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Abstract 36 
 37 
Understanding diverse responses of individual cells to the same perturbation is central to many 38 
biological and biomedical problems. Current methods, however, do not precisely quantify the strength of 39 
perturbation responses and, more importantly, reveal new biological insights from heterogeneity in 40 
responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic 41 
optimization, to quantify diverse perturbation responses at a single-cell level. Applied to single-cell 42 
transcriptomes of large-scale genetic perturbation datasets (e.g., Perturb-seq), PS outperforms existing 43 
methods for quantifying partial gene perturbation responses. In addition, PS presents two major 44 
advances. First, PS enables large-scale, single-cell-resolution dosage analysis of perturbation, without 45 
the need to titrate perturbation strength. By analyzing the dose-response patterns of over 2,000 essential 46 
genes in Perturb-seq, we identify two distinct patterns, depending on whether a moderate reduction in 47 
their expression induces strong downstream expression alterations. Second, PS identifies intrinsic and 48 
extrinsic biological determinants of perturbation responses. We demonstrate the application of PS in 49 
contexts such as T cell stimulation, latent HIV-1 expression, and pancreatic cell differentiation. Notably, 50 
PS unveiled a previously unrecognized, cell-type-specific role of coiled-coil domain containing 6 51 
(CCDC6) in guiding liver and pancreatic lineage decisions, where CCDC6 knockouts drive the 52 
endoderm cell differentiation towards liver lineage, rather than pancreatic lineage. The PS approach 53 
provides an innovative method for dose-to-function analysis and will enable new biological discoveries 54 
from single-cell perturbation datasets. 55 
 56 
 57 
Introduction 58 
Perturbation is essential for understanding the functions of the mammalian genome that encodes protein-59 
coding genes and non-coding elements (e.g., enhancers). Single-cell profiling of cells undergoing 60 
genetic, chemical, environmental or mechanical perturbations is commonly used to examine 61 
perturbation responses at the single-cell level. Recently, high-throughput approaches of perturbation 62 
have been developed using single-cell RNA-seq (scRNA-seq) readout, including multiplexing of 63 
perturbations and single-cell CRISPR screen (e.g., Perturb-seq, CROP-seq)1–7. This concept has been 64 
extended to study changes in single-cell chromatin accessibility8,9, spatial transcriptomics10 upon 65 
perturbations or perturbation combinations11–13, and other phenomena. 66 
  67 
Understanding how perturbations lead to different responses within cells is critical to understanding the 68 
fundamental biology behind perturbation. Technical factors, including single-cell assays used to profile 69 
the response, and the on-target/off-target effects of perturbations, are known drivers that lead to 70 
differences of single-cell profiles in the data14–16. In Perturb-seq experiments that use CRISPR/Cas9 for 71 
knockouts, both in-frame deletions16 and chromosomal losses17 contribute to different expression 72 
profiles and clustering patterns of single cells. 73 
 74 
Perhaps more interestingly, the heterogeneity perturbation responses may be driven by underlying 75 
biological factors (Fig. 1a). These factors may be either cell-intrinsic (e.g., the activities of other coding-76 
and non-coding genomic elements) or cell-extrinsic (e.g., cell states or types, environment factors), all of 77 
which define the context of perturbation response. For example, combined expressions of transcription 78 
factors (TFs) are critical for many cellular state conversions. Therefore, to properly decode the functions 79 
of these TFs via perturbation, one must consider the effect of the cell state and the activities of other 80 
companion TFs. For this reason, defining the heterogeneity of perturbation response and identifying 81 
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factors that contribute to these outcomes is important for understanding how cells respond to 82 
perturbation.  83 
 84 
Unfortunately, computational frameworks are currently lacking to decode the diverse outcomes of 85 
perturbations. For technical factors, mixscape is the only method to detect and mitigate confounding 86 
variations (e.g., incomplete knockouts from CRISPR/Cas9)16. However, its performance has not been 87 
rigorously benchmarked, especially when partial gene functions are perturbed using techniques like 88 
CRISPR interference (CRISPRi). More importantly, no methods have been developed to reveal new 89 
biological insights from the heterogenous perturbation outcomes, including studying how partial gene 90 
perturbations affect a phenotype of interest (i.e., “dosage” analysis), and discovering biological 91 
determinants that govern differential perturbation responses.  92 
 93 
Here we present a computational framework, the perturbation-response score (PS), to quantify 94 
heterogenous perturbation outcomes in single-cell transcriptomics datasets. The PS, estimated from 95 
constrained quadratic optimization, quantifies the strength of the perturbation outcome for a single cell. 96 
We performed comprehensive benchmark studies that demonstrated the outstanding performance of PS 97 
over existing methods, including simulated datasets, genome-scale Perturb-seq, and published Perturb-98 
seq datasets that cover various CRISPR-based technologies. More importantly, PS analysis presents two 99 
major conceptual advances for analyzing single-cell perturbation data: it enables analysis of the dose of 100 
perturbation, and identification of novel biological determinants that govern the heterogeneity of 101 
perturbation responses. First, we analyzed essential gene Perturb-seq and found two patterns of dose 102 
response, based on whether moderate perturbation leads to strong expression changes of downstream 103 
genes. Second, we identified intrinsic and extrinsic biological factors governing critical gene functions 104 
in latent HIV-1 expression and pancreatic/liver development. Based on PS analysis results, we identified 105 
and confirmed a novel function of CCDC6, wherein perturbation drives duodenum cell differentiation 106 
towards liver commitment. Collectively, PS analysis provides a powerful tool to decode heterogenous 107 
perturbation outcomes from single-cell assays. 108 
 109 
Results 110 
Using PS to detect heterogenous perturbation outcomes within and across datasets. 111 
Perturbing the same gene (or non-coding elements) may result in different phenotypic changes or 112 
transcriptional outcomes (Fig. 1a), depending on technical factors (e.g., perturbation efficiency) and 113 
biological factors (e.g., cell type, cell state, activities of cofactors). Unfortunately, existing methods can 114 
detect only technical factors16, while biological factors remain unexplored. To bridge this gap, we built a 115 
computational framework to quantify perturbation outcomes in single-cell datasets using scRNA-seq as 116 
readout. Corresponding assays include single-cell CRISPR screens (e.g., Perturb-seq), or simply 117 
multiplex scRNA-seq profiling of various perturbations (e.g., sci-Plex; Fig. 1b, c). We define the 118 
perturbation-response score (PS) to quantify the strength of perturbation, where PS=0 indicates no 119 
perturbation effect (e.g., effects corresponding to unperturbed, wild-type gene functions) and  PS=1 120 
indicates the maximum perturbation effect observed within a dataset; for example, effects that 121 
correspond to homozygous knockouts on both alleles of a gene. We utilize the expressions of multiple 122 
downstream targets of a perturbed gene to infer the (unknown) values of PS (Fig. 1b). For example, if 123 
one cell has dramatic expression changes on the known downstream target genes, then its value of PS 124 
should be higher than cells with weak expression changes of these genes.  125 
 126 
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We built a computational model, based on a constrained quadratic optimization, to automatically 127 
identify the downstream targets of perturbed genes and calculate PS (Fig. 1c). This model, named 128 
“scMAGeCK-PS”, is based on our previously published scMAGeCK algorithm15 and consists of three 129 
steps. First, scMAGeCK-PS identifies differentially expressed genes (DEGs) upon perturbation (e.g., 130 
perturbing the function of gene X), by comparing the transcriptome profiles between perturbed cells and 131 
unperturbed cells. These DEGs are served as “signature” target genes of X. Second, scMAGeCK-PS 132 
used a previously developed scMAGeCK model to estimate the average effect of perturbation on these 133 
target genes, which can be estimated from the first step. Third, scMAGeCK-PS uses a constraint 134 
optimization procedure to find the value of PS that minimizes the sum of mean squared errors between 135 
predicted and measured expression changes of all downstream targets (see Methods). The constraints are 136 
established such that any PS is non-negative for cells with X perturbed, and is exactly zero in cells 137 
without perturbation. Such constraints can be established based on the prior information of 138 
perturbations; for example, the expression matrix of single-guide RNAs (sgRNAs). 139 
 140 
PS outperforms mixscape in quantifying partial perturbations.  141 
mixscape16 is currently the only method to detect and remove technical factors that affect perturbation 142 
outcomes, especially incomplete gene knockouts that are generated from CRISPR/Cas9. However, the 143 
performance of mixscape on partial gene perturbations has not been fully evaluated. Here we compare 144 
PS with mixscape using multiple benchmark datasets. We first used synthetic datasets to evaluate the 145 
performances of different methods, because finding a real scRNA-seq dataset that contains ground truth 146 
(i.e., accurate measurements of loss-of-function upon perturbation) is challenging. For synthetic data 147 
generation, we used scDesign318 to simulate the single-cell transcriptomic responses upon perturbing the 148 
50% and 100% functions of Nelfb, based on a real scRNA-seq dataset that deletes Nelfb in mouse T 149 
cells19 (Supplementary Fig. S1a; see Methods). We specified different numbers of DEGs (from 10 to 150 
500) and simulated their expression changes upon 50% or 100% perturbations of Nelfb functions. In all 151 
the cases, PS correctly estimated partial perturbation, where the median PSs range from 0.32-0.34 for 152 
50% perturbation, and greater than 0.8 for 100% perturbation, respectively (Fig. 1d-e; Supplementary 153 
Fig. S1b-e). In contrast, mixscape uniformly assigned the posterior probability of perturbation to 1 in all 154 
cases, an indication that mixscape is not suited to analyze the outcome of partial gene perturbations (Fig. 155 
1d-e; Supplementary Fig. S1b-e), possibly due to the bimodal statistic model it uses, which only 156 
considers 100% knockout effects16. 157 
 158 
We next evaluated different methods using real single-cell perturbation datasets. We chose CRISPRi-159 
based Perturb-seq datasets (Fig. 1f-i) because the CRISPRi system directly modulates the expression 160 
levels of perturbed genes, and the perturbation efficiency can be accessed using single-cell 161 
transcriptomic data. We use two published K562 CROP-seq datasets:20 in the first, only 1 gRNA is 162 
expressed within each cell (i.e., low multiplicity of infection or MOI), and in the second multiple 163 
gRNAs are expressed (i.e., high MOI). We examine cells where the transcription starting sites (TSS) of 164 
highly expressed protein-coding genes are targeted (23 and 342 genes, respectively; Fig. 1g-i, 165 
Supplementary Fig. S1f-g). If the TSS of gene X is perturbed, we first removed the expression of X 166 
from expression matrix, and used the rest of gene expressions to measure the perturbation efficiency of 167 
X. The scores of different methods were then compared with the expression of X, producing a direct 168 
measurement of perturbation efficiency (Fig. 1f). In over 40% of these genes (10 out of 23 for low MOI, 169 
139 out of 342 for high MOI), PS has a strong negative correlation with the expression of X (Fig. 1g), 170 
defined as Pearson correlation coefficient < -0.1 and p value <0.01. In contrast, mixscape scores 171 
correlate with X expression in none of the genes (for low MOI dataset; Fig. 1g), or in less than 5% of all 172 
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the genes (for high MOI dataset; Supplementary Fig. S1f-g). PS detects a much greater number of cells 173 
that have a strong perturbation effect (PS or mixscape score >0.5; Fig. 1h), whose scores are strongly 174 
negatively correlated with gene expression (Fig. 1i). We also tested both methods in another CRISPRi-175 
based Perturb-seq dataset, where sgRNAs with mismatches reduce efficiency, leading to partial 176 
perturbation effects21 (Supplementary Fig. S1h-i). PS has a high sensitivity and a good balance 177 
between sensitivity and specificity, evidenced by the higher Pearson correlation coefficients 178 
(Supplementary Fig. S1h) and areas under the receiver-operating characteristic (ROC) curve (AUC) 179 
values (Supplementary Fig. S1i). 180 
 181 
To further benchmark methods in terms of a phenotype of interest, we designed and performed a 182 
genome-scale CRISPRi Perturb-seq on both unstimulated and stimulated Jurkat, a T lymphocyte cell 183 
model (Fig. 2a), and evaluated the performances of different methods in identifying known regulators of 184 
T cell activation. We designed Perturb-seq library that contains sgRNAs targeting the TSS of 18,595 185 
genes (4-6 guides per gene) and used a TAP-seq-based22 multiplex primer panel to detect the 186 
expressions of 374 genes with high sensitivity (see Supplementary Table S1 and Methods). We 187 
obtained high-quality scRNA-seq data on over 586,000 single cells after quality control, and the UMAP 188 
clustering of Perturb-seq datasets clearly demonstrated the differences between stimulated and non-189 
stimulated cells (Fig. 2b). Next, we ran PS or mixscape to calculate the scores of all perturbations at a 190 
single-cell level; and for each perturbed gene, we calculated its overall perturbation-response score, by 191 
adding the scores of all cells that express a corresponding sgRNA targeting that gene. Because our 192 
system focuses on T cell stimulation, perturbing a gene that reaches a highest (and lowest) cumulative 193 
score should have the strongest (and no) effect on T cell stimulation, respectively. For an independent 194 
evaluation, we extracted 385 (and 1297) positive (and negative) hits whose perturbation impairs (or does 195 
not impair) the stimulation of T cells from a published genome-scale CRISPR screen23. Both Perturb-seq 196 
and pooled CRISPR screen identified many known positive regulators of T cell activation, such as 197 
components of the T cell receptor complex (e.g., CD3D) and proximal signaling components (e.g., LCK; 198 
Fig. 2c). For many positive genes, cells with higher values of PS or mixscape score are skewed towards 199 
non-stimulating state, consistent with their negative selections in pooled CRISPR screens using T cell 200 
stimulation as readout (Fig. 2c; Supplementary Fig. S2). However, when comparing the ROC score, 201 
PS reaches a higher AUC score than mixscape (Fig. 2d), indicating its better performance in accurately 202 
separating positive from negative hits.  203 
 204 
Finally, we tested different methods on a published ECCITE-seq, which simultaneously measures 205 
single-cell transcriptomes, surface proteins, and perturbations16. PDL1 protein expression was used as an 206 
independent metric of evaluation (Fig. 2e), because PDL1 is a well-studied gene whose protein 207 
expression is well understood. Among 25 perturbed genes in the ECCITE-seq perturbation library, 17 208 
are known to regulate PDL1 expression (Fig. 2f). We compared PS with mixscape in terms of predicting 209 
changes in PDL1 expression (Fig. 2f; Supplementary Fig. S3). In addition, the expression of the 210 
perturbed gene is included in the comparison as a naïve method. In 19 out of 25 genes (76%), PS 211 
outperformed mixscape and perturbed gene expression in predicting PDL1 expression (Fig. 2e), 212 
including 12 out of 17 (71%) known PDL1 regulators. Notably, for genes whose perturbations led to 213 
strong transcriptomic changes (e.g., IFNGR1, IFNGR2, JAK2, STAT1), both PS and mixscape work 214 
well, reaching  AUC > 0.8 (Fig. 2f). For other genes whose perturbation only leads to moderate or weak 215 
expression changes, as described previously16, PS outperforms mixscape, including those that are 216 
confirmed to be PLD1 regulators (i.e., genes marked in red in Fig. 2f).  217 
 218 
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Analyzing dose-dependent effects of perturbation. 219 
Traditionally, dosage analysis requires a careful, time-consuming adjustment of perturbation strength, 220 
including changing drug concentrations or designing sgRNA sequences to achieve various editing 221 
efficiencies21,24. Since the quantifying partial gene perturbation by PS is highly accurate (Fig. 1-2), we 222 
can use PS to perform dose-response analysis of perturbation, without the need to titrate the strength of 223 
perturbation. By examining ECCITE-seq data in which  PDL1 expression was measured directly (Fig. 224 
2e), we found correlations between PDL1 expression and the PS of known PDL1 regulators (Fig. 3a). 225 
The PSs of positive PDL1 regulators (e.g., IFNGR1/2, STAT1; Fig. 3b) are negatively correlated with 226 
PDL1 expression, while the scores of negative regulators (e.g., CUL3, BRD4) are negatively correlated 227 
(Supplementary Fig. S3; Fig. 3c). One example is CUL3, which is known to destabilize and degrade 228 
PDL1 protein expression25. Consequently, higher CUL3 PSs, indicating higher CUL3 functional 229 
perturbation, correspond to higher PDL1 protein expressions (Fig. 3a). Compared with mixscape, PS 230 
more accurately predicts the quantitative changes in PDL1 expression, evidenced by stronger Pearson 231 
correlations between the two (Supplementary Fig. S3). 232 
 233 
We further investigated the relationships between perturbation efficiency and the strength of 234 
perturbation responses, which is measured by PS (Fig. 3d). In particular, we are interested in genes that 235 
show one of two different patterns of PSs upon perturbation: “buffered” distribution, where genes have 236 
high PSs only when stronger perturbation efficiency is achieved; and “sensitive” distribution, where the 237 
PSs are high, even with moderate or weak perturbation efficiency. Both “buffered” or “sensitive” terms 238 
have been coined previously to describe the effects of transcription factor dosages to chromatin 239 
accessibility26. CRISPRi-based Perturb-seq datasets are used, as the efficiencies of CRISPR inhibition 240 
can be directly evaluated by examining perturbed gene expressions (Fig. 2e).  241 
 242 
We calculated PS for every gene in a published essential-wide Perturb-seq27, which uses CRISPRi to 243 
inhibit the expressions of 2,285 common essential genes. We classified genes based on their PS 244 
quantiles that correspond to around 50% perturbation efficiency (Fig. 3e): a gene is classified as 245 
“buffered” if its median PS is smaller than 0.1; or “sensitive”, if its 95% quantile is greater than 0.75. 246 
Among over 2,000 essential genes, we classified 613 genes as either buffered or sensitive. The majority 247 
are buffered (529 out of 613), indicating high robustness to perturbation, possibly due to their essential 248 
roles in cellular functions that require compensations on expression reductions. Many buffered genes 249 
belong to essential protein complexes, including proteosomes (e.g., PSMA3; Fig. 3f) and ribosomal 250 
subunits (e.g., RPL4; Supplementary Fig. S4a). 30% of the genes (185 out of 613) belong to 251 
“sensitive” category, showing strong transcriptome responses even with moderate or weak efficiencies 252 
upon perturbing gene expression (Supplementary Fig. S4b-c). Many of the sensitive genes are also 253 
displaying buffering effect, a demonstration of complex, heterogenous responses of cells undergoing the 254 
same perturbation of essential genes. Notably, 50% reduction of HSPA5 and GATA1 expression 255 
achieved near-maximal transcriptional response (and the associated growth defect), as in previous 256 
studies22. 257 
 258 
We further examined possible mechanisms by which buffered genes resist perturbation, especially those 259 
that belong to the same functional protein complex. Interestingly, perturbing one member of the protein 260 
complex usually leads to the expression up-regulation of other members of the complex, indicating a 261 
possible mechanism for compensation. For example, perturbing proteosome subunits led to a strong 262 
expression reduction of the perturbed gene (e.g., PSMA5; blue squares in Fig. 3g) and concurrent up-263 
regulation of other members of the proteosomes (e.g., PSMB7, PSMD2). Perturbing many other protein 264 
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complexes, including ribosomal subunit, mediator, and RNA polymerases, also leads to similar up-265 
regulation of some members of the same functional unit (Supplementary Fig. S5a-c), indicating that 266 
compensation occurs by up-regulation of other submits of the same molecular machine. To confirm our 267 
findings on a different cellular system, we examined the effects of perturbing proteosomes in our 268 
genome-scale Perturb-seq dataset (Fig. 2a). The TAP-seq approach used in this dataset provides a 269 
sensitive and accurate measurement of gene expression changes upon perturbation27. Indeed, perturbing 270 
members of the proteosome subunits leads to the up-regulation of other proteosomes (Supplementary 271 
Fig. S5d), consistent with the known transcriptional feedback loop that is observed between proteosome 272 
genes28. Overall, the widespread existence of such compensatory effect may explain the perturbation-273 
expression phenotype of buffered genes, where a strong perturbation efficiency is needed to achieve 274 
strong expression changes.  275 
 276 
PS reveals intrinsic and extrinsic biological factors that regulate gene functions in latent HIV 277 
expression. 278 
We next perform Perturb-seq experiment and use PS to investigate the functions of key genes regulating 279 
latent HIV-1 expression. We used a Jurkat HIV cell model that we previously established for pooled 280 
CRISPR screening29, where cells stably express Cas9 and are latently infected with HIV-GFP viral 281 
vector. We designed a Perturb-seq library that targets 10 protein-coding genes (Supplementary Table 282 
S2), which are either (1) known factors in HIV-1 virus expression and T cell activation (e.g., BIRC2), or 283 
(2) top hits from genome-scale CRISPR screens that we previously performed (e.g., BRD4)29. We 284 
performed Perturb-seq experiments in three different conditions, including stimulated Jurkat (by PMA/I) 285 
followed by GFP expression sorting (GFP+ or GFP-), and unstimulated cells (Fig. 4a). The single-cell 286 
transcriptomes were profiled via the 10X Genomics Chromium platform, and expressed guide RNAs can 287 
be captured directly. After quality controls, we received 7,063-8,811 single cells per sample, where the 288 
mean reads per cell (and median genes expressed per cell) in each sample is at least 69,888 (and 4,744), 289 
respectively (Supplementary Fig. S6a). Guide RNAs were detected in over 96% of the cells, and over 290 
85% of these cells could be assigned a unique guide RNA (Supplementary Table S3). The 291 
transcriptome profiles of cells are primarily clustered by cell states (stimulated vs. unstimulated), 292 
indicating that the primary sources of expression variation are coming from cell states (Fig. 4b).  293 
 294 
We investigated gene functions using our PS framework. Among all perturbed genes, the PS of BRD4 295 
(bromodomain containing 4) demonstrates a strong cell state-specific pattern, where a subset of cells 296 
with BRD4 perturbation has strong BRD4 PSs (named “BRD4-PS+ cells”) than other BRD4-perturbed 297 
cells (or “BRD4-PS- cells; Fig. 4c). BRD4-PS+ cells overexpress genes that are involved in known 298 
functions of BRD430,31 including NF-kB/TNF-alpha signaling, hypoxia and apoptosis (Fig. 4c-d, 299 
Supplementary Fig. S6b-d). We examined whether the differences in BRD4 PS reflects the degree of 300 
BRD4 functional perturbation. We first checked the expressions of BRD4 “signature” genes from 301 
another published study32. Compared with BRD4-PS- cells, BRD4-PS+ cells have a much lower 302 
expressions of these signature genes (Supplementary Fig. S6e), indicating a stronger functional BRD4 303 
perturbation. In addition, BRD4 has been shown to inhibit HIV transcription and activation in many 304 
studies, including our previous CRISPR screens29,33, consistent with the fact that HIV-GFP is one of the 305 
strongest up-regulated genes in BRD4-PS+ cells (Supplementary Fig. S6f). Furthermore, BRD4-PS+ 306 
cells have a stronger GFP expression (Fig. 4d) than other cells, confirming a stronger BRD4 functional 307 
perturbation in these cells. 308 
 309 
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To build a quantitative perturbation-expression relationship, we recalculated BRD4 PS without using 310 
HIV-GFP expression and examined how the scores are associated with a phenotype of interest (i.e., 311 
latent HIV-GFP expression) in different conditions (Fig. 4e). BRD4 PS correlation with HIV-GFP 312 
expression is cell-state dependent: in stimulated T cells (PMA/I treatment), a linear, positive correlation 313 
is observed regardless of the GFP expression. In contrast, a nonlinear relationship exists in unstimulated 314 
T cells (DMSO), where stronger BRD4 PS (>0.5) leads to a sharp increase in HIV-GFP expression (Fig. 315 
4e).  316 
 317 
Another gene, cyclin T1 (CCNT1), also displays heterogeneity in PS distribution: cells with CCNT1 318 
perturbation have a high PS distribution only in stimulated cells (Fig. 4f). This is different from CCNT1 319 
gene expression or guide distribution, which do not show such pattern differences between cell states 320 
(Supplementary Fig. S7a). Confirming our findings, the number of DEGs (cells with CCNT1 321 
perturbation vs. cells expressing non-targeting guides) is over 100 in stimulated cells, but only 1 in non-322 
stimulated cells (adjusted p value <0.001; Supplementary Fig. S7b). In particular, HIV-GFP is the 323 
strongest DEG in cells with CCNT1 perturbation, consistent with the known role of CCNT1 in 324 
activating HIV transcription. 325 
 326 
CCNT1 is a key subunit of P-TEFb (positive transcription elongation factor b)/CDK9 complex that 327 
drives RNA transcription, including the transcription of HIV. The transcription elongation control of P-328 
TEFb/CDK9 is a complicated process that is regulated by multiple mechanisms, including various T cell 329 
signaling pathways (e.g., NF-kB signaling), translation control, and epigenetic modification (reviewed in 330 
34). The activities of these factors are different in different states of T cells (e.g., NF-kB; 331 
Supplementary Fig. S7c), which may explain the differences of CCNT1 PSs. Despite the strong cell 332 
state dependency of CCNT1 PS, PS shows weak correlation with HIV-GFP within one cell state 333 
(Supplementary Fig. S7d), which is different from BRD4 PS (Fig. 4e).  334 
 335 
To further confirm our finding that different cellular states affect the transcriptomic responses of 336 
CCNT1 perturbation, we stimulated Jurkat cells using a different agonist (TNF-alpha). To measure the 337 
downstream effect of CCNT1 perturbation, we sorted cells by expression of HIV-GFP, which is the 338 
strongest down-regulated gene upon CCNT1 knockout (Supplementary Fig. S7b), and whose 339 
expression is known to be regulated by CCNT135,36. Indeed, with the presence of TNF-alpha, CCNT1 340 
knockout leads to a strong reduction in HIV-GFP expression (over 50% reduction), while such reduction 341 
is much smaller (<5% reduction) in cellular states without TNF-alpha stimulation (Fig. 4g). 342 
Collectively, these results demonstrated that PS is a powerful computational framework for investigating 343 
cofactors (cell states, other genes) that drive transcriptomic responses upon gene perturbation. 344 
  345 
PS enables identification of novel cell-type dependent gene functions in regulating pancreatic cell 346 
differentiation from multiplex single-cell transcriptomics. 347 
Besides Perturb-seq, multiplexing cells with different perturbations are also used to measure single-cell 348 
responses to perturbation2,19. A mixture of cells from different perturbations can be sequenced at the 349 
same time, and the identity of cells can be established using various methods including cell hashing37, 350 
the expressions of pre-defined barcodes38, or a combination of random barcodes39. We therefore tested 351 
our PS framework on pooled single-cell transcriptomics of different perturbations to study the functions 352 
of lineage regulators during human pancreatic differentiation. By using an established in vitro human 353 
embryonic stem cell (hESC) pancreatic differentiation system, we generated cells corresponding to early 354 
stage (definitive endoderm, DE) and middle stage (pancreatic progenitor, PP)  pancreas development. To 355 
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test the performance of PS framework and uncover the functions of unknown regulators, we picked ten 356 
clonal hESC lines with the homozygous knockout of four genes (Supplementary Table S4), including 357 
two known pancreatic lineage regulators (HHEX, FOXA1) and two uncharacterized candidate regulators 358 
from previous genetic screens (OTUD5, CCDC6)40,41. These clones are then labelled with different 359 
LARRY (Lineage and RNA recovery) DNA barcodes38, pooled together and differentiated into DE and 360 
PP stages using established protocols40. Finally, the single-cell expressions of these cells were profiled 361 
via 10X genomics Chromium platform (Fig. 5a). The clone information of each cell was identified from 362 
LARRY barcodes. Among 26,286 single cells that passed the quality control measurements, over 97% 363 
(25,694/26,286) of the cells had at least one barcode detected, and over 80% (20,678/25,694) were 364 
identified as singlets and retained for downstream analysis. UMAP clustering revealed different known 365 
cell types during pancreatic differentiation, based on the expression markers of known cell types (Fig. 366 
5b; Supplementary Fig. S8), including DE, PP, liver/duodenum progenitor (LV/DUO), endocrine 367 
precursor (EP), and cells in transition stages (e.g., DE in transition, PP in transition).  368 
 369 
We next applied the PS framework to the pooled single-cell RNA-seq datasets containing different 370 
knockout clones. Among all knockout genes, HHEX PS is high in cells whose type is between two 371 
different differentiated cell types (PP and LP/DP; Fig. 5c; Supplementary Fig. S8), consistent with the 372 
known function of HHEX as a key determinant of cell fate decision, whose deletion drives DE cell 373 
differentiation towards LP/DP, rather than PP40. Indeed, HHEX knockout led to a much fewer 374 
percentage of cells that are annotated as PP (Fig. 5d). The PS of FOXA1, another key transcription 375 
factor during PP differentiation, is strong in DE and PP cell types, consistent with the specific 376 
expression pattern of FOXA1 in DE/PP cell types (Supplementary Fig. S9a-c).  377 
 378 
As in our previous genome-wide CRISPR screens, CCDC6 is one of the top hits whose perturbation 379 
hinders PP differentiation40,42. However, the exact function of CCDC6 during pancreatic differentiation 380 
is largely unknown.  CCDC6 may have different functions at different cell types, evidenced by the few 381 
overlaps of DEGs between different cell types (Supplementary Fig. S9d-f). To investigate these 382 
different functions, we calculated PSs from the DEGs from four major cell types in the dataset (DE in 383 
transition, DE, PP/PP in transition, and LV/DUO). An unbiased clustering on these CCDC6 PSs 384 
demonstrated two distinct distributions across cell types (Fig. 5e), where scores calculated from late-385 
stage cell types including PP/PP in transition/LV/DUO (“pattern 1”) are distributed differently from 386 
scores calculated from early-stage cell types including DE in transition/DE (“pattern 2”; Fig. 5f; 387 
Supplementary Fig. S10a-b), implying different behaviors of CCDC6 perturbation at different cell 388 
types.  Indeed, functional analysis on DEGs leading to both patterns have distinct enrichment terms. In 389 
early-stage cell types, DEG genes are enriched in the targets of stem cell transcription factors (e.g., 390 
SOX2, POU5F1, NANOG) and cell cycle regulation (Supplementary Fig. S10c-e), consistent with the 391 
known function of CCDC6 as a cell cycle regulator43,44. In contrast, DEGs in late-stage cell types are 392 
primarily the targets of HNF4A, a key transcription factor that drives LP/DP differentiation (Fig. 5g; 393 
Supplementary Fig. S10f). The expressions of these transcription factors (SOX2, HNF4A) are among 394 
the up-regulated genes in both programs, respectively (Supplementary Fig. S9d-e). Furthermore, 395 
compared with wild-type cells, CCDC6 knockout cells have a much lower percentage of PP cells and a 396 
higher percentage of LP/DP cells (Fig. 5h). Collectively, these results imply that CCDC6 has different 397 
functions for early vs. late-stage cell types. Especially in late-stage cell types, CCDC6 knockout drives 398 
cell differentiation towards LV/DUO cell types rather than PP cell types. 399 
 400 
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To further validate the prediction results of CCDC6, we performed flow cytometry analysis to evaluate 401 
the effects of CCDC6 knockout on the composition of late-stage cell types (PP/LV/DUO). We examined 402 
the percentage of HNF4A+ cells, a marker for LV population, and PDX1+ cells, a marker for PP 403 
population. Indeed, both clones of CCDC6 knockout greatly reduced PDX1+ population and increased 404 
HNF4A+ population in three biological replicates (Fig. 5i; Supplementary Fig. S11), confirming our 405 
finding on the enrichment of CCDC6 PS in LP/DP populations (Fig. 5f-g).  406 
 407 
Discussion 408 
Understanding cellular responses to perturbations is a central task in modern biology, from studying 409 
tumor heterogeneity to developing personalized medicine. These perturbations may be genetic (e.g., 410 
knocking out genes or non-coding elements), chemical (e.g., drug treatments), mechanical (e.g., 411 
pressure) or environmental (e.g., temperature changes). Single-cell genomics profiles of perturbations 412 
are commonly used to investigate the mechanisms of perturbations. Many technologies, including 413 
Perturb-seq and sci-Plex, provide a high-content readout of the results of systematically perturbing many 414 
genes or non-coding elements. Despite rapid technological advancements, a major bottleneck is the lack 415 
of a computational model to fully unlock the potential of high-content perturbation, especially for 416 
discovering novel biological insights from the data. Here we introduce the PS framework to model the 417 
heterogenous transcriptomic responses of perturbations and to enable novel biological discovery from 418 
modeling perturbation heterogeneity.  419 
 420 
Partial gene perturbation is common in perturbation experiments. Partial perturbations may come from 421 
dose-controlled drug treatment, gene editing technology that does not fully knockout gene function (e.g., 422 
RNA- or CRISPR-interference, epigenome editors), or from CRISPR/Cas9 that generates random DNA 423 
editing outcomes. We demonstrated the outstanding performance of our PS method over existing 424 
methods in quantifying partial gene perturbation. Specifically, partial perturbation identification enables 425 
the analysis of dose-dependent effect, which is demonstrated in this study using various datasets. 426 
 427 
More importantly, PS enables novel biological investigations, including analysis of perturbation dosage 428 
without the need to titrate perturbation strength and identification of cell-intrinsic and extrinsic 429 
biological factors that regulate perturbation responses. In the latter case, the PS, ranging between 0 and 430 
1, no longer represents the quantity of partial perturbation, but instead represents the strength of the 431 
perturbation outcome. Therefore, PS becomes a convenient tool to identify cell context that determines 432 
perturbation outcome. We demonstrated the application of PS in various biological problems, including 433 
T cell activation, essential gene function, latent HIV-1 virus expression, and pancreatic cell 434 
differentiation. Importantly, our PS model leads the discovery of novel CCDC6 functions that are cell 435 
type dependent, whose role as a regulator during pancreatic and liver cell fate decision is experimentally 436 
validated. 437 
 438 
Partial perturbations of gene functions contribute to the complexity of many biological processes. For 439 
example, “haploinsufficient” genes are able to cause disease phenotypes when 50% of their functions 440 
are disrupted, while “haplosufficient” genes will require a nearly complete gene knockout. However, we 441 
currently lack a method to investigate the phenotypes of partial gene perturbations or to efficiently 442 
perform dosage analysis at a large scale. Current approaches, such as introducing mismatches to guide 443 
RNAs to modulate the effects of CRISPRi21 or Cas1328, require a complex design of a specific CRISPR 444 
system. Here we demonstrated that both CRISPR knockout (e.g., Fig. 2f, Fig. 4e) and CRISPRi 445 
naturally introduce partial perturbation effects, which can be used to study the dose effect of partial gene 446 
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perturbations on downstream gene expressions or a phenotype of interest. Our PS framework is 447 
versatile, enabling the dosage analysis using various perturbation methods (e.g., CRISPRi or CRISPR 448 
knockout) and assays (e.g., Perturb-seq or multiplex scRNA-seq). 449 
 450 
Results from genetic perturbations (e.g., via CRISPR/Cas9) are informative for drug development, and 451 
confirmations from genetic perturbation experiments are usually required to demonstrate the feasibility 452 
of candidate drug targets. However, titrating pharmaceutical interventions are easy (e.g., by using 453 
different doses of drugs), while it is much more difficult to precisely control the degree of genetic 454 
perturbations. Our PS framework provides a convenient alternative to dose-dependent perturbations, 455 
especially genetic perturbations, and their associations with phenotypic changes, which will be 456 
informative in designing drugs. For example, BRD4 is the primary target of bromodomain inhibitors 457 
(BETi), many of which have been proposed as candidates of latency reversing agents (LRAs) to 458 
reactivate latent HIV-1 expression. The distribution of BRD4 PSs (Fig. 3) reveals that stronger 459 
perturbation effects are needed to induce the desired phenotype, in this case, the expression of HIV-GFP 460 
(Fig. 3). Since BRD4 is an essential gene, a strong BRD4 perturbation may lead to unexpected toxicity, 461 
thereby limiting the efficacy of BETi. Indeed, our previous study29 demonstrated that 10-1000x higher 462 
doses of JQ1, a commonly used BETi, are needed to induce latent HIV-1 expression at a similar level 463 
with other potent LRAs. Our results further warrant the development of synergistic drug combinations to 464 
mitigate the narrow therapeutic window of BETi, which is currently tested in many studies. 465 
 466 
Our PS analysis provides a general framework to analyze several major sources that contribute to the 467 
heterogeneity of perturbation responses: the strength of perturbation per se (e.g., Fig. 1i, 3d; BRD4 in 468 
Fig. 4c), compensations to perturbation especially on essential genes (e.g., proteosomes; Fig. 3g), and 469 
cell type/state specificity (e.g., T cell states in Fig. 4; differentiation cell types in Fig. 5). Importantly, 470 
cell type/state is linked to perturbation responses in three distinct ways: cell type/state may change as a 471 
result of perturbation (e.g., CCDC6 and HHEX in Fig. 5); cell type/state serving a critical context to 472 
define perturbation responses (e.g., T cell states in response to CCNT1 perturbation in Fig. 4f-g); and 473 
cell type/state as a confounding factor that drives perturbation responses (e.g., BRD4 perturbation 474 
heterogeneity in unstimulated T cells in Fig. 4c). Compared with other methods, PS is currently the only 475 
method to analyze heterogeneity of perturbation responses from all these aspects. 476 
  477 
Confounding factors are the major sources of variation when analyzing single-cell perturbation effects. 478 
These confounding factors can be modeled explicitly (e.g., using generalized linear models) if 479 
confounding source is known; or be detected and corrected using mathematical or statistical approaches 480 
including matrix factorization (e.g., using GSFA45) or independent component analysis (e.g., using 481 
CINEMA-OT46). In contrast, PS does not explicitly model confounding factors. Instead, PS scores can 482 
be used in combination with methods that remove confounding sources of variation, or to detect these 483 
confounding factors that contribute to the heterogeneity in perturbation responses (e.g., Fig. 4c). 484 
Importantly, many confounding factors defined in previous methods16,46 are not always confounding; 485 
instead, they can be used to discover novel biological insights, as are shown in this study (e.g., 486 
perturbation efficiency, cell type/state). The orthogonal algorithmic design of PS compared with existing 487 
methods also allows the combination of PS with these methods to simultaneously remove confounding 488 
factors and measure the strength of perturbation responses. 489 
 490 
One limitation of PS is its power in detecting drastic changes in cell types or states. For example, even 491 
moderate perturbations on essential gene functions affect cellular viability47,48. In this case, single-cell 492 
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profiling only captures surviving cells that are resistant to essential gene perturbations in various 493 
mechanisms (e.g., expression compensation in Fig. 3), and largely misses dead cells due to essential 494 
gene dysfunction. Consequently, due to this “survival bias”, PS probably only reflects the perturbation 495 
responses in a fraction of cells, rather than the full spectrum of perturbations. To overcome this 496 
limitation, PS can combine with recently developed prediction methods that predict the responses of 497 
perturbations, even if cells between perturbed/non-perturbed states are unevenly distributed49.  498 
 499 
Methods 500 
 501 
The Perturbation-response Score (PS) framework 502 
Estimating PS proceeds in three steps, as illustrated in Figure 1c: target gene identification (Step 1), 503 
average perturbation effect estimation using a previously published scMAGeCK (Step 2), and PS 504 
estimation using constrained optimization (Step 3). 505 
 506 
Step 1: target gene identification. We first performed differential expression analysis between cells with 507 
certain perturbation (e.g., knocking out gene X) and negative control cells. In most cases, negative 508 
control cells are cells that express non-targeting guide RNAs (in Perturb-seq), or wild-type cells (in 509 
pooled scRNA-seq). In Perturb-seq with high MOI condition, these cells may come from cells that do 510 
not have a particular perturbation. We used Wilcoxon rank sum test (implemented in Seurat) to identify 511 
and rank differentially expressed genes. Top genes were then selected as potential target genes of the 512 
specific perturbation. The maximum and minimum numbers of top genes can be specified by the user. 513 
Alternatively, users can provide the list of target genes for each perturbation, based on prior knowledge, 514 
therefore skipping the differential expression analysis in this step.  515 
 516 
Step 2: average perturbation effect estimation. We used the linear regression module in scMAGeCK 517 
(scMAGeCK-LR) to estimate the average perturbation effect. scMAGeCK-LR takes the expressions of 518 
all target genes (identified in Step 1) in all cells as input and outputs a β score, which is conceptually 519 
similar to log fold change. There are two advantages of using β score, instead of simply using the log 520 
fold changes in Step 1. First, scMAGeCK-LR naturally supports datasets from high MOI Perturb-seq, 521 
where one cell may express multiple guides targeting different genes. Second, scMAGeCK-LR is able to 522 
estimate average perturbation effects of multiple perturbations (e.g., genome-scale perturbations) in one 523 
step, while a naïve DEG analysis can only calculate LFC for each perturbation. 524 
 525 
The mathematical model of scMAGeCK-LR is described as follows. Let Y be the log-transformed, M*N 526 
expression matrix of M single cells and N target genes. These genes are the union of all target genes for 527 
all K perturbations, extracted from Step 1. Let D be the M*K binary cell identity matrix of M single cells 528 
and K perturbations, where 𝑑!" = 1 if single cell j contains sgRNAs targeting gene X (𝑗 =529 
1,2, … ,𝑀; 𝑋 = 1,2, … , 𝐾), and 𝑑!" = 0 otherwise. D can be obtained from the detected guide RNA 530 
expression matrix from Perturb-seq or from the prior sample information from pooled scRNA-seq. The 531 
effect of target gene knockout on all expressed genes is indicated as a β score in a matrix Β with size 532 
K*N, where 𝛽"# > 0	(< 0) indicates gene X is positively (or negatively) selected on gene A expression, 533 
respectively. In other words, gene X knockout increases (or decreases) gene A expression if 𝛽"# > 0	(<534 
0), respectively.  535 
 536 
The log-transformed expression matrix Y is modeled as follows: 537 
 538 
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𝑌 = 𝑌$ + 𝐷 × 𝐵 + 𝜖,                                                           Eq (1) 539 
 540 
where 𝑌$ is the basal expression level of all genes in an unperturbed state, and 𝜖 is a noise term 541 
following a Gaussian distribution with zero means. 𝑌$ can be estimated from negative control cells (e.g., 542 
wild-type cells or cells expressing non-targeting guides), or be modeled using the expressions of 543 
neighboring negative control cells (e.g., the approach used by mixscape16). The value of Β can be 544 
estimated using ridge regression: 545 
 546 

Β = (𝐷%𝐷 + 𝜆𝐼)&'𝐷%𝑌,                                                      Eq (2) 547 
 548 
where I is the identity matrix, and 𝜆 is a small positive value (default 0.01). 549 
 550 
Step 3: PS estimation using constrained optimization. We revise Eq (1) to incorporate PS. Here, the log-551 
transformed expression matrix Y is modelled as follows: 552 

𝑌 = 𝑌$ +Ψ × 𝐵 + 𝜖,                                                           Eq (3) 553 
  554 
Where Ψ is the non-negative, raw PS matrix with the same size as D in Step 2 (M*K). Each element ψ() 555 
in Ψ indicates the raw PS of cell j of perturbing gene X. Here, 𝐵  is the β score matrix which is estimated 556 
in Step 2. We find the value of  Ψ to minimize the squared error of predicted and observed expressions 557 
of all genes within all cells, subject to constraints and regularization terms: 558 
 559 

min∑ B𝑦!* − 𝑦!*$ −∑ 𝜓!+𝛽+*+ F, + 𝜆∑ |𝜓!+|!+!* ,                                         Eq (4) 560 
 561 
subject to the following constraints: 562 

H
0 ≤ 𝜓!+ ≤ 𝑈, 𝑖𝑓	𝑑!+ = 1
𝜓!+ = 0 𝑖𝑓	𝑑!+ = 0 . 563 

 564 
Here, U is a positive value indicating the upper bound of raw Ψ values, and 𝑑*+ 	is the value of the binary 565 
cell identity matrix in Step 2. 1 ≤ 𝑗 ≤ 𝑀 is the index of single cells, 1 ≤ 𝑖 ≤ 𝑁 is the index of target 566 
genes, and 1 ≤ 𝑘 ≤ 𝐾 is the index of perturbations. 567 
 568 
Because we are imposing non-negative constraints to Ψ, the absolute operator can be removed from the 569 
objective function in Eq (4) and can be rewritten as 570 

min∑ B𝑦!* − 𝑦!*$ − ∑ 𝜓!+𝛽+*+ F, + 𝜆∑ 𝜓!+!+!*  .                                        Eq (4) 571 
 572 
This becomes a constrained quadratic optimization problem where the best solution can be easily 573 
achieved using methods like Newton’s method. The final, normalized PS is to scale values of 𝜓*+ to 574 
[0,1]: 575 

𝑃𝑆*+ = 𝜓*+/𝑈. 576 
 577 
We implemented this framework as part of the scMAGeCK pipeline18. The PS source code, 578 
documentation and tutorials can be found on Github: https://github.com/davidliwei/PS   579 
 580 
Simulated datasets 581 
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The eight simulated datasets are generated by the simulator scDesign346 with modifications for Perturb-582 
seq. The simulation utilizes scDesign3’s parametric model to capture the characteristics of the user-583 
inputted reference data, specify the desired ground truth, and simulate synthetic cells via sampling from 584 
the model (to be detailed in Steps 1-4 below). The reference data is the real scRNA-seq dataset with the 585 
gene Nelfb perturbed in some mouse T cells47; the cells with Nelfb perturbed are referred to as knockout 586 
cells, and the cells with Nelfb unperturbed serve as the negative control and are referred to as wild-type 587 
cells. Based on the same reference data, the eight simulated datasets are generated under eight different 588 
settings. Each setting corresponds to a combination of two simulation parameters’ values: the number of 589 
Nelfb’s downstream genes (i.e., the genes whose expression levels are affected by Nelfb’s knockout; 590 
with candidate values 0, 10, 200, and 500) and the perturbation efficiency (with candidate values 50% 591 
and 100%). The candidate downstream genes of Nelfb are the top differentially expressed (DE) genes 592 
identified from the bulk RNA-seq data of the same biological sample (from the second sheet in the 593 
Excel file from Wu et al.’s Supplementary Data 148). Thus, we have 4×2=8 simulated datasets in total.  594 
 595 
Before running the simulation, we pre-process the scRNA-seq dataset and the bulk DE gene rank list.  596 

1. First, we perform the same quality control as in the dataset’s original publication49. Specifically, 597 
cells are retained only if their numbers of detected genes are between 1,000 and 5,000, and their 598 
UMI counts have less than 12% mitochondrial counts. 599 

2. Second, we impute and amplify the gene-by-cell count matrix of the wild-type mouse cells to 600 
enhance the perturbation effects in the simulated data. Specifically, we first impute the wild-type 601 
count matrix using scImpute50 (default version 0.0.9) to reduce the sparsity. Then we multiply 602 
the imputed count matrix by an amplification factor of 10 to increase the range of gene 603 
expression levels. 604 

3. Third, we construct a gene-by-cell count matrix by combining the wild-type cells in the post-605 
imputation-and-amplification wild-type count matrix and the knockout cells in the knockout 606 
count matrix. By the end of this step, the dimension of this combined matrix is (P+1)×N, with 607 
rows corresponding to P+1 genes (Nelfb and P other genes) and columns corresponding to N 608 
cells, which consist of 𝑁wt wild-type cells and 𝑁ko knockout cells.  609 

4. Fourth, we extract the row corresponding to Nelfb as a vector, which contains Nelfb’s counts in 610 
all cells (an N-dimensional vector denoted as C, where Cj is Nelfb’s count in cell j), and we 611 
denote the remaining P rows as a P×N matrix Y, where Yij is gene i’s count in cell j. 612 

5. Fifth, using Y, we refine the list of bulk DE genes by excluding the DE genes that correspond to 613 
zero rows in Y or do not correspond to any rows in Y. 614 

6. Lastly, to reduce the computation time for data simulation, we use the scran package51 to select 615 
3,000 highly variable genes in Y. We only keep the union of these 3,000 highly variable genes 616 
and the refined bulk DE genes as the rows in Y. The number of the kept genes is 3,390, so the 617 
dimension of Y is 3,390×N. 618 

 619 
Additionally, we know which cells have Nelfb perturbed; thus, we have another N-dimensional binary 620 
vector denoted as K, where Kj indicates whether the j-th cell has Nelfb perturbed or not; that is, Kj = 0 621 
means the 𝑗-th cell is a wild-type cell, and Kj = 1 means the 𝑗-th cell is a knockout cell. K and C are used 622 
as two covariate vectors, and Y is used as the reference count matrix for scDesign3. Finally, we modify 623 
scDesign3 by using Y, C, K, the refined DE genes, the number of Nelfb’s downstream genes, and the 624 
perturbation efficiency to simulate data in the following four steps: 625 
 626 
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Step 1: modeling each gene’s marginal distribution independently. For each gene i, if it is a downstream 627 
gene of Nelfb, we assume that Yij, conditional on Cj, follows a zero-inflated negative binomial (ZINB) 628 
distribution with the mean parameter 𝜇*!, the dispersion parameter 𝜙*, and the zero-inflation probability 629 
parameter 𝜈*!. Otherwise, if gene i is not a downstream gene of Nelfb, we assume that Yij follows a 630 
ZINB distribution with the mean parameter 𝜇*, the dispersion parameter 𝜙*, and the zero-inflation 631 
probability parameter 𝜈*. This marginal distribution for each gene is specified by a generalized additive 632 
model for location, scale, and shape (GAMLSS). Without loss of generality, we define the first D genes 633 
in Y to be the top D DE genes in the refined DE gene list (D ∈ {0, 10, 200, 500}); we treat these top D 634 
DE genes as the D downstream genes of Nelfb. Then we modify scDesign3’s original code 635 
implementation so Nelfb’s downstream genes and non-downstream genes have different marginal 636 
distributions: a downstream gene’s marginal distribution in each cell j depends on Cj, Nelfb’s count in 637 
cell j; a non-downstream gene’s marginal distribution in each cell j is irrelevant to Cj. 638 
 639 
For Nelfb’s downstream gene 𝑖 = 1,… , 𝐷: 640 

⎩
⎪
⎨

⎪
⎧𝑌*! 	|	𝐶! 	~	ZINB(𝜇*! , 𝜙* , 𝜈*!)
logB𝜇*!F = 𝛼* + 𝛽* × 𝐶!
log(𝜙*) = 𝜔*
logitB𝜈*!F = 𝛾* + 𝜂* × 𝐶!

	.	641 

	642 
For	Nelfb’s	non-downstream	gene 𝑖 = 𝐷 + 1,… , 𝑃: 643 

⎩
⎨

⎧
𝑌*! 	~	ZINB(𝜇* , 𝜙* , 𝜈*)
log(𝜇*) = 𝛼*
log(𝜙*) = 𝜔*
logit(𝜈*) = 𝛾*

	.	644 

 645 
After parameter estimation by the R package gamlss, the fitted distribution of 𝑌*! 	|	𝐶!, for 𝑖 = 1,… , 𝐷, is 646 
denoted as ZINB(�̂�*! , 𝜙l* , 𝜐n*!) with the CDF 𝐹l*!; the fitted distribution of 𝑌*!, for 𝑖 = 𝐷 + 1,… , 𝑃, is 647 
denoted as ZINB(�̂�* , 𝜙l* , 𝜐n*) with the CDF 𝐹l*. The other parameters including 𝛼*, 𝛽*, 𝛾*, and 𝜂* are 648 
estimated as 𝛼n*, 𝛽p*, 𝛾n*, and �̂�* for each 𝑖 respectively. 649 
 650 
Step 2: modeling genes’ joint distribution using the Gaussian copula. To approximate the pairwise gene-651 
gene correlations in the reference dataset, scDesign3 utilizes a multivariate statistical technique, the 652 
Gaussian copula. Given each gene’s marginal distribution fitted in Step 1, scDesign3 approximates the 653 
multivariate joint distribution of the P genes in cell j as 654 

BΦ&'(𝐹l'!(𝑌'!)), … ,Φ&'(𝐹l1!(𝑌1!)), Φ&'(𝐹l12'(𝑌(12')!)), … ,Φ&'(𝐹l5(𝑌5!))F	~	𝑁 r𝟎, RuB𝐾!Fv , 655 
where Φ&'(⋅) denotes the inverse of the cumulative distribution function (CDF) of the standard 656 
Gaussian distribution, 0 is the P-dimensional zero vector, and RuB𝐾!F is the estimated 𝑃 × 𝑃 gene-gene 657 
correlation matrix of the Gaussian copula conditional on the value of 𝐾!. Specifically, since 𝐾! is binary, 658 
we have two estimated gene-gene correlation matrices, one for the wild-type cells (Kj = 0) and the other 659 
for the knockout cells (Kj = 1). For 𝐹l'!B𝑌'!F, … , 𝐹l1!B𝑌1!F, 𝐹l12'B𝑌(12')!F, … , 𝐹l5(𝑌5!), a technique called 660 
“distributional transform” is used to make the CDFs continuous; see Sun et al.52 for a detailed 661 
explanation. 662 
 663 
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Step 3: modifying the fitted parameters. Since we want to generate synthetic datasets with two 664 
perturbation efficiencies, for each downstream gene 𝑖 = 1,… , 𝐷, we modify the mean parameters for all 665 
downstream genes in the knockout cells to reflect the user-specified perturbation efficiency. Without 666 
loss of generality, we assume the first 𝑁ko = ∑ 𝐼(𝐾! = 1)6

!7'  of the N cells as the knockout cells. Then, 667 
we update the mean parameters for Nelfb’s 𝐷 downstream genes in the 𝑁ko knockout cells (i.e., �̂�*! 	for 668 
𝑖	 ∈ {1, … , 𝐷}, 𝑗 ∈ {1, … , 𝑁ko}) based on the user-specified perturbation efficiency as follows. 669 
 670 
For the 50% perturbation efficiency: We randomly sample 𝑁ko values from {𝐶! , 𝑗 ∈ {𝑁ko + 1,… ,𝑁}} 671 
(i.e., Nelfb’s counts in the wild-type cells) and multiply the sampled 𝐶! values by 0.5 to represent the 672 
50% perturbation efficiency. We store these sampled and scaled values by 𝐶∗ = B𝐶'∗, … , 𝐶6ko

∗ F% as 673 
Nelfb’s counts in the 𝑁ko synthetic knockout cells to be simulated. Then, we modify the mean 674 
parameters for the 𝐷 downstream genes in the 𝑁ko synthetic knockout cells (for 𝑖	 ∈ {1, … , 𝐷}, 𝑗 ∈675 
{1, … , 𝑁ko}) as 676 

�̂�*! = 𝛼n* + 𝛽p* ⋅ 𝐶!∗ . 677 
 678 
For the 100% perturbation efficiency: 𝐶∗ becomes a zero vector with length 𝑁ko, and we modify �̂�*! for 679 
𝑖	 ∈ {1, … , 𝐷}, 𝑗 ∈ {1, … , 𝑁ko} in the same way as above. 680 
 681 
We do not change any estimated mean parameters for the 𝐷 downstream genes in the 𝑁wt wild-type 682 
cells, any estimated mean parameters for the non-downstream (𝑃 − 𝐷) genes in all 𝑁 cells, any 683 
estimated dispersion parameters, or any estimated zero-inflation probability parameters. 684 
 685 
Moreover, we use S to denote an N-dimensional vector representing Nelfb’s counts in the N synthetic 686 
cells, with the counts in the first 𝑁ko synthetic knockout cells set above based on the perturbation 687 
efficiency, and the counts in the last 𝑁wt synthetic wild-type cells same as those in the real 𝑁wt wild-688 
type cells. That is, 𝑆! = 𝐶!∗ for 𝑗 ∈ {1, … , 𝑁ko}, and 𝑆! = 𝐶! for 𝑗 ∈ {𝑁ko + 1,… ,𝑁}. 689 
 690 
Step 4: generating synthetic data with the fitted model and modified parameters. First, we independently 691 
sample 𝑁wt Gaussian vectors of length P from the estimated P-dimensional multivariate Gaussian 692 
distribution 𝑁 r0, RuB𝐾! = 0Fv and 𝑁ko Gaussian vectors of length P from the estimated P-dimensional 693 

multivariate Gaussian distribution 𝑁 r0, RuB𝐾! = 1Fv. Together, we stack these 𝑁 = 𝑁wt + 𝑁ko vectors 694 
(𝑍y'', … , 𝑍y5')% , … , (𝑍y'6 , … , 𝑍y56)% by row into a P×N Gaussian	matrix	Zy . 695 
 696 
Given	the	parameter	estimates	(modified	or	not)	from	Step	3,	we	convert	the	P×N Gaussian	697 
matrix	Zy	into	a	P×N ZINB	count	matrix	Y�	as	698 

Y� = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌y' = (𝐹l''

&'B𝑍y''|	�̂�'', 𝜙l', 𝜐n''F, … , 𝐹l'6
&'B𝑍y'6|	�̂�'6 , 𝜙l', 𝜐n'6F)

⋮
𝑌y1 = (𝐹l1

&'B𝑍y1'|	�̂�1', 𝜙l1 , 𝜐n1'F, … , 𝐹l16
&'B𝑍y16|	�̂�16 , 𝜙l1 , 𝜐n16F)

𝑌y12' = (𝐹l12'
&'B𝑍y(12')'|	�̂�12', 𝜙l12', 𝜐n12'F, … , 𝐹l12'

&'B𝑍y(12')6|	�̂�12', 𝜙l12', 𝜐n12'F)
⋮

𝑌y5 = (𝐹l5
&'B𝑍y5'|	�̂�5 , 𝜙l5 , 𝜐n5F, … , 𝐹l5

&'B𝑍y56|	�̂�5 , 𝜙l5 , 𝜐n5F) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	.	699 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.10.30.564796doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564796
http://creativecommons.org/licenses/by-nd/4.0/


 17 

	700 
Lastly,	we	combine	Y�	with	S	by	row	into	a	(P+1)×N	matrix,	obtaining	the	final	(P+1)×N synthetic 701 

count matrix (�Y�
𝑆
�).		702 

 703 
Genome-scale Perturb-seq on Jurkat cells 704 
Perturb-seq. We performed genome-scale Perturb-seq on Jurkat E6 cell line expressing dCas9-KRAB as 705 
our model to study. We transduced them with a genome-wide CRISPRi CROP-seq library at a high 706 
MOI. After infection, we split the cells into two populations, including untreated cells and activated cells 707 
(cells treated with anti-TCR and anti-CD28 antibodies for approximately 24 hours to stimulate TCR 708 
signaling). Cells were then labelled with cell hashing antibodies. Multiple labels were used for the 709 
activated population to help with cell multiplet detection. Cells were loaded on 16 channels of a 10x 710 
Chromium X instrument. We loaded 115 000 cells per channel, and the expected recovery rate was 60 711 
000 cells per channel, including 24% multiples. Samples were pooled unequally before they were loaded 712 
on the ChromiumX: 10% untreated cells, 90% treated cells. A sequencing library was prepared using 713 
3’Chemistry with a targeted primer panel: custom multiplex PCR step to enrich for specific transcripts. 714 
Libraries were sequenced on NovaSeq S4 PE100 in asymetric read mode (R1: 28 cycles; R2: 172 715 
cycles), with PhiX concentration of 1%. The expected coverage is around 9 000 ~ 10 000 input reads per 716 
cell. 717 
 718 
Hash oligos. 719 
oligo condition 
CGGCTCGTGCTGCGTCGTCTCAAGTCCAGAAACTCCGTGTATCCT untreated 
CTCCCTGGTGTTCAATACCCGATGTGGTGGGCAGAATGTGGCTGG activated 
TTACCCGCAGGAAGACGTATACCCCTCGTGCCAGGCGACCAATGC activated 
TGTCTACGTCGGACCGCAAGAAGTGAGTCAGAGGCTGCACGCTGT activated 
CCCCACCAGGTTGCTTTGTCGGACGAGCCCGCACAGCGCTAGGAT activated 
GTGATCCGCGCAGGCACACATACCGACTCAGATGGGTTGTCCAGG activated 
GCAGCCGGCGTCGTACGAGGCACAGCGGAGACTAGATGAGGCCCC activated 

 720 
sgRNA library design. The genome-wide CRISPRi sgRNA library was designed to target the 721 
transcription start site (TSS) coordinates, calculated from publicly available FANTOM CAGE peaks 722 
data. In total, 18 595 genes were targeted, with 4 sgRNAs per gene. On top of that, we designed another 723 
CRISPRi library targeting 3220 genes with 4 sgRNAs per gene. This library was designed using Jurkat-724 
specific TSS, which were calculated from public Jurkat CAGE-seq datasets. Both libraries were 725 
combined into a final library targeting 3220 genes with 8 sgRNA/gene and 15 375 genes with 4 726 
sgRNA/gene. 727 
 728 
Targeted primer panel. The primer panel for targeted transcriptomic readout consisted of 374 target 729 
genes from several categories: 730 
 731 
Source  Number of targets (genes) 
bulk RNA-seq DEG, 50 top up/downregulated  100 
T-cell related genes  51 
KEGG TCR signaling pathway  35 
RNA-binding proteins  27 
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Replogle*: unfolded protein response  51 
Replogle: proteasome  41 
Replogle: NFkB  20 
Replogle: cell cycle  29 
Replogle: targets of nonsense-mediated decay  5 
Controls (cell cycle, mitochondrial, Cas9)  15 
Total number of targets  374 

 732 
* “Replogle” prefix means that this category of targets was derived from the published genome-scale 733 
Perturb-seq dataset50.  734 
 735 
Data preprocessing. For each of the 16 channels, all 3 kinds of sequencing libraries (mRNA, sgRNA, 736 
cell hashing) were indexed using the same Illumina index sequence. We obtained high-quality scRNA-737 
seq data of over 586,000 single cells after quality control, with a median 13 guides detected per cell. We 738 
obtained an average of 400 cells per gene perturbation. STAR and STAR solo 2.7.10a were used to map 739 
transcriptomic reads against a custom gtf annotation, which was based on gencode.v34.annotation.gtf 740 
(hg38). Reads that did not map to the transcriptome reference were then mapped & counted using STAR 741 
solo against a custom fasta reference with guide sequences and a fasta reference with hash label 742 
sequences. STAR Solo output transcriptome matrices were first filtered using an approach similar to 10x 743 
cellranger EmptyDrops filtering, which retained cells with at least 10 % UMI count of the 99th percentile 744 
UMI counts of the top expected cells number. Then, an initial Seurat object was created from those 745 
filtered transcriptome matrices using the CreateSeuratObject function with following parameters: 746 
min.cells = 5; min.features = 10; all other parameters at default values. Outlier cells were filtered out by 747 
mithochondrial and mRNA content (percent.mt, nCount_RNA). In order to detect cell multiplets and 748 
determine cell population (untreated or activated), cell labels (also known as hashes) were called using 749 
the MULTI-seq approach (deMULTIplex::classifyCells in R). Only cells with exactly 1 known label 750 
were kept. Then, sgRNA calling was conducted using a binomial test, with total sgRNA UMI counts 751 
used to derive background frequencies. A threshold of 0.05 on Benjamini-Hochberg corrected p-values 752 
(per channel) was use to generate the final calls. The sgRNA assays are sparse matrices containing 1, 753 
where the respective cell is considered to be carrying the respective sgRNA and 0 elsewhere. Following 754 
that, all results from steps above from 16 channels were merged together, and merged counts were 755 
normalized using NormalizeData and scaled using ScaleData. Cell cycle scoring was performed via 756 
CellCycleScoring, PCA was calculated using RunPCA, and UMAP was calculated on first 30 principal 757 
components using RunUMAP in Seurat. 758 
 759 
HIV latency Perturb-seq 760 
We used a previously established cell line model of HIV latency40. In this model, Jurkat cells were 761 
infected with an HIV vector with GFP tied to the LTR promoter, resulting in a positive GFP signal as a 762 
measurement of viral transcription reactivation and HIV latency reversal. These cells, which already 763 
express Cas9, were transduced with a lenti-sgRNA library. The lenti-sgRNA library (MilliporeSigma; 764 
LV14, U6-gRNA-10x:EF1a-Puro-2a-BFP) was designed to target 10 genes, with 3 gRNAs per gene. In 765 
addition to non-targeting controls, the library contained five positive regulators (NFKB1, CCNT1, 766 
PRKCA, TLR1, MAP3K14) and five negative regulators (NFKBIA, NELFE, HDAC2, BRD4, BIRC2) 767 
of HIV transcription. Transduction was carried out on 850,000 cells at an MOI of 0.3 using 8ug/ml 768 
polybrene in 2 ml of RPMI containing 10% FBS and 1% penicillin–streptomycin. The media was 769 
replaced 24 hours later with fresh media without polybrene. Two days after transduction, the cells were 770 
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selected for using 1.5 ug/ml puromycin for 5 days. After selection, the cells were split evenly into three 771 
groups. One-third of the cells were kept in culture with no drug added, and two-thirds of the cells were 772 
stimulated with PMA/I (50ng/ml PMA in combination with 1 μM Ionomycin). After 16 hours, the 773 
stimulated cells were sorted into GFP+ and GFP- populations. All three samples were then analyzed 774 
following the 10x Genomics single-cell sequencing protocol. Sequencing data, encompassing gene 775 
expression and CRISPR guide capture libraries, underwent demultiplexing and processing using Cell 776 
Ranger (version 6.1.2). The resulting feature-barcode matrices from three samples were then merged, 777 
and subsequent analysis was carried out utilizing the Seurat R package (version 4.3.1). To ensure data 778 
quality, cells were excluded if the number of expressed genes was greater than 7,500 or fewer than 200. 779 
Additionally, cells were removed if the percentage of mitochondrial reads exceeded 15%. Single cells 780 
harboring more than one detected sgRNA sequence, attributable to either multiple sgRNA transductions 781 
or the presence of multiple cells in a single-cell droplet, were also excluded from the analysis. Following 782 
quality control measures, merged counts underwent normalization and scaling. PCA was computed 783 
based on the top 2,000 highly variable genes. Subsequently, clustering and UMAP embeddings were 784 
performed using default parameters. To gain further insights into the biological significance of the 785 
obtained clusters, enrichment analysis was conducted utilizing Enrichr (PMID: 27141961). 786 
 787 
Pancreatic differentiation clones and pooled single-cell RNA-seq 788 
Culture of hESC. Generation of KO hESCs was described in published studies, including HHEX KO H1 789 
and HUES8 cell lines53, FOXA1 KO HUES8 cell lines54, OTUD5 KO HUES8 cell lines, and CCDC6 790 
KO H1 cell lines41. Cells were regularly confirmed to be mycoplasma-free by the Memorial Sloan 791 
Kettering Cancer Center (MSKCC) Antibody & Bioresource Core Facility. KO and WT hESCs were 792 
maintained in Essential 8 (E8) medium (Thermo Fisher Scientific, A1517001) on vitronectin (Thermo 793 
Fisher Scientific, A14700) pre-coated plates at 37 °C with 5% CO2. The Rho-associated protein kinase 794 
(ROCK) inhibitor Y-276325 (5 µM; Selleck Chemicals, S1049) was added to the E8 medium the first 795 
day after passaging or thawing of hESCs. 796 
 797 
hESC-directed pancreatic differentiation. hESCs were seeded at a density of 2.3 × 105 cells/cm2 on 798 
vitronectin-coated plates in E8 medium with 10 µM Y-27632. After 24 hours, cells were washed with 799 
PBS and differentiated to DE (stage 1), primitive gut tube (stage 2), PP1 (stage 3) and PP2 (stage 4) 800 
stages following previously described 4-stage protocol40. In brief, stage 1 (3 d): S1/2 medium 801 
supplemented with 100 ng ml−1 Activin A (Bon Opus Biosciences) and 5 μM CHIR99021 (04-0004-10, 802 
Stemgent) for 1 d. S1/2 medium supplemented with 100 ng ml−1Activin A for the next 2 d. Stage 2 (2 d): 803 
S1/2 medium supplemented with 50 ng ml−1 KGF (AF-100-19, PeproTech) and 0.25 mM vitamin C 804 
(VitC) (Sigma-Aldrich, A4544). Stage 3 (2 d): S3/4 medium supplemented with 50 ng ml−1 KGF, 805 
0.25 mM VitC and 1 μM retinoic acid (R2625, MilliporeSigma). Stage 4 (4 d): S3/4 medium 806 
supplemented with 50 ng ml−1 KGF, 0.1 μM retinoic acid, 200 nM LDN (Stemgent, 04-0019), 0.25 µM 807 
SANT-1 (Sigma, S4572), 0.25 mM VitC and 200 nM TPB (EMD Millipore, 565740). The base 808 
differentiation medium formulations used in each stage were as follows. S1/2 medium: 500 ml MCDB 809 
131 (15-100-CV, Cellgro) supplemented with 2 ml 45% glucose (G7528, MilliporeSigma), 0.75 g 810 
sodium bicarbonate (S5761, MilliporeSigma), 2.5 g BSA (68700, Proliant), 5 ml GlutaMAX (35050079, 811 
Invitrogen). S3/4 medium: 500 ml MCDB 131 supplemented with 0.52 ml 45% glucose, 0.875 g sodium 812 
bicarbonate, 10 g BSA, 2.5 ml ITS-X, 5 ml GlutaMAX.  813 
 814 
Cell infection with LARRY barcode virus. Individual LARRY barcode constructs were cloned from the 815 
LARRY barcode library (Addgene:140024) and transfected to 293T cells to generate lentivirus. Next, 816 
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each KO and WT hESC clone was infected with a unique LARRY barcode at low MOI. One week after 817 
lentiviral infection, the barcoded cells, which expressed GFP, were sorted out and cultured in E8 818 
medium as described in previous section.  819 
 820 
Pooled single-cell RNA-seq. One day before differentiation, each of 10 hESC barcoded clones were 821 
counted, mixed at the same cell number ratio, and then seeded at a density of 2.3 × 105 cells/cm2 onto a 822 
12-well cell culture plate. At DE and PP2 stages, pooled differentiating cells were dissociated into single 823 
cell suspension by TrypLE Select for 5 min at 37 °C. Cells were then stored in BAMBANKER™ 824 
freezing medium for future experiments. For scRNA-seq, frozen cells were thawed and sorted to collect 825 
live GFP+ cells. Cellular suspensions were then loaded on a Chromium Controller following the 826 
manufacturer’s instructions (10x Genomics Chromium Single Cell 3′ Reagent Kit v3.1 User Guide). 827 
cDNA libraries and targeted LARRY barcode libraries were generated separately using 10ul cDNA 828 
each. cDNA libraries were made under manufacturer’s instructions and targeted LARRY barcode 829 
libraries were amplified using specific primers (F: CTACACGACGCTCTTCCGATCT; R: 830 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtaaccgttgctaggagagaccataT). 831 
 832 
Data analysis. The sequencing data which included transcriptome and LARRY barcode libraries, 833 
underwent demultiplexing and processing via Cell Ranger (version 6.1.2). Subsequent analysis was 834 
conducted using the Seurat R package (version 4.3.1). Quality control measures were implemented to 835 
ensure robust data analysis. Cells were excluded if the number of expressed genes exceeded 7,000 or fell 836 
below 200. Additionally, cells were removed if the percentage of mitochondrial read exceeded 20%. 837 
Singlet cells were defined by considering the highest feature barcode count, ensuring it was at least 838 
twice as large as the second highest feature barcode count. Single cells containing more than one 839 
detected barcode sequence were excluded from the dataset. This process resulted in a final set of 20,678 840 
cells for downstream analysis. After quality control measures, the count matrix underwent normalization 841 
and scaling. PCA was performed using the top 2,000 highly variable genes. Subsequently, clustering and 842 
UMAP embeddings were generated using default parameters to elucidate the underlying structure and 843 
relationships within the dataset. 844 
 845 
Flow cytometry. Cells were dissociated using TrypLE Select and resuspended in FACS buffer (5% FBS 846 
in PBS). Live/Dead Fixable Violet cell stain (Invitrogen, L34955) was used to discriminate dead cells 847 
from live cells. Permeabilization/fixation was performed at room temperature for 1 h. Antibody staining 848 
was performed in permeabilization buffer. Antibodies for this study include HNF4A, Novus Biologicals, 849 
NBP2-67679, 1:200; PDX1, R&D Systems, AF2419, 1:500, Donkey anti-Rabbit IgG (H+L) Highly 850 
Cross-Adsorbed Secondary Antibody, Thermo Fisher Scientific, 1:500; Donkey anti-goat IgG (H+L) 851 
Highly Cross-Adsorbed Secondary Antibody, Thermo Fisher Scientific, 1:500. Cells were then analysed 852 
using BD LSRFortessa. Flow cytometry analysis and figures were generated using FlowJo v.10. 853 
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Figures 1030 

 1031 
Figure 1. The Perturbation-response Score (PS) framework and benchmark. a, Overview of 1032 
different technical and biological factors that contribute to heterogenous perturbation outcomes from 1033 
single-cell perturbation datasets. b, Using downstream gene expressions to infer the value of PSs. C, 1034 
Overview of the scMAGeCK-PS that estimates PS value. d-e, Benchmark results of both PS and 1035 
mixscape using simulated datasets, where 50% (d) and 100% € gene perturbation effects are simulated 1036 
using scDesign3. Here, the expressions of 200 differentially expressed genes (DEGs) from bulk RNA-1037 
seq (Nelf knockout vs. wild-type) are simulated, and ground truth efficiency value is indicated in red 1038 
color. f, Benchmark pipeline using real CRISPRi-based Perturb-seq datasets, where the perturbation 1039 
efficiency can be evaluated directly via gene expression. g-h, Benchmark results of mixscape and 1040 
scMAGeCK-PS using a published Perturb-seq dataset, by counting the numbers of cells or genes with 1041 
strong perturbation effects. A gene is considered to have strong perturbation effect, if a strong negative 1042 
correlation (Pearson correlation coefficient < -0.1) is observed between PS and the expression of that 1043 
gene across all perturbed cells. A cell is considered to be strongly perturbed, if its predicted efficiency 1044 
score (by scMAGeCK-PS or mixscape) within one cell is greater than 0.5. The Perturb-seq experiment 1045 
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is performed with low MOI condition, where most cells have only 1 expressed guide. i, An 1046 
representative estimation results of scMAGeCK-PS and their correlations of ACTB expression. 1047 
 1048 
 1049 
 1050 
 1051 

 1052 
Figure 2. Additional benchmark results using genome-scale Perturb-seq and ECCITE-seq. a, 1053 
Benchmark procedure using a genome-scale Perturb-seq and a published, pooled T cell CRISPR screen. 1054 
b, The distribution of unstimulated and stimulated Jurkat cells along the UMAP plot. c, The correlation 1055 
of predicted scores by scMAGeCK-PS and mixscape. d, the Receiver-Operating Characteristic (ROC) 1056 
curve of both methods in separating positive and negative hits. e-f, Benchmark using a published 1057 
ECCITE-seq where PDL1 protein expression is used as gold standard (e), and the performance of 1058 
different methods in terms of predicting PLD1 protein expression (f).  1059 
  1060 

0.4

0.5

0.6

0.7

0.8

0.9

IFNG
R1

IFNG
R2

STAT1
JAK2
CUL3
M
YC

BRD4
SPI1
CM

TM
6

PDCD1LG
2

M
ARCH8

UBE2L6
IRF7
IRF1
NFKBIA
CD86
CAV1
SM

AD4
ETV7
PO

U2F2
STAT3
TNFRSF14
STAT2
ATF2
STAT5A

gene

au
c

method
scmageck

mixscape

exp

STAT5A
ATF2
STAT2
TN
FR
SF14

STAT3
PO
U
2F2

ETV7
SM

AD
4

C
AV1
C
D
86

N
FKBIA
IR
F1

IR
F7

U
BE2L6
M
AR
C
H
8

PD
C
D
1LG

2
C
M
TM
6

SPI1
BR
D
4

M
YC

C
U
L3

JAK2
STAT1
IN
FG
R
2

IN
FG
R
1

0.4

0.5

0.6

0.7

0.8

0.9

IFNG
R1

IFNG
R2

STAT1
JAK2
CUL3
M
YC

BRD4
SPI1
CM

TM
6

PDCD1LG
2

M
ARCH8

UBE2L6
IRF7
IRF1
NFKBIA
CD86
CAV1
SM

AD4
ETV7
PO

U2F2
STAT3
TNFRSF14
STAT2
ATF2
STAT5A

gene

au
c

method
scmageck

mixscape

exp

Best-performing method
AU

C

fdb

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

AUC
scMAGeCK-PS: 0.80
mixscape:          0.56

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
LCP2

CD247

VAV1

CD3D

LCK

SLC35B1

TAF8

TMX1

RASGRP1

DOCK2

CCND3

GPR350

100

200

300

400

500

0 50 100 150 200
scmageck_pred

m
ixs
ca
pe
_p
re
d

category
a
a

neg

pos

Cumulative PS score

C
um

ul
at

iv
e 

m
ix

sc
ap

e 
sc

or
e

0 100 200
0

200

400

Positive genes
Negative genes

c

UMAP_1
-5.0 0.0 5.0

U
M

AP
_2

-4.0

0.0

4.0
density

0 0.06

stimulated

UMAP_1
-5.0 0.0 5.0

U
M

AP
_2

-4.0

0.0

4.0 unstimulated

13

Overview of the workflow – Genome-wide CRISPRi CROP-Seq screen

13

Overview of the workflow – Genome-wide CRISPRi CROP-Seq screen

dCas9-KRAB 
expressing Jurkat cells Transduction

genome-scale 
Perturb-seq

U
M
AP
_2

UMAP_1

pooled T cell genome-
scale CRISPR screen

analysis & benchmark

genes

si
ng

le
 c

el
ls

PDL1 protein 
expression

scMAGeCK-PS
mixscape

perturbed gene exp.
Evaluation

a

Figure 2



 27 

 1061 

 1062 
Figure 3. Dose-dependent responses of perturbations. a, The correlation between a gene’s PS and a 1063 
phenotype of interest indicates positive (or negative) regulations. b-c, The correlation between PDL1 1064 
protein expression and the PS of CUL3 (b) and STAT1 (c). CUL3 is a known negative regulator of 1065 
PDL1, while STAT1 is a known positive regulator. d, The classification of buffered or sensitive genes, 1066 
based on perturbed gene expression and PS. e, The classification of buffered or sensitive genes from 1067 
published Perturb-seq datasets focusing essential genes in K56226. f, The perturbation-expression plot of 1068 
PSMA3, a buffered gene. g, The log fold changes of mark gene expressions (columns) upon perturbing 1069 
proteasome genes (rows) from the essential gene Perturb-seq dataset.  1070 
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 1072 
Figure 4. Perturb-seq on HIV latency. a, The experimental design of Perturb-seq. b, The UMAP plot 1073 
of single-cell transcriptome profiles. Cells are colored by three different conditions. c, The distribution 1074 
of BRD4 PS. d, The expression of HIV-GFP. e, The correlations between HIV-GFP expression and 1075 
BRD4 PS that does not use HIV-GFP as target gene. f, The distribution of CCNT1 PS. g, The protein 1076 
expression of HIV-GFP in response to CCNT1 knockout in different cell states (TNF-alpha vs non-1077 
stimulated). 1078 
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 1079 
Figure 5. Pooled scRNA-seq on pancreatic differentiation. a, Experimental design of multiplexing 1080 
scRNA-seq on the knockout clones of different genes. b, The UMAP plot of single-cell transcriptome 1081 
profiles, colored by different clusters (left) or clones (right). c, The PS distribution of HHEX. d, The 1082 
percentage of cells in PP/LV/DUO cell types from different clones. e, The correlations of CCDC6 PSs 1083 
calculated from different HHEX cell types. The Pearson Correlation Coefficient (PCC) is calculated 1084 
from all cells with CCDC6 knockouts and is shown as numbers on the heatmap. f, Two different 1085 
distribution patterns of CCDC6 PSs. g, The top enriched GO terms of DEGs from PP/PP in transition. 1086 
Enrichr was used to perform enrichment analysis. h, The percentage of cells in PP/LV/DUO cell types 1087 
from CCDC6 clones. i, The percentage of cells with PDX1+ (a PP marker) or HNF4A+ (a LV marker) 1088 
by flow cytometry sorting. The data is based on two CCDC6 knockouts (KO1, KO2) and one wild-type 1089 
(WT) control. Three independent replicates are performed for each condition. The multiple comparison-1090 
adjusted p value is calculated by one-way ANOVA test. *p<0.05, **p<0.01. 1091 
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Supplementary Figure Legends 1094 
 1095 
Supplementary Figure S1. Benchmark different methods using simulated and real datasets. a, 1096 
Steps to generate simulated datasets using scDesign3 from a real scRNA-seq dataset that knocks out 1097 
Nelfb gene. b-e, The score distribution of scMAGeCK-PS and mixscape using different DEGs and 1098 
different values of true efficiencies. f-g, Similar with Figure 1f-g, but using a published high MOI 1099 
Perturb-seq dataset in the same study. h-i, Benchmark results of different methods on another published 1100 
CRISPRi-based Perturb-seq, where mismatches are introduced into guides to attenuate perturbation 1101 
effects. The Pearson correlation coefficients (PCCs) between the predicted scores of each method and 1102 
the expressions of perturbed genes are reported for every perturbed gene (h), and between the predicted 1103 
scores and predicted sgRNA activities (i), using the prediction methods provided in the original study21. 1104 
 1105 
Supplementary Figure S2. A genome-scale Perturb-seq. a-b, The distribution of scMAGeCK-PS and 1106 
mixscape predicted scores of top hits including CD247 (a) and LCK (b) in the pooled screen. c, The 1107 
correlation between PSs and perturbed gene expression. 1108 
 1109 
Supplementary Figure S3. Predictions of PDL1 protein expression from a published ECCITE-seq 1110 
dataset. The ROC curve, the correlations between scMAGeCK-PS results with PDL1 protein 1111 
expression, and the correlations between mixscape results with PDL1 protein expression are reported for 1112 
each gene. The correlations are separated by classifications of each single cell: NP (non-perturbed), 1113 
defined as mixscape score <=0.5; and KO (knockout), defined as mixscape score >0.5. For a fair 1114 
comparison, we used mixscape classification results to plot PSs (mid panel).  1115 
 1116 
Supplementary Figure S4. Buffered genes and sensitive genes. a, RPL4, a buffered gene. b-c, 1117 
HSPA5 and GATA1, two sensitive genes. d, A gene (BRD4) whose expression has no correlation with 1118 
PS.  1119 
 1120 
Supplementary Figure S5. The log fold changes of gene expressions upon perturbing genes within 1121 
the same protein complex, including ribosomal subunits (a), RNA polymerase (b) and mediator 1122 
complex (c) in essential gene Perturb-seq. (d) The log fold changes of proteosome gene expressions 1123 
(columns) upon perturbing proteasome genes (rows) from the genome-scale Perturb-seq.  1124 
 1125 
Supplementary Figure S6. HIV Perturb-seq. a, The number of genes (nFeature_RNA), UMI counts 1126 
(nCount_RNA) and the fraction of mitochondrial RNAs in three different conditions. b, Clustering 1127 
results. c, Enriched Gene Ontology (GO) terms of cluster 8. d, The distribution of BRD4-targeting 1128 
gRNAs. e, The expression distribution of BRD4 signature genes in cluster 8 vs other clusters. Only cells 1129 
express BRD4-targeting gRNAs are included. f, Differential expression results between BRD4 PS+ cells 1130 
vs BRD4 PS- cells.  1131 
 1132 
Supplementary Figure S7. HIV Perturb-seq. a, The expressions of CCNT1 (left) and CCNT1-1133 
targeting gRNAs (right). b, Differential expression results between CCNT1-targeting cells and non-1134 
targeting control cells in two different cell states. c, The expressions of NFKB1. d, The quantitative 1135 
perturbation-expression relationship between GFP and CCNT1 PS, similar with Figure 4e.  1136 
 1137 
Supplementary Figure S8. Cell type assignment based on known expression markers of different 1138 
cell types in pancreatic differentiation scRNA-seq. 1139 
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 1140 
Supplementary Figure S9. DEG analysis. a-b, The distribution of FOXA1 PSs across two different 1141 
clones. c, The expression pattern of FOXA1. d-e, The DEG analysis results of CCDC6 knockout clones 1142 
vs. wild-type clones in different cell types. f, The overlap of statistically significant DEGs in DE and 1143 
LV/DUO cell types. 1144 
 1145 
Supplementary Figure S10. Different CCDC6 functions. a-b, The two patterns of CCDC6 PSs in 1146 
LV/DUO (a) and DE in transition (b) cell types. c-f, Additional enriched terms using Enrichr on DEGs 1147 
of CCDC6 knockout. 1148 
 1149 
Supplementary Figure S11. Flow cytometry analysis of PDX1 and HNF4A expression upon 1150 
CCDC6 knockout. One representative plots of three biological replicates are shown. 1151 
 1152 
Supplementary Table S1. Genome-scale Perturb-seq library design. 1153 
 1154 
Supplementary Table S2. HIV Perturb-seq library design. 1155 
 1156 
Supplementary Table S3. Sequencing summary of HIV Perturb-seq. 1157 
 1158 
Supplementary Table S4. Genotype summary of 10-clone scRNA-seq pancreatic differentiation 1159 
dataset. 1160 


