two different measures of the quality of a decoded trajectory. We 386 
performed a bootstrap test that took both of these measures into account by setting 387 
thresholds for a minimum absolute weighted correlation and a maximum jump distance 388 
and then calculating the fraction of events meeting both criteria of quality. The significance 389 
of the fraction of events meeting both criteria was then determined by comparing it against 390 
a distribution of such fractions generated by sets of the time-bin shuffled events. We 391 
systematically varied both thresholds and found that the actual events are of significantly 392 
higher quality than chance for a wide range of thresholds in both the hippocampal (Figure 393 
4b) and simulated (Figure 4d) data. The upper right corner of these grids cannot be 394 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2023.10.26.564173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564173
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

significant since 100% of all possible events would be included in any shuffle or actual set. 395 
Points in the left-most column are not all significant because the strictness of the maximum 396 
jump distance means that very few events in either the actual or shuffled data sets meet the 397 
criterion, and therefore the analysis is underpowered. This pattern is similar to that seen in 398 
Farooq et al., 2019 (as shown in their Figure 1e).  399 

Both PBEs and preplay are significantly affected by the two network parameters (Figure 4e, 400 
f). The number of clusters and the extent of cluster overlap (indicated via mean cluster 401 
participation) affects PBE participation (Figure 4e, top left), firing rates (Figure 4e, top 402 
right), event durations (Figure 4e, bottom left), and event frequency (Figure 4e, bottom 403 
right). We find that significant preplay occurs only at moderate cluster overlap (Figure 4f, 404 
top left), where we also find the greatest increase from chance in the linearity of decoded 405 
trajectories (Figure 4f, top right). The fraction of events that are individually significant 406 
(determined by comparing the absolute weighted correlation of each decoded event 407 
against the set of absolute weighted correlations of its own shuffles) is similarly highest for 408 
modest cluster overlap (Figure 4f, bottom left). The mean entropy of position probability of 409 
each time bin of decoded trajectories is also highest for modest cluster overlap (Figure 4f, 410 
bottom right), meaning that high cluster overlap leads to more diffuse, less precise spatial 411 
decoding. 412 

To test the robustness of our results to variations in input types, we simulated alternative 413 
forms of spatially modulated feedforward inputs. We found that with no parameter tuning 414 
or further modifications to the network, the model generates robust preplay with 415 
variations on the spatial inputs, including inputs of three linearly varying cues (Figure 4—416 
figure supplement 4a) and two stepped cues (Figure 4—figure supplement 4b-c). The 417 
network is impaired in its ability to produce preplay with binary step location cues (Figure 418 
4—figure supplement 4d), when there is no cluster bias (Figure 4—figure supplement 4e), 419 
and at greater values of cluster participation (Figure 4—figure supplement 4f) 420 

Preplay is due to successive activations of individual clusters 421 

 422 
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Figure 5: Coherent spiking within clusters supports preplay 423 
(a) Example event. Top, spike rates averaged across neurons of individual clusters: Each 424 
firing rate curve is the smoothed mean firing rate across the population of cells belonging 425 
to each cluster. We defined clusters as “active” if at any point their rates exceed twice that 426 
of any other cluster. Three clusters meet the criterion of being active (green, then red, then 427 
blue). Bottom, raster plots: Cells belonging to each of the active clusters are plotted 428 
separately in the respective colors. Cells in multiple clusters contribute to multiple 429 
population curves, and cells in multiple active clusters appear in multiple rows of the raster 430 
plot. Cells that participate but are not in any active clusters are labeled “Other cells” and 431 
plotted in black. Only active cells are plotted. (b) For the fiducial parameter set (15 432 
clusters, mean cluster participation of 1.25), the distribution over events of the number of 433 
active clusters per event. (c) The mean number of active clusters per event as a function of 434 
the network parameters. Same data as that used for the parameter grids in earlier figures. 435 
(d) For the fiducial parameter set (15 clusters, mean cluster participation of 1.25), the 436 
distribution of durations of active clusters for all active cluster periods across all events. 437 
The active duration was defined as the duration for which an active cluster remained the 438 
most-active cluster. (e) The mean active cluster duration as a function of the network 439 
parameters. 440 

 441 

Figure 4f indicates that PBEs are best decoded as preplay when cluster participation is only 442 
slightly above one, indicating a small, but non-zero, degree of cluster overlap. We 443 
hypothesized that this can be explained as balancing two counteracting requirements: 1) 444 
Sufficient cluster overlap is necessary for a transient increase in activity in one cluster to 445 
induce activity in another cluster, so as to extend any initiated trajectory; and 2) Sufficient 446 
cluster isolation is necessary so that, early in a transient, spikes from an excited cluster 447 
preferentially add excitement to the same cluster. A network with too much cluster overlap 448 
will fail to coherently excite individual clusters—rendering decoded positions to be spread 449 
randomly throughout the track—while a network with too little cluster overlap will fail to 450 
excite secondary clusters—rendering decoded positions to remain relatively localized. 451 

We find that the dependence of preplay on cluster overlap can indeed be explained by the 452 
manner in which clusters participate in PBEs (Figure 5). An example PBE (Figure 5a) 453 
shows transient recruitment of distinct clusters, with only one cluster prominently active 454 
at a time. We define a cluster as ‘active’ if its firing rate exceeds twice the rate of any other 455 
cluster. We calculated the number of active clusters per event (Figure 5b) and the duration 456 
of each active cluster period (Figure 5d). We find that these statistics vary systematically 457 
with the network parameters (Figure 5c, e), in a manner consistent with the dependence of 458 
preplay on cluster overlap (Figure 4f). When there is modest overlap of an intermediate 459 
number of clusters, events involve sequential activation of multiple clusters that are each 460 
active sufficiently long to correspond to at least one of the time bins used for decoding (10 461 
ms). Figures 4 and 5 together indicate that high-quality preplay arises via a succession of 462 
individually active clusters. Such succession requires a moderate degree of cluster overlap, 463 
but this must be combined with sufficient cluster isolation to promote independent 464 
activation of just one cell assembly for the duration of each time-bin used for decoding. 465 
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The results of Figure 5 suggest that cluster-wise activation may be crucial to preplay. One 466 
possibility is that the random overlap of clusters in the network spontaneously produces 467 
biases in sequences of cluster activation which can be mapped onto any given environment. 468 
To test this, we looked at the pattern of cluster activations within events. We found that 469 
sequences of three active clusters were not more likely to match the track sequence than 470 
chance (Figure 5—figure supplement 1a). This suggests that preplay is not dependent on a 471 
particular biased pattern in the sequence of cluster activation. We then asked if the number 472 
of clusters that were active influenced preplay quality. We split the preplay events by the 473 
number of clusters that were active during each event and found that the median preplay 474 
shift relative to shuffled events with the same number of active clusters decreased with the 475 
number of active clusters (Spearman’s rank correlation, p=0.0019, ρ=-0.13; Figure 5—476 
figure supplement 1b). 477 

Cluster identity is sufficient for preplay 478 

 479 

Figure 6: Preplay is abolished when events are decoded with shuffled cell identities 480 
but is preserved if cell identities are shuffled only within clusters. 481 
We decoded the population burst events from the fiducial parameter set simulations after 482 
randomly shuffling cell identities in three different manners (a-c, 25 replicates for each 483 
condition) and compared the resulting preplay statistics to the unshuffled result (red line). 484 
(a) Randomly shuffling cell identities results in median preplay correlation shifts near zero 485 
(top, 100th percentile of shuffles), with p-values distributed approximately uniformly 486 
(bottom, 0th percentile of shuffles). (b) Randomly shuffling cell identities within clusters 487 
reduces the magnitude of the median preplay correlation shifts (top, 100th percentile of 488 
shuffles) but preserves the statistical significance of preplay (bottom, 0th percentile of 489 
shuffles). (c) Randomly shuffling cell identities within clusters for only cells that belong to 490 
a single cluster results in median preplay correlation shifts that are similar to the 491 
unshuffled result (top, 36th percentile of shuffles) and are all statistically significant 492 
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(bottom, 12th percentile of shuffles).493 

 494 

The pattern of preplay significance across the parameter grid in Figure 4f shows that 495 
preplay only occurs with modest cluster overlap, and the results of Figure 5 show that this 496 
corresponds to the parameter region that supports transient, isolated cluster-activation. 497 
This raises the question of whether cluster-identity is sufficient to explain preplay. To test 498 
this, we took the sleep simulation population burst events from the fiducial parameter set 499 
and performed decoding after shuffling cell identity in three different ways. We found that 500 
when the identity of all cells within a network are randomly permuted the resulting median 501 
preplay correlation shift is centered about zero (t-test 95% confidence interval, -0.2018 to 502 
0.0012) and preplay is not significant (distribution of p-values is consistent with a uniform 503 
distribution over 0 to 1, chi-square goodness-of-fit test p=0.4436, chi-square statistic=2.68; 504 
Figure 6a). However, performing decoding after randomly shuffling cell identity between 505 
cells that share membership in a cluster does result in statistically significant preplay for all 506 
shuffle replicates, although the magnitude of the median correlation shift is reduced for all 507 
shuffle replicates (Figure 6b). The shuffle in Figure 6b does not fully preserve cell’s cluster 508 
identity because a cell that is in multiple clusters may be shuffled with a cell in either a 509 
single cluster or with a cell in multiple clusters that are not identical. Performing decoding 510 
after doing within-cluster shuffling of only cells that are in a single cluster results in 511 
preplay statistics that are not statistically different from the unshuffled statistics (t-test 512 
relative to median shift of un-shuffled decoding, p=0.1724, 95% confidence interval of -513 
0.0028 to 0.0150 relative to the reference value; Figure 6c). Together these results 514 
demonstrate that cluster-identity is sufficient to produce preplay. 515 
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Mean relative spike rank correlates with place field location 516 

 517 

Figure 7: Place cells’ mean event rank are correlated with their place field location 518 
when accounting for decode direction. 519 
(a) Mean within-event relative spike rank of all place cells as a function of the location of 520 
their mean place field density on the track for networks at the fiducial parameter set. Left, 521 
mean relative rank with respect to all cells in each network. Right, mean relative rank with 522 
respect to only cells that share cluster membership. (b) Same as (a), but after accounting 523 
for the direction of each events’ decoded trajectory. If the decoded slope for a given event 524 
was negative, then the order of spiking in that event was reversed. (c-d) Comparison of the 525 
regression slopes from (b) to the distribution of slopes that results from applying the same 526 
analysis after shuffling cell identities as in Figure 6. (c) The within-network regression 527 
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slope is significant relative to all three methods of shuffling cell identity. (d) Same as (c), 528 
but for the within-cluster regression slope. 529 

 530 

While cluster-identity is sufficient to produce preplay (Figure 6b), the shuffle of Figure 6c is 531 
incomplete in that cells belonging to more than one cluster are not shuffled. Together, these 532 
two shuffles leave room for the possibility that individual cell-identity may contribute to 533 
the production of preplay. It might be the case that some cells fire earlier than others, both 534 
on the track and within events. To test the contribution of individual cells to preplay, we 535 
calculated for all cells in all networks of the fiducial parameter point their mean relative 536 
spike rank and tested if this is correlated with the location of their mean place field density 537 
on the track (Figure 7). We find that there is no relationship between a cell’s mean relative 538 
within-event spike rank and its mean place field density on the track (Figure 7a). This is the 539 
case when the relative rank is calculated over the entire network (Figure 7, “Within-540 
network”) and when the relative rank is calculated only with respect to cells with the same 541 
cluster membership (Figure 7, “Within-cluster”). However, because preplay events can 542 
proceed in either track direction, averaging over all events would average out the sequence 543 
order of these two opposite directions. We performed the same correlation but after 544 
reversing the spike order for events with a negative slope in the decoded trajectory (Figure 545 
7b).  To test the significance of this correlation, we performed a bootstrap significance test 546 
by comparing the slope of the linear regression to the slope that results when performing 547 
the same analysis after shuffling cell identities in the same manner as in Figure 6. We found 548 
that the linear regression slope is greater than expected relative to all three shuffling 549 
methods for both the within-network mean relative rank correlation (Figure 6c) and the 550 
within-cluster mean relative rank correlation (Figure 6d). 551 
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Small-world index correlates with preplay 552 

553 

Figure 8: The Small-World Index of networks correlates with preplay quality 554 
(a-c) Left column, the Small-World Index (SWI; plotted as color) is affected by the global E-555 
to-E connection probability, 𝑝𝑐. Red dotted line indicates a contour line of SWI = 0.4. This 556 
boundary shifts downward as 𝑝𝑐 increases. Center column, across parameter points in the 557 
network parameter grid, SWI correlates with an increase in the median absolute weighted 558 
correlation of decoded trajectories relative to shuffles (e.g. this corresponds in Figure 4c 559 
to the rightward shift of the CDF of measured absolute weighted correlations relative to the 560 
shuffle events). Each point is produced by analysis of all events across 10 networks from 561 
one parameter point in the grid on the left. Right column, same as the center column but 562 
each point is data from each of the 10 individual networks per parameter set. P-value and 563 
correlation, 𝜌, are calculated from Spearman’s rank-order correlation test. Dashed line is 564 
the least-squares fit. (a) Data from a parameter grid where the E-to-E connection 565 
probability was decreased by 50% and the E-to-E connection strength was doubled from 566 
their fiducial values used in prior figures. (b) Data from the same parameter grid as Figures 567 
3-5. (c) Data from a parameter grid where the E-to-E connection probability was increased 568 
by 50% and the E-to-E connection strength scaled by two-thirds from their fiducial values. 569 

 570 

We noticed that that the highest quality of decoded trajectories (Figure 4f) seemed to arise 571 
in networks with the highest small-world index (SWI; Figure 1g). In order to test this, we 572 
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simulated different sets of networks with both increased and decreased global E-to-E 573 
connection probability, 𝑝𝑐. Changing 𝑝𝑐, in addition to varying the number of clusters and 574 
the mean cluster participation, impacted the SWI of the networks (Figure 8, left column).  575 

We hypothesized that independent of 𝑝𝑐, a higher SWI would correlate with improved 576 
preplay quality. To test this, we simulated networks across a range of parameters for three 577 
𝑝𝑐 values: a decrease of 𝑝𝑐 by 50% to 0.04, the fiducial value of 0.08, and an increase by 578 
50% to 0.12 (Figure 8a-c, respectively). For the decreased and increased 𝑝𝑐 cases, the E-to-579 
E connection strength was respectively doubled or reduced to 2/3 of the fiducial strength 580 
to keep total E-to-E input constant. For each parameter combination, we quantified preplay 581 
quality as the rightward shift in median absolute weighted correlation of decoded preplay 582 
events versus shuffled events (as in Figure 4f, top right). We then asked if there was a 583 
correlation between that quantification of preplay quality and SWI. 584 

Across all three 𝑝𝑐 values, SWI significantly correlated with improved preplay both across 585 
parameter sets (Figure 8, center column) and across individual networks (Figure 8, right 586 
column). These results support our prediction that higher small-world characteristics 587 
correspond to higher-quality preplay dynamics regardless of average connectivity. 588 
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Preplay significantly decodes to linear trajectories in arbitrary environments 589 

 590 

Figure 9: Trajectories decoded from population-burst events are significantly 591 
correlated with linear trajectories in arbitrary environments 592 
(a) Place fields from a single network with simulated runs in both directions of travel on a 593 
linear track in two different environments. Each column of panels is the set of place fields 594 
for the trajectory labeled on the diagonal. Each row of panels has cells sorted by the order 595 
of place-field peaks for the trajectory labeled on the diagonal. The r values are the 596 
correlations between the corresponding remapped trajectory with its comparison on the 597 
diagonal. Note that correlations mirrored across the diagonal are equal because they 598 
correspond only to a change in the labels of the dimensions of the population rate vectors, 599 
which does not affect the vector correlation. (b) Distribution of the place-field map 600 
correlations across trajectories from both directions of travel on a linear track in two 601 
environments for 10 networks. Blue is the distribution of correlations for all left vs right 602 
place-field maps from the same environment. Red is the correlations from all pair-wise 603 
comparisons of trajectories from different environments. (c) An example event with a 604 
statistically significant trajectory when decoded with place fields from Env. 1 left (absolute 605 
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correlation at the 99th percentile of time-bin shuffles) but not when decoded with place 606 
fields of the other trajectories (78th, 45th, and 63rd percentiles for Env. 1 right, Env. 2 left, 607 
and Env. 2 right, respectively). (d) An entire set of PBEs shows similar levels of absolute 608 
weighted correlations when decoded with different sets of place fields. In color are CDFs of 609 
absolute weighted correlations of decoded trajectories with leftward and rightward linear 610 
trajectories in each of the two environments (R1 and L1 are the rightward and leftward 611 
trajectories of environment one. R2 and L2 are the rightward and leftward trajectories of 612 
environment two). In black (all overlapping) are the corresponding absolute weighted 613 
correlations with each of the 4 trajectories arising from decoding of shuffled events. (e) 614 
The significance of linearity of decoded trajectories indicated by p-value in color (as in 615 
Figure 4b) from decoding the same PBEs with the four different environment place fields. 616 
Black squares indicate criteria that were not met by any events (either shuffled or actual). 617 
Env. 1 left is the same as that shown in Figure 4d. 618 

 619 

Information about each environment enters the network via the feed-forward input 620 
connection strengths, which contain cluster-dependent biases. A new environment is 621 
simulated by re-ordering those input biases. We first wished to test that a new 622 
environment simulated in such a manner produced a distinct set of place fields. We 623 
therefore simulated place maps for leftward and rightward trajectories on linear tracks in 624 
two distinct environments (Figure 9a). The two maps with different directions of motion 625 
showed very high correlations when in the same environment (Figure 9b, blue) while the 626 
comparisons of trajectories across environments show very low correlations (Figure 9b, 627 
red). Cells that share membership in a cluster will have some amount of correlation in their 628 
remapping due to the cluster-dependent cue bias, which is consistent with experimental 629 
results (Hampson et al., 1996; Pavlides et al., 2019), but the combinatorial nature of cluster 630 
membership renders the overall place field map correlations low (Figure 9b). We also 631 
performed simulations with extra laps of running and calculated the correlations between 632 
paired sets of place fields produced by random, independent splits of trials of the same 633 
trajectory. The distribution of these correlations was similar to the distribution of within-634 
environment correlations (comparing opposite trajectories with the same spatial input), 635 
showing no significant de novo place-field directionality. This is consistent with 636 
hippocampal data in which place-field directionality is initially low in novel environments 637 
and increases with experience (Frank et al., 2004; Navratilova et al., 2012; Shin et al., 638 
2019). 639 

Because we simulated preplay without any location-specific inputs, we expected that the 640 
set of spiking events that significantly decode to linear trajectories in one environment 641 
(Figure 4) should decode with a similar fidelity in another environment. Therefore, we 642 
decoded each PBE four times, once with the place fields of each trajectory (Figure 9c-e). 643 
Since the place field map correlations are high for trajectories on the same track and near 644 
zero for trajectories on different tracks, any individual event would be expected to have 645 
similar decoded trajectories when decoding based on the place fields from different 646 
trajectories in the same environment and dissimilar decoded trajectories when decoding 647 
based on place fields from different environments. A given event with a strong decoded 648 
trajectory based on the place fields of one environment would then be expected to have a 649 
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weaker decoded trajectory when decoded with place fields from an alternative 650 
environment (Figure 9c).  The distributions of absolute weighted correlations arising from 651 
decoding of PBEs according to each of the four sets of place fields was consistent across 652 
environments (Figure 9d, colored lines) and all were significantly rightward shifted 653 
(indicating greater absolute weighted correlation) when compared to those absolute 654 
weighted correlations arising from the corresponding shuffled events (Figure 9d, 655 
overlapping black lines). If we consider both absolute weighted correlation and jump-656 
distance thresholds as in Figure 4d, we find that the matrices of p-values are consistent 657 
across environments (Figure 9e). In summary, without environment-specific or place-field 658 
dependent pre-assigned internal wiring, the model produces population-burst events, 659 
which, as an ensemble, show significant preplay with respect to any selected environment.660 
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Discussion 661 

Our work shows that spontaneous population bursts of spikes that can be decoded as 662 
spatial trajectories can arise in networks with clustered random connectivity without pre-663 
configured maps representing the environment. In our proposed model, excitatory neurons 664 
were randomly clustered with varied overlap and received feed-forward inputs with 665 
random strengths that decayed monotonically from the boundaries of a track (Figure 1). 666 
Even though the model neural circuit lacked place-field like input and lacked environment-667 
specific internal wiring, the network exhibited both realistic place fields (Figures 2,3) and 668 
spontaneous preplay of novel, future environments (Figures 2,4).  669 

We validated our modeling results by applying the same analyses to a previously collected 670 
experimental data set (Shin et al., 2019). Indeed, we replicated the general finding of 671 
hippocampal preplay found previously in Farooq et al., 2019, although the p-value matrix 672 
for our experimental data (Figure 4b) is significant across a smaller range of threshold 673 
values than found in their prior work. This is likely due to differences in statistical power. 674 
The pre-experience sleep sessions of Shin et al., 2019 were not longer than half an hour for 675 
each animal, while the pre-experience sleep sessions of Farooq et al., 2019 lasted 2-4 hours. 676 
However, finding statistically significant hippocampal preplay in an experiment not 677 
designed for studying preplay shows that the general result is robust to a number of 678 
methodological choices, including shorter recording sessions, use of a W-track rather than 679 
linear track, and variations in candidate event detection criterion. 680 

Although our model is a model of the recurrently connected CA3 region and the data set we 681 
analyze (Shin et al., 2019) comes from CA1 cells, the qualitative comparisons we make here 682 
are nevertheless useful. Despite some statistically significant quantitative differences, the 683 
general properties of place fields that we consider are qualitatively similar across CA1 and 684 
CA3 (Sheintuch et al., 2023; Harvey et al., 2020), and CA3 and CA1 generally reactivate in a 685 
coordinated manner (O’Neil et al., 2008; Karlsson and Frank, 2009). 686 

The model parameters that controlled the clustering of the recurrent connections strongly 687 
influenced preplay and place-field quality. Moderate overlap of clusters balanced the 688 
competing needs for both a) sufficiently isolated clusters to enable cluster-wise activation 689 
and b) sufficiently overlapping clusters to enable propagation of activity across clusters 690 
(Figure 5). In our clustered network structure, such a balance in cluster overlap produces 691 
networks with small-world characteristics (Watts and Strogatz, 1998) as quantified by a 692 
small-world index (SWI; Neal, 2015; Neal, 2017). Networks with a high SWI, indicating high 693 
clustering (if two neurons are connected to the same third neuron, they are more likely 694 
than chance to be connected to each other) yet short paths (the mean number of 695 
connections needed to traverse from one neuron to any other), showed optimal preplay 696 
dynamics (Figure 8). The same networks could flexibly represent distinct remapped 697 
environments (Leutgeb et al., 2004; Leutgeb et al., 2005; Alme et al., 2014) solely through 698 
differences in scaling of feed-forward spatially linear input (Figure 9). 699 

Across many species, small-world properties can be found at both the local neuronal 700 
network scale and the gross scale of the network of brain regions. At the neuronal 701 
connection scale, small-world properties have been reported in a number of networks, 702 
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such as the C. elegans connectome (Watts and Strogatz, 1998; Humphries et al., 2008), the 703 
brainstem reticular formation (Humphries et al., 2006), mouse visual cortex (Sadovsky and 704 
MacLean, 2014), cultured rat hippocampal neurons (Antonello et al., 2022), mouse 705 
prefrontal cortex (Luongo et al., 2016), and connectivity within the entorhinal-706 
hippocampal region in rats (She et al., 2016). At the level of connected brain regions, small-707 
world properties have been reported across the network of brain regions activated by fear 708 
memories in mice (Vetere et al., 2016), in the hippocampal-amygdala network in humans 709 
(Zhang et al., 2022), and across the entire human brain (Liao et al., 2010). 710 

Our results suggest that the preexisting hippocampal dynamics supporting preplay may 711 
reflect general properties arising from randomly clustered connectivity, where the 712 
randomness is with respect to any future, novel experience. The model predicts that 713 
preplay quality will depend on the network’s balance of cluster isolation and overlap, as 714 
quantified by small-world properties. Synaptic plasticity in the recurrent connections of 715 
CA3 may primarily serve to reinforce and stabilize intrinsic dynamics, which could be 716 
established through a combination of developmental programming (Perin et al., 2011; 717 
Druckmann et al., 2014; Huszar et al., 2022) and past experiences (Bourjaily and Miller, 718 
2011), rather than creating spatial maps de novo. The particular neural activity associated 719 
with a given experience would then selectively reinforce the relevant intrinsic dynamics, 720 
while leaving the rest of the network dynamics unchanged.  721 

Our model provides a general framework for understanding the origin of pre-configured 722 
hippocampal dynamics. Hebbian plasticity on independent, previously experienced place 723 
maps would produce effectively random clustered connectivity. The spontaneous dynamics 724 
of such networks would influence expression of place fields in future, novel environments. 725 
Together with intrinsic sequence generation, this could enable preplay and immediate 726 
replay generated by the preexisting recurrent connections. 727 

Future modeling work should explore how experience-dependent plasticity may leverage 728 
and reinforce the dynamics initially expressed through preexisting clustered recurrent 729 
connections to produce higher-quality place fields and decoded trajectories during replay 730 
(Shin et al., 2019; Farooq et al., 2019). Plasticity may strengthen connectivity along 731 
frequently reactivated spatiotemporal patterns. Clarifying interactions between intrinsic 732 
dynamics and experience-dependent plasticity will provide key insights into hippocampal 733 
neural activity. Additionally, the in vivo microcircuitry of CA3 is complex and includes 734 
aspects such as nonlinear dendritic computations and a variety of inhibitory cell types 735 
(Rebola et al., 2017). This microcircuitry is crucial for explaining certain aspects of 736 
hippocampal function, such as ripple and gamma oscillogenesis (Ramirez-Villegas et al., 737 
2017), but here we have focused on a minimal model that is sufficient to produce place cell 738 
spiking activity that is consistent with experimentally measured place field and preplay 739 
statistics.740 
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Methods 741 

To investigate what network properties could support preplay, we simulated recurrently 742 
connected networks of spiking neurons and analyzed their dynamics using standard 743 
hippocampal place cell analyses. 744 

Neuron model 745 

We simulate networks of Leaky Integrate-and-Fire (LIF) neurons, which have leak 746 
conductance, 𝑔𝐿 , excitatory synaptic conductance, 𝑔𝐸 , inhibitory synaptic conductance, 𝑔𝐼 , 747 
spike-rate adaptation (SRA) conductance, 𝑔𝑆𝑅𝐴, and external feed-forward input synaptic 748 
conductance, 𝑔𝑒𝑥𝑡. The membrane potential, 𝑉, follows the dynamics 749 

𝜏𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔𝐸(𝑉 − 𝐸𝐸) − 𝑔𝐼(𝑉 − 𝐸𝐼) − 𝑔𝑆𝑅𝐴(𝑉 − 𝐸𝑆𝑅𝐴) − 𝑔𝑒𝑥𝑡(𝑉 − 𝐸𝐸) 750 

where 𝜏𝑚 is the membrane time constant, 𝐸𝐿 is the leak reversal potential, 𝐸𝐸  is the 751 
excitatory synapse reversal potential, 𝐸𝐼 is the inhibitory synapse reversal potential, 𝐸𝑆𝑅𝐴 is 752 
the SRA reversal potential, and 𝐸𝑒𝑥𝑡 is the external input reversal potential. When the 753 
membrane potential reaches the threshold 𝑉𝑡ℎ, a spike is emitted and the membrane 754 
potential is reset to 𝑉𝑟𝑒𝑠𝑒𝑡. 755 

The changes in SRA conductance and all synaptic conductances follow 756 

𝜏𝑖

𝑑𝑔𝑖

𝑑𝑡
= −𝑔𝑖 757 

to produce exponential decay between spikes for any conductance 𝑖. A step increase in 758 
conductance occurs at the time of each spike by an amount corresponding to the 759 
connection strength for each synapse (𝑊𝐸−𝐸 for E-to-E connections, 𝑊𝐸−𝐼for E-to-I 760 
connections, and 𝑊𝐼−𝐸 for I-to-E connections), or by 𝛿𝑆𝑅𝐴 for 𝑔𝑆𝑅𝐴. Initial feed-forward 761 

input conductances were set to values approximating their steady-state values by 762 
randomly selecting values from a Gaussian with a mean of 𝑊𝑖𝑛𝑟𝐺𝜏𝐸  and a standard 763 

deviation of √𝑊𝑖𝑛
2𝑟𝐺𝜏𝐸. Initial values of the recurrent conductances and the SRA 764 

conductance were set to zero. 765 

Parameter Value Description 

𝜏𝑚 40 ms Membrane time constant 

𝐶𝑚 0.4 nF Membrane capacitance 

𝑑𝑡 0.1 ms Simulation time step 

𝑔𝐿 10 nS Leak conductance 

𝐸𝐿 −70 mV Leak reversal potential 

𝐸𝐸  0 mV Excitatory synaptic reversal potential 

𝐸𝐼 −70 mV Inhibitory synaptic reversal potential 

𝐸𝑆𝑅𝐴 −80 mV SRA reversal potential 
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𝑉𝑡ℎ −50 mV Spike threshold 

𝑉𝑟𝑒𝑠𝑒𝑡 −70 mV Reset potential 

𝜏𝐸  10 ms Excitatory time constant 

𝜏𝐼 3 ms Inhibitory time constant 

𝜏𝑆𝑅𝐴 30 ms Spike-rate adaptation time constant 

𝛿𝑆𝑅𝐴 3 pS Spike-rate adaptation strength 

 766 

Network structure 767 

We simulated networks of 𝑛 = 500 neurons, of which 75% were excitatory. Excitatory 768 
neurons were randomly, independently assigned membership to each of 𝑛𝑐  clusters in the 769 
network. First, each neuron was randomly assigned membership to one of the clusters. 770 
Then, each cluster was assigned a number—𝑛𝐸(𝜇𝑐 − 1)/𝑛𝑐 rounded to the nearest 771 
integer—of additional randomly selected neurons such that each cluster had identical 772 
numbers of neurons, 𝑛𝐸,𝑐𝑙𝑢𝑠𝑡 = 𝑛𝐸(𝜇𝑐/𝑛𝑐), and mean cluster participation, 𝜇𝑐, reached its 773 
goal value. 774 

E-to-E recurrent connections were randomly assigned on a cluster-wise basis, where only 775 
neurons that shared membership in a cluster could be connected. The within-cluster 776 
connection probability was configured such that the network exhibited a desired global E-777 
to-E connection probability 𝑝𝑐. Given the total number of possible connections between 778 
excitatory neurons is 𝐶𝑡𝑜𝑡 = 𝑛𝐸(𝑛𝐸 − 1) and the total number of possible connections 779 
between excitatory neurons within all clusters is 𝐶𝑐𝑙𝑢𝑠𝑡 = 𝑛𝐸,𝑐𝑙𝑢𝑠𝑡 (𝑛𝐸,𝑐𝑙𝑢𝑠𝑡 − 1) 𝑛𝑐 , we 780 

calculated the within-cluster connection probability as 𝑝𝑐(𝐶𝑡𝑜𝑡/𝐶𝑐𝑙𝑢𝑠𝑡). That is, given the 781 
absence of connections between clusters (clusters were coupled by the overlap of cells) the 782 
within-cluster connection probability was greater than 𝑝𝑐 so as to generate the desired 783 
total number of connections equal to 𝑝𝑐𝐶𝑡𝑜𝑡.   784 

All E-to-I and I-to-E connections were independent of cluster membership and existed with 785 
a probability 𝑝𝑐𝐼

. There were no I-to-I connections. 𝑝𝑐, 𝑛𝑐 , and 𝜇𝑐 were varied for some 786 

simulations. Except where specified otherwise, all parameters took the fiducial value 787 
shown in the table below. 788 

The network visualization in Figure 1c was plotted based on the first 2 dimensions of a t-789 
distributed stochastic neighbor embedding of the connectivity between excitatory cells 790 
using the MATLAB function tsne. The feature vector for each excitatory cell was the binary 791 
vector indicating the presence of both input and output connections. 792 

Parameter 

Fiducial 

Value Description 

𝑛 500 Number of neurons 

𝑛𝐸  375 Number of excitatory neurons 
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𝑛𝑐  or "clusters" 15 Number of clusters 

𝜇𝑐 or "cluster participation" 1.25 Mean cluster membership per neuron 

𝑝𝑐 0.08 E-to-E connection probability 

𝑝𝑐𝐼
 0.25 E-to-I and I-to-E connection probability 

𝑊E-E 220 pS E-to-E synaptic conductance step increase 

𝑊E-I 400 pS E-to-I synaptic conductance step increase 

𝑊I-E 400 pS I-to-E synaptic conductance step increase 

   

Network inputs 793 

All excitatory neurons in the network received three different feed-forward inputs (Figure 794 
1b). Two inputs were spatially modulated, with rates that peaked at either end of the track 795 
and linearly varied across the track to reach zero at the opposite end. One input was a 796 
context cue that was position independent. All excitatory cells received unique Poisson 797 
spike trains from each of the three inputs at their position-dependent rates. Inhibitory cells 798 
received only the context input.  799 

The connection strength of each feed-forward input to each neuron was determined by an 800 
independent and a cluster-specific factor.  801 

First, strengths were randomly drawn from a log-normal distribution 𝑒𝜇+𝜎𝒩 , where 𝒩 is a 802 

zero-mean, unit variance Normal distribution, 𝜇 = 𝑙𝑛 (
𝑊𝑖𝑛

2

√𝜎𝑖𝑛+𝑊𝑖𝑛
2

) and 𝜎 = √𝑙𝑛 (
𝜎𝑖𝑛

𝑊𝑖𝑛
2 +1

) for 803 

mean strength 𝑊𝑖𝑛 and standard deviation 𝜎𝑖𝑛 for the location cues, with 𝜎𝑖𝑛 replaced by 804 
𝜎𝑐𝑜𝑛𝑡𝑒𝑥𝑡 for the context cue. Each environment and the sleep session had unique context cue 805 
input weights. For model simplicity, the mean input strength 𝑊𝑖𝑛 for all inputs was kept the 806 
same for both E and I cells in both the awake and sleep conditions, but the strength of the 807 
resulting context input was then scaled by some factor 𝑓x for each of the 4 cases to 808 
accommodate for the presence, or lack thereof, of the additional current input from the 809 
location cues. These scaling factors were set at a level that generated appropriate levels of 810 
population activity. During simulation of linear track traversal, the context cue to excitatory 811 
cells was scaled down by 𝑓E-awake to compensate for the added excitatory drive of the 812 
location cue inputs, and the context cue input to I cells was not changed (𝑓I-awake = 1). 813 
During sleep simulation, the context cue input to E cells was not scaled (𝑓E-awake = 1) but 814 
the context cue input to I cells was scaled down by 𝑓I-sleep. 815 

Second, to incorporate cluster-dependent correlations in place fields, a small (≤ 4%) 816 
location cue bias was added to the randomly drawn feed-forward weights based on each 817 
neuron’s cluster membership. For each environment, the clusters were randomly shuffled 818 
and assigned a normalized rank bias value, such that the first cluster had a bias of -1 819 
(corresponding to a rightward cue preference) and the last cluster had a bias of +1 820 
(leftward cue preference). A neuron’s individual bias was calculated as the mean bias of all 821 
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clusters it belonged to, multiplied by the scaling factor 𝜎𝑏𝑖𝑎𝑠. The left cue weight for each 822 
neuron was then scaled by 1 plus its bias, and the right cue weight was scaled by 1 minus 823 
its bias. In this way, the feed-forward input tuning was biased based on the mean rank of a 824 
neuron’s cluster affiliations for each environment. The addition of this bias produced 825 
correlations in cells’ spatial tunings based on cluster membership, but, importantly, this 826 
bias was not present during the sleep simulations, and it did not lead to high correlations of 827 
place-field maps between environments (Figure 9b).  828 

Parameter Value Description 

𝑟𝐺 5000 Hz Peak Poisson input rate 

𝑊𝑖𝑛 72 pS Mean strength of the input synapses 

𝜎𝑖𝑛 5 pS Standard deviation of the location cue input synapses 

𝜎𝑐𝑜𝑛𝑡𝑒𝑥𝑡 1.25 pS Standard deviation of the context cue input synapses 

𝜎𝑏𝑖𝑎𝑠 0.04 Location bias scale 

𝑓E-awake 0.1 E-cell context cue input scaling during awake simulation 

𝑓E-sleep 1 E-cell context cue input scaling during sleep simulation 

𝑓I-awake 1 I-cell context cue input scaling during awake simulation 

𝑓I-sleep 0.75 I-cell context cue input scaling during sleep simulation 

   

Simulation 829 

For a given parameter set, we generated 10 random networks. We simulated each network 830 
for one sleep session of 120 s and for five 2-s long traversals of each of the two linear 831 
trajectories on each track. For the parameter grids in Figures 3 and 4 we simulated 20 832 
networks with 300 s long sleep sessions in order to get more precise empirical estimates of 833 
the simulation statistics. For analysis comparing place-field reliability, we simulated 10 834 
traversals of each trajectory.  835 

To compare coding for place vs time, we performed repeated simulations for the same 836 
networks at the fiducial parameter point with 1.0x and 2.0x of the original track traversal 837 
speed. We then combined all trials for both speed conditions to calculate both place fields 838 
and time fields for each cell from the same linear track traversal simulations. The place 839 
fields were calculated as described below (average firing rate within each of the fifty 2-cm 840 
long spatial bins across the track) and the time fields were similarly calculated but for fifty 841 
40-ms time bins across the initial two seconds of all track traversals. 842 

 843 

Place field analysis 844 

Place-field rate maps 845 

We followed the methods of Shin et al., 2019 to generate place fields from the spike trains.  846 
We calculated for each excitatory cell its trial-averaged occupancy-discounted firing rate in 847 
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each 2 cm spatial bin of the 1 m long linear track. Note that the occupancy-discounting term 848 
is uniform across bins, so it has no impact in our model, because we simulated uniform 849 
movement speed. We then smoothed this with a Gaussian kernel with a 4 cm standard 850 
deviation. For statistics quantifying place-field properties and for Bayesian decoding, we 851 
considered only excitatory cells with place-field peaks exceeding 3 Hz as in Shin et al., 852 
2019. 853 

 854 

Place-field specificity 855 

Place-field specificity was defined as 1 minus the fraction of the spatial bins in which the 856 
place field’s rate exceeded 25% of its maximum rate (Shin et al., 2019). 857 

 858 

Place-field spatial information 859 

The spatial information of each cells’ place field was calculated as 860 

Spatial Information = ∑ 𝑝𝑖

𝑖

(
𝑟𝑖

𝑟
) 𝑙𝑜𝑔2 (

𝑟𝑖

𝑟
) 861 

where 𝑝𝑖 is the probability of being in spatial bin 𝑖, 𝑟𝑖 is the place field’s rate in spatial bin 𝑖, 862 
and 𝑟 is the mean rate of the place field (Sheintuch et al., 2023). Given the division of the 863 
track into 50 spatial bins, spatial information could vary between 0 for equal firing in all 864 
bins and 𝑙𝑜𝑔2(50) ≅ 5.6 for firing in only a single bin. Spatial information of 1 is equivalent, 865 
for example, to equal firing in exactly one half of the bins and no firing elsewhere. 866 

 867 

Distribution of peaks 868 

We used two measures to quantify the extent to which place-field peaks were uniformly 869 
distributed across the track. In our first measure, we calculated the Kullback-Leibler 870 
divergence of the distribution of peaks from a uniform distribution, as 871 

𝐷𝐾𝐿 = − ∑ 𝑝𝑖
data𝑙𝑜𝑔2 (

𝑝𝑖
uniform

𝑝𝑖
data

)

𝑖

 872 

where 𝑝𝑖
𝑑𝑎𝑡𝑎 is the fraction of cells with peak firing rates in the 𝑖𝑡ℎ spatial bin and 𝑝𝑖

𝑢𝑛𝑖𝑓𝑜𝑟𝑚
 873 

is 1/50, i. e., the fraction expected from a uniform distribution (Sheintuch et al., 2023). 874 
Similarly, the range for spatial information, 𝐷𝐾𝐿 is bounded between zero for a perfectly 875 
uniform distribution of peaks and 𝑙𝑜𝑔2(50) ≅ 5.6 if all peaks were in a single bin. 𝐷𝐾𝐿 of 1 876 
is equivalent, for example, to all peaks being uniformly spread over one half of the bins in 877 
the track. 878 

For our second measure, we calculated the fraction of place cells whose peak firing rate 879 
was in the central third of the track. Since inputs providing spatial information only peaked 880 
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at the boundaries of the track, the central third was ubiquitously the most depleted of high 881 
firing rates. 882 

 883 

Place-field map correlations 884 

To compare the similarity of place fields across different trajectories, we calculated the 885 
correlation between the place-field rate maps of each pair of trajectories. For each spatial 886 
bin, we calculated the Pearson correlation coefficient between the vector of the population 887 
place-field rates of the two trajectories. We then averaged the correlation coefficients 888 
across all spatial bins to get the correlation between the two trajectories. 889 

 890 

PBE detection 891 

We detected candidate preplay events in the simulated data by identifying population-892 
burst events (PBEs). During the simulated sleep period, we calculated the mean rate of the 893 
population of excitatory cells, which defines the population rate, smoothed with a Gaussian 894 
kernel (15 ms standard deviation). We then detected PBEs as periods of time when the 895 
population rate exceeded 1 standard deviation above the mean population rate for at least 896 
30 ms. We also required the peak population rate to exceed 0.5 Hz (corresponding to 5-6 897 
spikes per 30ms among excitatory cells) in order for the rate fluctuation to qualify as a PBE. 898 
We then combined PBEs into a single event if their start and end times were separated by 899 
less than 10 ms. 900 

 901 

Sharp-wave ripple detection 902 

Because of the reduced number of recorded cells relative to the simulated data, we 903 
detected candidate events in the Shin et al., 2019 data with a method that incorporated the 904 
ripple band oscillation power in the local field potential (LFP) in addition to the population 905 
spiking activity. We first calculated the smoothed firing rate for each excitatory neuron by 906 
convolving its spikes with a Gaussian kernel (100 ms standard deviation) and capping at 1 907 
to prevent bursting dominance. We then computed the z-scored population firing rate from 908 
the capped, smoothed single-neuron rates. Additionally, we calculated the z-scored, ripple-909 
filtered envelope of the tetrode-averaged LFP. We then summed these two z-scores and 910 
detected peaks that exceeded 6 for at least 10 ms and exceeded the neighboring regions by 911 
at least 6 (MinPeakHeight, MinPeakWidth, and MinPeakProminence of the MATLAB function 912 
findpeaks, respectively). Candidate events were defined as periods around detected peaks, 913 
spanning from when the z-score sum first dipped below 0 for at least 5 ms before the peak 914 
to after the peak when it again dipped below 0 for at least 5 ms. We additionally required 915 
that the animal be immobile during the event. 916 

 917 
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Bayesian decoding 918 

We performed Bayesian decoding of candidate preplay events following the methods of 919 
Shin et al., 2019. We performed decoding on all candidate events that had at least 5 active 920 
cells and exceeded at least 50 ms in duration. Spikes in the event were binned into 10 ms 921 
time bins. We decoded using the place fields for each trajectory independently. The 922 
description provided below is for the decoding using the place fields of one particular 923 
trajectory. 924 

For each time bin of each event, we calculated the location on the track represented by the 925 
neural spikes based on the place fields of the active cells using a memoryless Bayesian 926 
decoder 927 

𝑃(𝑥|𝑠) =
𝑃(𝑠|𝑥)𝑃(𝑥)

𝑃(𝑠)
 928 

where 𝑃(𝑥|𝑠) is the probability of the animal being in spatial bin 𝑥 given the set of spikes 𝑠 929 
that occurred in the time bin, 𝑃(𝑠|𝑥) is the probability of the spikes 𝑠 given the animal is in 930 
spatial bin 𝑥 (as given by the place fields), 𝑃(𝑥) is the prior probability of the animal being 931 
in spatial bin 𝑥, and 𝑃(𝑠) is the probability of the spikes 𝑠. 932 

We assumed a uniform prior probability of position, 𝑃(𝑥). We assumed that the 𝑁 cells 933 
firing during the event acted as independent Poisson processes in order to calculate 934 

𝑃(𝑠|𝑥) = ∏
(𝜏𝑟𝑖(𝑥))𝑠𝑖𝑒−𝜏𝑟𝑖(𝑥)

𝑠𝑖!

𝑁

𝑖

 935 

where 𝜏 is the time bin window duration (10 ms), 𝑟𝑖(𝑥) is the place-field rate of cell 𝑖 in 936 
spatial bin 𝑥 and 𝑠𝑖 is the number of spikes from cell 𝑖 in the time bin. 937 

This allows us to calculate the posterior probability of position for each time bin as 938 

𝑃(𝑥|𝑠) = 𝐶 (∏ 𝑟𝑖

𝑁

𝑖

(𝑥)𝑠𝑖) 𝑒−𝜏 ∑ 𝑟𝑖
𝑁
𝑖 (𝑥) 939 

where 𝐶 is a normalization constant, which accounts for the position-independent term, 940 
𝑃(𝑠). 941 

 942 

Bayesian decoding statistical analyses 943 

We analyzed the significance of preplay using the methods of Farooq et al., 2019 (see also 944 
Silva et al., 2015). We computed two measures of the sequence quality of each decoded 945 
event: the event’s absolute weighted correlation and its jump distance. The absolute 946 
weighted correlation is the absolute weighted Pearson’s correlation of decoded position 947 
across the event’s time bins. For each decoded event, we calculate the weighted correlation 948 
between space and time with MATLAB’s fitlm function using the decoded probability in 949 
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each space-time bin (10 ms by 2 cm) as the weight for the corresponding location in the 950 
correlation. The absolute value of the weighted correlation is used in order to account for 951 
both forward and reverse preplay. The jump distance is the maximum of the distance 952 
between the positions of peak probability for any two adjacent 10-ms time bins in the 953 
event, quantified as fraction of the track length. 954 

For each event, we generated 100 shuffled events by randomly permuting the order of the 955 
10-ms time bins. We then calculated the weighted correlation and jump distance for each 956 
shuffled event in the same manner as for the actual events. For each simulated parameter 957 
set, we combined all events from the 10 simulated networks. 958 

Following the methods of Farooq et al., 2019, we calculated the statistical significance of 959 
the population of preplay events using two different methods. First, we used the 960 
Kolmogorov-Smirnov (KS) test to compare the distributions of absolute weighted 961 
correlations obtained from the actual events and the shuffled events (Figure 4a, c).  962 

Second, we used a bootstrap test to compare the fraction of high-quality events—defined as 963 
having both high absolute weighted correlations and low maximum jump distance—964 
relative to shuffles (Figure 4b,d). To perform the bootstrap test, we created a grid of 965 
thresholds for minimum absolute weighted correlation and maximum jump distance, and 966 
for each combination of thresholds we calculated the fraction of actual events that 967 
exceeded the minimum absolute weighted correlation threshold and did not exceed the 968 
maximum jump distance threshold. Then, we generated 100 data sets of shuffled events by 969 
randomly permuting the order of the 10-ms time bins for each actual event and calculated 970 
the fraction of events meeting the same pairs of thresholds for each shuffled data set. The 971 
p-value of the fraction of high-quality events was then calculated as the fraction of shuffled 972 
data sets with a higher fraction of high-quality events.  973 

To test the significance of each event’s absolute weighted correlation individually, we 974 
calculated the event’s p-value as the fraction of the event’s own shuffles that had a higher 975 
absolute weighted correlation than the un-shuffled event (Figure 4f, bottom left). 976 

The spatial entropy 𝐻 of a decoded event was calculated as the mean over its time bins of 977 
the entropy of the decoded position probability in each time bin, using the equation 978 

𝐻 = − ∑ 𝑝𝑖

𝑖

 𝑙𝑜𝑔2(𝑝𝑖) 979 

for each time bin, where 𝑝𝑖 is the decoded position probability for spatial bin 𝑖. 980 

Cell identity shuffled decoding 981 

We performed Bayesian decoding on the fiducial parameter set after shuffling cell 982 
identities in three different manners (Figures 6 and 7). To shuffle cells in a cluster-983 
independent manner (“Across-network shuffle”), we randomly shuffled the identity of cells 984 
during the sleep simulations. To shuffle cells within clusters (“Within-cluster shuffle”), we 985 
randomly shuffled cell identity only between cells that shared membership in at least one 986 
cluster. To shuffle cells within only single clusters (“Within-single-cluster shuffle”), we 987 
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shuffled cells in the same manner as the within-cluster shuffle but excluded any cells from 988 
the shuffle that were in multiple clusters. 989 

To test for a correlation between spike rank during sleep PBEs and the order of place fields 990 
on the track (Figure 7), we calculated for each excitatory cell in each network of the fiducial 991 
parameter set its mean relative spike rank and correlated that with the location of its mean 992 
place field density on the track (Figure 7a). To account for event directionality, we 993 
calculated the mean relative rank after inverting the rank within events that had a 994 
negatively sloped decoded trajectory (Figure 7b). We calculated mean relative rank for 995 
each cell relative to all cells in the network (“Within-network mean relative rank”) and 996 
relative to only cells that shared cluster membership with the cell (“Within-cluster mean 997 
relative rank”). We then compared the slope of the linear regression between mean relative 998 
rank and place field location against the slope that results when applying the same analysis 999 
to each of the three methods of cell identify shuffles for both the within-network regression 1000 
(Figure 7c) and the within-cluster regression (Figure 7d). 1001 

 1002 

Small-world index 1003 

The small-world index (SWI) was calculated following the method of Neal, 2015 (see also 1004 
Neal, 2017). It was defined as 1005 

SWI =
(𝐿 − 𝐿𝑙)

(𝐿𝑟 − 𝐿𝑙)
×

(𝐶 − 𝐶𝑟)

(𝐶𝑙 − 𝐶𝑟)
 1006 

where 𝐿 is the mean path distance and 𝐶 is the clustering coefficient of the network. We 1007 
calculate 𝐿 as the mean over all ordered pairs of excitatory cells of the shortest directed 1008 
path length from the first to the second cell. We calculate 𝐶 as the ratio of the number of all 1009 
triplets of excitatory cells that are connected in either direction over the number of all 1010 
triplets that could form, following the methods of Fagiolo, 2007 for directed graphs.  𝐿𝑙  and 1011 
𝐶𝑙 are the expected values for a one-dimensional ring lattice network with the same size 1012 
and connection probability (in which connections are local such that there are no 1013 
connections between cells with a greater separation on the ring than that of any pairs 1014 
without a connection). And 𝐿𝑟 and 𝐶𝑟 are the expected values for a random network of the 1015 
same size and connection probability. A network with a high SWI index is therefore a 1016 
network with both a high clustering coefficient, similar to a ring lattice network, and small 1017 
mean path length, similar to a random network. 1018 

For directed graphs of size 𝑛, average degree 𝑘, and global connection probability 𝑝 1019 

𝐶𝑟 = 𝑝 (Fagiolo, 2007),  1020 

𝐿𝑟 =
𝑙𝑛(𝑛)−𝛾

𝑙𝑛(𝑘)
+ 0.5 (Fronczak et al., 2004),  1021 

𝐶𝑙 =
3(𝑘−2)

4(𝑘−1)
 (Neal, 2015) 1022 

𝐿𝑙 =
𝑛

2𝑘
+ 0.5 (Neal, 2015; Fronczak et al., 2004) 1023 
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where 𝛾 is the Euler-Mascheroni constant. 1024 

 1025 

Active cluster analysis 1026 

To quantify cluster activation (figure 5), we calculated the population rate for each cluster 1027 
individually as the mean firing rate of all excitatory cells belonging to the cluster smoothed 1028 
with a Gaussian kernel (15 ms standard deviation). A cluster was defined as ‘active’ if at 1029 
any point its population rate exceeded twice that of any other cluster during a PBE. The 1030 
active clusters’ duration of activation was defined as the duration for which it was the most 1031 
active cluster. 1032 

To test whether the sequence of activation in events with three active clusters matched the 1033 
sequence of place fields on the track, we performed a bootstrap significance test (Figure 1034 
5—figure supplement 1). For all events from the fiducial parameter set that had three 1035 
active clusters, we calculated the fraction in which the sequence of the active clusters 1036 
matched the sequence of the clusters’ left vs right bias on the track in either direction. We 1037 
then compared this fraction to the distribution expected from randomly sampling 1038 
sequences of three clusters without replacement. 1039 

To determine if there was a relationship between the number of active clusters within an 1040 
event and it’s preplay quality we performed a Spearman’s rank correlation between the 1041 
number of active clusters and the normalized absolute weighted correlation across all 1042 
events at the fiducial parameter set. The absolute weighted correlations were z-scored 1043 
based on the absolute weighted correlations of the time-bin shuffled events that had the 1044 
same number of active clusters. 1045 

Experimental data 1046 

Electrophysiological data was reanalyzed from the hippocampal CA1 recordings first 1047 
published in Shin et al., 2019. All place-field data (Figure 3a) came from the six rats’ first 1048 
experience on the W-track spatial alternation task. All preplay data (Figure 4a,b) came 1049 
from the six rats’ first sleep-box session, which lasted 20-30 minutes and occurred 1050 
immediately before their first experience on the W-track. 1051 

 1052 

Code 1053 

Simulations and analysis were performed in MATLAB with custom code. Code available at 1054 
https://github.com/primon23/Preplay_paper.1055 
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Supplemental figures 1056 

 1057 

Figure 1—figure supplement 1: Comparison of the randomly clustered network and 1058 
the canonical Watts-Strogatz small-world network 1059 
(a) A small ring-lattice network. (b) Example small-world networks. Top, a Watts-Strogatz 1060 
network with re-wiring parameter 𝛽 = 0.2. Bottom, a randomly clustered network with 1061 
two clusters and a cluster participation of 1.25. (c) Example randomly connected network. 1062 

 1063 

 1064 

Figure 3—figure supplement 1: The simulated cells have greater place information 1065 
than time information. 1066 
(a) Place fields (left) and time fields (right) for an example cell calculated from simulated 1067 
trajectories that took 2 seconds (solid line) or 4 seconds (dotted line) to traverse the track. 1068 
(b) CDFs of the information content of the place fields (“Place”) and time fields (“Time”) of 1069 
all cells. The spatial information is significantly greater than the temporal information (KS-1070 
test, p=6.4e-23).  (c) Scatter plot of the data in (b), with the median values marked in red. 1071 
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 1072 

 1073 

Figure 4—figure supplement 1: Example preplay events from the Shin et al., 2019 1074 
data 1075 
Example preplay events. Same as Figure 2f but for events from the hipopcampal data from 1076 
Shin et al., 2019. The height of each plot spans the length of the trajectory used for 1077 
decoding, divided into 2 cm spatial bins. The width of each plot spans the duration of the 1078 
detected event, divided into 10 ms time bins. Probability is show in color. 1079 

 1080 

 1081 

Figure 4—figure supplement 2: Significant preplay can typically be identified with as 1082 
few as 50 cells 1083 
(a-c) Results from performing the same Bayesian decoding on the same simulated 1084 
population burst events (PBEs) in Figure 4c but using only random subsets of the 1085 
excitatory cells for performing the decoding analysis. Each circle is the result of an analysis 1086 
performed on one random subset of the cells. 25 random subsets were analyzed for each 1087 
analyzed cell count. The subset sizes are logarithmically spaced. Black lines show the 1088 
median value. The variability at N=375 is due to the variation in the randomness of the 1089 
time-bin shuffles. (a) Number of events meeting the inclusion criterion for decoding 1090 
analysis. b) P-value of the KS-test comparing actual vs shuffled event absolute weighted 1091 
correlations. A majority of the random subsets of 50 cells (17 out of 25) produce preplay p-1092 
values below 0.05. (c) Shift in the median absolute weighted correlation of actual events 1093 
relative to shuffled events. 1094 
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 1095 

 1096 

Figure 4—figure supplement 3: Preplay statistics by trajectory for Shin et al., 2019 1097 
data. 1098 
(a) Same as Figure 4a but separated by results from decoding by each of the 4 trajectories 1099 
of the W-track individually (trajectory 1, center arm to right arm; trajectory 2, right arm to 1100 
center arm; trajectory 3, center arm to left arm; trajectory 4, left arm to center arm). KS-1101 
test for each trajectory: trajectory 1, p=0.0030; trajectory 2, p=0.0028; trajectory 3, 1102 
p=0.0027; trajectory 4, p=5.461×10-5. ** p<0.01, *** p<0.001. b) Same as Figure 4b but 1103 
separated by results from decoding by each of the 4 trajectories individually.1104 

 1105 

 1106 
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 1107 

Figure 4—figure supplement 4: Additional simulations support the consistency and 1108 
robustness of the model to variations in spatial input forms. 1109 
Each row corresponds to a different parameter grid simulation, with statistics calculated as 1110 
in the corresponding panel from Figure 4. (a) Preplay statistics are similar to the main 1111 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2023.10.26.564173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564173
http://creativecommons.org/licenses/by-nc/4.0/


41 
 

simulation results when a third linearly varying spatial cue is included in the inputs to the 1112 
network (CDF KS-test, p=3.9e-13, KS-statistic=0.26). (b) Preplay statistics are similar to the 1113 
main simulation results when a stepped input is used (CDF KS-test, p=2.5e-08, KS-1114 
statistic=0.20). The stepped input is less spatially informative since stretches of adjacent 1115 
locations on the track have identical spatial input. (c) Same as (b), but with three step 1116 
increments (CDF KS-test, p=6.2e-13, KS-statistic=0.26). (d) Same as (c), but with a single 1117 
step increment (CDF KS-test, p=4.9e-13, KS-statistic=0.26). With this input the fiducial 1118 
parameter set still shows significant preplay (right two columns), but most of the 1119 
parameter grid loses significant preplay. (e) When the bias in cluster spatial input location 1120 
is removed preplay is no longer significant (CDF KS-test, p=0.34, KS-statistic=0.063). (f) A 1121 
parameter grid that shows greater values of cluster participation do not have significant 1122 
preplay. Values along the diagonal where clusters equals cluster participation are 1123 
equivalent to a random cluster-less network. Example parameter point is at clusters=5 and 1124 
cluster participation=5 (CDF KS-test, p=0.99, KS-statistic=0.02). 1125 

 1126 

 1127 

 1128 

Figure 5—figure supplement 1: Relationship between cluster activation and preplay. 1129 
(a) Out of all events from the fiducial parameter set simulations where 3 unique clusters 1130 
were active, the fraction of those events with sequences that match the order of cluster 1131 
biases on the track (red line) is consistent with the values expected by randomly sampling 1132 
clusters (blue). (b) Z-scored absolute weighted preplay correlation is negatively correlated 1133 
with the number of active clusters (Spearman’s rank correlation). 1134 

1135 
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