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Abstract: Vectorization of teaching signals is a key element of virtually all modern machine 

learning algorithms, including backpropagation, target propagation and reinforcement learning. 15 

Vectorization allows a scalable and computationally efficient solution to the credit assignment 

problem by tailoring instructive signals to individual neurons. Recent theoretical models have 

suggested that neural circuits could implement single-phase vectorized learning at the cellular 

level by processing feedforward and feedback information streams in separate dendritic 

compartments1–5. This presents a compelling, but untested, hypothesis for how cortical circuits 20 

could solve credit assignment in the brain. We leveraged a neurofeedback brain-computer 

interface (BCI) task with an experimenter-defined reward function to test for vectorized instructive 

signals in dendrites. We trained mice to modulate the activity of two spatially intermingled 

populations (4 or 5 neurons each) of layer 5 pyramidal neurons in the retrosplenial cortex to rotate 

a visual grating towards a target orientation while we recorded GCaMP activity from somas and 25 
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corresponding distal apical dendrites. We observed that the relative magnitudes of somatic versus 

dendritic signals could be predicted using the activity of the surrounding network and contained 

information about task-related variables that could serve as instructive signals, including reward 

and error. The signs of these putative teaching signals both depended on the causal role of 

individual neurons in the task and predicted changes in overall activity over the course of learning. 30 

Furthermore, targeted optogenetic perturbation of these signals disrupted learning. These results 

provide the first biological evidence of a vectorized instructive signal in the brain, implemented via 

semi-independent computation in cortical dendrites, unveiling a potential mechanism for solving 

credit assignment in the brain. 

  35 
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Main Text: 

Dendrites as a biological substrate for credit assignment in the brain 

Learning is the product of changes in the strength of synaptic connections between neurons6–13. 

Synaptic modifications can have difficult-to-predict effects on network output, particularly in 

complex hierarchical networks like the brain. The challenge of determining how individual 40 

synapses should be altered to improve task performance is known as the credit assignment 

problem14–18. While this problem is effectively solved in artificial neural networks (ANNs) by the 

backpropagation-of-error algorithm19, how credit assignment is solved in the brain remains 

unknown14,15.  

Recent theoretical work has proposed several models by which biological circuits could 45 

solve credit assignment, including target learning and backpropagation-like algorithms1–5,20,21. 

Central to both artificial and biologically-inspired solutions to credit assignment is the vectorization 

of instructive signals, as opposed to the broadcasting of a single scalar teaching signal14. Effective 

learning requires, in addition to vectorization, instructive signals to be separable from feedforward 

inputs to prevent interference15. In ANNs, this is achieved via temporal separation, which has long 50 

been thought to be biologically-implausible. One hypothesis is that in cortex, credit-related 

information is spatially, rather than temporally, segregated in the apical dendrites of pyramidal 

neurons15. This aligns with anatomical and circuit evidence that feedforward inputs are received 

perisomatically and feedback inputs are received in the distal dendrites22–30. However, direct 

evidence regarding the subcellular mechanisms of credit assignment is lacking.  55 

Vectorized teaching signals at the dendritic level should meet four experimentally testable 

criteria. First, dendritic activity should contain information not present in somatic activity alone 

(while somas could theoretically transmit gradients using qualitatively different spiking 

patterns2,4,31, the cable properties of dendrites predict some level of independence between 

somatic and dendritic activity). Second, dendritic activity should encode information about task 60 
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performance that could serve as instructive signals, such as reward and error-representations. 

Third, dendritic activity should reflect the contribution of that neuron to task performance (i.e., the 

reward function). Fourth, disrupting vectorized instructive dendritic signals should impair learning. 

 

Specifying a reward function using a brain-computer interface task 65 

Evaluating credit assignment in biological neural networks has thus far proven impossible14,15. 

Teaching signals can only be defined relative to a reward function that maps neural activity to 

task performance. It is unclear if such functions are explicitly represented in the brain. Even if they 

are, experimenters are blind to their specific formulation in terms of neural activity15. 

Neurofeedback brain-computer interface (BCI) tasks present a potential solution to this problem 70 

by directly coupling neural activity to task performance, thereby allowing the experimenter to 

specify the reward function to be optimized14,20,21. Previous studies have shown that mice are able 

to learn BCI tasks using a variety of feedback stimuli and brain areas and that learning induces 

changes in the activity of the neurons controlling the BCI, including in the hippocampus and 

various sensory and motor cortices32–38. Here, we leveraged a visually guided neurofeedback BCI 75 

task in cortical pyramidal neurons to test subcellular mechanisms for error and reward-related 

signaling (Fig. 1a, b and c, and Extended Data Fig. 1 and Extended Data Fig. 2). We trained head-

fixed mice under a 2-photon microscope to control the activity of two spatially intermingled sets 

of GCaMP7f-labeled layer 5 (L5) pyramidal neurons (PNs), in the retrosplenial cortex (RSC), 

designated P+ and P- (see methods Extended Data Fig. 3 and Extended Data Fig. 6b for selection 80 

criteria). The difference in mean somatic GCaMP activity of P+ versus P- neurons was coupled 

to rotation of a visual grating relative to a rewarded target angle32–35,37,38 (Fig. 1d, e, and f and 

Extended Data Fig. 1). We selected RSC due to the optical accessibility of layer 5 and previous 

demonstration of independent dendritic events in this area39. We recorded GCaMP activity at 15 

Hz in the proximal trunk dendrite as a proxy for somatic activity; this allowed imaging of many 85 
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neurons while reducing signal contamination due to the more precise spatial footprint and faster 

signal kinetics of the apical trunk40–42. We measured task performance with two metrics: accuracy, 

which represented the fraction of rewarded trials; and speed, which represented the numbers of 

rewards obtained per minute. Mice (n = 6) learned the task by both metrics (Fig. 1g, Extended 

Data Fig. 4 and Extended Data Fig. 5).  90 

We compared activity levels of P+ and P- populations, as well as the population of 

surrounding neurons not directly involved in the rotation of the stimulus (termed P0), across days 

of task performance. We imaged the same neurons longitudinally throughout all experiments. We 

found that learning was accompanied by the differential regulation in the activity of P+ and P- 

neurons over days (Fig. 1h, i), with P+ neurons maintaining their activity levels while P- neurons 95 

were downregulated While, on average, changes in activity in P0 neurons resembled changes in 

P+ neurons (Fig. 1i), selecting the subpopulation of P0 neuron with matching activity levels of P+ 

and P- neurons on day 1 revealed that changes in activity in P0 neurons fell in between P+ and 

P- neurons (Extended Data Fig. 6). As the most active neurons on day 1 were also those most 

strongly downregulated (Extended Data Fig. 6b), our results are consistent with a model of 100 

learning by sparsification, an energy-efficient solution to the task43. Increases in task performance 

were not correlated with changes in locomotion across days (Extended Data Fig. 7). Moreover, 

the P+ and P- populations were spatially intermingled, and had the same GCaMP transient 

frequency on day 1 (Extended Data Fig. 3 and Extended Data Fig. 6a), ruling out the possibility 

of learning the task by simply engaging a non-specific gain modulation mechanism.  105 

 

Dendrites contain information not found in their somas  

To determine whether apical dendritic activity contained information not encoded in parent 

somatic activity alone, we used an electrically tunable lens (ETL) to semi-simultaneously (15 Hz 

per plane) record activity in proximal and distal trunk dendrites across learning (Fig. 2a). We 110 
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paired proximal and distal dendrites based on the Pearson correlation of their GCaMP signals, 

thresholded at r = 0.6 as in previous studies40–42. Previous work in brain slices demonstrated that 

dendritic GCaMP signals are larger when current is injected in the distal trunk and smaller when 

current is injected at the soma40 (controlling for the same number of triggered corresponding 

action potentials). This indicates that differences in somatic versus dendritic magnitude for 115 

coincident GCaMP events reflect the spatial bias of the different inputs that target these two 

compartments. To estimate the magnitude of somatic and dendritic events, we first deconvolved 

the GCaMP traces of somas and dendrites using CASCADE44. Deconvolution allowed us to 

correct for the well-described problem of different signal kinetics across dendritic compartments45. 

Next, we utilized an area-under-the-curve approach to quantify the magnitude of individual 120 

transients (all main results were also validated using a ∆F/F0-based approach to estimation of 

transient’s magnitude, see Methods and Extended Data Fig. 8) and defined events as coincident 

whenever they occurred within 500 ms of each other. Since these coincident events represent 

the vast majority of GCaMP transients39–42,45–51, we focused all subsequent analysis on events for 

which a transient was detected in both compartments.  125 

Empirically, we observed that the relative magnitude of coincident events in somas and 

dendrites varied dramatically, despite event timing correlation being very high (Fig. 2b; consistent 

with prior studies39,40,42,45,46,48). Since event magnitudes at soma and dendrites were best 

described by a linear relationship (Extended Data Fig. 9 and Extended Data Fig. 10b), we 

assessed the relative degree of dendritic amplification versus attenuation with a best-fit line 130 

through all events and then calculated the somato-dendritic (SD) residual associated with 

individual transients (Fig. 2b, c)42. This captured the variance of dendritic responses for a given 

somatic event magnitude. We then defined positive and negative residuals as dendritically 

amplified and attenuated events, respectively.    

To test whether SD residuals contain information that is biologically meaningful, we used 135 

activity from all the somas in our field of view in the two seconds preceding individual GCaMP 
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events in a neuron of interest (P+ and P- neurons on days 1 to 14) to predict whether these events 

were dendritically amplified or attenuated (Fig. 2d). To do so, we used a linear Support Vector 

Machine (SVM), a common algorithm to both classify and regress using high-dimensional data.  

We found that the performance of our binary classifier on individual neurons strongly correlated 140 

with the decoder’s ability to capture the magnitude of dendritic amplification/attenuation in the 

classification confidence (Fig. 2e, g, h, Extended Data Fig. 10c, d, and Extended Data Fig. 11a, 

b). This was an emergent property since the decoder was trained for binary classification only 

and had no information about the magnitude of dendritic amplification/attenuation. Among 466 

neurons, approximately 20% showed a significant correlation between classification confidence 145 

and the magnitude of SD residual (Fig. 2h, Extended Data Fig. 10c, d, and Extended Data Fig. 

11a, b). We found that in these neurons, we could accurately decode 61% of the events as being 

either amplified or attenuated, well above the 50% chance level (Fig. 2j, Extended Data Fig. 10e, 

and Extended Data Fig. 11c). Additionally, at the single-cell level, we found a statistically 

significant positive Pearson correlation between classification confidence and SD residual, 150 

demonstrating that the surrounding network of neurons can be used to predict the amplitude of 

the residual for coincident somato-dendritic transients (Fig. 2k, Extended Data Fig. 10f, and 

Extended Data Fig. 11d). Importantly, our analysis approach completely decorrelates somatic 

event magnitude from SD residuals (Fig. 2f, I, and Extended Data Fig. 10a), indicating that 

mismatches in somato-dendritic coupling are predicted independently from somatic activity and 155 

represent information encoded de novo in the dendrites. Additionally, our results demonstrate that 

P0 neurons could be decoded at the same level as P+ and P- neurons (Extended Data Fig. 12), 

and that decoding does not depend on somatic responses to visual stimuli across the three 

subpopulations (Extended Data Fig. 13). 

We further found that dendritically amplified events consistently peaked earlier than 160 

dendritically attenuated events compared to the soma (Fig. 2l, m, Extended Data Fig. 10g, and 

Extended Data Fig. 12e), congruent with results in brain slices40.  
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Dendritic activity is preferentially reduced by both anesthesia and optogenetic activation 

of NDNF-positive layer 1 interneurons 165 

Previous studies indicate that anesthesia reduces top-down input and/or inhibits apical tuft 

dendrites in L5 PNs22,52–54. We therefore hypothesized that SD residual should be reduced during 

anesthesia compared to wakefulness. To test this, we simultaneously recorded somatic and 

dendritic activity of L5 PNs in RSC during these two conditions (Fig. 3a, b, c). Consistent with 

previous findings22, we observed a dramatic effect of anesthesia on the frequency of GCaMP 170 

transients (Fig. 3d). For each neuron, we used all events detected during wakefulness to establish 

the distribution of SD residuals during awake periods. We then measured the effect of anesthesia 

on the SD residual using the best-fit somato-dendritic line calculated during wakefulness. 

Anesthesia strongly reduced the SD residual (Fig. 3c, e), consistent with previous observations 

of decreased top-down input22,54.  175 

 Prior work has also demonstrated that NDNF-positive layer 1 inhibitory interneurons (L1 

INs) can inhibit the apical dendrites of pyramidal neurons52,53. We therefore tested whether NDNF-

mediated inhibition reduced SD residuals, indicative of a preferential effect on apical dendritic 

activity. To do so, we co-injected NDNF-Cre mice with both a Cre-dependent version of ChRmine 

in layer 1 and GCaMP7f, expressed under the control of the synapsin promoter in layer 5 (Fig. 3f, 180 

g). We then recorded somatic and dendritic GCaMP activity of individual layer 5 neurons, in the 

presence and absence of L1 NDNF+ IN activation via an LED light (Fig. 3h). Similar to our 

approach during anesthesia, we first established the control relationship between somatic and 

dendritic event amplitudes for each neuron and then compared this to the SD residuals of activity 

during optogenetic activation. NDNF+ IN activation reduced the frequency of GCaMP transients 185 

and, consistent with a number of previous ex vivo and in vivo studies52,53,55, strongly decreased 

the SD residual in individual layer 5 pyramidal neurons (Fig. 3h, l). Together, these results 
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demonstrate that SD residual is predictably affected by two independent experimental 

manipulations in vivo, establishing it as a robust metric of dendritic versus somatic activity.    

 190 

Somato-dendritic residuals decode reward and trial outcome at the population level 

Next, we evaluated if the SD residual contained information about task-related variables that could 

serve as putative teaching signals. We first tested whether changes in SD residual at the 

population level contained reward-related information. For each imaging session, we decoded 

rewarded versus unrewarded trials by comparing the 2 s following neural activity reaching target 195 

activation on rewarded trials with the analogous 2 s timeout period during unrewarded trials (Fig. 

4a, b, c). Using a linear SVM trained on SD residuals (see Methods), we were able to decode at 

63% accuracy on average, above both chance and shuffle performance (Fig. 4d, e, Extended 

Data Fig. 14, and Extended Data Fig. 15a, b).  

Next, we tested if inputs onto the apical tuft dendrites represent instructive signals during 200 

learning. We used SD residuals to decode successful versus unsuccessful trials in the 2 s periods 

preceding successful target activation versus timeout, respectively. Once again, we found that 

our decoder performed significantly above chance at 57% accuracy on average (Fig. 4c, f, g, 

Extended Data Fig. 14 and Extended Data Fig. 15c, d), demonstrating that individual neurons 

encode information about the network states that correspond to successful versus unsuccessful 205 

outcomes in their SD residuals both before and after reward delivery. Since the trial time we 

analyzed is pre-outcome, our results indicate that the SD residuals encode instructive signals 

based on the task-associated reward function.  

Finally, we tested the role of L1 inhibition in controlling dendritic signals encoding reward 

and trial outcome (Fig. 4h). To do this, we performed experiments on a second set of mice 210 

expressing ChRmine in NDNF+ L1 INs. Optogenetic activation of L1 NDNF+ neurons abolished 
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task and reward-related information in the apical dendrites of layer 5 pyramidal neurons (Fig 4i, j, 

k, l), indicating a key role for local cortical inhibition in dendritic processing task-related variables.  

 

Somato-dendritic residuals reflect neuron-specific task error signals 215 

We exploited the explicit definition of error and of functionally-opposite classes of neurons in our 

experimental design to test whether error signals are received at apical dendrites and, if so, 

whether they differ between neurons according to each neuron’s causal role in the task (Fig. 5a, 

b). We reasoned that a scalar error signal would manifest as amplified dendritic activity during 

periods of error reduction for both P+ and P- neurons and as attenuated dendritic activity during 220 

times of error increase. However, a vectorized error signal would exhibit selective P+ versus P- 

dendritic activation, since the activity of each group is causally mapped to error in opposite ways. 

To disambiguate between these scenarios, we averaged the error in 2 s windows throughout the 

task and defined each window as an error increase or decrease epoch, given that the angle of 

the visual stimuli presented to the animals represented the instantaneous task-associated error 225 

(Fig. 5a). Next, we calculated the SD residuals for P+ and P- neurons for coincident soma-dendrite 

events in each window during error decrease and error increase epochs. Since our analysis was 

restricted to time bins with coincident somato-dendritic events in P+ and/or P- neurons, any 

potential noise-driven flickering was not present in our analysis. We found that the dendrites of 

P+ neurons were relatively amplified during error-reduction compared to error-increase epochs 230 

(Fig. 5c). Dendrites in P- neurons exhibited the converse relationship: relative dendritic 

attenuation and amplification occurred during error-reduction and error increase, respectively 

(Fig. 5d, e, f, Extended Data Fig. 16, and Extended Data Fig. 17). This relationship could be 

observed in 6 out of 6 mice trained in the task (Extended Data Fig. 18) and remained intact when 

we restricted our analysis to neurons whose somatic activity was the same during epochs of error 235 

increase and reduction (Extended Data Fig. 19). Additionally, the same inverted relationship 
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between dendritic signals and task-associated errors was found in the dendrites of P0 neurons 

which were functionally correlated to P+ and P- neurons (Extended Data Fig. 20). Intriguingly, SD 

residuals represented error derivatives, not errors (Extended Data Fig. 21), in contrast to 

instructive signals found in the classical implementations of backpropagation.  240 

Next, we tested whether vectorized error-related dendritic signals were necessary for 

learning by optogenetically activating NDNF+ L1 INs throughout the BCI task. This abolished 

vectorized error-related signaling in the apical tuft of layer 5 PNs (Fig. 5f, g) and disrupted learning 

(Fig. 5h). This demonstrates that local computation in the apical dendritic tuft is necessary for 

performance improvements in the BCI task.  245 

 

Discussion 

Here, we demonstrate the first use of neurofeedback brain computer interfaces to study 

the mechanisms of biological credit assignment at the subcellular level. Our results provide the 

first biological evidence of a vectorized solution to the credit assignment problem in the brain via 250 

cortical dendrites. Our data is consistent with a model of credit assignment in which learning is 

instructed by instantaneous, vectorized teaching signals received onto the distal dendrites of 

pyramidal neurons1–5. This spatial segregation mechanism allows cortical circuits to overcome the 

biologically implausible temporal separation of feedforward and feedback streams conventionally 

used for computing teaching signals during vectorized learning in ANNs. 255 

The data presented here reveal magnitude differences in coincident somato-dendritic 

events that can be predicted using activity in the surrounding network of neurons. At the 

population level, differences in somato-dendritic coupling encode de novo information relative to 

somatic activity. This information could be used by individual neurons as instructive signals, such 

as reward and task error, providing novel evidence that individual neurons can explicitly access 260 

the reward function of a learning task through independent dendritic computation. We further 
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demonstrate that cell-specific changes in SD residuals correlate with the functional role of 

individual neurons as well as with subsequent changes in activity levels during learning. Finally, 

optogenetic activation of NDNF+ L1 INs disrupted both dendritic computation and learning, 

demonstrating that dendritic processing is necessary for learning.   265 

Our results demonstrate the existence of a signed, vectorized dendritic input that is 

tailored in a condition-specific manner to individual neurons. The extent to which this dendritic 

activity reflects moment-to-moment computational signals – as opposed to teaching signals for 

synaptic weight changes – remains to be elucidated. Future work is needed to assess whether 

these dendritic signals result from glutamatergic inputs from higher-order cortical areas, from 270 

neuromodulation, or as a product of recurrent excitatory and inhibitory local computation. 

Dopaminergic signaling specifically has been causally implicated in both error signaling and in 

learning neurofeedback BCI tasks in rodents and humans32,56–58 and thus represents a compelling 

target for future investigation. Further experiments are also needed to test whether errors signals 

are calculated locally at each hierarchical layer or are transmitted across layers, as in the classical 275 

formulation of backpropagation19. Previous neurofeedback BCI studies have demonstrated that 

degrading the contingency between neuronal activity and feedback stimuli impairs learning32–34: 

future work will have to determine whether external stimuli are always necessary for error 

representations or whether animals can access the cost function via internal states exclusively, 

and how the dendritic representation of error might change as a result.    280 

The error signals we observed have appealing connections to the gradient calculations 

found in the backpropagation algorithm. In contrast to the classical implementation of backprop, 

however, we observed that dendrites received signals that bore signatures of error derivative 

rather than error itself. Intriguingly, our results could also be consistent with target propagation 

(specifically, difference target propagation)14,20,21. Indeed, our data indicate that dendritic activity 285 

contains a target signal for the parent soma in addition to task-related error information. Future 
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approaches, built on the framework we present here, could be used to disentangle the specific 

learning algorithm(s) employed by the brain14,59. 

 Together, our results help to reconcile early findings and theories of dendritic function, 

which focused on single dendritic branches as the building blocks for independent computation, 290 

with later in vivo findings that have demonstrated prevalent co-occurrence of dendritic and 

somatic events15,24,50,60. By demonstrating that apical dendrites locally compute reward and error-

related signals, our results present a framework for dendritic computation which does not require 

fully independent dendrites to perform credit assignment for adaptive behavior and highlight new 

directions for the development of biologically-inspired ANNs.  295 

 

Methods 

Animals  

All experiments were compliant with guidance and regulation from the NIH and the Massachusetts 

Institute of Technology Committee on Animal Care. Male and female Rbp4-Cre and NDNF-Cre 300 

heterozygous mice were maintained on a 12-hour light/dark cycle in a temperature- and humidity-

controlled room with ad libitum food access and were used for experiments at 8-15 weeks of age. 

Except for anesthesia experiments, animals were water-deprived by decreasing water intake from 

3 ml to 1.2 ml over the course of 10-14 days and maintained at 1.2 ml thereafter, for 5-7 days 

before experiments and throughout training. 305 

Surgery 

Mice were initially anaesthetized using 4% isoflurane and subsequently maintained at 1-2% 

isoflurane through the rest of the surgery. Body temperature was maintained at physiological 

levels using a closed-loop heating pad. Additional heating was provided for post-surgical 

recovery. To protect eyes from dryness, eye cream (Bepanthen, Bayer) was applied. Animals 310 
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were injected with Dexamethasone (4mg/kg), Carprophen (5mg/kg) and Buprenorphine (slow 

release, 0.5mg/kg) subcutaneously. The scalp was shaved using hair-removal cream and cleaned 

afterwards using iodine solution and ethanol. Next, the skull was exposed. For in vivo imaging, a 

3mm-wide craniotomy was performed. In Rbp4-Cre mice, at 3-4 different sites, we injected 100 

nl of AVV1-syn-FLEX-jGCaMP7f-WPRE (Addgene, catalog # 104492-AAV1, 2-5x1012 vg/ml 315 

concentration after a 1:10 dilution from the original concentration) at 400 μm from the surface of 

the brain in the left hemisphere of the Retrosplenial cortex (2.5 mm caudal of bregma). The same 

labeling approach was utilized to perform anesthesia experiments. In NDNF-Cre mice, we injected 

100nl of AAV8-nEF-Con/Foff 2.0-ChRmine-oScarlet (Addgene, catalog # 137161-AAV8, 7x1012 

vg/ml after a 1:5 dilution from the original concentration) 150 μm from the surface of the brain and 320 

75nl of AAV1-syn-jGCaMP7f-WPRE (Addgene, catalog # 104488-AAV1, 2-5x1012 vg/ml 

concentration after a 1:10 dilution from the original concentration) 500 μm from the surface of the 

brain. The dura was left intact. Cranial windows consisted of two stacked 3mm coverslips 

(inserted within the craniotomy) attached to a larger 5 mm coverslip which was subsequently fixed 

to the skull using cyanoacrylate glue and dental cement. A custom metal headplate was implanted 325 

in order to perform imaging under head-fixed conditions. At the end of the procedure, a single 

dose of 25mL/kg of Ringer’s solution was injected subcutaneously to rehydrate the animal. 

Recordings started 4-6 weeks post-surgery.  

Two photon imaging 

A Neurolabware 2-photon microscope equipped with GaAsP photomultiplier tubes was used for 330 

data acquisition. Imaging was performed at 980 nm using an ultrafast pulsed laser (Spectra-

Physics, Insight DeepSee) coupled to a 4x pulse splitter to reduce photodamage and bleaching. 

For excitation and photon collection we used a 16x Nikon objective with 0.8 numerical aperture. 

Bidirectional scanning was performed (512x796 pixels) semi-simultaneously in two separate 

planes using an electrically-tunable lens at 30.92 Hz (15.46 Hz for each plane). Laser intensity 335 
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was independently optimized at each imaging plane using an electro-optical modulator. A custom 

light shield was attached to the headplate in order to avoid light contamination. Animals were 

habituated to human handling for 5-10 minutes every day and to head-fixation for 15 minutes a 

day for at least 3 days directly preceding imaging. Small 10% sucrose water rewards were 

randomly dispensed during habituation. Daily water intake of at least 1.2 mL was maintained 340 

throughout the behavioral experiments. The animal’s locomotion was recorded using an optical 

encoder (E6, US Digital, 2500 cycles per revolution) tracking the rotation of a cylindrical treadmill 

19 cm wide in radius and acquired using the Scanbox software interfaced to a custom-built 

Arduino system.  To maximize the number of units recorded while simultaneously reducing signal 

contamination, we imaged the trunk of layer 5 pyramidal neurons at two different planes: proximal 345 

to the soma and right below the nexus (tuft bifurcation point).  

Optogenetic stimulation 

For optogenetic stimulation we employed a Cyclops LED driver from open ephys (Catalog # 

OEPS-6602) triggered using a direct 6ms TTL pulse delivered via the Neurolabware Dual PSOC 

box. The driver controlled a fiber-coupled 595 nm LED laser (8.7mW, 100mA ThorLabs catalog # 350 

M595F2). LED activation was synchronized with the PMTs of the imaging system using custom-

made Matlab scripts. In brief, for every new frame acquired by the 2-photon microscope, the LED 

was activated for the initial 6ms of the frame, while the PMTs were kept shut off for 1 additional 

millisecond (7ms total of PMT off time). PMTs would then reactivate to collect calcium data for 

the remaining ~24ms of the ~31ms frame.     355 

Brain computer interface task 

Similar to previous implementations of brain-computer interface learning paradigms33,34,37, mice 

were trained so that they obtained rewards by modulating the activity of 8 or 10 layer 5 pyramidal 

neurons in the retrosplenial cortex to control the rotation of a grating Gabor patch. The 8 or 10 
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neurons were equally divided into 2 subpopulations, P+ neurons whose activity rotated the 360 

stimulus towards a target angle of 90-degrees (horizontal) and P- neurons whose activity rotated 

the stimulus away from the target angle, towards a 0-degree (vertical) orientation. Neural activity 

was transformed into a visual stimulus angle according to the following method: At the beginning 

of each session, we measured the baseline responses of P+ and P- neurons to 7 randomly 

presented oriented gratings (0-, 15-, 30-, 45-, 60-, 75-, 90-degree, passive viewing) for 365 

approximately 13 minutes (12000 frames). ∆F/F0 was calculated for individual P+ and P- neurons 

and averaged across each population. The mean P- population signal was subtracted from the 

mean P+ population signal. Next, we randomly resampled 200 trials (435 frames each) from the 

aforementioned 12000-frame baseline recording and iteratively searched (in 0.005 ∆F/F0 

incremental steps) for the subtracted ∆F/F0 value producing a 50% success rate. That value was 370 

set as the threshold value for target activity during the closed-loop phase of the BCI task. Next, 

we calculated the mean and standard deviation of the subtracted ∆F/F0 signal distribution and 

created a new distribution by mirroring the left side to the right. On day 1, we estimated the z-

score corresponding to the ∆F/F0 threshold value on the mirrored distribution. On the following 

days, we estimated the subtracted ∆F/F0 signal distribution and its corresponding left-mirrored 375 

distribution in the same way as described above in the same way as described above, and utilized 

the ∆F/F0 value corresponding to the z-score used on day 1 as the task target activity during the 

closed-loop phase of the task. In this way mice could learn the task by either decreasing activity 

of P- neurons or increasing activity in P+ neurons (or both). The mapping between neuronal 

activity and visual feedback angle was defined as follows: 0-degree angle corresponded to the 380 

minimum value in the subtracted ∆F/F0 signal distribution while target, or 90-degree angle was 

reached at subtracted ∆F/F0 value corresponding to threshold defined as described above. 

Activity in between was split into 7 equally spaced bins each corresponding to a 15-degree interval 

between 0 and 90 degrees. At each screen refresh, the angle presented reflected the mapping 
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between angle bins and the subtracted ∆F/F0 signal averaged over the last 3 frames. The screen 385 

refreshed every time a 2-photon frame at the soma was acquired (at 15Hz). In line with previous 

studies performing neurofeedback BCI in rodents32–35,37, we binned the visual stimulus to avoid 

noise-driven, frame-by-frame stimulus updates at the screen refresh rate, which is beyond the 

perceptual threshold in mice61,62. To avoid introducing a second, orthogonal dimension to our task 

that would disrupt the straightforward mapping between neuronal activity and task error, we did 390 

not introduce any requirement on the number of P+ or P- neurons required to be simultaneously 

active to trigger a reward or a stimulus update. In each trial, mice had 28 seconds to reach target 

activity. If they did, a reward, consisting of 4 μL of 10% sucrose water was delivered 1 second 

after. Additionally, after reaching target activity, the stimulus froze to a 90-degree angle for 2 

seconds. After that, mice saw a black screen for 1 additional second and a new trial was initiated. 395 

All new trials were initiated by a 0.5 s iso-luminant grey stimulus. If a mouse did not reach target 

activity within the 28 seconds of the trial, a 3 seconds timeout was given to them consisting of a 

black screen. To avoid the problem of drifting baselines, ∆F/F0 for each neuron was calculated as 

(Fi – Fi0)/Fi0 where Fi0 was the 10th percentile of fluorescence in the previous 30 seconds. For 

the optogenetics experiments, we recorded 2 different baselines (during passive viewing). The 400 

first one with the LED off (control) was used for post-hoc analysis only. The second baseline was 

recorded during LED stimulation (opto on) and was used to map neuronal activity to angle and 

target during the closed-loop part of the BCI task. The closed-loop part of the BCI task was 

recorded during the opto on condition only. Early and late training were defined as days 1-8 and 

9-14 respectively, based on average performance (accuracy) remaining above 0.75 in the control 405 

(opto off) condition. For anesthesia experiments, we recorded two passive viewing sessions 

where we presented the same set of stimuli presented when recording the baseline session for 

the BCI task. We anesthetized the animals in between these two sessions by initially 
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administrating (via inhalation) 4% isoflurane that subsequently decreased to 1% for the duration 

of the imaging session.  410 

P+ and P- neuron selection  

On day 1, we drew 20-40 ROIs in a single field of view prior to starting our baseline recording. 

Next, we recorded a session of passive visual stimuli that we would later use as our baseline 

recording for day 1. At the end of this recording, all ∆F/F0 traces for all drawn ROIs were plotted 

and visually inspected using a custom Matlab script. The experimenter would then select either 8 415 

or 10 of these traces based on event frequency, SNR (determined as the ratio between noise 

band width and maximum event size), baseline stability, and calcium transient dynamics (with a 

clear rise, peak, and exponential decay – as opposed to plateau-looking events). The best 8-10 

neurons would then be selected from the available pool of neurons on which ROIs were drawn. 

No arbitrary parameter cutoff (e.g. minimum event frequency or SNR) was introduced. The 420 

subdivision of these 8-10 neurons into the P+ and P- population would then be determined by a 

random number generator. Once selected, P+ and P- neurons would remain the same for the 

entire duration of the experiment.    

Online motion-correction 

In order to avoid drifts in x and y out of our selected regions of interest, we used a Fast-Fourier 425 

transformation approach to live motion-correct our movies. To do so, at the beginning of each 

recording session we acquired a reference image by averaging 20-40 seconds (300-600 frames) 

collected onto our field of view. To motion-correct each subsequent frame, we selected 4 smaller 

central areas to register independently from one another (2-D rigid translation) against the 

corresponding 4 areas in the reference image63. We finally rigid-translate the entire 2-D image by 430 

taking the average translation in x and y for these 4 subregions.  

Visual stimuli 
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Visual stimuli were generated using the Psychophysics Toolbox package for MATLAB 

(MathWorks, MA)64 and displayed on a monitor 20 cm away from the contralateral eye. Visual 

stimuli consisted of a rotating Gabor patch at 7 angles spaced 15 degrees apart from 0 to 90.  435 

Offline image analysis and signal extraction  

To correct for brain motion after image acquisition, as well as to automatically detect ROIs, we 

used the Suite2P pipeline65. For each field of view (FOV), we removed duplicates by excluding 

ROIs whose signal correlation was above 0.6 and whose center was within 20 μm of distance. In 

order to separate trunk signals from potential neuropil contamination, fluorescence signals of our 440 

ROIs were processed using FISSA66 with the following parameters: 4 neuropil subregions and 

alpha = 0.1. To estimate ∆F/F0 after neuropil subtraction, we calculated ∆F/F0 at time point i as 

(Fi – F0)/F0. F0 is defined as the 10th percentile of a 120 seconds long sliding window to remove 

fluorescence drifts over the course of imaging. Next, we performed spike inference using the 

CASCADE model Global_EXC_15Hz_smoothing200ms44. 445 

Field of view matching and ROI registration across days 

Registration of neurons across days for BCI training was performed manually at the beginning of 

each session with the help of a custom-designed software. On day 1, a mean intensity reference 

image of our field of view of interest was acquired. Using a custom-design software, we manually 

drew 10-20 reference ROIs which included any recognizable brain structure including dendrites, 450 

cell somas and sharp-contrast blood vessels. On the following days, after manually finding the 

same approximate area for the field of view imaged on day 1, a more accurate manual registration 

was performed by aligning our reference ROIs drawn on day 1 with their corresponding structures 

on following days. As the relative x and y distance between structures varies along the z-plane, 

our approach allowed us to consistently match our field of view on day 1 across x, y and z 455 

dimensions on any given day. Offline registration of ROIs across days on the other hand, was 
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initially performed using the ROIMatchPub implementation for Suite2P followed by an exhaustive 

manual curation.   

Quantification of event frequency, magnitude, and timing 

Events were detected for each ROI using the MATLAB function findpeaks on the spike-inferred 460 

signal. For analysis of the spike inferred signal, we estimated the integral of individual peaks by 

multiplying the height and width of individual transients. Event occurrence was defined as the time 

at which spike probability peaked. For ∆F/F0 analysis, once we found an event, we utilized a 2-

seconds backward sliding window to identify the frame at which the derivative of the ∆F/F0 signal 

became consecutively positive for 300 ms. This was considered the transient onset frame while 465 

the peak of the transient was considered the maximum ∆F/F0 value in the 2 seconds following 

peak detection. We therefore estimated the integral of the ∆F/F0 signal by multiplying the height 

(maximum ∆F/F0 value – ∆F/F0 value at transient onset) and the width (frame at maximum ∆F/F0 

value – frame at transient onset) of the ∆F/F0 signal. The backward and forward detection windows 

were limited in time by the presence of a precedent or subsequent event detected using the spike-470 

inferred signal. Proximal trunks were paired to their correspondent distal trunk whenever their 

∆F/F0 signal correlation was equal above 0.6. For optogenetics and anesthesia experiments, we 

matched proximal trunks to their corresponding distal trunk using activity during control (opto off) 

and wakefulness, respectively. Whenever we found more than 1 distal dendrite correlated with 

the same proximal trunk, we selected the one with the best signal-to-noise ratio, so to always 475 

have a single distal dendrite associated with a proximal trunk. Coincident events were defined as 

two events occurring (independently detected) within a 500 ms window in the two compartments. 

To quantify the somato-dendritic magnitude mismatches of coincident events, we first fit a best-

fit line against the somatic and dendritic magnitudes of all events. For each event, we calculated 

the residual from the best-fit line, and defined residuals larger than 0 as dendritically-amplified 480 

and residuals smaller than 0 as dendritically-attenuated. To estimate the SD residual during 
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optogenetic stimulation and anesthesia, first we estimated the best-fit line using somato-dendritic 

activity during light off and wakefulness conditions, respectively. Next, we calculated the residual 

for all events detected during opto on and anesthesia as the distance between these events and 

the previously-calculated best-fit line. 485 

Decoders 

To decode whether individual transients would be amplified or attenuated, we trained a support 

vector machine binary classifier (SVM, linear kernel) using stochastic gradient descent67 (as 

implemented by MATLAB fitclinear). For each coincident event in the soma and dendrites, we 

averaged the spike-inferred activity of each neuron in our field of view (excluding the neuron of 490 

interest) in the 2 preceding seconds, and we used this average activity to create an n-dimensional 

population activity vector where n corresponds to the number of isolated units in our field of view. 

The binary classifier was trained to separate dendritic amplification from dendritic attenuation (see 

above) using a leave-one-out approach. Accuracy was determined as the fraction of correctly 

classified events. For imbalanced datasets, we used a Synthetic Minority Oversampling 495 

Technique (SMOTE, k neighbors = 5) to train (not test) using a balanced dataset. SMOTE was 

applied after separating our train and test dataset. To control for any potential data leakage, our 

shuffle control went through the exact same procedure as our test dataset, including SMOTE 

oversampling with the only difference that labels were randomly shuffled before separating the 

train and test data. We calculated the confidence of a prediction as the Euclidean distance from 500 

the hyperplane. Reward-associated and reward-instructive epochs were defined as 2 seconds 

before and 2 seconds after the reach of target activity, respectively for successful trials, and 2 

seconds before and 2 seconds after the end of a trial for unsuccessful trials. To decode successful 

from unsuccessful trials, we generated a n-dimensional somato-dendritic residual vector by taking 

the residual for each neuron for which we identified a somato-dendritic pair (see above) in these 505 
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two seconds epochs. Neurons inactive in the two seconds epochs were assigned a value of 0. 

The binary classifier was trained in the same manner as described above.  

Statistics 

All analysis was performed using MATLAB 2020a using custom-written scripts and functions. All 

error bars in figures represent standard error of the mean (SEM). Statistical tests and independent 510 

samples are described in figure legends.  

Data and code availability 

All analysis, BCI code, and data are available upon request.  
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Figure 1: Mice learn a neurofeedback BCI task through the differential regulation of P+ and 690 

P- neurons. 

a, Schematic of the BCI setup. Mice were head-fixed and imaged under a 2-photon microscope 

and free to run on a cylindrical treadmill. Two user-defined populations of GCaMP7f-labeled layer 

5 pyramidal neurons in retrosplenial cortex (RSC) were imaged at the proximal apical trunk: P+ 

(in red) and P- (in blue) were selected to control the rotation of a Gabor patch. P0 neurons were 695 

designated as all other neurons in the field of view. Single frames were online-registered (motion-

corrected). Activity in P+ neurons rotated the patch clockwise, towards the target angle of 90-

degree. Activity in P- neurons rotated the Gabor patch stimulus counter-clockwise, towards a 0-

degree angle. b, Schematic of the mapping between P+ and P- activity, stimulus angle, target 

activity and error. Error was the distance between current and target activation. The angle 700 

represents a binned (7 bins, 15 degrees apart, from 0 to 90 degrees) linear mapping between the 

mean activity in P+ neurons minus the activity in P- neurons. c, Trial structure: mice had 28 

seconds to reach target activity and receive a reward delivered 1 second later. In successful trials, 

the 90-degree Gabor patch was shown for 2 seconds, followed by 1 second of black screen 

presentation. In unsuccessful trials, a 3 second black screen was presented before the onset of 705 

the next trial. d, ∆F/F0 traces as recorded live for P+ (in red) and P- (in blue) neurons. Vertical 

dashed lines and triangles represent timepoints where the animal reached target activity. e, Mean 

activity for the red (P+) and blue (P-) traces shown in d. Black trace shows the arithmetic 

subtraction of P+ and P- neurons (z-scored). Orange trace shows the corresponding visual 

stimulus angle as presented to the mouse. f, Mean ∆F/F0 for P+ and P- activity aligned to the time 710 

in which the animal reached target activity (dashed, vertical line and black triangle) for the session 

highlighted in d and e. Reward was delivered 1 second later (solid vertical line with water reward). 

Shaded areas are standard error of the mean (SEM). g, Mean performance over days quantified 

as the fraction of successful trials over the total number of trials in green, and as the number of 

rewards per minute in purple (One-way repeated measures ANOVA, p = 5e-4 and p = 0.002 for 715 

accuracy and rewards/minute, respectively. n = 6 mice). Dashed horizontal red line represents 

chance level for accuracy performance (see Methods). h, ∆F/F0 traces for the same P+ and P- 

neurons on training day 1 and training day 14. i, Calcium transient frequency for P+, P- and P0 

neurons (in red, blue, and black, respectively) across the 14 days of training normalized to the 

activity on day 1. All neurons were tracked over the full 14 days of imaging. (Two-way repeated 720 

measures ANOVA, p = 0.012, p = 0.004 and p = 9.3e-4 for the effect of population identity, days 
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and an interaction between these 2. After Tukey’s multiple comparison, p = 0.027, p = 0.95 and 

p = 0.01 for P+ vs. P-, P+ vs P0 and P- vs P0 neurons, respectively. n = 6 mice).   
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Figure 2: Differences in somatic and dendritic magnitudes for coincident events are 
predicted by local network dynamics. 

a, Schematic of two-plane 2-photon calcium imaging of a network of neurons at the proximal and 

distal trunk. b, ∆F/F0 traces recorded simultaneously in the soma (black) and dendrite (orange) 730 

for a single neuron of interest (top, P+ and P- neurons across days 1-14) and corresponding 

activity in 5 surrounding neurons. Numbers 1-5 indicate identified GCaMP events. c, Relationship 

between somatic and dendritic transients’ integral for the example neuron shown in b. Datapoints 

represent individual events simultaneously detected in soma and dendrite (see Methods). A least-

squares linear model (dashed grey line) defined events as dendritically amplified (in magenta, 735 

residual +) versus dendritically attenuated (in black, residual -). Events (1-5) correspond to the 

transients shown in b. d, For each coincident event in the neuron of interest shown in b and c, we 

estimated the network activity vector in the 2 seconds before, using all other neurons in the field 

of view. Here, network activity vector was projected onto the first 3 principal components for 

visualization only. The shaded black hyperplane represents the decision boundary for binary 740 

classification (dendritically amplified versus dendritically attenuated) calculated using a linear 

SVM. Events 1-5 correspond to the network activity vector associated with transients 1-5 shown 

in b and c. e, The relationship between SD residuals estimated in c and the distance from the 

decision boundary (hyperplane distance) estimated in d for all coincident somato-dendritic events 

in the neuron of interest. Events 1-5 correspond to those shown in b, c and d. The dashed grey 745 

line represents the least-squares best-fit line. To maintain visual consistency with d, the distance 

from the hyperplane was estimated on the first 3 principal components. This is for visualization 

only. f, The relationship between SD residual as estimated in c, and somatic event magnitude. 

Highlighted events 1-5 correspond to those shown in b, c, d and e. Dashed grey line represents 

the least-squares best fit line. g, Decoder performance as a function of the correlation between 750 

SD residuals and hyperplane distance (Pearson’s r = 0.74; p-value = 1.4e-84, n = 466 neurons). 

Datapoints represents individual neurons. h, Distribution of p-values for test data and a control 

randomly shuffled distribution, testing the correlation between SD residuals and distance from the 

hyperplane (or classification confidence, Wilcoxon signed rank test = p = 1.3e-9. N = 466 neurons) 

as estimated in e. i, Left panel, for all neurons, the Pearson’s r for somato-dendritic residuals and 755 

somatic event magnitude as characterized in f. The residual-based approach perfectly 

decorrelates SD residual from somatic activity alone. Right panel, for test data, a zoomed in 

version of the same histogram shown in the left panel. Note the 10-15 scale on the x-axis. j, 
Decoding performance for neurons with a statistically significant correlation between SD residual 
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and distance from the hyperplane (paired t-test, p = 8.6e-9. Mean = 0.61 and 0.50; SEM = 0.006 760 

and 0.007; n = 82). Dashed grey line indicates chance level. k, Pearson’s r for neurons with a 

statistically-significant correlation between SD residual and the distance between population 

vector and hyperplane (paired t-test, p = 3.35e-25. Mean = 0.28 and -7.2e-4; SEM = 0.01 and 0.01; 

n = 82). l, Mean ∆F/F0 events for soma (black) and dendrites (orange) for all dendritically amplified 

(left panel) and dendritically attenuated (right panel) events in a single neuron. ∆F/F0 traces are 765 

aligned to somatic peak time. Event latency is defined as the time between the somatic and 

dendritic peaks. Compared to dendritically attenuated events, dendritically-amplified events 

peaked earlier. M, Pearson correlation value between the SD residual and the event latency 

between soma and its corresponding dendrite indicating that the larger the SD residual, the earlier 

the dendritic peak is compared to the somatic one (paired t-test, p = 8e-13. Mean = -0.075 and -770 

0.005; SEM = 0.007 and 0.006. n = 466 neurons).  
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Figure 3: Experimental manipulation of SD residuals.  775 

a, Schematic of the experimental approach. First, we imaged neurons in RSC while the mouse 

was exposed to rotating stimuli identical to those presented during baseline estimation in the BCI 

task. Next, we anesthetized the mice (using isoflurane) and imaged the same neurons. b, 

Schematic of the imaging approach. c, Upper panels, ∆F/F0 GCaMP traces simultaneously 

recorded in the soma (black) and its corresponding dendrite (orange) for two representative 780 

neurons during wakefulness and anesthesia. Lower panels, the mean ∆F/F0 signal in the somas 

(black) and in the dendrites (orange) of two example neurons, for all events that occurred during 

wakefulness and anesthesia. Compared to somatic activity, dendrites are preferentially inhibited 

during anesthesia. Shading represents SEM. d, Mean somatic event rate (GCaMP7f) during 

wakefulness and anesthesia. Dashed grey line represents the identity line. Paired t-test, p < 1.9e-785 
126. Mean = 0.002 and 0.0002; SEM = 6.3e-5 and 1.8e-5. n = 832 neurons for wakefulness and 

anesthesia, respectively). e, Distribution of SD residual during wakefulness (in black) and 

anesthesia (in white). Paired t-test, p = 3.3e-20. Mean = 0 and -0.52; SEM = 2.2e-18 and 4.9e-2, n 

= 160 neurons for wakefulness and anesthesia, respectively. f, Targeting strategy schematic. A 

Cre-dependent version of ChRmine tagged with mScarlett was injected into layer 1 of the RSC of 790 

NDNF-Cre mice. GCaMP7f under the control of the synapsin promoter was injected into layer 5 

of the RSC in the same animals. g, Z-stack reconstruction of an imaged field of view. The image 

was acquired in vivo using 2-photon microscopy (1000 nm laser wavelength). In red, mScarlett. 

In green, GCaMP7f. h, Same as c, for opto on and control conditions. Compared to somatic 

activity, dendrites are preferentially inhibited during opto on. i, Mean somatic event rate 795 

(GCaMP7f) during opto on and off. Dashed grey line represents the identity line (paired t-test, p 

< 2.2e-308. Mean = 2.8e-2 and 5.9e-3; SEM = 4.5e-4 and 2e-4. n = 2884 neurons for control and opto 

on, respectively). l, Distribution of SD residual during control (in black) and opto on (in white). 

paired t-test, p = 9e-214. n = 1886 neurons, mean = 0 and -0.87; SEM = 7.7e-19 and 2.4e-2, for 

wakefulness and anesthesia, respectively.   800 
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Figure 4: A population vector of somato-dendritic residuals contains reward-related 
information.  

a, Schematic of the experimental approach. We isolated all neurons in the field of view with a 805 

paired soma and dendrite and used the SD residual population vector to decode task-relevant 

variables. b, ∆F/F0 GCaMP traces simultaneously recorded in the soma (black) and its 

corresponding dendrite (orange) for three representative neurons. c, Schematic of SD residual 

population vector for 4 different behavioral epochs. Left panel, in black, orange, and grey the 

somatic, dendritic, and residual traces for 3 cartoon neurons. The green, cyan, purple and black 810 

boxes represent 4 different behavioral epochs: 2 seconds before and after target is reached for 

rewarded trials and 2 seconds before and after the end of unrewarded trials.  Each neuron’s SD 

residual trace was estimated by collapsing coincident soma-dendrites events into point values at 

the time of event onset. Resultant SD residual traces for all neurons in each behavioral epoch 

were used to estimate the n-dimensional vector of SD residuals where n corresponded to the 815 

number of neurons for with paired somas and dendrites (see method and figure 2). Right panel, 

3-D plot of SD residuals for the four behavioral epochs shown in the left panel, where x, y and z 

correspond to SD residual of neurons 1-3 from left. d, A 39-dimensional vector of SD residuals 

collapsed onto the first 3 principal components for visualization purposes only. Each dot 

corresponds to a vector of SD residuals. In cyan, vectors resulting from the two seconds following 820 

the reaching of target activity in rewarded trials. In dark grey, vectors calculated in the 2 seconds 

following the end of an unsuccessful trial (same as C). Shaded black hyperplane represents 

decision boundary for binary classification calculated using a linear SVM. e, Decoding accuracy 

for test vs. shuffle data for 83 sessions (paired t-test, p = 9.8e-9. Mean = 0.63 and 0.52; SEM = 

0.01 and 0.01; n = 83 for test and shuffled data, respectively. f, g, Same as in d and e: a 264-825 

dimensional vector of SD residual collapsed onto the first 3 principal components for visualization 

only. Green represents the last two seconds of a rewarded trial while purple represents the last 

two seconds of an unrewarded trial (paired t-test, p = 7.1e-8. Mean = 0.57 and 0.49; SEM = 0.01 

and 0.01; n = 83 for test and shuffled data, respectively). h, Schematic of the experimental 

approach: L1  NDNF+ INs were optogenetically activated during BCI task performance. i, j, k, l, 830 

Same as d-g but during optogenetic activation of NDNF+ INs. In j, paired t-test, p = 0.18. Mean = 

0.48 and 0.51; SEM = 0.02 and 0.02; n = 53 sessions for test and shuffled data, respectively. In 

l, , paired t-test, p = 0.13. Mean = 0.54 and 0.50; SEM = 0.03 and 0.01; n = 55 sessions for test 

and shuffled data, respectively. 

  835 
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Figure 5: Dendritic error signals are cell-specific and depend on the causal contribution of 
the neuron to the task.  840 

a, Experimental schema. Black, orange and grey indicate idealized somatic, dendritic and residual 

traces for 3 neurons. Relationship between stimulus angle, target, and error shown below. All 

closed-loop data from the BCI paradigm (which excludes rewards and timeout periods) were 

chunked into 2 seconds bins. Epochs of error decrease and increase were defined as bins in 

which the mean derivative of the angle increased and decreased, respectively. b, Three possible 845 

hypotheses: In the null hypothesis scenario, error is calculated at the population level through 

recurrent dynamics independent of dendrites. In the scalar hypothesis, a single error signal is 

broadcasted through the dendrites of all neurons in the network. This model predicts that all 

neurons receive the same error signal. In the vector hypothesis, error signals received on the 

dendrites of individual neurons are tailored according to the causal involvement of individual 850 

neuron to behavior. This model predicts that neurons with opposite causal contribution to behavior 

will receive different error signals onto their dendrites. c, For two individual P+ neurons, the mean 

∆F/F0 signal in the somas (black) and in the dendrites (orange) for all events that occurred during 

epochs of error reduction and error increase respectively. Compared to somatic activity, dendrites 

are relatively amplified during error reduction compared to error increase epochs. The bar graph 855 

represents the mean SD residual value (z-scored) for all events occurred during error decrease 

and increase epochs. Error bars represent SEM. d, Same as c for two P- neurons. Contrary to 

the P+ neurons, dendritic activity is relatively attenuated for error reduction epochs compared to 

error increase epochs. e, Left panel, during error reduction epochs, the cumulative distribution 

function for SD residuals (z-scored across all neurons) for P+ (in red) and P- (in blue) neurons. 860 

The bar graph represents the mean and SEM for the population distribution shown in the 

cumulative distribution function for P+ and P- neurons. Dendrites of P+ neurons are relatively 

amplified compared to the dendrites of P- neurons during error reduction epochs (t-test; p = 5.3e-

7; mean = 0.005 and -0.14; SEM = 0.01 and 0.02; n = 292 and 240 for P+ and P- neurons 

respectively). Right panel, error increase epochs. Dendrites in P+ neurons are more attenuated 865 

than P- neurons during error reduction epochs (t-test, p = 1.2e-7; mean = - 0.1 and 0.05; SEM = 

0.02 and 0.01; n = 267 and 249 for P+ and P- neurons respectively). f, Experimental schematic: 

GCaMP signals in the soma and dendrites of P+ and P- neurons were recorded during 

optogenetic activation of L1 NDNF+ neurons. g, As in e but during L1 NDNF+ neuron activation: 

left panel, during error reduction epochs, the cumulative distribution function for SD residuals (z-870 

scored across all neurons) for P+ (in red) and P- (in blue) neurons. The bar graph represents the 
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mean and SEM for the population distribution shown in the cumulative distribution function for P+ 

and P- neurons (t-test; p = 0.58; mean = 0.06 and 0.02; SEM = 0.04 and 0.04; n = 119 and 100 

for P+ and P- neurons respectively). Right panel, same as e, for error increase epochs. Dendrites 

in P+ neurons are more attenuated than P- neurons during error reduction epochs (t-test, p = 0.7; 875 

mean = - 0.02 and 0; SEM = 0.05 and 0.03; n = 105 and 105 for P+ and P- neurons respectively). 

h, BCI performance. Left panel, (accuracy, in green) in early and late training for control (opto off) 

and opto on condition. Dashed grey line represents chance level (paired t-test; p = 0.83; mean = 

0.51, SEM = 0.04; n = 32 for opto on against chance during early training; paired t-test; p = 3e-7; 

mean = 0.63, SEM = 0.03; n = 48 for control against chance during early training; p = 0.1; mean 880 

= 0.56, SEM = 0.02; n = 24 for opto on against chance during late training; p = 5.7e-23; mean = 

0.8, SEM = 0.01; n = 36 for control against chance during late training; t-test, p = 0.36 and 1.3e-7 

for early vs late training during opto on and control condition, respectively). Right panel, rewards 

per minute (in purple) in early and late training for control (opto off) and opto on condition. Dashed 

grey line represents rewards per minute for control on day 1 (paired t-test; p = 0.8; mean = 1.6, 885 

SEM = 0.2; n = 32 for opto on against control on day 1, during early training; paired t-test; p = 7e-

7; mean = 0.63, SEM = 0.26; n = 48 for control against control on day 1, during early training; p = 

0.23; mean = 1.9, SEM = 0.26; n = 24 for opto on against control on day 1, during late training; p 

= 4.2e-17; mean = 3.8, SEM = 0.14; n = 36 for control against control on day 1, during late training; 

t-test, p = 0.42 and 1.5e-7 for early vs late training during opto on and control condition, 890 

respectively).  
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Supplemental Materials 

 

 895 

 

Supplementary Figure 1: Determining target activity and mapping visual feedback to 
ΔF/F0 within and across days. 

a, Mapping strategy on day 1. ai, A baseline of approximately 13 minutes (12,000 frames imaged 

at ~15Hz) was recorded each day for P+ and P- neurons, and the mean ΔF/F0 for each 900 

subpopulation was subtracted from one another (also see Fig. 1e). aii, The subtracted signal was 

used to bootstrap 200 trials (28 seconds each resampling with replacement 200 start times, red 

boxes). Next, we iteratively searched across different thresholds. aiii, For each threshold (in 

incremental steps of 0.005 ΔF/F0), we selected the one which was crossed 50% of the times in 

the 200 resampled trials. This value was set as the target value (i.e. 90-degree angle). aiv, Next 905 

we mapped the subtracted ΔF/F0 to a visual feedback stimulus. 90-degree was mapped as the 

ΔF/F0 at which the animal reached target on 50% of the resampled trials (see aii), 0-degrees was 

mapped as the minimum value in the ΔF/F0 distribution. The space in between was linearly 

spaced into 6 bins whose edges marked the boundary between 15-degrees angles. av, The left 

side of the subtracted ΔF/F0 was mirrored on the right and fitted using a Gaussian function. The 910 

z-score of the target value (see aii), was recorded for mapping on subsequent days. b, Target 

activity and mapping strategy on day 2-14. bi, We recorded baseline activity in the same way as 
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shown in ai. bii, After estimating the distribution of the subtracted ΔF/F0 signal, we mirrored the 

left part of the distribution and fitted a Gaussian function as described in aiv. Our target was 

defined as the same z-score of the target value on day 1 (see iv). biii, On the original subtracted 915 

ΔF/F0 distribution, we mapped 90-degrees as the z-score of the target value on day 1 (see bii) 

and 0-degrees as the minimum value in the subtracted ΔF/F0 distribution.    
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 920 

 
 

Supplementary Figure 2: Validation of live motion correction 

a, Live motion correction performance for a given imaging session. We validated our live motion-

correction algorithm by comparing its performance against a commonly used offline motion 925 

correction algorithm65. To be able to compare performance, we motion-corrected against the 

same reference image used for offline motion correction. For a given pixel displacement in X and 

Y in the offline algorithm, we calculated the proportion of frames which our online algorithm 

estimated to be displaced by the same amount. Each column is normalized to the total number of 

frames for a given displacement value. b, For X and Y displacements, in all our imaging sessions, 930 

the 99th percentile of the difference between live and offline motion correction. Our data show that 

in more than 90% of our imaging sessions, the estimated pixel displacement using live and offline 

motion correction differ by 1 pixel at the 99th percentile level.     
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 935 

 

 

Supplementary Figure 3: Representative field of view with P+ and P- neurons  

A representative field of view with the same, GCaMP7f-labelled, chronically-tracked P+ and P- 

neurons (5 each, shown in red and blue, respectively), imaged at the proximal trunk (as a proxy 940 

for soma) during 14 days of learning, shown at day 1, 5, 9 and 14. P+ and P- neurons were 

selected on day 1. Scale bar represents 50 µm. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/


 945 

 

Supplementary Figure 4: Task performance for individual animals 

Task performance evaluated using two metrics: accuracy (the fraction of successful trials) and 

rewards per minute for each of 6 mice. Summary graph and statistics in Figure 1g. The grey 

dashed line represents chance accuracy.  950 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Supplementary Figure 5: Visual stimulus and behavioral correlates of learning. 

a, Mean visual stimulus angle across 14 days of learning. Due to binning, stimuli below the 60-

degrees threshold were presented as 45-degrees. b, Rotation speed across the 14 days of 955 

learning. Rotations towards and away from a reward were defined as positive and negative 

rotations, respectively. c, Mean frequency at which a new orientation was presented. d, Mean 

duration of successful trials across the 14 days of learning. e, Pearson’s correlation between 

licking frequency and stimulus angle (outside reward periods) during active (closed-loop) and 

passive stimulus presentation at the beginning and the end of learning (Two-way repeated 960 

measures ANOVA, p = 0.13, 1.4e-11 and 0.028 for the effect of state (active vs passive), days, 

and interaction between state and days, respectively. After two-stage Benjamini, Krieger and 

Yekutieli correction for false discovery rate, p = 8.5e-4 for early-active vs late-active, 3.4e-4 for 

early-active vs early-active (shuffle), 8.4e-11 for late-active vs late-active(shuffle), 1.7e-4 for early-

active vs early passive, 5e-11 for late-active vs late-passive, 0.83 for early-passive vs late-passive, 965 

0.8 for early-passive vs early-passive(shuffle), 0.81 for late-passive vs late-passive (shuffle)).  

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/


 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/


 970 

 

Supplementary Figure 6: Changes in GCaMP transient frequency over days depend on day 
1 frequency. 

a, Event frequency for P+, P- and P0 neurons on day 1. P+ and P- neurons were selected to be 

of higher activity on day 1 compared to other neurons in the field of view (One-way ANOVA, p = 975 

2.52e-30. After Tukey’s multiple comparisons correction, p = 0.35, 9.57e-10 and 9.56e-10 for P+ vs 

P-, P+ vs P0 and P- vs P0, respectively. mean = 0.072, 0.063 and 0.028; SEM = 0.006, 0.005 and 

5.6e-4; n = 27, 27 and 1839 for P+, P- and P0, respectively). b, Distribution of event frequency for 

P0 neurons on day 1. The mean event frequency for P+ and P- neurons (purple, dashed line) fall 

on the 8th percentile of the P0 neurons distribution. c, Calcium transient frequency for P0 neurons 980 

divided in tertiles based on activity on day 1, across the 14 days of training normalized to the 

activity on day 1. All neurons were tracked over the full 14 days of imaging (n = 6 mice). d, Calcium 

transient frequency for P+, P- and P0 neurons. Only P0 neurons with the same calcium transient 

frequency as P+ and P- neurons on day 1 (neurons within the 95% confidence interval of the joint 

P+ and P- distribution) were selected. Neurons were tracked across the 14 days of imaging and 985 

activity was normalized to the activity on day 1 (Two-way repeated measures ANOVA, p = 0.008, 

p = 0.006 and p = 0.003 for the effect of population identity, days and an interaction between 

these 2, respectively. n = 6 mice across 14 days). e, Calcium transient frequency for P+, P- and 

P0 on days 10 to 14, normalized to day 1 (One-way repeated measures ANOVA, p = 1e-7. After 

Tukey’s multiple comparison, p = 3.3e-6, 5.47e-4 and 0.02 for P+ vs P-, P+ vs P0 and P- vs P0, 990 

respectively; mean = 0.85, 0.60 and 0.71, SEM = 0.037, 0.037 and 0.02 for P+, P- and P0, 

respectively. n = 6 mice).  
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    995 

Supplementary Figure 7: Learning is not due to changes in locomotion across days.  

a, In black, the mean and standard error of the mean for the distance run by all animals in 

individual imaging sessions. All sessions were of equal length (41.26 minutes or 76500 imaging 

frames (2 planes at 30Hz)). In grey, the distance run by individual mice (One-way repeated 

measures ANOVA, p = 0.58, n = 6 across 14 days). b, After excluding all timeouts, grey, black 1000 

and reward-related periods, we divided our trials into 2 seconds bins and estimated whether the 

net rotation of the stimulus (the mean of the derivative angle) was positive (lefts panel, towards 

the reward, error reduction) or negative (right panel, away from the reward, error increase) in each 

bin and calculated the average distance run during error reduction and error increase epochs. We 

found no differences neither within condition across days, nor among conditions (Two-way 1005 

repeated measures ANOVA, p = 0.15, 0.86 and 0.14 for the effects of error type, days and error 

type and days interaction n = 6 animals across 14 days).  
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Supplementary Figure 8: Event detection. 1010 

a, ∆F/F0 trace for an individual neuron. b, For the same ∆F/F0 trace shown in A, calcium signal 

was deconvolved into a spike rate using CASCADE44. Event size was calculated by first detecting 

individual peaks (downward facing triangle, findpeaks function in MATLAB, see Method) and then 

calculating the area under the curve by estimating the amplitude (red, vertical line) and width at 

half maximum (purple line). c, Same ∆F/F0 trace as in a. To obtain ∆F/F0 metrics of event size, 1015 

we first deconvolved ∆F/F0 signals into spike rates using CASCADE and detected individual 

transients (same as steps 1-2 as in b). For each detected event we then found its start (upward 

facing triangle) and peak (downward facing triangle) as the point at which the derivative of ∆F/F0 

trace became positive for 300 ms in a row in a 2 seconds backward window from the detected 

spike inference peak, and the maximum ∆F/F0 value in the following 2 seconds (unless 1020 

constrained by the presence of another event). The amplitude of the event was defined as ∆F/F0 

value at peak – ∆F/F0 at onset. The width was defined as peak – onset frame.  
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 1025 

Supplementary Figure 9: Testing the assumption of linearity between somatic and 
dendritic event magnitude. 

a, Representative example of a single neuron whose events were isolated and their magnitude 

estimated in the soma and dendrites, plotted against each other. Axes are normalized to the 

largest event. To describe the relationship between somatic and dendritic event magnitude, we fit 1030 

a linear model. b, Same as in a, except this time we fit an exponential model to the data. c, Same 

as in a and b, this time however we fit a logarithmic model to the data. d, For all neurons, we 

calculated the Akaike information criteria (AIC) to describe the goodness of a model (while 

penalizing for the number of parameters used). Lower values of AIC mean better fit. AIC values 

were zeroed compared to the linear fit model. Error bars represent standard error of the mean 1035 

(One-way repeated measures ANOVA; p < 1e-15, p < 1e-15, p = 0.56 for Linear vs Exponential, 

Linear vs Logarithmic and Exponential vs. Logarithmic after Tukey’s multiple comparison 

correction. Mean = 0, 13.8 and 12.1; SEM = 0, 1.11 and 1.17; n = 543 neurons for Linear, 

Exponential and logarithmic fit, respectively).  

  1040 
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Supplementary Figure 10: Decoding somato-dendritic residuals using ∆F/F0-based event 
size estimation.  1045 

a, Same as in Figure 2i. Our ∆F/F0-based approach to estimate event size (see Methods and 

Supplementary Figure 2) decorrelated the SD residual from somatic magnitude. b, Same as 

Supplementary Figure 1. Linear models best describe the relationship between somatic and 

dendritic event magnitudes.  For all neurons, we calculated the Akaike information criteria (AIC). 

Lower values of AIC mean a better fit. AIC values were zeroed compared to the linear fit model. 1050 

Error bars represent standard error of the mean (One-way repeated measures ANOVA; p = 3e-

10, p = 1e-10, p = 1e-10 for Linear vs Exponential, Linear vs Logarithmic and Exponential vs. 

Logarithmic after Tukey’s multiple comparison correction. Mean = 0, 12.4 and 20.1; SEM = 0, 0.9 

and 1.4; n = 543 neurons for Linear, Exponential and logarithmic fit, respectively). c, Same as 

Figure 2g. Pearson correlation between decoder performance (linear SVM) and the correlation 1055 

between SD residual and the distance from the hyperplane (or SVM classification confidence). 

Each dot represents one neuron (Pearson correlation = 0.73. p = 2.5e-78). d, Same as Figure 2h, 

the proportion of neurons with a statistically-significant (alpha = 0.05) correlation between the SD 

residual and the distance from the hyperplane (or classification confidence, Wilcoxon signed rank 

test = p = 7.3e-4. N = 466 neurons). e, Same as Figure 2j. Decoder performance (linear SVM) for 1060 

statistically-significant neurons in d (paired t-test, p = 8.3e-10. Mean = 0.61 and 0.51; SEM = 0.008 

and 0.01; n = 66). f, Same as Figure 2k. Pearson correlation between the SD residual and the 

distance from hyperplane for statistically-significant neurons (paired t-test, p = 1.6e-15. Mean = 

0.27 and -9.6e-4; SEM = 0.01 and 0.02; n = 66). g, Same as Figure 2m. Pearson correlation 

between relative event timing in soma and dendrites and SD residual (residual from best fit). A 1065 

negative correlation means that the larger the residual (more dendritically-amplified) the earlier 

the peak timing in the dendrite compared to the soma, paired t-test, p = 9.7e-40. Mean = 0.13 and 

0.005; SEM = 0.007 and 0.006; n = 466).  
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Supplementary Figure 11: Decoding SD residuals using network activity in a single frame 
preceding event onset.  

a, Decoder performance as a function of the correlation between SD residuals and hyperplane 

distance (Pearson’s r = 0.77; p-value = 7.1e-94, n = 466 neurons). Datapoints represents individual 1075 

neurons. b, Distribution of p-values for test data and a control randomly shuffled distribution, 

testing the correlation between SD residuals and distance from the hyperplane (or classification 

confidence, Wilcoxon signed rank test = p = 2.8e-9. N = 466 neurons). c, Decoding performance 

for neurons with a statistically significant correlation between SD residual and distance from the 

hyperplane (paired t-test, p = 8.6e-28. Mean = 0.61 and 0.49; SEM = 0.006 and 0.007; n = 99). 1080 

Dashed grey line indicates chance level. d, Pearson’s r for neurons with a statistically-significant 

correlation between SD residual and the distance between population vector and hyperplane 

(paired t-test, p = 7.9e-30. Mean = 0.27 and -0.005; SEM = 0.01 and 0.01; n = 99). 

 

  1085 
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Supplementary Figure 12: Differences in somatic and dendritic magnitudes for coincident 
events are predicted by local network dynamics in P0. 

a, Decoder performance as a function of the correlation between SD residuals and hyperplane 1090 

distance (Pearson’s r = 0.75; p-value < 2.2e-308, n = 7381 neurons). Datapoints represents 

individual neurons. b, Distribution of p-values for test data and a control randomly shuffled 

distribution, testing the correlation between SD residuals and distance from the hyperplane (or 

classification confidence, Wilcoxon signed rank test = p = 5e-96. N = 7381 neurons). c, Pearson’s 

r for neurons with a statistically-significant correlation between SD residual and the distance 1095 

between population vector and hyperplane (paired t-test, < 2.2e-308. Mean = 0.31 and -0.01; SEM 

= 0.003 and 0.005). d, For all neurons, the Pearson’s r for somato-dendritic residuals and somatic 

event magnitude. e, Pearson correlation value between the SD residual the event latency 

between soma and its corresponding dendrite indicating that the larger the SD residual, the earlier 

the dendritic peak is compared to the somatic one (paired t-test, p = 1.48e-169. Mean = -0.077 and 1100 

-6.9e-4; SEM = 0.002 and 0.001; n = 7381 neurons). f, Decoding performance for neurons with a 

statistically significant correlation between SD residual and distance from the hyperplane (paired 

t-test, p = 1.1e-254. Mean = 0.63 and 0.50; SEM = 0.002 and 0.002). Dashed grey line indicates 

chance level.  

 1105 
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Supplementary Figure 13: Orientation preferences of decoded neurons. 

a, Orientation preference index, defined as (R90 – R0)/ (R90 + R0) where R90 and R0 are the inferred 

spike rates at 90- and 0-degrees angles, respectively during passive visual stimulus presentation 1110 

for P+, P- and P0 (One-way ANOVA, p = 0.09; After Tukey’s multiple comparisons p = 0.25, 0.98 

and 0.07 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. Mean = -0.005, 0.02 and -0.007; SEM 

= 0.01, 0.01 and 002; n = 268, 198 and 7381 for P+, P- and P0, respectively). b, Orientation 

preference index for all neurons with a statistically-significant Pearson’s correlation between the 

SD residual and the network distance from the maximally-separating hyperplane (t-test, p = 0.31. 1115 

Mean = -0.002 and -0.007; SEM = 0.004 and 0.002; n = 1298 and 6547 for significant and non-

significant neurons, respectively).   
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Supplementary Figure 14: Decoding task related variables using ∆F/F0-based event size 
estimation.  

a, b, Same as Figure 3e (left panel, paired t-test, p = 4.3e-9. Mean = 0.61 and 0.52; SEM = 0.01 

and 0.01, respectively for test and shuffle data. N = 83 sessions) and 3g (right panel, paired t-

test, p = 2.4e-4. Mean = 0.55 and 0.50; SEM = 0.01 and 0.01, respectively for test and shuffle 1125 

data. N = 83 sessions) respectively, using a ∆F/F0-based metrics for estimating the size of the SD 

residual.  
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Supplementary Figure 15: Dendritic reward signals are cell-specific during periods of 1130 

reward anticipation but not during reward consumption.   

a, SD residuals in the two seconds following target reach for rewarded trials (left) and the end of 

a trial for rewarded and unrewarded trials (right), respectively, for P+, P- and P0 neurons 
(rewarded epochs, One-way repeated measures ANOVA, p = 0.5. After Tukey’s multiple 

comparison p = 0.75, p = 0.93 and p = 78 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. Mean 1135 

= 0.01, 0.06 and 0.02; SEM = 0.02, 0.06 and 0.01 for P+, P- and P0, respectively. Unrewarded 

epochs, One-way repeated measures ANOVA, p = 0.47. After Tukey’s multiple comparison p = 

0.65, p = 0.99 and p = 0.57 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. Mean = 0.03, 0.06 

and 0.02, SEM = 0.04, 0.04 and 0.01 for P+, P- and P0, respectively. n = 84 sessions). b, SVM 

weights for decoding rewarded vs unrewarded trials after the end of a trial for P+, P- and P0 1140 

neurons. Here, the rewarded side of the hyperplane was arbitrarily assigned as the positive side, 

while the unrewarded one was assigned as the negative one (One-way repeated measures 

ANOVA, p = 0.72. After Tukey’s multiple comparison p = 0.87, p = 0.99 and p = 0.71 for P+ vs P-

, P+ vs P0 and P- vs P0, respectively. Mean = -0.03, -0.1 and -0.03; SEM = 0.05, 0.07 and 0.2 for 

P+, P- and P0, respectively. n = 84 sessions). c, SD residual in the two seconds preceding target 1145 

reach for rewarded trials (left) and in the two seconds preceding the end of a trial for unrewarded 

trials (right), for P+, P- and P0 neurons (rewarded epochs, One-way repeated measures ANOVA, 
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p = 2e-4. After Tukey’s multiple comparison p = 5.6e-4, p = 4.8e-3 and p = 0.035 for P+ vs P-, P+ 

vs P0 and P- vs P0, respectively. Mean = 0.09, -0.11 and 0.01, SEM = 0.03, 0.05 and 0.01 for P+, 

P- and P0, respectively. Unrewarded epochs, One-way repeated measures ANOVA, p = 0.83. 1150 

After Tukey’s multiple comparison p = 0.92, p = 0.99 and p = 0.9 for P+ vs P-, P+ vs P0 and P- vs 

P0, respectively. Mean = -0.01, -0.04 and -0.01, SEM = 0.04, 0.04 and 0.01 for P+, P- and P0, 

respectively. n = 84 sessions). d, SVM weights for decoding rewarded vs unrewarded trials for 

P+, P- and P0 neurons. As in b, the rewarded side of the hyperplane was arbitrarily assigned as 

the positive side, while the unrewarded one was assigned as the negative one (One-way repeated 1155 

measures ANOVA, p = 4.1e-4. After Tukey’s multiple comparison p = 3.8e-3, p = 5.6e-3 and p = 

0.18 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. Mean = 0.15, -0.02 and 0.03, SEM = 0.04, 

0.03 and 0.01 for P+, P- and P0, respectively. n = 84 sessions). 
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Supplementary Figure 16: Four additional example neurons (2 P+ and 2 P-) showing 
different somato-dendritic relationships during error decrease and error increase epochs. 

For two P+ and two P- neurons, mean ΔF/F0 signal in the soma (black) and in the dendrite 

(orange) are shown for all events that occurred during epochs of error reduction and error 1165 

increase, respectively. The bar graph represents the mean SD residual value (z-scored) for all 

events occurred during error decrease and increase epochs. Shaded areas and error bars 

represent SEM.  

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/


 1170 

 

Supplementary Figure 17: Neuron specific error signals using our ∆F/F0 metric to estimate 
event size.  

a, Same as Figure 4c. During error reduction epochs, dendrites of P+ neurons are relatively 

amplified compared to the dendrites of P- neurons (t-test, p = 1.4e-5; Mean = 0.01 and -0.11; SEM 1175 

= 0.02 and 0.02; n = 292 and 240 for P+ and P- neurons, respectively).  b, Same as Figure 4d. 

During error reduction epochs, dendrites of P+ neurons are relatively attenuated compared to the 

dendrites of P- neurons (t-test, p = 3.1e-6; Mean = -0.07 and 0.04; SEM = 0.02 and 0.01; n = 267 

and 249 for P+ and P- neurons, respectively).  

 1180 
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Supplementary Figure 18: Dendritic signals are consistent across all mice. 

For all mice (N = 6) the separability of dendritic signals, defined as the SD residual during epochs 

of error decrease minus the SD residual during epochs of error increase, for P+ (in red), P- (in 1185 

blue), and overall dendritic separability ((P+) – (P-)) (Paired t-test, p = 0.03, p = 0.006 and p = 

0.005; Mean = 0.08, -0.15 and 0.23; SEM = 0.03, 0.03 and 0.05 for P+, P- and (P+) – (P-), 

respectively. N = 6 animals. Note that comparing P+ vs. P- or (P+) – (P-) vs. 0 is statistically 

equivalent).   
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Supplementary Figure 19: Dendritic error signals cannot be explained away by differences 
in somatic event magnitude.  

a, b, The cumulative distribution function for SD residuals (z-scored per neuron) in P+ (red) and 1195 

P- (blue) neurons during error decrease in a (t-test, p = 3.5e-6, mean = -0.003 and -0.16; SEM = 

0.015 and 0.03; n = 211 and 179 for P+ and P-) and error increase in b (t-test, p = 4.6e-6, mean -

0.1 and 0.05; SEM = 0.03 and 0.02; n = 211 and 179 for P+ and P- neurons) epochs. Only neurons 

with the same somatic response to error decrease and increase were selected for this analysis.   

 1200 
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Supplementary Figure 20: P0 neurons which are functionally-correlated to P+ and P- 
neurons also receive vectorized dendritic error signals.  1205 

a, Across all sessions, we divided P0 neurons into (P+)- and P(-)-like based on their correlation to 

the (P+)-(P-) subtracted signal we used to rotate the visual stimulus. Among all P0 neurons (n = 

9796) we defined (P+)- and (P-)-like P0 neurons as those with a correlation above 1 and below -

1 standard deviation. b, Left panel, during error reduction epochs, bar graph comparing the SD 

residual (z-scored) in P+, P- and P0 neurons (One-way ANOVA, p = 1.6e-4. After Tukey’s multiple 1210 

comparisons, p = 0.006, p = 1 and p = 8.9e-5 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. 

Mean = 0.004, -0.13 and 0.007; SEM = 0.02, 0.02 and 0.01; n = 292, 240 and 8335 for P+, P- 

and P0, respectively). Right panel, during error reduction epochs, bar graph comparing the SD 

residual (z-scored) in (P+)- and P(-)-like P0 neurons (t-test, p = 0.025; mean = 0.04 and -0.02; 

SEM = 0.02 and 0.02; n = 1059 and 1110 for (P+)- and P(-)-like P0 neurons, respectively). c, Left 1215 

panel, during error increase epochs, bar graph comparing the SD residual (z-scored) in P+, P- 

and P0 neurons (One-way ANOVA, p = 0.002. After Tukey’s multiple comparisons, p = 0.004, p = 

0.45 and p = 0.003 for P+ vs P-, P+ vs P0 and P- vs P0, respectively. Mean = -0.1, 0.05 and 0.01; 

SEM = 0.02, 0.02 and 0.01; n = 267, 249 and 8356 for P+, P- and P0, respectively). Right panel, 

during error increase epochs, bar graph comparing the SD residual (z-scored) in (P+)- and P(-)-1220 

like P0 neurons (t-test, p = 0.010; mean = -0.05 and 0.01; SEM = 0.02 and 0.01; n = 1070 and 

1099 for (P+)- and P(-)-like P0 neurons, respectively). 
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Supplementary Figure 21: Dendritic signals do not represent absolute error values.  

a, The cumulative distribution function for SD residuals (z-scored per neuron) in P+ (red) and P- 

(blue) neurons during epochs where the absolute error was smaller than 45-degrees (t-test, p = 

0.16; mean = -0.03 and 0.07; SEM = 0.017 and 0.02; n = 290 and 244 for P+ and P- neurons, 1230 

respectively). b, Same as a, but for epochs in which absolute error was larger than 45-degrees 

(t-test, p = 0.47; mean -0.03 and -0.006; SEM = 0.02 and 0.01; n = 278 and 249 for P+ and P- 

neurons, respectively). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2023.11.03.565534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565534
http://creativecommons.org/licenses/by-nd/4.0/

