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Abstract 

Integration of single-cell RNA-sequencing (scRNA-seq) datasets has become a standard part of the analysis, with 
conditional variational autoencoders (cVAE) being among the most popular approaches. Increasingly, researchers 
are asking to map cells across challenging cases such as cross-organs, species, or organoids and primary tissue, as 
well as different scRNA-seq protocols, including single-cell and single-nuclei. Current computational methods 
struggle to harmonize datasets with such substantial differences, driven by technical or biological variation. Here, 
we propose to address these challenges for the popular cVAE-based approaches by introducing and comparing a 
series of regularization constraints. 

The two commonly used strategies for increasing batch correction in cVAEs, that is Kullback–Leibler divergence (KL) 
regularization strength tuning and adversarial learning, suffer from substantial loss of biological information. 
Therefore, we adapt, implement, and assess alternative regularization strategies for cVAEs and investigate how they 
improve batch effect removal or better preserve biological variation, enabling us to propose an optimal cVAE-based 
integration strategy for complex systems. We show that using a VampPrior instead of the commonly used Gaussian 
prior not only improves the preservation of biological variation but also unexpectedly batch correction. Moreover, 
we show that our implementation of cycle-consistency loss leads to significantly better biological preservation than 
adversarial learning implemented in the previously proposed GLUE model. Additionally, we do not recommend 
relying only on the KL regularization strength tuning for increasing batch correction, as it removes both biological 
and batch information without discriminating between the two. Based on our findings, we propose a new model 
that combines VampPrior and cycle-consistency loss. We show that using it for datasets with substantial batch 
effects improves downstream interpretation of cell states and biological conditions. To ease the use of the newly 
proposed model, we make it available in the scvi-tools package as an external model named sysVI. Moreover, in the 
future, these regularization techniques could be added to other established cVAE-based models to improve the 
integration of datasets with substantial batch effects. 
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Introduction 

The joint analysis of multiple single-cell RNA sequencing (scRNA-seq) datasets has recently provided new insights 
that could not have been obtained from individual datasets. For example, pooling of datasets generated in different 
studies enabled cross-condition comparisons1,2, population-level analysis3,4, and revealed evolutionary relationships 
between individual cell types5. The selection of pre-clinical models, such as organoids and animals, and the 
characterization of their limitations likewise rely on comparison with human tissues6–14. Similarly, the selection of 
the optimal sequencing protocols requires a comparison of datasets generated with different protocols15,16. Lastly, 
currently arising large-scale “atlases” that are posed to serve as references of cell biology are aimed to combine 
public datasets with substantial technical and biological variation, including multiple organs and developmental 
stages17. Overall, with the increasing number of publicly available scRNA-seq datasets18, the number of such cross-
dataset analyses is also increasing. 

These analyses can be complicated due to technical and biological differences between samples19–21. To overcome 
this, computational methods for single-cell specific data integration have been developed22,23 and previous 
benchmarks have evaluated their integration performance generally20 and on cross-species datasets specifically19. 
Among the most popular and best-performing methods are conditional variational autoencoder (cVAE) based 
models, which are able to correct non-linear batch effects, are flexible in the choice of batch covariates, and are 
particularly scalable to large datasets20,22. Thus, they are also a method of choice for single-cell atlases4,24,25. 
However, while cVAE-based and other non-deep-learning methods enable good integration of batch effects caused 
by processing similar samples in different laboratories, they do not enable sufficient integration when differences 
between datasets are more substantial due to datasets originating from distinct biological or technical “systems”, 
such as multiple species or sequencing technologies (e.g. cell-nuclei)19–21 (Figure 1a,b), as demonstrated later. To 
enable more comprehensive single-cell atlasing efforts that will integrate diverse samples with stronger batch 
effects, it is thus vital to further improve the performance of the commonly used cVAE-based integration models.  

Increased batch integration can be achieved via multiple extensions of cVAE models, including Kullback–Leibler 
divergence (KL) regularization strength tuning26, batch distributions alignment approaches27–29 (with latent space 
adversarial learning30–32 being the prime example), and latent space cycle-consistency that was previously only used 
for multi-omic integration in combination with adversarial learning33–35 (Figure 1d). For increasing biological 
preservation in scRNA-seq representation learning without supervision, we previously proposed the use of the 
multimodal variational mixture of posteriors (VampPrior)36 as the prior for the latent space (Figure 1d) in a workshop 
paper37, but this extension has not been explored in integration models. While cycle consistency and the VampPrior 
have been previously applied to single-cell data, it is unclear what their strengths and weaknesses are for integration 
and how they compare when used under different data scenarios.  

Here, we explore the shortcomings of popular cVAE-based integration strategies, namely KL regularization tuning 
and adversarial learning, and show how these can be overcome by using cycle-consistency loss and the VampPrior. 
We systematically evaluate batch correction and biological preservation on cell type and sub-cell type levels, with 
existing20 metrics and a newly proposed metric for assessing within-cell-type variation. We study these across three 
scenarios with substantial batch effects: cross-species, organoid-tissue, and cell-nuclei. In short, we find that the 
combination of the VampPrior and cycle-consistency (VAMP+CYC model) improves batch correction while retaining 
high biological preservation, making VAMP+CYC the method of choice for integrating datasets with substantial batch 
effects. The VAMP+CYC model also empowers post-integration analysis of cell states and biological conditions. Our 
model is easily accessible to the community as part of the sciv-tools package38 under the name sysVI, short for 
“integration of diverse systems with variational inference”, and the here-proposed strategies could be likewise easily 
added to other cVAE-based integration methods. 
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Figure 1: The challenge of integrating datasets with substantial batch effects. (a) Substantial batch effects are 
present between different biological “systems”, such as cross-species, organoid-tissue, and cell-nuclei datasets. We 
selected one dataset for each of these three between-system integration types as shown in panel c. (b) Integrating 
datasets with substantial batch effects poses a bigger challenge than integrating datasets of similar samples across 
laboratories, where the batch effect is smaller. In this study, we evaluate different approaches for improving cVAE-
based batch correction. (c) Pre-integration distances between samples from the same or different systems. Points 
show mean per cell type. (d) Overview of approaches for improving batch removal in cVAE-based models: KL-loss-
based regularization of the latent space, the use of the VampPrior as a replacement for the standard Gaussian prior, 
and adversarial learning and cycle-consistency loss that actively push together samples from different systems. Parts 
of the cVAE model were omitted from individual panels for brevity. For a detailed description of the standard cVAE 
and its extensions, see the methods section Overview of cVAE-based integration approaches. 

Results 

We explored shortcomings of existing methods for integrating substantial batch effects and subsequently developed 
an improved method to suit diverse use cases. We selected multiple datasets where batch effects are more 
substantial than what is commonly observed between samples within a dataset or between similar datasets 
generated in different laboratories (Figure 1a,c). This includes three between-system data use cases: organoids (N 
samples = 21, N cells = 43,505) and adult human tissue samples (N samples = 20, N cells = 54,491) of the retina 
(organoid-tissue), scRNA-seq (N samples = 9, N cells = 28,465) and single-nuclei RNA-seq (snRNA-seq) (N samples = 
9, N nuclei = 57,599) from subcutaneous adipose tissue (cell-nuclei), and mouse (N datasets = 8, N samples = 52, N 
cells = 263,140) and human (N samples = 65, N cells = 192,203) pancreatic islets (mouse-human). We confirmed that 
in all three data cases, the per-cell type distances between samples on non-integrated data are significantly smaller 
within systems, both within and between datasets, than between systems (Figure 1c, Supplementary Table S1).  

Existing methods struggle with the loss of biological information when increasing batch correction 

Tuning of KL regularization strength is the most widely adopted approach for tuning batch correction strength as it 
is part of the standard cVAE architecture. It regulates how much the cell embeddings may deviate from the standard 
Gaussian distribution. By definition, KL regularization does not distinguish between biological and batch information, 
jointly removing both of them. To assess this, we measured batch correction via graph integration local inverse 
Simpson’s index (iLISI)20, which evaluates batch composition in the local neighborhoods of individual cells, and cell-
type level biological preservation with a modified version of normalized mutual information (NMI)20 metric, which 
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compares clusters from a single clustering resolution (NMI fixed) to grounded-truth annotation. Indeed, increased 
KL regularization strength led to higher batch correction and lower biological preservation (Figure 2a, 
Supplementary Figure S1). In particular, we observed that increased KL regularization strength led to some latent 
dimensions being set close to zero in all cells, resulting in information loss (Supplementary Figure S2). Thus, the 
higher batch correction score is simply a consequence of fewer embedding dimensions that were effectively used in 
downstream analyses. This was reflected by standard scaling of individual embedding features resulting in the loss 
of KL regularization-induced changes in integration scores in all three data use cases (Figure 2a, 
Supplementary Figure S3, Supplementary Note S1). In particular, on the scaled data higher KL regularization 
strength did not lead to increased batch correction or reduced biological preservation. Thus, KL weight is not a 
favorable approach for removing batch effects as it removes both biological and batch variation without 
discrimination. 

 
Figure 2: Adversarial learning and KL regularization strength tuning struggle with retaining biological variation 
when increasing batch correction. (a) Integration performance of scaled and unscaled cVAE embedding with 
different KL regularization loss weights. Shown are batch correction (iLISI, higher is better) and cell type level 
biological preservation (NMI fixed, higher is better) metrics scaled to [0,1] per metric. Individual runs with different 
seeds are shown as points and their averages (avg.) as lines. Results are presented for mouse-human data, with 
similar performance trends observed in other data use cases as reported in Supplementary Figure S4. (b) UMAP 
visualization of mouse-human dataset integrated with standard cVAE model and GLUE with the best hyperparameter 
setting, colored by cell type. Red circles mark examples of cell types that are mixed in the GLUE but not the cVAE 
integration. 

The most popular cVAE extensions for actively pushing together cells from different batches are based on batch 
distribution alignment27–29, especially adversarial learning30–32,39,40. However, these approaches are prone to mix 
embeddings of unrelated cell types with unbalanced proportions across batches. Namely, if we want to achieve 
indistinguishability of batches in the latent space, a cell type underrepresented in one of the systems must be mixed 
with a cell type present in the second system28,30. We show this with an existing single-cell integration model that 
leverages adversarial learning, called GLUE30, for which it was previously shown to be among the best integration 
models41. This behavior was present in all three datasets, especially when increasing batch correction strength. For 
example, we observed mixing of delta, acinar, and immune cells in the mouse-human pancreatic dataset; astrocytes 
with Mueller cells in the organoid-tissue retinal dataset; and adipocyte and ASPC cells in cell-nuclei adipose dataset 
(Figure 2b, Supplementary Figure S5, Supplementary Figure S6). In contrast, these cells could be easily separated 
by our baseline cVAE implementation (Figure 2b, Supplementary Figure S5). To address this issue, the authors of 
the GLUE method aimed to improve the adversarial loss objective by down-weighting the contribution of cells from 
unbalanced populations. However, this requires prior population identity knowledge, which is in GLUE initialized by 
a preliminary integration round. Our results show that this strategy does not guarantee good integration 
performance, which may be explained by biases introduced through imperfect cell cluster prior information. 
Therefore, adversarial learning may be problematic as a general integration strategy as datasets often have 
unbalanced cell population proportions due to biological differences or differences in technical protocol capture42,43.  

Multimodal priors and cycle-consistency for better integration 

To tackle the two above-mentioned challenges of existing methods, that is the joint removal of batch and biological 
variation and mixing of cell populations with unbalanced proportions across systems, we propose to adapt the prior 
regularization of the cVAE model and add additional batch correction constraints to the general loss. In particular, 
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we selected the VampPrior36 and latent cycle-consistency loss44, as they are able to better preserve biological 
variation.  

The VampPrior was initially proposed as an alternative to standard Gaussian prior for generating more expressive 
latent representations due to the use of multiple prior components36 (see methods and Figure 1d). It was previously 
shown that this also applies to single-cell data37, where it increases biological preservation, similar to other flexible 
priors, such as Gaussian mixtures (GM)45–47. Therefore, we here tested whether the VampPrior could be used to 
achieve a better batch correction and biological preservation tradeoff compared to a cVAE with standard Gaussian 
prior. We observed that while biological preservation was relatively similar in both models, the model with the 
VampPrior (VAMP model) had much higher batch correction performance (Supplementary Figure S1). As the 
VampPrior has not previously been used for batch effect removal, we investigated the cause of improved batch 
correction. We explored the relationship between individual prior components and cell metadata. We assigned 
individual cells into groups based on the prior component with the highest support for each cell and assessed 
whether this led to the grouping of cells by either cell types or systems. Prior component groups corresponded more 
strongly to cell type identity than systems (Supplementary Figure S7). This suggests that in contrast to the standard 
Gaussian prior that attracts cells from different systems and different cell types, using multiple priors allows 
individual prior components to attract cells from only a subset of cell types that nevertheless originate from both 
systems, which could explain the improved batch correction at a similar biological preservation score.  

To test if batch correction is improved due to the multimodal nature of the VampPrior or its other properties, we 
compared to a VampPrior model with only one prior component that resembles a normal cVAE, but in contrast to 
cVAE the prior parameters are learned, and a GM prior model (GMM) as a simpler multimodal prior alternative 
where prior and posterior distributions are not coupled. We also tested if trainable prior components are key for 
integration by fixing prior component parameters and inspected if the identity of cells used for pseudoinputs 
initialization affects the performance.  

Across integration data use cases, we find that the batch correction was lower when using only one prior component, 
compared to two or more for both the VAMP and GMM models (Figure 3, Supplementary Figure S8), with the one-
component version being more similar to cVAE with standard normal prior (Supplementary Figure S1). However, 
the performance of GMM, but not VAMP, dropped again at very high prior component numbers (N=5000). 
Therefore, even a relatively small number of prior components (e.g. five) enables good integration while keeping 
the number of model parameters low. Fixing of prior components had little effect on VAMP performance (Figure 3, 
Supplementary Figure S8, Supplementary Note S2) and likewise, the initialization of prior components with cells 
from a single cell type or system did not affect performance (Supplementary Figure S9, Supplementary Note S2). 
This indicates that the number of prior components is key for improved batch correction. Nevertheless, VAMP 
outperformed GMM both in the achieved batch correction as well as in the robustness to a varying number of prior 
components, underlining the importance of coupling the prior and the posterior. 

 
Figure 3: Multimodal priors improve batch correction and biological preservation. Scatter plots of cell-type level 
biological preservation metric (NMI, higher is better) and batch correction metric (iLISI, higher is better) scores for 
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different models (panels), including a VampPrior model with fixed prior components. Small circles represent 
individual runs with different seeds and crosses their averages. Points are colored by the number of prior 
components. The average performances of the models with a single prior component are encircled. Results are 
shown for the mouse-human data, with other data use cases exhibiting similar trends as presented in 
Supplementary Figure S8.  

We propose latent cycle-consistency loss as an alternative to adversarial learning. The cycle-consistency loss directly 
compares only cells with an identical biological background, that is a cell and its counterfactual representation from 
another system (Figure 1d). Thus, biologically distinct cell populations are not forced to overlap, unlike in models 
that aim to align whole system distributions in a cell identity-agnostic manner. While previous publications already 
used cycle-consistency for integration across modalities (e.g. scRNA-seq and scATAC-seq)33,35, they always combined 
it with adversarial learning, thus overlooking the potential benefits of using cycle-consistency alone.  

We validated our hypothesis about cycle-consistency outperforming adversarial learning in the presence of cell 
populations with unbalanced proportions across systems by implementing a cVAE model with added cycle-
consistency loss (CYC model) and comparing it to adversarial model GLUE. For both models, we gradually increased 
the weight of the loss responsible for batch correction and measured cell type preservation by comparing prior 
annotation and post-integration clusters with the Jaccard index. When increasing batch correction strength, we 
observed multiple cell types whose clusters had a lower Jaccard index in the GLUE than the CYC model, thus being 
merged with other cell types in GLUE (Figure 4, Supplementary Figure S5, Supplementary Figure S6). Examples are 
acinar cells mixed with immune cells in mouse-human data, which are not biologically related, adipocytes mixed 
with adipose stem and progenitor cells (ASPC) in cell-nuclei data, and two glial populations (astrocytes and Mueller 
cells) in organoid-tissue data. However, some cell types were hard to distinguish for both models, regardless of 
integration strength. In the mouse-human data, these corresponded to technical doublets, which can be explained 
by their similarity to individual contributing cell types. Similarly, in the cell-nuclei data neutrophils co-localized with 
monocytes, likely due to their biological similarity, with both of them being immune cells (Supplementary Figure 
S5). Therefore, none of the models exhibited perfect cell type resolution based on the Jaccard index metric, which 
is expected as highly similar cell types often require more detailed analysis, including subclustering, for their 
annotation48. Nevertheless, the CYC model was less prone to mix both related and unrelated cell types than GLUE. 
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Figure 4: Adversarial learning is more prone to cell type mixing than cycle-consistency loss. Shown is cell type 
mixing score measured with the Jaccard index between clusters and ground-truth labels (higher is better) and iLISI 
score. Jaccard index was min-max-scaled per cell type. Results are presented for integration of the mouse-human 
dataset with GLUE and CYC models with different loss weights of losses that regulate batch correction. Individual 
cell types are annotated with the number of cells in the more abundant system and the ratio of cells between the 
less and the more abundant system. Red boxes mark example cell types that are commonly mixed by the adversarial 
model, especially when increasing batch correction strength. Cell populations representing technical doublets are 
marked with “+” in their name.  

Integration with the VampPrior and cycle-consistency offers a good tradeoff between batch correction and 
biological preservation 

Our analysis showed that both the VampPrior and latent cycle-consistency loss improved integration performance. 
Moreover, both approaches are complementary, with VampPrior providing a more expressive latent space than 
standard Gaussian prior and cycle-consistency loss pushing together batches without incurring cell population mixing 
in contrast to adversarial learning. Therefore, we propose a new integration approach that combines the two 
(VAMP+CYC, Figure 5c). 

We compared VAMP+CYC against ablated versions VAMP and CYC, a cVAE baseline, and two established models: 
scVI23, which is a cVAE-based model that models raw expression counts and is among the most popular integration 
methods, and GLUE, which is an example of a model that uses adversarial learning. We tuned model 
hyperparameters that directly regulate batch correction, as described in the methods. Every model was run three 
times with different random seeds to capture random variation in model performance. To complement our 
integration evaluation via iLISI and NMI, we proposed an additional metric, Moran’s I, aimed to assess fine biological 
preservation on the sub-cell-type level via preservation of gene expression patterns after integration. Evaluating the 
fine variation is of special importance as many downstream questions rely on within-cell-type population shifts that 
arise due to different biological conditions, such as in health and disease.  

As hypothesized above, the standard cVAE-based models and the model with adversarial loss could not achieve a 
good tradeoff between batch correction and biological preservation. The baseline cVAE model had poor batch 
correction across all tested datasets (Figure 5a), in comparison to other models (adjusted p-value < 0.1 for most 
comparisons against VAMP+CYC, CYC, VAMP, and GLUE, Supplementary Table S2), and the systems were clearly 
visually separated on the UMAP (Figure 5b, Supplementary Figure S5), indicating that it alone is unsuitable for 
integrating substantial batch effects. In comparison, the cVAE-based model scVI23, which is regarded as a state-of-
the-art model for scRNA-seq integration20, consistently had excellent biological preservation (Figure 5a), in many 
cases significantly higher than other models (Supplementary Table S2). However, it had a relatively low batch 
correction compared to other models, including VAMP+CYC, CYC, VAMP, and GLUE (Figure 5a), especially in the 
mouse-human and organoid-tissue datasets that were harder to integrate than the cell-nuclei dataset due to more 
substantial batch effects (Supplementary Figure S10). GLUE had the highest batch correction overall (Figure 5a), 
which was in most cases significantly higher than other models (Supplementary Table S2), and it also had 
comparable cell type preservation (NMI) to other models in most cases. However, as described above, it led to the 
mixing of unrelated cell types. It also had lower performance on finer within-cell type variation (Moran’s I) 
(Figure 5a), which was in all cases significantly lower than other models, except for the below-described SATURN 
model (Supplementary Table S2). As we saw at the cell type level, poor preservation of within-cell-type variation 
can be explained by the mixing of cell states with unbalanced proportions across systems. Thus, it is likely that the 
high batch correction of GLUE is not biologically meaningful as it comes at the cost of mixing unrelated cell 
populations. Integration with adversarial learning is thus less suited for downstream cell state analyses.  
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Figure 5: While existing models struggle with over- or under-integration, the VAMP+CYC model achieves a good 
trade-off between batch correction and biological preservation. (a) We show the integration performance of 
individual models using the best hyperparameter settings, with different integration metrics in columns (larger 
values indicate better integration performance) and cross-system data cases in rows, showing the average 
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performance (vertical line) of three runs (dots). The results of all hyperparameter settings are in 
Supplementary Figure S1. (b) UMAPs of representative runs for the best hyperparameter setting in the mouse-
human dataset. A legend for sample colors is not shown due to the large number of samples. UMAPs for the other 
two data use cases are shown in Supplementary Figure S5. (c) Schematic representation of the VAMP+CYC model in 
accordance to the explanation of the VampPrior and latent cycle-consistency loss from Figure 1d. 

In contrast, the VAMP+CYC model, as well as CYC and VAMP models, were able to achieve a better tradeoff between 
the three integration metrics (Figure 5a) and had across data use cases similar performance characteristics in 
relation to hyperparameter settings (Supplementary Figure S1). They consistently outperformed the base cVAE in 
batch correction (adjusted p-values < 0.1 in most comparisons, Supplementary Table S2) while retaining similar 
biological preservation. The VAMP+CYC model was able to achieve higher batch correction at comparable biological 
preservation than the individual CYC and VAMP models (Supplementary Figure S1). Namely, the selected VAMP+CYC 
model had significantly higher batch correction than the two ablated models in the mouse-human and cell-nuclei 
datasets (Supplementary Table S2). In comparison to GLUE, the VAMP+CYC model showed lower batch correction 
but had higher fine biological preservation (Figure 5a) and was not prone to mixing of cell types with different 
proportions across systems, as described above. Thus, the VAMP+CYC model is better balanced than GLUE as it has 
relatively good performance in both biological preservation and batch correction. Overall, these results recommend 
the VAMP+CYC model as the method of choice. 

Models specific for cross-species integration do not outperform VAMP+CYC 

As one of our use cases was cross-species integration, which is complicated by different gene sets across species, we 
further assessed models that accept different input genes across systems, namely GLUE and SATURN49, an example 
of a model designed specifically for cross-species integration. We ran both models with one-to-one orthologues 
(OTO) as well as with a flexible orthology (FO) gene set that included different types of orthologues and non-
orthologous genes. Integration with FO input genes did not outperform the OTO approach in either GLUE or SATURN 
(Supplementary Figure S1). Furthermore, despite SATURN using protein embeddings to improve gene linking across 
species, it had significantly lower batch correction than either VAMP+CYC or GLUE (Figure 5a, adjusted p-values < 
0.05, Supplementary Table S2). Overall, this indicates that a more advanced gene mapping may not be needed for 
mouse-human integration, as VAMP+CYC was able to outperform even dedicated cross-species integration methods. 
However, for more divergent species or species with lower-quality genome annotation and orthology information, 
using FO genes could still be beneficial19.  

As SATURN requires prior cell type labels for every system, we ran it with clustering-based labels to make it 
comparable to other models that are likewise not given prior cell type information, which is in practice often not 
available. Besides that, we also added a version with ground-truth cell type labels (SATURN-CT). However, using 
ground-truth labels may lead to a positive bias in the NMI metric. Both SATURN and SATURN-CT performed poorly 
in biological preservation, with SATURN-CT having a bias towards higher NMI scores while retaining low Moran’s I 
(Figure 5a). The poor preservation of within-cell-type structure was also evident from UMAPs. For example, the 
numerous immune subclusters observed on the VAMP+CYC embedding were not present after integration with 
SATURN and SATURN-CT (Figure 5b). The poor biological preservation can be explained by over-reliance on prior cell 
cluster labels in the contrastive learning objective, which pushes all cells with the same label together, thus 
neglecting within-cell-type variation (Supplementary Note S3).  

High-quality integration is key for downstream biological interpretation 

To ensure that a model is of good quality, it must not only have relatively high integration metrics, but it must also 
be able to provide meaningful biological interpretations. Therefore, we used the integrated embeddings of the 
evaluated methods for multiple downstream tasks, including cross-system comparison of cell types and conditions 
as well as the discovery of molecular heterogeneity within individual cell types.  
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Figure 6: VAMP+CYC empowers post-integration analysis of biological variation. (a) UMAPs of Mueller cells based 
on representative runs for the best hyperparameter setting in the organoid-tissue dataset. The UMAPs are colored 
by the cell density of organoid and tissue periphery cells, which are expected to overlap, and of tissue fovea cells 
expressing RHCG, which are expected to separate from the other two cell populations. Results for all models are 
shown in Supplementary Figure S11. (b) Expression of gene groups known to be heterogeneous within individuals, 
shown on UMAPs of beta cells from one healthy adult mouse pancreatic sample from the mouse-human data. We 
compare the heterogeneity before and after integration and quantitatively asses gene group variability with Moran’s 
I (MI). For every model, one representative run from the best hyperparameter setting was selected (as shown in 
Figure 5b). Results for all models and remaining gene groups are shown in Supplementary Figure S12c. 

Direct comparison of systems on the integrated embedding requires striking a balance between under and over-
integration, that is, to align only biologically related, but not biologically distinct cells. To achieve this, the model’s 
objective must also reflect this balance by jointly optimizing batch correction and biological preservation 
(Supplementary Note S4). Here, we assess how well models achieve this balance by inspecting individual cases 
where systems should, in fact, not be completely integrated due to biological differences. We saw that all evaluated 
models correctly separated retinal pigment epithelial cells between organoid and tissue data7 
(Supplementary Figure S5a). We assessed the preservation of finer cross-system biological differences on the 
example of Mueller cells, for which it was reported that RHCG-expressing fovea cells from primary tissue are distinct 
from the tissue periphery and organoid cells7. This more subtle biological variation was lost in some models, such as 
GLUE, leading to the co-localization of cells from all three populations (Figure 6a, Supplementary Figure S11). In 
contrast, VAMP+CYC correctly aligned Mueller cells from tissue periphery and organoid samples while separating 
cells from tissue fovea samples. This indicates its ability to correctly account for biological differences across systems 
during integration, making it better suited for comparative studies. 

Another important characteristic of integration is to preserve within-sample variation, which is not related to batch 
effects. This is key for studying different cell states that arise due to cell specialization or spatial niches. We examined 
this on pancreatic beta cells, for which within-sample heterogeneity in the expression of multiple gene programs has 
been previously reported1. This heterogeneity was much better preserved by VAMP+CYC than GLUE (Figure 6b, 
Supplementary Figure S12c) and was similar to the heterogeneity observed in the non-integrated data. Therefore, 
VAMP+CYC has low information loss during integration, empowering post-integration analysis. 

Discussion and outlook 

In order to improve the integration of scRNA-seq datasets, in particular in the presence of substantial batch effects 
such as different protocols, species, or in vitro vs in vivo, we explored the shortcomings of commonly used cVAE-
based approaches for increasing bath correction, namely KL regularization strength and adversarial learning. Both 
of these models struggled with retaining sufficient biological information when increasing batch correction. To 
overcome these challenges, we proposed the use of the VampPrior and latent cycle-consistency loss. We performed 
evaluation in three data scenarios (cross-species, organoid-tissue, and cell-nuclei) and observed consistent model 
performance characteristics and failure modes, enabling us to make recommendations regarding individual models. 
We found that our model, which combines the VampPrior and cycle-consistency loss, had an overall good 
performance in both batch correction and biological preservation as well as enabled truthful interpretation of the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2024. ; https://doi.org/10.1101/2023.11.03.565463doi: bioRxiv preprint 

https://paperpile.com/c/QqMKbH/nvPO
https://paperpile.com/c/QqMKbH/nvPO
https://paperpile.com/c/QqMKbH/CdBa
https://doi.org/10.1101/2023.11.03.565463
http://creativecommons.org/licenses/by-nc/4.0/


11 

integrated embedding, making it our method of choice. To make this model easily accessible to the community, we 
also implemented it in scvi-tools under the name sysVI. 

Based on the findings presented in this work, there are multiple directions of cross-system integration that could be 
further explored. The VampPrior and cycle-consistency loss could be easily added to other cVAE-based integration 
tools. Therefore, we urge the method-development community to switch from using batch distribution-matching 
techniques, such as adversarial learning, to cycle-consistency-based approaches and to replace the standard 
Gaussian prior with the VampPrior. Combining these approaches with other cVAE extensions may contribute 
towards achieving the goal of holistic whole-organism and cross-species atlases. The flexibility of the VampPrior 
holds promise for representation learning on complex datasets with diverse cell types and the cycle-consistency loss 
further improves the removal of substantial batch effects present in such datasets. To achieve population-wide 
integration, these two approaches could be combined with scPoli50, which enables integration of a large number of 
batches via learning individual batch embeddings rather than relying on the commonly used one-hot encoding. As a 
step towards this goal, we included batch embedding in our implementation of sysVI. Furthermore, we here focused 
on integration strategies that do not require any prior cell type annotation, which is often not available and may 
lead to biases. Nevertheless, supervised label-aware integration methods such as scANVI51, may outperform non-
supervised models20. Thus, future work could explore the combination of different prior-knowledge-based strategies 
with the unsupervised techniques proposed here. Additionally, while we heere did not observe a benefit in more 
complex orthologue mapping for cross-species integration, this may be of greater importance when integrating more 
evolutionary divergent species. Thus, future work could explore the effect of different gene mapping strategies, both 
as part of data preprocessing19 as well as in the model internally, such as by enabling flexible gene relationships5,30 
or using gene embeddings49,52.  

One unexpected finding of this work was that the VampPrior led not only to improved biological preservation, as 
would be expected, but also to increased batch correction. A similar effect was also observed when using a simpler 
GM prior. However, the VampPrior showed overall better performance and higher robustness to varying numbers 
of prior components. Further work will be needed to fully understand the mechanisms of this phenomenon. These 
results may not only have applications for scRNA-seq integration but also in other domains using cVAE models for 
covariate effect removal.  

While we have shown that VAMP+CYC model enables good cross-system integration in comparison to existing 
methods, it is not obvious which combination of data analysis decisions will lead to optimal performance and 
whether integration is the ideal approach at all. For example, here we have focused on evaluating different model 
architectures but did not analyze alternative data preprocessing decisions that may affect the final result, such as 
the approach used for selecting features across systems. While previous work assessed some preprocessing 
options19,20, it is unclear if the findings translate to all cross-system data use cases, which can make different 
assumptions about relationships between systems and their features. Moreover, while our results show that the 
optimal hyperparameter ranges are relatively similar across data use cases, the preferred setting will depend on the 
downstream application at hand. For example, annotation transfer across systems would benefit from stronger 
batch correction, while comparative analysis of systems may require preserving more biological differences in order 
to assess their true similarity. Furthermore, the coarse biological preservation metric we used (NMI) relies on 
matching cell type annotation across systems. However, as shown above, sometimes cell types with the same name 
in different systems are, in fact, biologically distinct and should thus not be aligned, leading to biases in metric 
interpretation. Instead, one cold use simulated data for evaluation. However, as simulations often cannot fully 
encompass the complexity of the real data they are likewise not an optimal solution. Therefore, the community 
would highly benefit from standard benchmarking datasets where proper alignment is more carefully studied, 
reducing biases in integration evaluation. 

While integration eases cross-system comparisons, there are also arguments against performing integration. For 
example, how strongly to integrate depends on downstream applications and is commonly assessed based on 
assumptions about the correct system alignment. Therefore, since the final integration is biased toward analysts’ 
expectations, it may not represent the biological ground truth. The integration also always removes some biological 
information. This is especially problematic if the integrated systems have substantial biological differences, as much 
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of the biological variation would be lost to enable system alignment. One such example could be the integration of 
early-stage organoids with adult human tissue, as it is likely that the overlaps between biological functions of cell 
populations are minimal. In this case, per-system analysis followed by between-system comparison may be 
preferred. Lastly, recently emerging foundation models claim to obtain batch-free representations of cells via 
training on a large number of diverse datasets53,54, potentially removing the need for future data-use-case-specific 
integrations. However, as optimal integration strength often depends on the application, it is unlikely that one-size-
fits-all models will be able to fully replace data-specific integration. Data-specific tuning of foundation models could 
improve performance, however this is computationally expensive due to the large number of parameters. Therefore, 
classical integration models are likely to remain of importance in the foreseeable future.  

In conclusion, we proposed an improved strategy for integrating datasets with substantial batch effects that 
combines a cVAE model with VampPrior and cycle consistency loss. This will ease comparative analyses across a wide 
spectrum of biological questions, thus better leveraging available scRNA-seq datasets.  

Methods 

Overview of cVAE-based integration approaches  

In this study we focused on cVAE-based integration approaches and their extensions that improve integration by 
modifying the VAE objective (Figure 1d). Here we provide a brief description of these methods.  

In cVAE models, the encoder (𝐸𝜙) embeds cell expression (𝑥) and batch information (𝑐), into a batch-effect corrected 

latent representation (𝑧). Then, a decoder (𝐺𝜃) reconstructs the expression based on latent representation and batch 
information. Two opposing losses are used to train the model (combined as 𝐿𝑐𝑉𝐴𝐸(𝜃,𝜙)), the expression 

reconstruction loss that promotes information preservation during encoding and decoding and 𝐾𝐿 loss-based 
regularization of latent space that encourages information compression towards a Gaussian prior distribution. 

 

Tuning of KL regularization strength in cVAEs 

The most straightforward approach for increasing batch correction strength is using a higher 𝐾𝐿 regularization loss 
weight. This leads to lower preservation of information within the latent space, as it pushes samples’ latent 
representations towards the Gaussian prior distribution. The information is removed not only for technical or batch 
variation, which is desired, but as a side effect also for biological variation26. To enable good initialization of biological 
representation the KL regularization loss weight can be gradually increased during training via annealing, as done in 
scvi-tools38.  

Adversarial loss 

Multiple approaches have been proposed for promoting indistinguishability of latent distributions across batches, 
such as maximum mean discrepancy27,55, contrastive mixture of posteriors misalignment penalty28, and 
disentanglement of batch and biology-related latent components29. We here chose adversarial learning as an 
example due to its popularity in the single-cell community30–32. The adversarial classification loss (𝐿𝐴𝐷𝑉) can be added 
to the 𝐿𝑐𝑉𝐴𝐸  objective to promote indistinguishability of latent embeddings from different batches, with the number 
of batches 𝐾30–32. For this, a discriminator (𝐷𝑘,𝜓) is added, which is trained by minimizing classification loss (𝐿𝐴𝐷𝑉  ), 

while the encoder of the cVAE is trained by maximizing 𝐿𝐴𝐷𝑉  , opposing the discriminator’s ability to distinguish 
between batches.  

 

Cycle-consistency loss 

Latent space cycle-consistency is an alternative to adversarial learning that works by pushing together the latent 
representation of matched cells from two batches. Cell 𝑥𝑖  belonging to the batch 𝑖 is encoded into a latent 
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representation 𝑧𝑖 . That latent representation is then decoded with batch covariate 𝑗 into the cell 𝑥′𝑗, which 

represents the cell 𝑥𝑖 as if it originated from the batch 𝑗. The cell 𝑥′𝑗  is encoded into the latent representation 𝑧′𝑗 . 

Finally, the model penalizes the distance between the original representation 𝑧𝑖  and the cycle-generated 𝑧′𝑗  via an 

additional loss component (𝐿𝐶𝑌𝐶 ). Here, different distance minimization losses can be applied, with our choice being 
the mean squared error (MSE) on standardized data. 

 

 

 

The VampPrior 

The VampPrior replaces the unimodal Gaussian prior 𝑝
𝜃

(𝑧) with a mixture of trainable Gaussian prior components 

(with the number of components 𝐿), giving it more representation flexibility. Their prior parameters are not defined 
in the latent space, as is usually done in cVAEs, but rather in the input cell space as “pseudoinputs” (𝑥𝑝𝑖𝑙), which are 
passed through the encoder to obtain latent representations (mean, variance) used to parametrize the Gaussian 
components of the prior distribution. This thus directly couples the prior and the posterior. Additionally, the weights 
(𝑤) of the prior components are likewise learned36,56.  

  

Cell type supervision 

Another strategy that was previously proposed for improving integration uses prior information about cell type 
labels for supervised training, thus improving cell type cluster separation. Two main approaches for cell type 
supervision are contrastive training, where cells from the same cell type are pushed together and cells from different 
cell types may be pushed apart49,50, and classification loss, which ensures that latent space enables good cell type 
classification performance51. Moreover, other approaches were also proposed, such as constraining the cVAE’s prior 
distribution with prior knowledge about cell types57. While in some cases cell type labels can be replaced by 
unsupervised cell clusters49, supervised learning nevertheless depends on the prior information being of high quality. 
When this is not the case serious integration mistakes may occur, as described above for SATURN. Therefore, 
supervised approaches are not well suited for new data without annotation. For this reason, we did not focus on cell 
population supervision in our method comparison. 

Data preprocessing 

Data for each of the three use cases was prepared separately as described below. For the mouse-human data, we 
used pancreatic islet datasets of mouse1 (without embryonic and low-quality cells) and human58, for the organoid-
tissue scenario we used a retinal dataset7, and for the cell-nuclei scenario we used adipose dataset59 (using the SAT 
fat type). We obtained published count data and cell annotation for all datasets (see Data availability section) and 
removed unannotated cells. Where necessary we manually curated cell population names to match across studies 
used within individual integration settings. In each system, we kept genes expressed in more than 20 cells, and in 
the mouse-human OTO setting we also only kept OTO genes, while in the FO setting, we removed genes without 
unique gene symbols (required for SATURN). Data was normalized with Scanpy normalize_total and log-transformed, 
and 3000 HVGs (4000 HVGs for organoid-tissue) were selected per system, keeping the union of HVGs across 
systems, similarly as proposed before20. For GLUE we computed a non-integrated principal component analysis (PCA) 
per system on scaled data using 15 principal components (PCs) and for SATURN we used this data to compute prior 
clusters per system.  
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Non-integrated embeddings were computed on the same cells as used for integration evaluation (described below). 
The normalized expression prepared for integration was standardized per gene, followed by computing 15 PCs, 
neighbors, and UMAP. 

Evaluation of batch effect strength in unintegrated data 

Batch effect strength comparison within and between systems within a data se case was performed by computing 
Euclidean distances between mean embeddings of cell type and sample groups in the PC space (15 PCs on scaled 
OTO data). We used only groups with at least 50 cells and cell types where both systems had at least three remaining 
samples. The significance of differences in distance distributions within and between systems was computed per cell 
type with the one-sided Mann–Whitney U test. 

Batch effect strength analysis of the three data types was performed using average silhouette width (ASW) with 
systems as the batch covariates for individual cell types of every data use case, using the non-integrated embeddings. 
We adapted scIB metrics function20 so that ASW scores were not reported as absolute values. We used ASW rather 
than iLISI metric as iLISI was not discriminative enough for the substantial pre-integration batch effects. As the 
computation was performed on the PCA space with comparable dimension ranges across data use cases, the 
dimension range bias described in Supplementary Note S5 does not affect the comparison. 

Integration 

We corrected sample and system-level batch effects during integration by adding them to the model inputs as one-
hot encoded vectors. The 𝐿𝐶𝑌𝐶  and 𝐿𝐴𝐷𝑉  were computed only on the system covariate. We ran each model with any 
given hyperparameter setting, as described below, three times with different random seeds. 

Our custom cVAE implementation was based on the scVI framework38. Unlike in scVI, we used the Gaussian log-
likelihood on normalized log-transformed data for reconstruction loss and did not use KL weight annealing. We used 
the same number of layers and dimensions as for scVI. To regulate batch correction strength we tuned the KL loss 
weight. 

Additional extensions were added on top of our cVAE model. We implemented the VampPrior as described by the 
authors of the original publication36 and did likewise for the GM prior, but with prior components representing points 
in the latent space. For the VampPrior we initialized prior components by randomly sampling cells from the data and 
for GM prior we either used sampled data that we passed through the encoder before training or used random 
initialization with mean in the range [0,1) and variance of one. As in cVAE, we also tuned KL loss weight for the VAMP 
model. The cycle-consistency loss was computed between the latent representation of a cell (𝑧𝑐=𝑖) and its cycle-pair 
coming from the other system (𝑧′𝑐=𝑗) using MSE on data standardized within a minibatch separately for cells and 

their cycle pairs. In both CYC and VAMP+CYC models we tuned the cycle-consistency loss weight. 

All previously published models (scVI, GLUE, and SATURN) were run with default parameters, except for the following 
changes. For scVI we used n_layers=2, n_hidden=256, n_latent=15, n_steps_kl_warmup=1600, and 
gene_likelihood=nb and we tuned max_kl_weight (KL loss weight). In GLUE we tuned rel_gene_weight (gene graph 
weights), lam_graph (graph loss weight), and lam_align (alignment loss weight). In SATURN we used the provided 
ESM2 protein embeddings and tuned pe_sim_penalty (protein similarity loss weight). The number of epochs was set 
to a fixed value per method and dataset, depending on the number of cells.  

Integration evaluation 

We performed evaluations on at most 100,000 randomly selected cells per dataset to reduce the computational 
cost, except for Moran’s I where cells were selected as described below. We computed neighbors on the latent 
embedding directly except where we specified that the embedding dimensions were standardized prior to neighbors 
computation. This data was also used for UMAPs. The non-integrated embedding was computed with 15 PCs on 
scaled OTO data, using the same set of cells as for the integrated data.  
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We describe the rationale for metric selection in Supplementary Note S5. For LISI and ASW metrics we used 
implementations from scib-metrics Python package (https://github.com/YosefLab/scib-metrics) and for NMI we 
adapted their implementation to set a random seed. We computed the NMI-fixed and Jaccard index by first 
computing Leiden clusters at high resolution (r=2) and then assigning a cell type label to each cluster based on the 
most common ground-truth label. This annotation was used for comparison to ground-truth labels. For Moran’s I 
we compared Moran’s I values between non-integrated and integrated data as follows. For the pre-integration 
Moran’s I computation we kept sample and cell type groups with at least 500 cells and excluded doublets. For each 
group, we removed genes expressed in less than 10% of the group’s cells, computed 15 PCs and neighbors per group, 
and used them to compute Moran’s I on all genes. We set a cutoff on Moran’s I per dataset to keep from around a 
dozen to around 150 genes per group for integration evaluation. On integrated data, we then repeated Moran’s I 
calculation on the same cell groups and the selected genes. The final score (𝑚𝑖) was defined as a ratio of post- 
(𝑚𝑖𝑝𝑜𝑠𝑡) and pre-integration (𝑚𝑖𝑝𝑟𝑒) values averaged across genes (𝐺), samples (𝑆), and cell types (𝐶𝑇). 

 

We selected the best hyperparameter setting per model over all tested hyperparameters. For every model, we 
scaled individual metrics to [0,1] across all runs computed for hyperparameter optimization and then computed the 
biological preservation score as the average of Moran’s I and NMI and batch correction as iLISI alone. The overall 
score was computed as a weighted average of biological preservation (weight=0.6) and batch correction 
(weight=0.4), similar to a previous benchmark20. The best hyperparameter setting was selected based on the average 
overall score across runs and for every hyperparameter setting we selected a representative run for UMAP plots as 
the run with the median overall score. We observed that optimal hyperparameter ranges were similar across 
datasets (Supplementary Figure S1) and we further discuss considerations for hyperparameter tuning in 
Supplementary Note S6. 

We compared the integration performance of all the benchmarked integration methods with their top-performing 
hyperparameter settings as described above. We used Welch's t-test followed by multiple test correction per dataset 
and integration metric with the two-stage Benjamini and Hochberg method. However, a limitation of our analysis is 
that we always had only three samples per group due to the resource intensiveness of integration benchmarking, 
reducing the statistical power. 

Preservation of gene groups known to be variable within pancreatic islet beta cells of healthy adult mice was 
evaluated with Moran’s I on the control sample from the mSTZ dataset1. We used Scanpy score_genes to obtain a 
single score for every gene group and computed Moran’s I on these scores for every embedding. 

Availability of data and code 

The datasets were retrieved from public repositories: GEO (GSE211799), www.isletgenomics.org, Single Cell Portal 
(SCP1376), and https://cellxgene.cziscience.com/collections/2f4c738f-e2f3-4553-9db2-0582a38ea4dc. 

The model and analysis code as well as the conda environments are available at: 
https://github.com/theislab/cross_system_integration. We implemented our method in scvi-tools package as an 
external model named sysVI (https://github.com/Hrovatin/scvi-tools/tree/main/scvi/external/sysvi, pull request 
under review) and provided a tutorial at: https://github.com/Hrovatin/scvi-tutorials/blob/main/scrna/SysVI.ipynb. 
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Supplementary material 

Supplementary notes 

Supplementary Note S1: KL regularization strength tuning leads to dimension shrinkage, but not batch correction 

Increasing KL regularization strength led, as expected, to stronger batch correction and lower biological preservation. 
However, we observed that this was not associated with the indistinguishability of cell representations in the latent 
space, but rather was caused by a reduced number of latent dimensions effectively used in downstream cell graph 
computation. Namely, stronger KL regularization leads to more latent dimensions having variation near zero 
(Supplementary Figure S2). This occurs as the cell embedding is the predicted mean of the cell’s latent variable 
representation, as is also done in scVI and GLUE, which is pushed towards zero to match the Gaussian prior when 
increasing KL regularization. As neighbors graph computation is standardly done with Euclidean distance on non-
scaled embedding60 this effectively leads to a small number of latent dimensions having a stronger effect on the 
graph representation. Indeed, after applying standard scaling to the embedding prior to the neighbor graph 
computation the different KL regularization strengths no longer strongly affected NMI and iLISI (Figure 2a,b, 
Supplementary Figure S4, Supplementary Figure S3). This indicates that biological and batch information is 
preserved in the embedding, but is not captured by the standard graph computation protocol. Nevertheless, we 
observed a drop of within-cell type variation (Moran’s I) on both scaled and unscaled data when increasing KL 
regularization strength, suggesting that finer variation is nevertheless lost. In contrast, while increasing 𝐿𝐶𝑌𝐶  loss 
weight also led to the shrinkage of latent dimensions, the embedding was not sensitive to scaling. We achieved this 
by computing cycle distances on latent embedding standardized within a minibatch. Thus, while KL regularization 
strength tuning in standard cVAE merely leads to a lower number of used latent dimensions, thus reducing both 
biological and batch information at the same time, 𝐿𝐶𝑌𝐶  actually removes batch effects from the embedding, as 
indicated by higher batch correction at comparable biological preservation (Supplementary Figure S1). 

Supplementary Note S2: Learning of prior components in VAMP 

The VampPrior, as proposed in the original publication36, contains learnable components and during training the 
components evolve to be located within data-dense regions (Supplementary Figure S13). Interestingly, if prior 
components are fixed, this does not affect VAMP integration performance, but strongly affects GMM where batch 
correction drops to a similar level as when using a single prior component (Supplementary Figure S8). This is 
somewhat unexpected, as one would assume that the encoder would be better able to align input representations 
to fixed prior components when inputs and prior parameters do not lie in the same space, as is the case in the GMM, 
but not the VAMP. 

We also inspected the effect of prior component initialization. VAMP pseudoinputs were initialized with input data. 
We did not use random initialization as it is challenging to perform appropriate random initialization of pseudoinputs 
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in the input space that would match the input cell distribution and could thus be effectively encoded by the encoder, 
which is trained to generate input cell representations. In the GMM, the data-based and random prior initialization 
showed no clear differences (Figure 3). Furthermore, the choice of input cells used to initialize pseudoinputs in 
VAMP did not seem to play a role, with similar performance when initializing them from a single cell type or system 
or in a balanced fashion from all cell types or systems (Supplementary Figure S9). This indicates robustness against 
varying prior initialization. 

Supplementary Note S3: Excessive reliance on prior cell cluster labels in SATURN harms cell representation 
learning 

SATURN uses prior cell cluster information to guide cell representation fine-tuning of a pre-trained conditional 
autoencoder (cAE)-based embedding. This is achieved by maximizing within-species distances between cells with 
different labels and minimizing cross-species distances between cells that are likely to have the same label. This 
leads to good cell type level preservation when high-quality cell type labels are available per species (SATURN-CT), 
however, it does not capture well within cell type information (Figure 5a). This can be explained by the lack of cell 
expression representation objective in the fine-tuning step, which relies on labels alone. Moreover, the contrastive 
loss directly pushes cells within cell types together, thus removing within-cluster variation. Thus, it is likely that even 
an implementation where contrastive loss is used during cVAE training, as in scPoli50, may suffer from poor within-
cell-type information preservation. In contrast, classification-based loss, for example in scANVI51, may be better 
suited for preserving within-cluster variation as it only enforces that cell clusters separate in latent space, but does 
not enforce any constraints on within-cluster structure. However, this hypothesis would need to be further tested. 

Furthermore, the prior labels must be of good quality to lead to proper cell type separation. While the authors 
propose that clusters can be used as a source of prior label information, we observed that this led to poor NMI 
(Figure 5a). Namely, when multiple batches are present within species, as the datasets in our mouse data, this will 
result in multiple dataset-specific clusters for individual cell types, which will also be reflected in the separation of 
cells by prior cluster in the final integration (Supplementary Figure S14). Similar effects were also observed when 
prior clusters were too fine or coarse with respect to underlying biological variation. For example, immune cells were 
separated into three distinct clusters when using cluster-based prior (SATURN), directly corresponding to prior 
clusters, and were merged into a single cluster when using cell-type-based prior (SATURN-CT). In both cases, the 
finer cell cluster structure retained within other models was lost (Figure 5b). 

Supplementary Note S4: Excessive reliance on batch covariate information leads to over-integration 

Downstream interpretation relies on striking the right balance between aligning cell populations that differ primarily 
due to batch effects and separating biologically distinct populations. For this, the relevant biological variation and 
undesired batch effects between systems must be disentangled. This is possible if the batch effects are more 
consistent across cell types, while system-specific biological variation, such as disease-induced heterogeneity, is cell-
type-specific, which may be often the case. Thus, if dissimilar cell types are embedded in the same region of the 
latent space this will lead to higher reconstruction loss as the batch covariate alone will not be able to explain this 
variation. However, if reconstruction quality is disregarded after the batch correction step, as described below for 
scGEN61, this may lead to over-integration. 

The scGEN model first trains a normal cVAE and then applies an additional batch correction step to every cell type 
separately. This is done by selecting one batch as the reference and moving all other batches (queries) on top of the 
reference batch. First, the distance between the reference and query mean latent embedding is computed and then 
query cell embeddings are transformed by the addition of the distance vector. This will force batch overlap even in 
the presence of biological differences, making this approach inappropriate for most data use cases as batch and 
biological effects are usually not orthogonal. For this reason, we did not include scGEN in our benchmark. 
Nevertheless, we below show that scGEN indeed fails to correctly align biological populations. 

All models except scGEN correctly separated retinal pigment epithelial cells from organoid and primary tissue data7 
(Supplementary Figure S5a). In the Mueller cell example, where organoid cells are expected to align with the tissue 
periphery but not fovea cells7, scGEN with samples as batch covariates led to over-integration, placing all samples 
on top of each other (Supplementary Figure S11). The alignment was also not improved by using systems rather 
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than samples as the batch covariate, which instead led to under-integration on the sample level within systems. This 
also resulted in poor alignment of systems as the alignment with latent space arithmetic was disrupted due to the 
per-system embedding structure and its mean being strongly affected by sample batch composition rather than 
being dominated by biology (Supplementary Figure S5a, Supplementary Figure S11). This highlights another issue, 
namely that there is no guarantee that the alignment will be correct on the level of cell subtypes for which 
corresponding cell annotation is unavailable. This is a consequence of the model never being faced with the task of 
reconstructing cell expression from the final corrected latent space. For example, we observed some errors in the 
amacrine subtype alignment, where cells expressing starburst amacrine marker SLC18A3 did not co-localize in the 
scGEN embedding while showing clear sub-localization when using the VAMP+CYC model (Supplementary Figure 
S15). Therefore, we deem scGEN inappropriate for integration as its latent space is inherently biologically flawed 
due to over-reliance on prior information about cell types and batch covariates.  

Supplementary Note S5: Selection of integration metrics 

Recently, multiple metrics for the evaluation of integration methods were proposed and implemented in the scIB 
package20. However, we decided to use only a subset that we believe enables a higher-quality evaluation. We 
observed that metrics that operate on distances directly (such as ASW) rather than on the graph (such as LISI and 
NMI/ARI) lead to biases when more or less latent dimensions have a high-value range. We observed that when 
tuning integration hyperparameters, which leads to shrinkage of some latent dimensions (Supplementary Figure 
S2), metrics such as ASW led to inaccurate results that are in the most extreme cases even opposite to graph-based 
metrics and visually distinct patterns on UMAPs. To validate this, we simulated data (Supplementary Figure S12a) 
where one dimension had a bimodal distribution to represent two distinct groups and 15 additional dimensions 
represented Gaussian noise unrelated to the two groups. As a starting point, all noise dimensions had the same 
standard deviation. We then progressively shrank some of the noise dimensions to have a smaller standard 
deviation, thus corresponding to dimension shrinkage observed when tuning integration hyperparameters. When 
increasing the number of shrunken noise dimensions, but keeping the group dimension constant, the ASW-based 
metrics were much more strongly affected than the LISI-based metrics (Supplementary Figure S12b). This can be 
explained by the graph structure being more robust to adding random noise than the underlying distances. As most 
downstream single-cell analyses are based on graph representations rather than on distances directly, we believe 
that graph metrics thus more realistically represent data characteristics relevant for analysis. From the group of 
graph-based batch correction metrics, we decided not to use graph connectivity as it has a poor detection limit21 
and kBET due to computational costs21, and from biological preservation metrics we excluded ARI, as it is computed 
in a very similar manner as NMI, leading to predominately redundant results (see scIB reproducibility code20), and 
cLISI, as we observed a poor detection limit with the metric being at its maximum in most cases, as also reported 
before20. 

While the NMI metric assesses the presence of cell clusters, which are of importance for any downstream single-cell 
analyses, its interpretation is complicated due to different factors that lead to poor correspondence between 
embedding clusters and cell type labels. Namely, NMI will be low both when we have merging of multiple cell types, 
usually caused by too high batch correction, as well as separation of cell types into multiple clusters, which can be 
caused by different factors. For example, in SATURN individual cell types separate into multiple clusters due to over-
reliance on prior labels (Supplementary Note S3). In contrast, multiple clusters per cell type may also be a result of 
poor integration, leading to low NMI even when cell types separate well within batches. This is for example observed 
in GLUE with small alignment loss weight (0.005 or 0.0005, Supplementary Figure S1). Thus, in certain analyses 
where we wanted to strictly separate between cell type mixing, which is usually associated with excessive batch 
correction, and the ability to separate cells by cell types, indicating biological preservation within batches, we used 
an adapted NMI version (NMI-fixed). This metric uses a fixed clustering resolution and then annotates each cluster 
based on the majority ground-truth cell type. These annotations are used for NMI computation, thus indicating if 
cell types can be well separated. This corresponds to the ability to do standard scRNA-seq annotation where 
clustering at high resolution followed by cluster merging is often used to annotate populations that require high 
resolution to form distinct clusters. However, NMI-fixed cannot detect over-clustering as observed in SATURN, thus 
we decided to use NMI in most other analyses as it is more generally able to detect if the integrated clusters directly 
correspond to cell types. 
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The previously suggested biological preservation metrics20 are based mainly on cell type labels, which are commonly 
available only for cell types, but not for cell states within cell types. Some metrics, such as trajectory, cell cycle, or 
HVG conservation enable biological preservation evaluation at the sub-cell type level, however, they are often not 
applicable, due to the lack of a trajectory or cycling cells in the data and integration methods not producing corrected 
expression values, respectively. Thus, to evaluate how biological variation is preserved within cell types, we adapted 
Moran’s I biological preservation metric, which was proposed before1 to measure spatial covariation of gene 
expression across an embedding, corresponding to distinct gene expression patterns. We changed the metric to first 
identify variable genes within individual non-integrated samples and cell type groups and then compare their 
variation before and after integration for every individual group. These metric modifications enable the selection of 
more relevant genes that are truly variable prior to integration, remove batch effect biases due to per-sample 
computation, and enable direct comparison before and after integration. We show examples of Moran’s I values 
and the corresponding expression patterns for five gene groups known to be variable in mouse healthy adult beta 
cells1 on embeddings produced with different integration models (Supplementary Figure S12c). However, as this 
metric is computed per sample, it cannot detect the preservation of cross-sample patterns or proper alignment 
across samples. Sample alignment is much more challenging to measure as it usually requires prior knowledge about 
sample metadata, such as the presence of a developmental trajectory or disease-driven differences across samples 
within an individual cell type. Therefore, we show sample alignment on a few examples but do not propose a generic 
metric for it. 

Supplementary Note S6: Effect of hyperparameter tuning on the performance of different models 

One important characteristic of integration models is the ability to tune hyperparameters regulating batch correction 
to achieve sufficient integration for downstream analyses depending on the batch strength. At the same time, 
increasing batch effect correction often reduces the preservation of biological information20,55, necessitating finding 
a good tradeoff. We observed that some models did not offer enough flexibility in batch correction tuning or 
contained an overwhelming number of possible parameter combinations to be accounted for. Furthermore, some 
hyperparameters weren’t monotonically associated with batch correction, in contrast to our expectations.  

In the scVI and VAMP models, stronger KL regularization resulted in lower biological preservation. However, iLISI did 
not increase consistently with increasing KL regularization strength and remained relatively low in all settings 
(Supplementary Figure S1, Supplementary Figure S16). This biological preservation-batch correction tradeoff makes 
this hyperparameter-model combination less favorable. In contrast, while increased 𝐿𝐶𝑌𝐶  weight in CYC and 
VAMP+CYC models was also negatively correlated with biological preservation, this was somewhat less prominent 
than when tuning KL regularization strength, and the positive correlation with batch correction was also higher 
(Supplementary Figure S1, Supplementary Figure S16). Furthermore, 𝐿𝐶𝑌𝐶  was also able to achieve higher iLISI than 
the tuning of KL regularization strength alone. Altogether, this makes 𝐿𝐶𝑌𝐶  , in comparison to KL regularization 
strength, a better candidate for custom batch correction tuning of cVAEs, both when using a Gaussian prior and the 
VampPrior.  

Multiple hyperparameters of GLUE (adversarial alignment loss weight, gene graph loss weight, and gene graph edge 
weight) affected integration performance in different ways (Supplementary Figure S1). We observed that increased 
alignment loss weight, which should increase adversarial batch correction, had an optimal iLISI range (around 0.05 
in all datasets) and thus did not increase batch correction beyond a certain point, similarly as described for KL 
regularization in the scVI and VAMP models. Note that the low NMI at low alignment loss weight is not caused by 
over-integration but rather by the separation of cells across the system, thus leading to multiple clusters per cell 
type, which then do not match up with the cell type labels (Supplementary Note S5). Furthermore, decreasing gene 
graph loss weight and gene graph weights led to higher iLISI, with low gene graph weights leading to the highest iLISI 
overall, at the expense of biological preservation (Supplementary Figure S1, Supplementary Figure S16). This could 
be explained by the role of the gene graph in biological supervision, as it connects the gene embeddings and 
subsequently also cell embeddings from individual encoders. If the gene graph constraints are reduced, the gene 
correspondence between systems can be re-interpreted to increase batch correction. While this may be beneficial 
in moderate amounts, for example for cross-species integration, it could potentially, in extreme cases, lead to 
biologically false correspondence between genes and consequently cells. Furthermore, weaker graph constraints 
may lead to lower graph loss, with lower graph loss resulting in relatively higher importance of the alignment loss 
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during training. Overall, the multitude of losses and their interactions in GLUE that affect integration performance 
complicates the selection of the hyperparameter set to tune. 

Lastly, as SATURN didn't offer many loss parameters to be optimized, we tuned only protein similarity loss weight 
that regulates the reliance on prior-defined protein embedding of genes. Despite a wide range of the tested values 
(0.01-10.0), we did not observe major variations in biological preservation or batch correction.  

It is important to consider that the observed hyperparameter-batch correction patterns hold only in the tested 
hyperparameter ranges. Nevertheless, the tested hyperparameter ranges were selected so that values outside of 
them would likely lead to inadequate biological preservation or batch correction, making them unsuitable for 
integration. 

Supplementary methods 

Simulation for comparison of graph and distance-based metrics 

We simulated two groups of points (n=100 per group) from normal distributions with means of zero and one, 
respectively, and variance of one. We added 15 additional dimensions coming from a standard normal distribution, 
representing noise dimensions that do not separate between the two groups. ASW and LISI (both biological 
preservation and batch correction variants) were computed on all 16 dimensions while the size of 0 to 15 noise 
dimensions was divided by ten to push them towards zero. The simulations were repeated ten times. 

Integration with scGEN 

We ran scGEN with default parameters, except for kl_weight=0.1. We used either samples or systems as the batch 
variable since the model does not allow for multiple batch variables. 

Supplementary figures 
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Supplementary Figure S1: Integration performance across models and different model hyperparameters. Rows 
show different models and tested hyperparameters (y-axis values), columns show per-dataset integration metrics, 
and dots represent individual runs with different seeds. 

 

Supplementary Figure S2: Shrinkage of latent embedding dimensions when increasing batch correction-related 
hyperparameters. Standard deviations (std) of individual embedding dimensions (dots) obtained with different 
hyperparameter values (x-axis, shown for runs with seed=1) for cVAE and as a comparison CYC (rows) across datasets 
(columns). 
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Supplementary Figure S3: UMAP of scaled and unscaled embeddings. Embeddings produced with cVAE and CYC 
models with low and high batch correction strength hyperparameter values (shown runs with seed=1). Datasets: (a) 
mouse-human, (b) organoid-tissue, (c) cell-nuclei. 
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Supplementary Figure S4: Effect of scaling cVAE integration embedding on integration metrics. Integration metrics 
of datasets (x-axis) computed using scaled and unscaled embedding from cVAE and for comparison CYC, shown 
across different values of hyperparameters used for tuning batch correction (y-axis).  
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Supplementary Figure S5: UMAP embeddings of representative runs for the best hyperparameter setting of every 
model. Shown for datasets (a) organoid-tissue and (b) cell-nuclei. To (a) we also added two example runs for scGEN 
with samples or systems as batch covariates. A legend for sample colors is not shown due to the large number of 
samples. 

 

Supplementary Figure S6: Adversarial learning is more prone to cell type mixing than cycle-consistency loss. 
Shown is the cell type mixing score measured with the Jaccard index between embedding clusters and ground-truth 
labels; the score was max-scaled per cell type. Results are presented for integration of the (a) organoid-tissue and 
(b) cell-nuclei datasets with GLUE and CYC with different loss weights (LW) of losses that regulate batch correction. 
Individual cell types are annotated with the number of cells in the more abundant system and the ratio of cells 
between the less and the more abundant system. Red boxes mark example cell types that are commonly mixed by 
the adversarial model, especially when increasing batch correction strength. 
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Supplementary Figure S7: Individual VampPrior prior components co-localize with cell types rather than systems. 
(a) Cells are colored by the prior component (N=5) with the highest probability, cell type, and system (rows) on 
embeddings generated with different prior initializations (columns). Priors were initialized either by sampling cells 
from a single system or in a balanced manner from both systems. Shown are UMAPs of the VAMP integration of the 
mouse-human dataset. (b) Entropy of the most probable prior assignment within every cell type or system (dots) 
corresponding to (a), with colors indicating runs with different prior initializations. Entropy was scaled by the 
maximal possible entropy. 
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Supplementary Figure S8: Integration performance of VAMP and GMM with different prior component settings. 
Rows show different models and prior settings, including the number of prior components (y-axis values), columns 
show per-dataset integration metrics, and dots represent individual runs with different seeds for each setting. FP - 
fixed prior, RPI - random prior initialization.  
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Supplementary Figure S9: Initializing pseudoinputs from all cell types or both systems or only one cell type or 
system does not have a major effect on the integration performance. Rows show different prior initializations, with 
the top row having random initialization with a different number of prior components (y-axis), and the other two 
rows being initialized with either one prior component sampled from each cell type or system (“Balanced”) or from 
a single cell type or system with the number of prior components equal to the number of cell types (N=17) or systems 
(N=2), respectively. Columns show integration metrics for the mouse-human dataset and dots represent individual 
runs with different seeds. 

 

Supplementary Figure S10: Between-system batch effects strength prior to integration. Shown are ASW batch 
values computed with systems as batch covariates for individual cell types (points) in every dataset, with higher 
scores indicating stronger system mixing. The distribution of ASW batch scores is significantly higher in cell-nuclei 
dataset compared to mouse-human (p-value = 2.1e-03) or organoid-tissue (p-value = 3.9e-03) dataset, with the latter 
two not differing significantly from each other (p-value = 3.7e-01). This indicates that batch effects in the cell-nuclei 
dataset are relatively weaker, as can also be seen in the non-integrated UMAP plots (Figure 5b, 
Supplementary Figure S5). 
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Supplementary Figure S11: Sample alignment in integrated Mueller cells. Plotted are UMAPs of Mueller cell subset 
from the organoid-tissue dataset based on representative runs for the best hyperparameter setting of every model. 
We also added two example runs for scGEN with samples or systems as batch covariates. The UMAPs are colored by 
cell density in organoid and tissue cell groups and expression of foveal marker RHCG. 
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Supplementary Figure S12: Evaluation of integration metrics. (a) Overview of the data simulation process used for 
comparing distance and graph-based metrics. (b) Graph-based metrics are less affected by the value range of the 
noise dimensions than distance-based metrics. Shown are biological preservation and batch correction scores based 
on ASW or LISI when 0 to 15 of the noise dimensions are shrunk to have smaller variance. (c) Examples of Moran’s I 
scores and corresponding expression patterns on UMAPs for five gene groups known to be variable in healthy adult 
mice. For every model, one representative run from the best hyperparameter setting was selected (as shown in 
Figure 5b) and cells were subsetted to one healthy adult mouse pancreatic sample, used for computing UMAP and 
Moran’s I. 
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Supplementary Figure S13: The update of the VampPrior components during the training. The top row shows how 
the VampPrior components’ (N=2) mean parameters (colored) are updated during the training in the space of the 
first six PCs (pairwise plots in columns) computed on the model’s latent space. The contour lines represent the 
density of the input cells (every 10th quantile) and the gray points individual cells. The middle row shows the system 
covariate and the bottom row shows the cell type. Shown are UMAPs of VAMP integration of the mouse-human 
dataset. 

 

Supplementary Figure S14: Batch effects in prior cluster labels are reflected in the final SATURN integration. The 
UMAPs display the per-system prior clusters and the dataset covariate for the mouse system. They were computed 
on a representative run from the best hyperparameter setting for SATUR mouse-human integration. Prior cluster 
color legend is not shown as individual cluster names are not meaningful. For the mouse-specific covariates (datasets 
and clusters) the human data is shown as a background in light gray, and vice versa for the human covariates. 

 

Supplementary Figure S15: Cell subtype preservation in amacrine cells after integration. The UMAPs are colored 
by expression of starburst amacrine cell marker SLC18A3. They were computed for the amacrine cell subset from 
the organoid-tissue dataset based on a representative run for the best hyperparameter setting of VAMP+CYC and 
on two example runs of scGEN with samples or systems as batch covariates.  
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Supplementary Figure S16: Spearman correlation between hyperparameter values and integration metrics. 
Correlation (corr.) was computed for different combinations of models and tuned hyperparameters (x-axis) across 
all runs and hyperparameter values (HP) in the OTO setting as shown in Supplementary Figure S1, separately for 
each dataset. Values of hyperparameters that are expected to be negatively rather than positively associated with 
batch correction strength were inverted (inv.) before computing correlation. 

Supplementary tables 

Supplementary Table S1: Comparison of pre-integration sample distances within and between systems. One-sided 
Mann–Whitney U test was used to compare distributions of per-cell-type sample distances in the PCA space within 
a system (control) and between systems (case) for every data use cases (sheet names). Column names: cell_type - 
tested cell type; system - control group, with “within/between” in the mouse-human data referring to 
within/between dataset distances in the mouse data; u - test statistic; padj - adjusted p-value; n_system and 
n_crossystem - number of distances (observations) in the control and case groups, respectively. 

Supplementary Table S2: Statistical comparison of model performance in different data use cases. Welch’s t-test 
was used to compare integration performance between different models in individual data use cases. For each 
model, the best hyperparameter setting was selected as described in the methods and shown in Figure 5. Column 
names: dataset - the integrated dataset, metric - integration metric, model - the used integration model, p - p-value, 
t - test statistic, padj_fdr_tsbh - adjusted p-value, model_cond - model used as the test condition, model_ctrl - model 
used as the control condition, higher - model with higher value of the tested metric. 
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