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Summary 
To facilitate single-cell multi-omics analysis and improve reproducibility, we present 

SPEEDI (Single-cell Pipeline for End to End Data Integration), a fully automated end-to-

end framework for batch inference, data integration, and cell type labeling. SPEEDI 

introduces data-driven batch inference and transforms the often heterogeneous data 

matrices obtained from different samples into a uniformly annotated and integrated 

dataset. Without requiring user input, it automatically selects parameters and executes 

pre-processing, sample integration, and cell type mapping. It can also perform 

downstream analyses of differential signals between treatment conditions and gene 

functional modules. SPEEDI’s data-driven batch inference method works with widely 

used integration and cell-typing tools. By developing data-driven batch inference, 

providing full end-to-end automation, and eliminating parameter selection, SPEEDI 

improves reproducibility and lowers the barrier to obtaining biological insight from these 

valuable single-cell datasets. The SPEEDI interactive web application can be accessed 

at https://speedi.princeton.edu/. 

Keywords 

Single-cell genomics, batch identification, information theory, integration, cell type 

mapping, scRNA-seq, scATAC-seq  
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Introduction 

Single-cell sequencing technologies provide access to the molecular environment of 

individual cells in different tissues, species, and conditions. Recent advances in multi-

modal assays have expanded the ability to study the behavior of complex cellular 

systems at single-cell resolution. Single-cell methods can provide insight not achievable 

with traditional bulk assay technology. While interest in single-cell technologies by 

clinical and translational researchers has been rapidly growing, analysis of these 

datasets is not routine and requires a high level of bioinformatics expertise for proper 

interpretation. 

 

Recovering a robust single-cell landscape and identifying differential patterns between 

cell types or conditions entails interrogating datasets from multiple samples. These 

analyses currently require the use of multiple software tools as well as Python or R 

scripting. The need for familiarity with rapidly evolving single-cell analysis methods 

creates a bottleneck for many biology and biomedical research groups in obtaining 

robust interpretations of publicly accessible or laboratory generated single-cell datasets. 

Importantly, the manual parameter optimization needed for the use of current tools may 

lead to different conclusions from the same data.  

 

A key methodological challenge is that variations in the time of sample processing, 

sequencing depth, or unknown technical factors result in batch effects that compromise 

integration, analysis, and interpretation of single-cell studies. Notably, exploration of 

single-cell data (for example on UMAP plots or PCA plots) in studies of multiple 

samples often shows evidence of sample groups that do not represent either biological 

factors (e.g. a contrast being studied) or any recorded experimental batch factors. 

While existing single-cell integration methods and benchmarking studies all assume that 

batch information is provided, accurate, and complete,1,2,3,4,5,6 identification of batches 

can be a particularly difficult problem as the origin of many batch effects is unknown. An 

additional issue is that experimentally-recorded batch factors may not in fact cause any 
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sample grouping--i.e. they do not actually cause batch effects. Including batch labels 

that do not have significant batch effects can severely reduce the statistical power of 

the analysis and obscure biological differences between the experimental contrasts 

under study (Figure 1A). 

To clarify these issues, we define two different types of non-exclusive “batches”: 1. 

Experimentally-recorded batch: groups of samples sharing a common experimental 

factor (such as library processing groups). Experimentally-recorded batches may or 

may not be associated with actual differences seen between the data obtained from 

samples in these groups. This is the current use of the term “batch.” 2. Data-defined 

batch: Grouping of data from sample subsets that do not represent biological factors 

(e.g. a contrast being studied). Data-defined batches may correspond to some 

experimentally recorded technical factors, but often this is not the case. Whether the 

source of data-defined batch effects is unknown or can be attributed to known 

experimental factors, these effects need to be corrected (and experimental factors that 

do not in fact cause batch effects need to be ignored) for rigorous interpretation of the 

data. Therefore, a method that identifies batches purely in a data-driven manner is 

needed to identify and correct batch effects whatever their origin. 

 

We address these barriers to analysis of single-cell datasets with the SPEEDI (Single-

cell Pipeline for End-to-End Data Integration) framework. SPEEDI introduces the first 

automated data-driven batch inference method, overcoming the problem of unknown or 

under-specified batch effects (Figure 1B). SPEEDI is a fully automated end-to-end QC, 

data-driven batch identification, data integration, and cell-type labeling pipeline that 

does not require any manual parameter selection or pipeline assembly (Figure 1C, 

Table S1). SPEEDI currently works with scRNA, scATAC, or sc multiome datasets and 

matches or exceeds benchmarking against existing manual, piecemeal methods. Unlike 

these other methods that also require a high level of bioinformatics expertise, SPEEDI 

is available both in a web interface and an R package, making it accessible to a wide 
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variety of researchers. SPEEDI’s full automation improves reproducibility and 

robustness of analyses, and democratizes the interpretation of single-cell omics 

datasets. 

Results 

SPEEDI framework  

Accounting for batch effects of unknown origin in single-cell data is critical in correcting 

for non-biological artifacts that compromise data analysis and interpretation. To address 

this problem, we developed a data-driven batch identification method based on 

information-theoretic principles (Figure 1B; see STAR Methods). 

 

This novel data-driven batch identification method, combined with automated parameter 

selection, enabled us to build SPEEDI, a comprehensive, automated end-to-end single-

cell data analysis workflow (Figure 1C). SPEEDI automates quality control and low-

quality cell filtering, batch label inference, multi-sample integration, cell type annotation, 

and a variety of user-selected downstream analyses, while seamlessly integrating the 

functionality of existing single-cell analysis packages, such as Seurat and ArchR. Low-

quality cell filtering is automated through distribution-based thresholding applied to 

multiple quality control criteria relevant for the specific data type (see STAR Methods). 

 

In the default general user implementation, following cell type labeling, SPEEDI 

incorporates public methods to integrate samples and annotate cell types.2,4 SPEEDI 

further refines cell type annotation by introducing a majority-based voting algorithm (see 

STAR Methods). Users can either choose among the annotation references provided 

with SPEEDI or can use their own reference. For advanced users, SPEEDI can use any 

parametric integration method that accepts an input list of datasets and batch labels, 

such as Scanorama or Harmony,3,4 and accommodates other single-cell annotation 

tools, such as SingleR.7 
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Validation of data-driven sample batch inference method and 

SPEEDI framework 

We evaluated the SPEEDI framework using four different real-world case studies that 

included different data types. We first quantified the performance of the batch inference 

method applied to a public human lung scRNA-seq dataset using the study authors’ 

curated and published cell type annotation as the reference. Second, we 

computationally inferred batches from a human PBMC scRNA-seq dataset and 

compared the cell type annotations to those obtained from using sample ID information. 

Third, we showed that SPEEDI is robust across different data modalities by analyzing a 

mouse same-cell multiome dataset. Finally, we demonstrate the utility of the 

downstream analysis tools in SPEEDI by evaluating human PBMC scRNA-seq data 

from a longitudinal SARS-CoV-2 study. 

Benchmarking the SPEEDI batch inference method 

The human healthy lung single-cell expression data, originally collected by Braga et al.,8 

includes three diverse datasets across different sequencing technologies. Two of the 

datasets were generated by 10X Chromium and the other one was generated by Drop-

seq. We used the cell type annotation of the three datasets comprising 17 cell types and 

16 samples in total reported by Luecken et al. as an expert analysis standard for 

benchmarking.5 

 

The heterogeneity of samples resulted in the presence of strong batch effects in the 

data that made integration particularly challenging. Other than intrinsic inter-individual 

variations, the different sequencing protocols and laboratories generating the data 

resulted in highly variable cell type compositions between samples (Table S2). We 

compared the results obtained using the following different batch labels: i. batch label = 

each sample ID ii. batch label = each dataset ID (i.e. data on sets of samples that are 

obtained from different experiments that are processed separately) iii. batch label = 

SPEEDI data-defined batches. We compared the results obtained with each batch 
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labeling approach using four different integration methods: Seurat CCA, Seurat RPCA, 

Harmony, and Scanorama. We then applied four different scoring metrics that assess 

preservation of cell type information and removal of dataset-specific variations to 

provide a comprehensive comparison of the batch labeling methods (Figure 2; see 

STAR Methods).5 SPEEDI batch labeling led to a significant performance improvement 

in nearly all comparisons with the two Seurat and Harmony integrations. The 

improvement of SPEEDI using Scanorama, which provides lower quality results for 

most metrics, was more modest. Overall, the benchmarking study indicates that the 

SPEEDI batch inference algorithm significantly boosts integration performance. 

Application of SPEEDI to heterogeneous single-cell RNA-seq data 

To further evaluate the reliability and robustness of the SPEEDI batch inference method 

and overall framework, we applied SPEEDI to a 20 subject scRNA-seq dataset 

generated in our laboratory for a study of the responses in peripheral blood 

mononuclear cells (PBMC) to S. aureus infection.9 Before batch correction, a number of 

UMAP clusters were distinguished by sample, a pattern consistent with the presence of 

severe batch effects (see Figure 3A for T/NK lymphocyte subpopulations and Figure 
S1 for all PBMC cell types). SPEEDI data-inferred batch labels led to much better batch 

correction compared with batch labels obtained from sample IDs (Figure 3B and Figure 
S2). For example, SPEEDI automated batch labeling corrected the fragmentation of 

CD14 monocytes and Treg cells into different clusters as seen when using sample ID 

batch correction (Figure S3). Furthermore, when using sample ID labels for batch 

correction, CD8+ memory cells were more broadly distributed, intermingled with other T 

cells, and showed less overlap with CD8A versus using data-defined batch labels for 

batch correction (Figure S4). Expression plots for canonical marker genes (NKG7 for 

NK cells, SELL for CD4 naive cells, TNFRSF4 for CD4 memory cells, and FOXP3 for Treg 

cells) confirmed SPEEDI inferred cell types (Figure S5). The SPEEDI method identified a 

complex pattern of 12 data-defined batches that varied in size from 1 to 5 samples.  

(Figure 3C). Application of the four different batch correction quality scoring metrics 
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used in the lung dataset above showed that using SPEEDI batch identification 

performed better than using sample IDs for three of the metrics and comparably for the 

remaining metric (Figure 3D). These results demonstrate that, in comparison with 

sample ID labels, using SPEEDI data-defined batch labels improves the accuracy of 

dataset integration and cell type annotation. 

Application of SPEEDI to single-cell multiome data 

SPEEDI can also be used for scATAC-seq and sc multiome datasets. For processing 

scATAC-seq data, SPEEDI first uses a standard ArchR workflow to process input data 

(see STAR Methods).10 Sample batch labels are subsequently inferred, followed by 

integration and cell type annotation. If sample-paired or true multiome scRNA-seq data 

are also available, SPEEDI can process both data types. 

 

To demonstrate the application of SPEEDI to single-cell multiome datasets, we 

processed same cell scATAC and scRNA true multiome data we generated from 14 

wild-type female murine pituitary tissue samples (GSE244132). SPEEDI identified a 

total of 60,906 cells meeting QC thresholds. Because SPEEDI independently processes 

the scATAC-seq and scRNA-seq components of the multiome data, comparison of the 

cell type annotation of each cell obtained using each data type provides an assessment 

of the reliability of the automated processing pipeline and batch inference method. The 

batch labeling was consistent across data types (Table S3), indicating SPEEDI 

captured the technical variation between samples regardless of the type of data. The 

cell type annotations obtained using the two data modalities were highly consistent 

(Figure 4A). Annotation of individual cells by cell type for the RNA-seq and for the 

ATAC-seq data after using the SPEEDI pipeline showed a median cell subtype 

identification overlap of 0.96 as well as a median adjusted Rand index (ARI) of 0.85 

(Figure 4B). These results support the applicability of the SPEEDI batch inference 

method and automated pipeline to single-cell ATAC-seq and to single-cell multiome 

datasets. 
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SPEEDI downstream analysis of SARS-CoV-2 single-cell RNA-seq data 
 

To demonstrate the utility of the downstream analysis tools in SPEEDI, we evaluated 

human PBMC scRNA-seq data from a longitudinal SARS-CoV-2 study.11 We used 

SPEEDI to integrate data from 4 severe seropositive COVID subjects and 5 healthy 

controls (9 samples in total, Figure S6A) and then performed preliminary downstream 

analyses, including differential expression analysis and functional module discovery in 

the major immune cell types. The authors used bulk transcriptome data to note 

downregulation of chemokine CCL3 and cytokine IL1B and upregulation of KLF6 in 

COVID subjects. After processing the scRNA-seq data through SPEEDI, we applied the 

differential expression analysis option provided with SPEEDI to compare severe COVID 

subjects and healthy controls within each cell type. This analysis confirmed the 

regulatory changes reported in the published bulk RNA-seq analysis and also showed 

that CCL3 and IL1B are downregulated in CD14 monocytes and that KLF6 is 

upregulated in CD4 TCM, CD8 Naive, CD8 TEM, B naive, MAIT, and pDC cells (Table 
S4). Furthermore, use of the functional module discovery tool (see Methods) on 

upregulated and downregulated genes from different cell types revealed additional 

insights into the specific biological processes associated with severe SARS-CoV-2 

infection. For example, upregulated genes in NK cells were found to be associated with 

positive regulation of the canonical Wnt signaling pathway,12 positive regulation of 

lymphocyte activation,13 and the ERAD pathway (Figure S6B).14 Thus SPEEDI can 

provide useful automated analysis for single-cell datasets and, even when applied to 

data that has been previously analyzed, has the potential to facilitate addressing 

specific questions of interest to the user (in this case cell type-level transcriptome and 

pathway effects) not previously answered in a published analysis.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2023.11.01.564815doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.564815
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Discussion 

As heterogeneous single-cell datasets are generated, appropriate methods for data 

integration allows robust annotation of cell type and interpretation of the underlying 

biology.15 While many of the currently available integration approaches rely on a pre-

defined set of batches for computation,16 we demonstrate that subjective batch selection 

can severely comprise the robustness of study conclusions. SPEEDI addresses this 

issue by introducing an automated data-driven batch inference method based on 

information-theoretic principles, therefore overcoming the problem of unknown batch 

effects. 

  

In addition, we demonstrate that SPEEDI overcomes the challenges of robustness, 

accessibility, and reproducibility in single-cell data analysis that the biological research 

community faces. Despite prior efforts to streamline single-cell analysis, current 

packages either assume user familiarity with coding,17,18 or require users to optimize 

parameter selection.19,20 In contrast, SPEEDI’s full automation obviates the requirement 

of users without bioinformatic background to manually assemble a pipeline, reducing 

the subjectivity and increasing the reproducibility of analyses. Furthermore, we show 

that SPEEDI allows for the interrogation of single-cell multi-omics, which could provide a 

broader and a more profound impact on molecular cellular biology than the traditional 

single-modality scRNA-seq technology.21 

 

In conclusion, SPEEDI provides a streamlined user-friendly processing framework for 

integration of single-cell omics and multiome datasets. SPEEDI’s one-step pipeline 

eliminates user parameter setting thereby reducing the need for computational expertise 

for integration of these valuable datasets improving robustness and reproducibility of 

subsequent analyses. We show that the data-driven batch labeling method we 

developed and integrated into SPEEDI improves dataset integration results, even when 

batch metadata information is available. We offer SPEEDI both as an interactive web 

application (https://speedi.princeton.edu/) for general users and as an R package. 

SPEEDI with its data-driven batch labeling method should also be useful for 
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sophisticated bioinformaticians and is easily customizable to allow incorporation of 

different standalone integration methods. The SPEEDI framework should help a wide 

range of researchers leverage the power of single-cell omics datasets to provide 

important new biological insights. 
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Main figure titles and legends 

 

Figure 1. Schematic illustrations of potential batch reporting scenarios and 
SPEEDI’s solution (see also Table S1). 
 

(A) Different batch effect scenarios. Single-cell data commonly shows non-biological 

batch effects where the data from groups of samples shows distinct patterns. These 

batch effects may result from known experimentally recorded factors (which we refer to 

as experimentally-recorded batches). However, the data often shows non-biological 

batch effects that are not annotated to any known experimental factor. Whatever the 

cause of batch effects, they need identification and correction to improve the rigor of 

detection of true biological effects. The limitations of experimentally-recorded batch 

identification are illustrated schematically by showing a single-cell dataset of individual 

samples from 5 subjects comprising three cell types in which batch effects in the data 

are observed. (Data coming from the same cell type are enclosed within the dashed 

outlines in the SPEEDI inferred batch panel.) The observed batch effects are not 

adequately labeled in scenarios in which no batch information is provided (scenario 1) 

or the experimentally recorded batches do not correctly identify any or all the batch 

effects present (scenario 2). A data-driven method to provide accurate batch 

identification, whether due to experimentally-recorded factors or due to unknown 

factors, is needed.  

 

(B) SPEEDI uses an information-theoretic approach to quantify sample distributions and 

identify local and global batch effects based on learned distributions. The algorithm 

starts with a low-resolution clustering that separates putative cell types. It then iterates 

through the clusters to determine if a group of samples is significantly different from the 

rest of the samples and assigns batch labels locally. In cases where a subset of 

samples within the significant batch has already been assigned a batch label in the 

previous iteration, the framework further divides the significant batch by giving the 

previously unassigned samples a new batch label. This process is repeated until all 
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local batches are stable, which constitutes the final global batch assignment. 

 

(C) SPEEDI provides a one-step, fully automated multiple sample single-cell analysis 

pipeline that does not require any parameter selection by the user and includes a data-

driven batch inference method to improve the quality of integration. The framework 

takes the CellRanger output and implements a workflow comprising quality control with 

automated parameter selection (Step 1), application of the data-driven batch inference 

method (Step 2), data integration (Step 3), cell type annotation (Step 4), and optional 

downstream differential and pathway analyses (Step 5). SPEEDI returns an annotated, 

integrated data matrix for single-cell RNA-seq and/or for single-cell ATAC-seq, as well 

as selected analyses. 

 

Figure 2. Benchmarking batch labeling strategies (see also Table S2). 
 
In a public atlas-level human lung scRNA-seq dataset comprising data from three 

different datasets, batches were labeled using either the sample ID, the dataset ID, or 

the SPEEDI data-driven method. The three types of batch labels were used as input for 

four different batch correction and data integration packages (Harmony, Seurat CCA, 

Seurat RPCA, Scanorama). The results of the integration with different batch labeling 

approaches were compared using metrics for cell type coherence and for batch 

removal. 
 

(A) Evaluation of SPEEDI batch inference in preserving cell type coherence among 

distinct cell types after integration. Each dot represents a sample score for a total of 16 

samples. Each score quantifies the effectiveness in preserving the integrity of different 

cell types within that sample. A higher score indicates that the cells of a particular cell 

type are more distinctly separated from cells of other types after integration. Pairwise 

nonparametric Wilcoxon rank sum tests were performed, and p-values were Bonferroni-

adjusted. 

 

(B) Evaluation of SPEEDI batch inference in eliminating batch variants among samples 
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after integration. East dot represents a cell type for a total of 17 types. Each score 

represents how effectively batches are mitigated within the associated cell type. A 

higher score indicates that cells of the same type, regardless of their sample origin, are 

better inter-mixed after integration. Pairwise nonparametric Wilcoxon rank sum tests 

were performed, and p-values were Bonferroni-adjusted. 
 

Figure 3. SPEEDI facilitates integrative cell type identification from scRNA-seq 
data. (See also Figures S1-5) 
 
(A) We applied SPEEDI to a human peripheral blood mononuclear cell (PBMC) scRNA-

seq study with 20 subjects. Batches were identified using either the automated data-

driven batch inference method implemented in SPEEDI (n = 12) or using sample IDs (n 

= 20). The UMAPs show the T/NK cell population before integration (see Figure S1 for 

UMAPs with all major PBMC cell types). 

 

(B) The UMAPs of the T/NK cell population after integration with both batch labeling 

strategies are shown (see Figure S2 for UMAPs with all major PBMC cell types).  

 

(C) Correspondence between the data-defined batch labels and sample IDs. 

 

(D) Score for cell type coherence. For cell type coherence measures, each dot 

represents a sample score, and each score quantifies the effectiveness in preserving 

the integrity of different cell types within that sample. Pairwise nonparametric Wilcoxon 

rank sum tests were performed. Scores for batch removal. For batch effect removal 

metrics, each dot represents a cell type score, and each score represents how 

effectively batches are mitigated within the associated cell type. Pairwise nonparametric 

Wilcoxon rank sum tests were performed. *p<0.05, *** p<0.001, n.s. Not-significant 

(p>0.05). Bonferroni corrected t-test.  
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Figure 4. SPEEDI batch inference and framework are highly robust on multiome 
mouse data. (See also Table S3) 
 

(A) Same-cell scRNA-seq and scATAC-seq multiome datasets were generated from 14 

wild-type female murine pituitaries. Data from each assay were integrated and 

annotated by the SPEEDI framework. 

 

(B) Heatmap representation of the contingency table that compares the annotation of 

individual cells by cell type for the scRNA-seq and for the scATAC-seq data after using 

the SPEEDI pipeline. The rows represent the cell type annotation for scATAC-seq, and 

the columns represent those for scRNA-seq. Each cell ranges between 0 and 1, where 

the value indicates the percentage of overlapping barcodes (median cell subtype 

identification overlap = 0.96). 
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STAR Methods 

Resource availability 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled 

by the lead contact, Olga G. Troyanskaya (ogt@genomics.princeton.edu). 

Materials availability 

This study did not generate new materials. 

Data and code availability 

Human healthy lung scRNA-seq data are available via GitHub 

(https://github.com/theislab/scib-reproducibility). Peripheral blood mononuclear cell 

(PBMC) scRNA-seq data from the S. aureus infection study are publicly available on 

GEO (GSE220190). Sc multiome wild-type mouse pituitary data are available on GEO 

(GSE244132). PBMC scRNA-seq data from the longitudinal SARS-CoV-2 study are 

publicly available on GEO (GSE206283). To review GEO accession GSE244132 

currently as a reviewer or editor, please go to 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244132  

Enter token gxmbigygrvslpch into the box.  

 

The source code of SPEEDI is available as an R package on GitHub at 

https://github.com/FunctionLab/SPEEDI/. The SPEEDI web server is publicly available 

at https://speedi.princeton.edu/. 

 

Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 
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Methods details 

Input format and external data 

For scRNA-seq data, SPEEDI accepts raw data in unique molecular identifier (UMI) 

count matrix format. For scRNA, sample data should be filtered data generated by Cell 

Ranger in the MEX format. SPEEDI also works with H5 format files. If working with MEX 

files, sample data should always follow the standard naming convention (three files with 

names barcodes.tsv.gz, features.tsv.gz, and matrix.mtx.gz). If working with H5 files, 

sample data file names should always end with filtered_feature_bc_matrix.h5. For 

scATAC-seq data, SPEEDI requires the fragment files instead. For all data types, 

SPEEDI utilizes “hg38” and “mm10” as the reference genome annotation for human and 

mouse, respectively. More specifically, “hg38” represents the UCSC full genome 

sequence hg38 for Homo Sapiens available in Bioconductor package 

“BSgenome.Hsapiens.UCSC.hg38”, while “mm10” comes from the 

“BSgenome.Mmusculus.UCSC.mm10” package, which is the UCSC full genome 

sequences for Mus musculus version mm10 based on GRCm38.p6. If the experiment 

includes multiple conditions, SPEEDI also optionally accepts a metadata file specifying 

the sample IDs and the experimental condition of each sample for downstream 

differential analysis.  

Parameter optimization for single-cell RNA-seq quality control 

The standard practice for single-cell RNA-seq data quality control (QC) is to perform cell 

filtering based on at least two covariates: the number of detected transcripts per 

barcode, and the number of mitochondrial genes per barcode.22 Experience shows that 

additional covariates should also be considered, including but not limited to the number 

of ribosomal RNA molecules (both large and small subunits) per barcode as well as 

number of hemoglobins per barcode,23 which typically appears in PBMC (peripheral 

blood mononuclear cell) datasets as contamination. Accordingly, for scRNA-seq we 

implemented four QC filters: transcripts per barcode, mitochondrial genes per barcode, 
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ribosomal RNA molecules per barcode and hemoglobin per barcode, with the last 

affecting mostly PBMC analysis.  

 

Current practice of single-cell QC is to manually inspect the distribution of the 

aforementioned covariates per barcode and hand pick a dataset-specific outlier 

threshold. However, this approach compromises reproducibility as a threshold too loose 

or too stringent could potentially lead to different conclusions. 

 

To parametrize the QC process in a data-driven fashion, SPEEDI utilizes the Kneedle 

algorithm that systematically finds the elbow or knee point in the distribution of transcript 

counts per cell.24 While the term “elbow” is typically applied to the inflection of a convex 

curve and “knee” to that of a concave curve, for simplicity here we use “elbow” for both 

situations. 

 

Conventionally, the elbow point is considered as the turning point where a distribution 

changes its behavior due to some latent factor. In single-cell data analysis, it can be 

interpreted as the point where the profiled barcodes transit into a different quality phase. 

In the case of a unimodal distribution, there are typically left and right elbow points that 

represent the lower and the upper threshold, respectively, for our algorithm. Data below 

this lower threshold are normally associated with broken cells where cytoplasmic 

mRNAs are escaping from the cell membrane. 

 

To calculate the lower threshold of UMI counts 𝐿!"# , SPEEDI begins by creating a 100-

group histogram of the UMI count covariate. The histogram effectively creates a set of 

discrete data points 𝐷$, where  

 

𝐷$ = $%𝑥%! , 𝑦%!) ∈ ℝ
&	-	𝑥%! , 𝑦%! 	≥ 0},                                           (1) 

	

𝑥$ is the 𝑖'( percentile of UMI counts where 𝑖 ∈ ℕ) and 0 < 𝑖 ≤ 100;  

𝑦$ 	is the frequency of the 𝑖'( percentile of UMI counts and 𝑦$ ∈ ℕ). 
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To find the left elbow point from the curve formed by point set 𝐷$, SPEEDI first finds the 

subset 𝐷%" between points (𝑥%#!$ , 𝑦%#!$) and %𝑥%#%& , 𝑦%#%&), such that 

𝑥%! 	⟼ 	𝑥*,                  (2) 

𝑦%#%& 	⟼ 	𝑦+,-,                  (3) 

The Kneedle algorithm first rotates the curve segment defined by 𝐷%" clockwise for	𝜃  

degrees so that the curve is concave and the line formed between (𝑥%#!$ , 𝑦%#!$) and 

%𝑥%#%& , 𝑦%#%&) is horizontal. It then finds the local maximum %𝑥%'# , 𝑦%'#) of the rotated 

curve. The lower elbow point is thus defined as 

𝐸!"# = 𝑃(𝑠.+),                 (4)  

where 𝑃(𝑠.+) is the 𝑠.+'( percentile of UMI counts, 0 < 𝑠.+ < 100. 

 

To restrict the algorithm from filtering too many cells, SPEEDI conservatively imposes 

an upper limit of 1,000 UMI counts, such that the final threshold of gene count is defined 

as 

𝐿!"# = min(𝐸!"# , 1000).                           (5) 

Apart from low quality cells, SPEEDI also filters cells that have excessively high UMI 

counts. SPEEDI defines the upper limit to be  

𝑈!"# = 𝑃(95).                  (6) 

 

Similarly, let 𝐸"/ be the right elbow point calculated from the curve defined by the 

distribution of mitochondrial reads. We define the upper limit of mitochondrial content in 

percentage as 

𝑈"/ = max%𝐸"/ , 𝑃(75)).               (7) 
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For additional covariates, we uniformly choose the 99'(-percentile as the upper 

threshold. Note that SPEEDI performs QC on individual sample datasets to avoid 

detecting false positive outliers that are distributed differently because of biological or 

technological factors (e.g., rare cell types detected in a subset of samples or different 

sequencing depths). Cell cycle scoring is also performed by calling the 

“CellCycleScoring” function with canonical cell cycle markers,  

 

After QC, the framework merges the processed samples into one dataset for 

normalization. SPEEDI uses Seurat’s “SCTransform” function with v2 regularization to 

normalize the merged count matrix.25 All QC metrics as well as cell cycle scores are 

used as regression covariates in normalization. The normalized matrix is then scaled 

and centered. 

Single-cell ATAC-seq quality control 

SPEEDI processes sample fragment files with ArchR.10 Each input read count by cell 

matrix is converted to a tile matrix by binning the genome-wide fragments into tiles of 

500 bps. SPEEDI selects scATAC-seq quality cells with fixed thresholds. Cells with a 

number of fragments between 3,000 and 30,000, TSS enrichment > 12, and 

nucleosome ratio < 2 are retained. Doublets are removed using the “filterDoublets” 

function of ArchR under default settings. 

Dimension reduction 

After normalization, SPEEDI projects the higher dimensional matrix into a lower 

dimensional orthogonal embedding of cells depending on the appropriate data type. For 

scRNA-seq, PCA (principal component analysis) is performed on the normalized 

expression matrix. For scATAC-seq, LSI (latent semantic indexing) is performed on the 

tile matrix using the ArchR function “addIterativeLSI” with settings iterations = 2 and 

varFeatures = 20000.26 
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Batch inference 

The batch inference method uses the unique structure of single cell data (containing 

both different samples as well as groups of different cell types within each sample) as 

the basis for an information theoretic method to identify data-defined batches, whatever 

their cause. At a high level, the method is based on the idea that data from the same 

cell type in different samples should be more similar than different cell types within each 

sample. 

The sample batch inference algorithm makes the following assumptions: 

1. Let the input normalized matrix be Μ ∈ ℝ0×2( where element 𝑚3,	6( ∈ ℝ is the 

normalized of the 𝑔'( gene in the 𝑛'( cell of the 𝑠'( sample. SPEEDI requires 

|𝐺| > 30. 

2. Within each sample, the separation among the cell types is preserved.  

3. Any sample can belong to any batch and a sample can be its own unique batch. 

4. The cell types contained within each sample do not have batch variations relative 

to each other. 

5. Batch effects do not intermix cells of distinct types or states from different 

samples. In other words, the expression profiles of cells of cell type A in sample 𝑥 

are more correlated to cells of cell type A sample 𝑦 than to cells of cell type B or 

C in sample	𝑦. 

6. Samples do not have to contain identical cell types.  

 

The process begins with an initial round of clustering at a low resolution that clusters 

similar cells from different samples. These clusters represent a higher-level cell 

ontology similar to a cell type or state. This allows identification of batches on a per-cell-

type basis, maintaining its sensitivity to local batch effects where only some cell types 

are affected by batch effects. SPEEDI uses a grid-search approach to find the optimal 

clustering resolution, using a search space ranging from 0.05 to 1 with 0.01 increments. 

We define the optimal clustering resolution as being the resolution that produces the 

highest average Silhouette width (ASW) of all samples.27 
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The SPEEDI batch labeling method then iteratively finds differentially distributed groups 

of samples within clusters that contain at least 1% of all cells using Hill numbers 𝐷7, an 

information-theoretic metric traditionally used to measure biological diversity.28  

𝐷 = OP𝑝$7
8

$9*

R

*
*:7

 

(8) 

  

When 𝑞 = 2, the formula becomes the Inverse Simpson Index (ISI). Korsunsky et al. 

implemented a variant to ISI by adding a distance-based weight to the original index, 

namely Local Inverse Simpson’s Index (LISI).4 Therefore, for each cluster, SPEEDI first 

calculates an LISI score that quantifies sample distributions. The unscaled LISI score 

measures the effective number of batches given observations and ranges from 0 to total 

number of samples within the target cluster. However, given that the LISI metric is 

influenced by cell population size diversity, the original implementations of LISI are 

inappropriate for SPEEDI. Therefore, the SPEEDI algorithm introduces a penalized 

calculation of sample-level LISI (sLISI) scores using the frequency of occurrence of cells 

in each sample as weights. Finally, the sLISI scores are scaled such that a score closer 

to 1 indicates sample well-mixing within the given cluster, while a score closer to 0 

means the sample is locally enriched. As a result, samples with significantly small sLISI 

scores form putative batches. To detect whether a group of low-scoring samples are 

outliers, SPEEDI employs Dixon’s Q-test. Given ordered sLISI scores 

𝐿2 = $𝑙%) 	-	𝑙%* < 𝑙%+ < ⋯ < 𝑙%$},              (9) 

where 	𝑙%! is the sLISI score for sample 𝑠$, SPEEDI calculates the difference between 

each score and its subsequent neighbor, {𝑑2}, where 

𝑑$ = 𝑙%!,* − 𝑙%!.               (10) 

The goal is to find the outlier in 𝐷2 with Dixon’s Q-test, which represents the most 

statistically significant (P<0.05) gap between two consecutive scores (𝑙%- , 𝑙%-,*) in 𝐿2 

such that samples {𝑠*, … , 𝑠7} are considered to be one group, and samples {𝑠7)*, … , 𝑠6} 
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form another group. SPEEDI iteratively assigns batch labels with the outlier detection 

method to ensure that all significant differences between each score are accounted for. 

Batch integration 

The framework returns a finalized batch assignment for all samples. SPEEDI uses the 

inferred batch covariate to subset the merged multi-sample dataset into a list of batch 

datasets. The default integration for scRNA-seq in SPEEDI is to run the Seurat RPCA 

method by calling the “FindIntegrationAnchors” function followed by the “IntegrateData” 

function. For scATAC-seq data, if SPEEDI detects that batch effects are present, the 

“addHarmony” function will then be called to integrate the lower embedding of each 

sample with SPEEDI-inferred batches.  

Cell type annotation 

After samples are integrated into a batch-corrected matrix, SPEEDI annotates cells with 

a reference-based approach. For scRNA-seq, the default version of SPEEDI 

implements the Seurat label transfer algorithm that projects an identity to each query 

cell using some prior annotated reference data by calling the “FindTransferAnchors” 

function. Since ArchR also adopts Seurat label transfer, the same algorithm also applies 

to scATAC-seq data. Clustering is then performed with the “addClusters” function, and 

cell types are projected from a reference gene expression dataset onto the query 

chromatin accessibility dataset using the ArchR function “addGeneIntegrationMatrix”.  

SPEEDI can be easily incorporated into other single-cell annotation tools such as 

SingleR.7 On top of per-cell label transferring, SPEEDI introduces a majority-voting 

regime that further refines cell labeling. The majority-voting regime begins with an over-

clustering of the integrated dataset at a higher resolution, where each cluster represents 

a cell phenotype that serves as a surrogate to a parent cell type or state. It then loops 

through each cluster and finds the most represented predicted cell types and states 

among cells within the query cluster. Since the data is over-clustered, this process 
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eventually merges clusters representing the same cell identities together for a data-

driven cell label annotation landscape. 

Evaluation metrics 

Leucken et al. defined two categories of metrics to evaluate integration results.5 The 

first category measures the conservation of biological variance. The second category 

reflects the removal of batch effects. In this study, a total of four appropriate metrics are 

selected as evaluation criteria. Metrics from the first category consider how well cells of 

different identities are separated for each sample. Metrics from the second category 

measure the degree of overlapping of cells from each sample for each cell type. 

 
Per-sample ASW 

The average silhouette width (ASW) is a classical metric that evaluates the validity of a 

clustering partition based on between-cluster proximities.27 In single-cell data science, a 

clustering of cells can be represented by labels such as sample IDs, sequencing 

protocols, cell type identities, etc. In the original definition, the ASW ranges between -1 

and 1 such that -1 means strong overlapping and 1 means perfect separation between 

clusters. 

 

The per-sample ASW score for cell type separation is computed based on sample IDs 

and scaled between 0 and 1 using Equation (11) for each sample. A score closer to 1 

represents well-conserved cell types.  

𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒𝐴𝑆𝑊 =
𝐴𝑆𝑊 + 1

2  

(11) 

 

Per-sample graph connectivity 

The graph connectivity metric quantifies the average connectivity of the subgraph of 

cells in target cell type 𝑐 ∈ 𝐶 in comparison to the largest connected component (LCC) 
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for all cells of all types in a kNN graph. A score of 1 indicates that strong local cell type 

coherence is preserved post integration. A score is computed for each sample using 

Equation (12). 

𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑛 =
|𝐿𝐶𝐶(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ;)|

|𝑐|  

(12) 

 

Per cell-type GraphConn 

The per cell-type graph connectivity metric is defined similarly to the per-sample 

GraphConn metric, except for that it now averages the connectivity of all sample 𝑠 ∈ 𝑆. 

A score of 1 indicates that all cells of the same type are strongly connected post 

integration. A score is computed for each cell type using Equation (13). 

 

𝑃𝑒𝑟𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑛 =
|𝐿𝐶𝐶(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ%)|

|𝑠|  

(13) 

 

Per cell-type graph LISI 

The local inverse Simpson’s index (LISI),4 as explained in Equation (8), was further 

adapted by Leucken et al. to use the graph structure of the integrated data to calculate 

shortest path length as distance between two nodes.5 Like the original LISI, the graph 

LISI ranges from 1 to the total number of batches. The metric is then scaled with 

Equation (14) to a score between 0 and 1 for each cell type such that 1 indicates perfect 

cell type preservation. 

𝑔𝐿𝐼𝑆𝐼 =
|𝑆𝑎𝑚𝑝𝑙𝑒𝑠| − 𝐿𝐼𝑆𝐼
|𝑆𝑎𝑚𝑝𝑙𝑒𝑠| − 1  

 (14) 
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Benchmarking studies 

The human healthy lung single-cell expression data was originally collected by Vieira 

Braga et al. which includes three diverse datasets across different sequencing 

technologies and spatial locations.8 Two of the datasets were generated by 10X 

Chromium and the remaining dataset was generated by Drop-seq. The Drop-seq 

dataset and one of the 10X datasets contain cells profiled from upper and lower airways 

which were retrieved from deceased transplant donors. The other 10X dataset consists 

of parenchyma cells from resected lung tissue. These three datasets were further 

processed by Luecken et al. to include 16 samples composed of 32,472 cells and 

15,148 genes, where a re-annotation of cells was performed since 10X and Drop-seq 

datasets used different annotation terms.5 

 

The raw count expression matrix was downloaded from Luecken et al. and was re-

normalized using SPEEDI protocol. Batches were labeled for benchmarking using either 

the sample ID, the dataset ID, or the SPEEDI data-driven method. P-values were 

calculated from the paired two-sample non-parametric Wilcoxon rank sum test and 

Bonferroni-adjusted. 

Human bloodstream S. aureus infection study 

The scRNA-seq human S. aureus infection PBMC dataset was generated by our lab 

and previously reported in Chen et al.9 20 adult patients with culture-confirmed infection 

were selected with 10 MRSA patients and 10 MSSA patients. The sequencing batch 

labels were reported in an accompanying metadata file. We extracted the H5 files from 

10x Genomics Cell Ranger v3.1.0 and reprocessed the raw count matrices using 

SPEEDI. For sample integration, we used two sets of batch labels: (a) the sample ID 

labels, and (b) SPEEDI-inferred batch labels. Two different integrated datasets were 

subsequently obtained based on this input batch covariate. To assign cell types, we 

obtained a reference dataset by extracting data from 21 uninfected healthy individuals 

that were also reported and curated in Chen et al. For illustration purposes, we focused 

the analysis on a subset of cells that are T/NK leukocytes. 
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Female mouse pituitary study 

Animal and pituitary collection 

The pituitaries used in this study were collected from wild-type untreated female 

C57BL/6 mice aged 11 weeks. All murine sample collection was conducted at McGill 

University (Montreal, Quebec, Canada). All animal experiments were performed in 

accordance with institutional and federal guidelines and were approved by the McGill 

University and Goodman Cancer Centre Facility Animal Care Committee DOW-A 

(Protocol 5204). We have complied with all ethical regulations and institutional 

protocols. Once dissected, the pituitaries were individually collected, immediately snap-

frozen, and stored at -80C until the assay was started. 

 

Nuclei isolation from the murine pituitary 

Nuclei isolation was performed as described in previous literature.29,30 Briefly, each 

snap-frozen pituitary was thawed individually on ice. RNAse inhibitor (NEB MO314L) 

was added to the homogenization buffer (0.32 M sucrose, 1 mM EDTA, 10 mM Tris-

HCl, pH 7.4, 5mM CaCl2, 3mM Mg(Ac)2, 0.1% IGEPAL CA-630), 50% OptiPrep (Stock 

is 60% Media from Sigma; cat# D1556), 35% OptiPrep and 30% OptiPrep right before 

isolation. Each pituitary was homogenized in a dounce glass homogenizer (1ml, VWR 

cat# 71000-514), and the homogenate filtered through a 40 mm cell strainer. An equal 

volume of 50% OptiPrep was added, and the gradient centrifuged (SW41 rotor at 

9200rpm; 4C; 25min). Nuclei were collected from the interphase, washed, resuspended 

in 1X nuclei dilution buffer (10X Genomics), and counted (Nexcelom K2 counter).  

 

True (sn) multiome assay 

True (sn) multiome was performed following the Chromium Single Cell Multiome ATAC 

and Gene Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA). 

Nuclei were counted as described above, transposition was performed in 10 ml at 37C 

for 60 min targeting 10,000 nuclei, before loading of the Chromium Chip J (PN-

2000264) for GEM generation and barcoding. Following post-GEM cleanup, the library 
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was pre-amplified by PCR, after which the sample was split into three parts: one part for 

generating the snRNA-seq library, one part for the snATAC-seq library, and the rest was 

kept at -20C. snATAC and snRNA libraries were indexed for multiplexing (Chromium i7 

Sample Index N, Set A kit PN-3000262, and Chromium i7 Sample Index TT, Set A kit 

PN-3000431 respectively).  

 

Quality control (QC) and sequencing of libraries 

The libraries were quantified by Qubit 3 fluorometer (Invitrogen), and quality was 

assessed by Bioanalyzer (Agilent). The libraries were sequenced first in a MiSeq 

(Illumina) to assess the reads and balance the sequencing pools and then sequenced in 

a NovaSeq 6000 (Illumina) at the New York Genome Center (NYGC) following 10X 

Genomics recommendations.  

Optional downstream analyses 

To run downstream analyses, the user is required to provide a metadata table where 

row names are sample names and column names are metadata attributes of interest. 

Note that each metadata attribute should contain exactly two unique labels (e.g., 

“disease” and “control”). SPEEDI has two different downstream analysis options. First, 

SPEEDI can run cell-type specific differential expression analyses. For each cell type, 

SPEEDI uses the Wilcoxon Rank-Sum test (via Seurat’s “FindMarkers” function) to 

perform differential expression using the sample labels associated with a given 

metadata attribute. Results are filtered using an adjusted p-value threshold of 0.05, a 

log fold change threshold of 0.1, and a min.pct threshold of 0.1 (genes must be 

expressed in at least 10% of cells in one of the two groups associated with the 

metadata attribute). Next, pseudobulk analysis is performed using DESeq2.31 First, 

pseudobulk counts are calculated for each cell type and DESeq2 is used to find 

differentially expressed genes (via Wald test). Results are then filtered using a p-value 

of 0.05. Genes that pass both single-cell and pseudobulk differential analysis constitute 

the final list of differentially expressed genes. Differential expression results for each 

metadata attribute are written to a TSV file. 
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SPEEDI can also perform functional module discovery (FMD) to find functionally 

connected gene clusters using HumanBase.32 By default, SPEEDI uses the lists of 

genes generated by the cell-type specific differential expression analysis described 

above. For each metadata attribute and cell type, the list of genes is first divided into 

positive fold change and negative fold change subsets. If at least 20 genes remain after 

fold change filtering, SPEEDI runs FMD. Results are written to a CSV file and include a 

URL that allows users to see their full results as well as a table that contains gene 

ontology (GO) enrichment results. Note that FMD can only be run with human genes. 
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Supplemental information titles and legends 
 

Supplemental figures titles and legends 
 

Figure S1. Strong batch effects are present in the human PBMC scRNA-seq 
datasets across all cell types before integration. (Related to Figure 3) 
 

(A) UMAP shows cells are segregated by sample IDs indicating strong batch effects 

present in all cell types of the human PBMC scRNA-seq data. 

 

(B) Louvain clustering at resolution of 0.74 produced 47 clusters. Adjusted Rand Index 

of cells between sample IDs and cell clusters is 0.39. 

 

Figure S2. Integrated data for all cell types in human PBMC scRNA-seq data 
colored by sample IDs. (Related to Figure 3) 
 

(A) UMAP of sample ID-based integration. 

 

(B) UMAP of data-defined batch-based integration. 

 

Figure S3. Integrated data for all cell types in human PBMC scRNA-seq data 
colored by cell types. (Related to Figure 3) 
 

(A) After integrating using sample IDs, the UMAP colored by cell type shows broken cell 

populations (i.e. CD14+ Monocytes and Tregs). 

 

(B) Broken cell populations are minimal after integrating using SPEEDI data-derived 

batch labels. 
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Figure S4. Sample-based integration fails to recover distinct CD8+ T cell 
populations. (Related to Figure 3) 
 

(A) UMAPs with cells predicted to be CD8+ memory T cells highlighted. Cells predicted 

to be CD8+ are spread across the entire NK/T lymphocyte landscape in the sample ID-

based integration, whereas those in the data-defined batch-based integration are much 

more concentrated. 

 

(B) UMAPs of CD8A+ cells indicating the distribution of the CD8+ T cell subset. 

 

(C) UMAPs of CD3D+ cells indicating the distribution of T cells. 
 

Figure S5. UMAPs of gene expression of canonical markers confirm SPEEDI 
inferred cell types. (Related to Figure 3) 
 

(A-E) UMAPs of NKG7+ cells, SELL+ cells, TNFRSF4+ cells, and FOXP3+ cells. 

 
Figure S6. Demonstration of SPEEDI downstream analysis capabilities. 
 
(A) UMAP of integrated scRNA-seq data from a longitudinal SARS-CoV-2 study. 

(B) Functional module discovery on upregulated NK genes. 
 

Supplemental tables titles 
 
Table S1. SPEEDI auto calibration of parameters. (Related to Figure 1) 
 
Table S2. Summary of cell type representations across all samples in the human 
lung atlas data compendium. (Related to Figure 2) 
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Table S3. SPEEDI independently infers highly corresponding batch groups in 
paired scRNA-seq and scATAC-seq from mouse multiome data. (Related to 
Figure 4) 
 
Table S4. Differentially expressed genes from SPEEDI downstream analysis of 
longitudinal SARS-CoV-2 study. 
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Figure 1. Schematic illustrations of potential batch reporting scenarios and SPEEDI’s 
solution. (See also Table S1) 
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Figure 2. SPEEDI batch inference outperforms traditional approach in a benchmarking 
study on public atlas-level human lung scRNA-seq dataset. (See also Table S2) 
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Figure 3. SPEEDI facilitates integrative cell type identification from scRNA-seq data.
(See also Figures S1-5)



Figure 4. SPEEDI batch inference and framework is highly robust on multiome mouse 
data. (See also Table S3)
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