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Abstract 

Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene 

expression analysis at submicron resolution over large areas. Analysis of high-resolution ST data 

relies heavily on image-based cell segmentation or gridding, which often fails in complex tissues 

due to diversity and irregularity of cell size and shape. Existing segmentation-free analysis 

methods scale only to small regions and a small number of genes, limiting their utility in high-

throughput studies. Here we present FICTURE, a segmentation-free spatial factorization 

method that can handle transcriptome-wide data labeled with billions of submicron resolution 

spatial coordinates. FICTURE is orders of magnitude more efficient than existing methods and it 

is compatible with both sequencing- and imaging-based ST data. FICTURE reveals the 

microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular, and 

lipid-laden areas in real data where previous methods failed. FICTURE’s cross-platform 

generality, scalability, and precision make it a powerful tool for exploring high-resolution ST. 
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Introduction 

Spatial transcriptomics (ST) has important implications for elucidating cell-cell interactions and 

localizing specific activities in biological/pathological processes1,2. ST can be divided into 

sequencing-based and in situ imaging-based technologies3. First, sequencing-based ST 

annotates each molecule with spatially resolved barcodes and performs RNA-seq to profile the 

entire transcriptome. However, initial sequencing-based ST4, now commercialized as 10X 

Visium, is largely limited by its low resolution (>100 µm). Recent developments have 

dramatically improved the resolution of spatial barcodes through microfluidics-based (DBiT-

Seq5; down to 20 µm), bead-based (Slide-Seq6, HDST7; down to 4 µm)5, and next-generation 

sequencer (NGS)-based (Seq-Scope8, Stereo-Seq9, and Pixel-Seq10; down to 0.5 µm) approaches. 

In particular, the latest NGS-based ST approaches achieve submicron resolution comparable to 

an optical microscope. Second, in situ imaging-based ST reveals the location of specific 

transcripts through multiplexed molecular profiling using in situ hybridization or in situ 

sequencing. These high-resolution (<0.5 µm) technologies based on optical microscopy typically 

assay hundreds of genes using combinatorial encoding as implemented in commercial 

platforms such as Vizgen MERSCOPE11, 10X Xenium12, and CosMx SMI13. 

In line with these rapid developments, enormous amounts of submicron-resolution ST 

datasets are being generated on an unprecedented scale. One challenge is that, even if billions 

of transcripts are captured per tissue section, typically only a few transcripts are observed per 

µm2, and conventional algorithms have limited accuracy when analyzing at micron-resolution. 

For these reasons, published analyses of submicron-resolution ST datasets aggregate individual 

transcripts into either fixed-size grids or image-based cell segments. Image-based cell 

segmentation has been considered the gold-standard when nuclear staining such as DAPI or cell 

boundary staining is available. After cell segmentation, various methods such as Squidpy14, 

Giotto15, Seurat16, or GraphST17, can be applied for downstream inference.    

However, image-based cell segmentation faces a number of practical challenges in 

analyzing real-world datasets: (1) Because three-dimensional tissue is processed into two-
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dimensional sections, nuclei could be missed for many cells while their cytoplasmic RNAs is still 

captured (Fig. 1A). This leads to incorrect assignment of transcripts to adjacent cells. (2) 

Irregularly shaped cells are often inaccurately segmented by existing methods that assume a 

spherical shape around the nucleus. (3) Cells without nuclei (e.g., red blood cells) or 

multinucleated cells (hepatocytes, muscle, etc.) skew cell segmentation. (4) Cell boundary 

markers may not be expressed at all in certain cell types. (5) Both cell size and cell density vary 

dramatically even within a single tissue type. (6) Variations in sample quality and processing can 

hinder the acquisition of high-quality reference images sufficient for single cell segmentation. 

(7) Cell segmentation ignores extracellular RNA, which may be vital for some biological 

processes such as cell-cell communication18,19. Indeed, we observed that 12-55% of transcripts 

are dropped during image-based cell segmentation in published ST datasets (Fig. 1B). 

Therefore, even with state-of-the-art cell segmentation algorithms or manual cell segmentation 

by trained pathologists, accurate analysis of submicron-resolution ST datasets is challenging 

and often infeasible with image-based cell segmentation. 

Because of these limitations, previous studies have explored alternative approaches. 

One of the simplest methods is to partition the ST data into fixed-size grids. Most published 

sequencing-based ST datasets are not paired with nuclei or cell boundary staining, which is 

required for imaged-based cell segmentation. Consequently, these datasets were analyzed with 

uniform grids8,9, which typically captures multiple cells in a single grid, obscuring the signature 

of small or spatially dispersed cell types. Grid segmentation also compromises the submicron 

resolution of the raw data, and often fails to accurately delineate cell type boundaries (Fig. 1A, 

lower center). Adaptive segmentation algorithms, such as the volume-distance-based 

segmentation algorithm, aim to dynamically segment the ST dataset based on transcript 

densities10. While this was effective in analyzing Pixel-Seq brain data, it is difficult to generalize 

to many other tissue types where various cell types are densely packed together. Sliding 

window algorithms, as implemented in SSAM20 and STtools21, partially mitigates the loss of 

resolution during segmentation, while the oversampling of transcripts limits the choice of 

clustering algorithms. 
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Segmentation-free techniques for analyzing high-resolution ST data are a promising 

alternative (Fig. 1A, lower right), but existing methods have limited scalability. One of the most 

accurate methods, Baysor22, uses Markov Random Field to assign individual transcripts to 

clusters without relying on external segmentation, but it does not scale to larger tissue areas 

(>5mm2) or to transcriptome-level gene panels (>1,000 genes), as later examined in this study. 

To the best of our knowledge, there are no scalable segmentation-free inference methods that 

can analyze the vast amounts of data produced by cutting-edge submicron-resolution ST 

technologies. 

 Here we present FICTURE (Factor Inference of Cartographic Transcriptome at Ultra-high 

REsolution), a segmentation-free spatial factor analysis method that makes inference on 

individual spatial coordinate points (i.e., pixels) at submicron resolution. Our method scales to 

the whole transcriptome (i.e., >20,000 genes) and billions of pixels associated with 

transcriptional readouts and. FICTURE can learn the factors unsupervised or take user-provided 

reference expression profiles to construct a pixel-resolution spatial map of such profiles. We 

have applied our method to data generated by four state-of-the-art high-resolution ST 

platforms, including NGS-based Seq-Scope and Stereo-seq, and in situ-based MERFISH and 

Xenium. Our method reveals cellular heterogeneity at a microscopic scale, precisely delineates 

cell type boundaries, and identifies rare cell types from their surroundings. It also eliminates 

blind spots of cell segmentation in challenging tissues such as skeletal and smooth muscle, 

tumor stroma, adipose tissue, and tissues with complex vasculature, outperforming existing 

methods. To our knowledge, FICTURE is the only segmentation-free algorithm that can perform 

microscopic resolution analysis on both NGS-based and in situ-based ST data while efficiently 

scaling to the largest ST datasets currently available. 
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Results 

Segmentation-free factor inference at submicron resolution 

FICTURE aims to reconstruct the fine-scale tissue structure by first decomposing gene 

expression patterns across the tissue section into factors then using local information to assign 

each pixel to these factors probabilistically. Each factor defines the average expression levels of 

all genes, and we model the molecule counts generated from a factor using a multinomial 

distribution (Supplementary Fig. 1A). From a biological perspective, these factors may represent 

cell types, cell functions, or cell states specific to certain physiological or pathophysiological 

conditions; they may even represent subcellular or extracellular transcriptomic phenotypes. 

FICTURE by default learns factors unsupervised from the dataset by aggregating pixels into 

hexagonal grids to fit a standard Latent Dirichlet Allocation (LDA) model assuming 

independence between the hexagons (Supplementary Fig. 1B), similar to existing methods for 

low-resolution data23. Alternatively, the factors can also be obtained from external sc- and sn-

RNA-seq references datasets, or from other spatially agnostic methods such as Seurat16 and 

Scanpy24 that learn factors based on grids. FICTURE can use these external factors as priors to 

initialize the LDA factors or use them directly as input factors (Fig. 1C). 

To reconstruct pixel-level tissue architecture with these factors, FICTURE adaptively 

aggregates the extremely sparse information from pixels locally using anchor points to infer the 

latent factors at each pixel without deterministic segmentation. Specifically, FICTURE defines 

anchors as lattice points over the tissue region and lets each anchor learn a probability 

distribution over the factors (Fig. 1D). FICTURE updates pixel and anchor level parameters 

iteratively.  Each pixel picks an anchor from its neighborhood probabilistically then samples the 

gene counts according to the chosen anchor’s mixture distribution. Each anchor in turn 

aggregates information from the pixels in its neighborhood to update its mixing probabilities 

across factors. Since the information is shared only locally, FICTURE constructs inference units 

as conditionally independent spatial patches (500 µm-sided squares by default) for efficient 

parallel processing within each minibatch. Upon convergence, FICTURE delineates cell types 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.04.565621doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565621
http://creativecommons.org/licenses/by-nc-nd/4.0/


unconstrained by the lattice (Fig. 1D, right) so that inferred pixel-level factors represent single 

cell transcriptome architectures within the tissue. 

We applied FICTURE to simulated datasets, as well as five real ST datasets assayed with 

four different state-of-the-art submicron resolution platforms. These real datasets consist of a 

mouse colon assayed with NGS-based Seq-Scope, a mouse E16 whole embryo assayed with 

NGS-based Stereo-seq, human breast cancer and healthy lung datasets assayed with in situ-

based 10X Xenium, and a mouse liver dataset assayed with in situ-based Vizgen MERSCOPE. 

(Supplementary Fig. 2). 

 

FICTURE reveals microscopic tissue architecture in Seq-Scope colon data.  

To illustrate the advantage of pixel-level factor inference over existing approaches, we first 

applied FICTURE to a mouse colon dataset generated by the updated Seq-ScopeHISEQ technique, 

which provides a larger field of view than the original Seq-ScopeMISEQ 8. We performed biopsy-

induced injury of the mouse colonic mucosa and analyzed healing wounds 24 hrs after injury 

(red-outlined arrows in Fig. 2A, J. K)25,26. The data contains 6.8 million spatial barcodes from 9 

tissue sections jointly covering  ~18mm2 area (Supplementary Fig. 3A), and one representative 

section is presented in Fig. 2B. This dataset is accompanied by H&E histology from the same 

section; however, the dataset is not amenable to image-based cell segmentation due to the 

extreme irregularity and diversity in cell morphology associated with different cell layers.  

The data were initially partitioned into 43,494 14 μm-sided hexagons and clustered 

using Seurat. These clusters revealed cell-type diversity in normal colon, as well as injury-

responsive epithelial and immune cell populations (Supplementary Fig. 3B). However, these cell 

types’ spatial distributions are too coarse (Fig. 2C) to capture the spatial complexity shown in 

the histology (Fig. 2A). Making the grid smaller slightly improved the resolution but led to 

extremely noisy cluster assignments due to the low expression counts in each grid unit (Fig. 2D). 

In contrast, the pixel-level factor inference by FICTURE dramatically improved the resolution 

without introducing noisy artefacts (Fig. 2E) for all examined tissue sections (Supplementary 
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Fig. 3C). Higher magnification image shown in Fig. 2F-2I demonstrates that the FICTURE can 

identify all layers of the uninjured colonic wall. FICTURE identified the longitudinal and circular 

smooth muscle layers of the muscularis propria and the muscularis mucosae (yellow), ganglion 

cells in myenteric and submucosal plexus (green), fibroblasts in the submucosa and lamina 

propria (orange), epithelial crypts (light blue), goblet cells (purple), and surface colonocytes 

(light green) (Fig. 2F, I; each layer marked by arrows). These details were far less evident in grid-

based analyses (Fig. 2G, H).  

FICTURE was also able to identify the cell phenotypes associated with mucosal injury 

(Fig. 2J, 2K) with molecular details that are not discernible by imaging-based histological 

examination. For instance, FICTURE was able to detect infiltration of different immune 

populations into the injury site. We also found distinct injury responses of epithelial and 

smooth muscle layers, involving different immune cell populations, which were difficult to 

detect by the histological examination. Although some of these features were also appreciable 

through grid-based analysis, only FICTURE was able to associate the transcriptome feature with 

underlying histopathological findings with high resolution precision.  

 

Simulation study assesses FICUTRE’s accuracy, robustness, and scalability 

To evaluate the accuracy and the scalability of FICTURE’s pixel-level spatial factor inference, we 

compared it with two existing unsupervised methods, Baysor22 and GraphST17. Baysor was the 

only pixel-level inference method available for comparison, and GraphST was selected as a 

representative of methods based on cell segmentation. We simulated data based on ten 

selected cell types from a scRNA-seq reference dataset27, assigning 8 cell types to specific 

regions and scattering cells from the other 2 cell types throughout the space to mimic 

infiltrating cells (Fig. 3A). Due to Baysor’s limited scalability with increasing number of genes, 

we only selected 500 highly variable genes for analysis. Since GraphST requires segmented 

data, we provided the true simulated cell boundaries for GraphST but not for the other 

methods. 
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Since all three methods require user-specified number of clusters, we first evaluated 

these algorithms when the correct number of cell types (k=10) is given. Both FICTURE (98%) and 

Baysor (97%) demonstrated high accuracy at pixel level, whereas GraphST tended to be less 

accurate (78%) especially for scattered cell types due to oversmoothing (Fig. 3B, 3C). Similar 

results were obtained when simulation data with more densely packed cells and transcripts 

were used (Fig. 3C, Supplementary Fig. 4). In both analyses, FICTURE and Baysor accurately 

delineated cell type boundaries for both region-specific and scattered cell types, regardless of 

cell shapes.  

Next, we evaluated the robustness of these methods under an over-specified number of 

clusters. This aspect is critical because, in most cases, we do not have prior knowledge of how 

many factors or cell types are present in the given sample. In the above simulation with 10 cell 

types, across model sizes from 10 to 20 clusters/factors, only a small fraction of pixels were 

assigned to the extra factors in FICTURE (<4.5%) and Baysor (<8.9%), demonstrating their high 

robustness (Fig. 3C). On the other hand, GraphST tends to over-cluster to achieve the target 

number of clusters and assignied a large fraction (20~50%) of pixels to the extra factors. This is 

similar to observations from other graph-based methods that use community detection 

algorithms such as Louvain28 and Leiden29.  

Computational scalability of analysis method is a crucial factor as high-resolution high-

throughput datasets accumulate. FICTURE operates on a fixed memory budget even with 

increasing data size since FICTURE performs parallel processing in minibatches. In contrast, both 

Baysor and GraphST need to store the full data in memory. Baysor’s memory consumption 

scales quadratically with the number of genes and linearly with the number of molecules (Fig. 

3D); GraphST’s memory consumption scales super-linearly with the number of cells (Fig. 3E). As 

a result, the memory footprint of FICTURE is orders of magnitude smaller than the other 

methods and the difference will increase as the cutting edge technologies generate datasets 

with larger field of view and/or larger number of genes (Fig. 3D, E). FICTURE’s runtime scales 

linearly with the number of pixels, while Baysor’s runtime scales quadratically with the number 

of molecules, regardless of the molecule density (Fig. 3D). For example, to analyze a 1 mm2 area 
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at 4 transcripts/µm2 with 500 genes, Baysor requires 37GB of memory and 7.3 CPU hours while 

FICTURE requires 1.2GB of memory and 0.23 CPU hours. GraphST, which runs at the cell level, 

requires 1.5GB and 0.18 CPU hours with runtime scaling linearly with the number of cells per 

iteration. We also estimated the required resources and evaluated the accuracy of these three 

methods in real datasets (Fig. 3F), as we detail at the end of the section. 

 

Precise, scalable and unbiased profiling of the whole transcriptome of a mouse 

embryo  

To evaluate FICTURE on a real-world high-resolution ST dataset with a large field of view, we 

analyzed the whole transcriptome profiling of a mouse E16.5-stage sagittal section by Stereo-

Seq9, which contains 221 million pixels with a total of 700 million transcripts in a 115 mm2 

region9. FICTURE used 8.7 μm-sided hexagons to fit the unsupervised LDA model with 48 factors 

and then assigned individual pixels to factors, with the top 21 (30) factors accounting for >95% 

(99%) of the pixels. We compared the spatial distribution of the 25 published cell type 

annotations derived from DAPI-based nuclear segmentation followed by graph-based 

clustering9 with the pixel-level factors inferred by FICTURE independently of the DAPI images 

(Fig. 4A-4C). DAPI-based nuclear segmentation removed a majority (55.5%, 389 million) of 

transcripts from the analysis. The proportion of dropped transcripts varies by tissues, from 

34.3% in pancreas to 94.0% in blood vessel (Supplementary Fig. 5A-5F). For example, in the 

blood vessels, erythrocytes were systematically underrepresented in the DAPI-based 

segmentation compared to FICTURE’s pixel level inference because fully differentiated red 

blood cells lack nuclei (Supplementary Fig. 5A-5F). The proportion of dropped transcripts also 

varies by genes. Not only hemoglobin genes but also many other heart- or muscle-enriched 

genes (Myl7, Tnni3, Myh6, Myl3, Tnni2, Cox8b, Myl4) show high proportion (>60%) of dropped 

transcripts; overall, more than 17,500 (59%) genes had more than half of the transcripts 

dropped (Supplementary Fig. 6A), suggesting widespread loss of molecular information during 

cell segmentation.  
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We found that the factors identified by FICTURE tend to have specific spatial 

localizations that are more biologically sound than the published clusters based on cell 

segmentation. For instance, both methods identified the meninges, the membrane covering the 

brain and spinal cord, as one of their clusters or factors. The published cell segmentation 

analysis identified many cells outside the expected meningeal regions as meningeal cells, 

including 105 cells in the limb, but FICTURE classified zero pixels in meninges factor outside the 

central nervous system (Fig. 4D). Similarly, the original nuclear segmentation-based analysis 

mis-annotated subset of cells as chondrocytes in kidney, pancreas, and even brain, whereas the 

corresponding FICTURE factor representing cartilage activity was specifically localized to the 

developing skeletal elements (Fig. 4E). In addition, FICTURE correctly distinguished ossifying 

regions such as the palate and periosteum into a distinct factor representing ossification 

activity (Fig. 4E, right panel, blue), separated from other chondrocytes (yellow). 

 

FICTURE reveals fine-scale tissue architecture and cellular heterogeneity 

In the same mouse embryo data, we also found that FICTURE revealed fine-scale tissue 

architecture and cell type heterogeneity obscured in the cell segmentation-based analysis. For 

example, the submandibular gland is composed of multicellular acini with high nuclear density 

as shown in the DAPI image (Fig. 4C, upper left). The nuclear segmentation analysis identified a 

mixture of epithelial cells, fibroblasts, and myoblasts, but the overall structure of the acini 

appears less clear than in the DAPI image (Fig. 4C, lower left). On the other hand, our pixel-level 

factor map distinguishes the structure of acinar cells and surrounding cells; the visualization a 

single epithelial factor clearly shows the structure of the acini (Fig. 4C, upper right), which is 

difficult to comprehend in segmentation-based results (Fig. 4C, lower left).  

Moreover, in developing skeletal muscle, where cell-segmentation analysis labels almost 

all cells as myoblasts (Fig. 4B, upper two panels), FICTURE identified two distinct populations 

consisting of undifferentiated myoblasts, enriched for Myf5, Pax3, and Pax7, and differentiating 

myofibers, enriched for Ttn and Dmd (Fig. 4B, bottom panel; red and yellow respectively). The 
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spatial pattern of myofiber factors inferred by FICTURE shows a remarkably elongated 

morphology, consistent with their transcriptome phenotype (Fig. 4B, lower two panels). On the 

other hand, DAPI-based segmentation fails to capture the structure of myofibers due to both 

their multinucleate nature and elongated shapes (Fig. 4B, second from the top). These results 

illustrate that FICTURE can outperform histology-based cell segmentation methods—currently 

considered the gold standard—by unbiasedly elucidating the details with high spatial precision. 

 

Unbiased single molecule analysis of in situ-based ST datasets without segmentation.  

We also applied our method to the public datasets from two in situ technologies: 10X Xenium 

based on in situ sequencing and Vizgen MERSCOPE based on sequential in situ hybridization. 

Since these datasets are accompanied with high quality images of DAPI and/or cell boundary 

staining, previous analyses collapsed individual transcripts by image-based cell segmentation. 

Data from these in situ platforms differ from the NGS-based technologies in that only a few 

hundred selected genes are measured, and each transcript has a unique spatial location. 

Therefore, in these datasets, FICTURE’s pixel-level inference has single molecule resolution. 

FICTURE successfully identified factors corresponding to cell types identified from previous 

segmentation-based analyses. Furthermore, as detailed below, FICTURE’s pixel-level analysis 

identified biologically important cell types and tissue structures that are not clearly captured by 

imaging-based cell segmentation.   

 

FICTURE recovers fibroblast and adipocyte morphology in inflamed tumor tissue 

Using the 10X Xenium breast cancer dataset, we compared the performance of cell 

segmentation and FICTURE analyses. Compared to segmentation-based analysis12, FICTURE’s 

pixel level analysis more comprehensively characterized the entire section including fibrotic and 

fatty areas where cell segmentation is challenging. For example, the H&E near a ductal 

carcinoma in situ (DCIS) region in the lower center (red boxes in Fig. 5A, 5B) suggests the 
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presence of lipid-laden adipocytes (Fig. 5C, center). However, the published cell segmentation 

analysis failed to detect the presence of adipocytes in this region: 45.3% of transcripts in the 

region were not assigned to any cell; when assigned, they were only classified as stromal cells 

(Fig. 5C, left), which are just one of the major constituents of stromal vascular fraction (SVF)30. 

Since adipocyte nuclei occupy only a tiny fraction of cell volume (0.1% if nuclear diameter is 

1/10 of cell diameter) and non-lipid cell mass is more substantially contributed by SVF-

associated cells, DAPI-based cell segmentation has poor sensitivity to capture transcriptome 

from differentiated lipid-laden adipocytes (Fig. 5C, right). Therefore, even though Xenium data 

contains adipocyte information12, segmentaion methods failed to isolate distinct adipocyte 

clusters. In contrast, FICTURE was able to confidently identify a factor specific to differentiated 

adipocytes enriched for ADH1B, ADIPOQ, LPL, and LEP. The lipid-laden morphology of 

differentiated adipocytes was also faithfully represented (Fig. 5D, center). In addition, FICTURE 

also identified all known SVF-associated cell types including endothelial cells, stromal cells, and 

macrophages (Fig. 5D, right), as well as other cell types (Fig. 5D, left), while preserving their 

histological structures around the vascular and fibrotic area. Such microscopic structures are 

inaccessible to traditional methods based on image-based cell segmentation (Fig 5C, left). 

Fibrotic tissues are another tissue type where cell segmentation is challenging due to 

the irregularly elongated morphology of fibroblasts and their dense aggregation with other cell 

types such as immune cells. The region between the lesions of atypical ductal hyperplasia 

(yellow boxes in Fig. 5A, 5B) is mostly occupied by extracellular matrix produced by elongated 

fibroblasts in the tissue (Fig. 5E, center), which interferes with cell segmentation. In the cell 

segmentation analysis (Fig. 5E, left), many RNAs cannot be assigned to a nearby nucleus (Fig. 

5E, right) and therefore dropped from the analysis (Fig. 5E). In contrast, our segmentation-free 

method preserves the tissue texture in this region (Fig. 5F, left) consistent with histology (Fig. 5, 

center); it detects and distinguishes three major stromal cell populations with distinct spatial 

distributions identified by the marker genes POSTN, CXCL12, and SFRP4, respectively (Fig. 5F, 

center). Among these, CXCL12-expressing fibroblasts are intermingled with different 

lymphocyte populations (Fig. 5F, right), consistent with their role in immune regulation. Genes 

enriched in adipocytes (LEP, ADIPOQ, ADH1B, LPL), stromal cells (MUC6, CSF3, MPO, MMP2) 
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and myoepithelial cells (UCP1, CXCL5, SDC4) tend to have higher proportion of transcripts 

dropped during image-based segmentation (Supplementary Fig. 6B). Our analyses demonstrate 

that these ‘stray’ transcripts can be effectively allocated into relevant spatial factors using 

FICTURE. This functionality is particularly crucial when profiling complex regions like fibrotic and 

lipid-rich tissues, often linked with a range of pathologies.  

 

FICTURE reveals details of hepatic vasculature around the portal triad 

We also applied FICTURE to the Vizgen MERSCOPE mouse liver datasets containing 419 million 

transcripts over 395,000 segmented cells within a 300 mm2 region. Approximately 93% of 

transcripts originated from large (20-30 µm) hepatocytes and the remaining transcripts are 

mostly from smaller non-parenchymal cell types, including Kupffer cells, endothelial cells, and 

hepatic stellate cells (HSC), which often have irregular shapes. Because the cell segmentation 

tends to be more difficult in smaller or irregularly shaped cells, we observed that the cell 

segmentation tend to be less accurate in non-parenchymal cells. For example, most (16/20) of 

genes with the highest proportion (>25%) of transcripts dropped from cell segmentation are 

enriched in fibroblasts, cholangiocytes, or arteries (Supplementary Fig. 6C). Across the entire 

liver section, FICTURE clearly visualized hepatocellular transcriptome heterogeneity aligned 

with metabolic zonation across portal-central axis (Fig. 6A, B). FICTURE also identified the 

precise locations of non-parenchymal cells, such as endothelial cells, macrophages, fibroblasts, 

and HSCs, and depicted their heterogeneity as well (Fig. 6C). The locations of these non-

parenchymal cells were consistent with their histological niche near hepatic sinusoids and 

arteries (Fig. 6C, D).  

In the portal triad area, where portal vein, arteries and bile ducts, as well as fibrotic and 

inflammatory tissues are aggregated together, densely populated nucleus and extremely 

stretched ductal and endothelial cell morphology makes cell boundary estimation from nuclear 

and membrane markers extremely challenging and often not feasible (Fig. 6E, F). 

Correspondingly, image-based cell segmentation is incomplete and misses many cells 
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constituting important structures such as cholangiocytes forming bile duct (Fig. 6F). FICTURE, 

however, recovers all these cells and the surrounding fibroblasts with clear structures forming 

portal vein endothelial cells, bile ducts and arteries with their characteristic histological 

morphology (Fig. 6D, G). These results exemplify the unique utility of FICTURE in labeling 

histology with relevant transcriptome information. 

 

Scalability and accuracy of FICTURE in large real-world datasets 

Even though FICTURE comprehensively analyzed all these massive datasets without difficulties, 

other former methods we used for initial comparison, Baysor and GraphST, failed to analyze 

them in our attempt. To assess the computational feasibility of applying these existing methods 

for the datasets analyzed above, we projected the computational cost to run Baysor and 

GraphST using the values from the simulation study and compared it with the actual 

computational cost in FICTURE (Fig. 3F). Even if we limited the number of genes to 500 for 

Baysor and GraphST, both methods would require prohibitive memory, over 2TB for two of the 

three datasets, while FICTURE consumes less than 10GB. The computational time to analyze 

these datasets was projected to be a day or less for FICTURE and GraphST, while Baysor was 

projected to take up to decades.  

To compare the accuracy in the real datasets within a reasonable computational time, 

we selected a very tiny (0.46mm2) subset of the Vizgen’s mouse liver data containing both 

central and portal veins presented above and compared FICTURE, Baysor, and Graph ST. All 

methods successfully distinguished between pericentral and periportal hepatocytes, but only 

Baysor and FICTURE identified the precise locations of small and irregularly-shaped non-

parenchymal cells (arrows in Supplementary Fig. 7) and the inferences from the two methods 

are in high concordance. GraphST’s results showed artificial spatial patches with resolution 

much coarser resolution than single cells, even though it operates at single cell level. 
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Discussion 

Spatial transcriptomics technologies have evolved to profile the transcriptomes of large tissue 

sections at submicron resolution. However, submicron ST technologies do not automatically 

enable submicron resolution analysis. The limited number of RNA molecules observed per μm2 

leads to a tradeoff between spatial resolution and information content. At the same time, the 

increasing number of uniquely identified spatial locations (pixels) poses a challenge to 

computational scalability. To realize the full potential of emerging submicron ST technologies, 

we have developed FICTURE, a highly scalable method for spatial factor analysis at submicron 

resolution without relying on cell segmentation what is compatible with both imaging-based 

and sequencing-based submicron ST technologies. FICTURE adaptively combine sparse 

information from individual pixels and probabilistically assigns individual pixels to latent factors 

that may represent expression patterns of cell types, cell states, biological processes, or disease 

conditions.  

To date, most analyses of high-resolution spatial transcriptomics data rely on either 

fixed-size gridding or cell segmentation8,9,12. These approaches sacrifice spatial resolution to 

increase the number of transcripts per unit of analysis and reduce computational burden. We 

demonstrated in our Seq-scope colon dataset that gridding-based analysis risks obscuring 

biological interpretation especially in regions where multiple cell types intermingle. Cell 

segmentation analysis relies on the availability and accuracy of external nuclear and/or cell 

boundary staining. Cell segmentation based solely on nuclear staining is the most common but 

requires strong assumptions about cell size and shape. We showed in the 10X Xenium breast 

cancer data that nuclear staining is inadequate for cells with irregular morphology, such as 

fibroblasts in tumor stroma and adipocytes in lipid-laden area. This limitation is significant 

because both cell types are integral to understanding tumor progression: adipocytes interact 

with breast cancer cells through signaling factors31 and cancer-associated fibroblasts in the 

stroma have multiple functions in supporting tumor growth32. Fibrosis and fat accumulation are 

also commonly associated with inflammation, metabolic dysfunction and other tissue 

pathologies; therefore, precisely analyzing these cell types is important. Even when high-quality 
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cell boundary markers are available, as in the MERSCOPE liver dataset, we observe that cell 

segmentation can fail in regions of densely packed cells and systematically misses certain cell 

types. Our segmentation-free approach does not require assigning transcripts to cells before 

making inferences in the complex regions of a tissue. As a result, FICTURE provides an unbiased 

and comprehensive interpretation of submicron ST data and can be used as an alternative or 

complementary approach to segmentation-based analysis.  

Even in cases where cell segmentation works well, pixel level inference can provide 

additional information about ongoing biological processes. For example, in Xenium human lung 

preview dataset non-diseased tissue section, where cell segmentation captures 88.3% of 

transcripts, the cell level clustering analysis and FICTURE’s pixel-level inference were largely 

consistent. The most noticeable difference is that FICTURE identified a factor enriched for 

inflammatory markers specifically localized to the area of peribronchial immune cell infiltration. 

The cell level analysis in the Xenium does not have a corresponding localized cluster 

(Supplementary Fig. 8A-B). Upon detailed examination of these peribronchial immune cell 

infiltrates, the presence of CD8A, IL7R (CD127), CD28, and CD27 suggests an enrichment of 

effector memory T cells, and one of the most region-specific genes, GZMK, suggests the 

presence of a specific inflammatory T cell subtype in these regions (Supplementary Fig. 8D-F). 

Cell segmentation profiles such regions as a mixture of individual cell types, such as CD8 T cells, 

B cells, monocytes, and lymphocytes, regardless of the inflammatory signature (Supplementary 

Fig 8C). These results suggest that FICTURE can be used as a complementary method to cell 

segmentation when interpreting submicron ST data, as the unsupervised FICTURE factors may 

recapitulate the unique tissue microenvironment that are not well captured in single cell level 

analysis.  

FICTURE is the first pixel-level analysis tool that scales to sequencing-based technologies 

such as Seq-scope and Stereo-seq. Sequencing-based technologies unbiasedly profile the whole 

transcriptome while in situ hybridization-based technologies typically assay only a few 

hundreds of pre-selected genes in each sample. The large number of genes makes existing 

methods designed for in situ-based technologies22,33 infeasible for whole transcriptome 
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datasets due to computational scalability. Baysor, the most accurate segmentation-free method 

to our knowledge, recovers cell and cell type boundaries in both real and simulated data but 

requires prohibitive resources to process large regions and is not applicable to data from 

sequencing-based technologies with tens of thousands of genes. FICTURE’s pixel-level inference 

has comparable or better accuracy than Baysor but is orders of magnitude more efficient. 

FICTURE’s inference is parallelized and scales linearly with the number of pixels. Furthermore, 

FICTURE adopts a stochastic approach so that it can run with a fixed memory budget, a 

property uncommon among existing methods but crucial for analyzing data with large fields of 

view as exemplified in the currently presented Stereo-seq and MERSCOPE cases. FICTURE is also 

more robust to over-specification of the number of factors, reducing the hyperparameter 

tuning in practice where we rarely know the best level of model complexity. These features will 

become increasingly useful in future datasets as the information content per experiment 

continues to grow 22,33.  

The computation efficiency does require a few simplified assumptions. First, the LDA 

model that FICTURE builds upon is limited by its assumption that factors are independent. 

Modeling correlation and hierarchy between factors could be a future direction towards more 

biologically meaningful models. One could also conceive incorporating prior information such 

as known marker genes, penalizing redundant or highly similar factors, and encouraging 

sparsity in factor-level expression profiles. Second, FICTURE decoupled the factorization 

procedure from the pixel-level inference to allow flexible pixel-level inference with or without 

external reference. When the transcript density is high it might be possible to improve the 

factorization during the pixel-level inference although we did not observe the benefit in our 

data. 

 FICTURE requires users to specify the density of anchors and the size of the overlapping 

anchor neighborhoods. The anchor density is intended to guarantee, on average, at least one 

anchor near each unknown cell center; the neighborhood size is intended to contain enough 

molecules to infer the latent factors and it controls spatial sparsity thus computational cost. 

While these hyperparameters can be chosen intuitively based on the data, if either the 
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molecule density or the anchor density is too low, FICTURE tends to oversmooth by sharing 

information over a large area. Oversmoothing, or the bias towards assigning the same factors 

to neighboring pixels, is due to overconfidence in pixel-level factor assignments. This 

overconfidence results from the well-documented tendency of variational inference to 

underestimate the variance of the posterior density34. A future improvement is to implement a 

diagnostic mechanism to identify pixels where the factor assignment is truly ambiguous, and to 

avoid assigning such pixels to the dominant factor in their neighborhood which creates the 

artificially smooth spatial pattern. Oversmoothing is also a common risk in low-resolution 

spatial methods9, including the popular graph neural network35. As we have shown in all the 

datasets we analyzed, cellular heterogeneity in real tissues is very high. Consequently, assuming 

spatial autocorrelation at the cell level is often too strong of an assumption. Therefore, we 

propose to use spatially agnostic models on collapsed grid-level expressions for factorization 

prior to pixel-level analysis. 

With the rapid development of high-resolution, high-throughput spatial transcriptomics 

technologies, we hope that FICTURE will facilitate the development of robust and efficient 

analysis workflows for translating raw data into biological insights. FICTURE’s segmentation-free 

approach may be particularly suited for studying complex tissues, extracellular matrix, or cell-

cell communication. Its scalability, robustness, and intuitive hyperparameter selection make it 

easy to apply to new protocols and tissue types.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.04.565621doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565621
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

FICTURE Model 

We assume that a ST dataset consists of 𝑀 genes measured at 𝑁 pixels, represented by a 

sparse count matrix 𝑋 ∈ 𝑍!×#. Each pixel is associated with a unique two-dimensional 

coordinate 𝑦$ ∈ ℝ%, 𝑖 ∈ [𝑀]. Each pixel may contain multiple molecules from different genes. 

We define a hexagonal lattice over the entire tissue section and lattice points inside tissue 

regions as anchors, where the distance between adjacent lattice points, a, controls anchor 

density. These n anchor points are surrogates for unknown cell centers and serve the purpose 

of sharing pixel level information locally.  Each anchor j ∈ [n]'s territory is upper bounded by a 

circle centered at its location y&' with a fixed radius 𝑑()*, and nearby anchors' territories 

overlap. The tradeoff between spatial resolution, factorization accuracy, and computational 

cost depends on the anchor density a and the radius 𝑑()*. We choose 𝑎 so that each cell 

covers more than one anchor with high probability and choose 𝑑()* be larger than 𝑎 and 

smaller than the diameters of cells that could be present in the data.  

 Our model (Supplementary Fig. 1A) extends LDA by allowing each pixel to choose 

(within 𝑑()*) which anchors it belongs to probabilistically, thus in turn coupling cell type 

estimates of nearby anchors through the pixels they may share. Let the set of nearby candidate 

anchors for pixel 𝑖 be 𝑛(𝑖) and the set of pixels within an anchor 𝑗's territory be 𝑁(𝑗). 

Pixel 𝑖's probability of belonging to anchor 𝑗 is 𝑤$+ ∈ [0,1] a priori, here we choose 𝑤$+ ∝

1 − ;∥-!.-"'∥
/#$%

<
0

, a concave monotone decreasing function of the distance between the two 

points with a fixed hyper-parameter ν. This extra uncertainty is highly localized, designed to 

refine cell type boundary to beyond the resolution achieved by sliding hexagons while avoiding 

unnecessary smooth assumption about the underlying cell type distribution. 

The generative process is as follows: 

1. Draw factor level expression distribution 𝛃1 ∼ Dirichlet(𝛈) for 𝑘 ∈ [𝐾] 
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2. Draw anchor level factor proportions 𝛉+ ∈ Dirichlet(𝛂) for 𝑗 ∈ [𝑛] 

3. For each pixel 𝑖 ∈ [𝑁]: 

a. Draw anchor assignment 𝑐$ ∼ Categorical(𝐰$) (where 𝐰$ = H𝑤$+I, 	𝑗 ∈ 𝑛(𝑖)) 

b. Draw factor assignment 𝑧$ ∼ CategoricalH𝛉2!I, 	𝑧$ ∈ [𝐾] 

c. Draw gene expression 𝐱$ ∼ MultinomialH𝑥$ , 𝛃3!I (𝑥$ : = ∑ 𝑥$++∈[#] ) 

Each pixel is equipped with two categorical variables, the anchor assignment 𝑐$ ∈ [𝑛(𝑖)] and 

factor assignment 𝑧$ ∈ [𝐾]. When there is no ambiguity, we use 𝑧$1 both for the event 𝑧$ = 𝑘 

and the indicator variable 𝑧$1 = 𝐼{𝑍$ = 𝑘} (similar for 𝑐$+). The joint likelihood can be written as 

follows: 

S𝑝
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Variational inference in FICTURE 

We use stochastic variational inference36,37 to approximate the posterior distributions. Global 

variables are factor level expression profiles 𝛃1 ∼ 𝐷𝑖𝑟(𝛌1). Local variables include anchor level 

factor proportion 𝛉+ ∼ 𝐷𝑖𝑟H𝛄+I, pixel level anchor assignment 𝑐$ ∼ 𝐶𝑎𝑡(𝛙$), and pixel level 

factor assignment 𝑧$ ∼ 𝐶𝑎𝑡(𝛟$). Spatial coupling introduces dependence between anchor 

points, so we construct minibatches as sliding windows of size ≫ 𝑑>?@ that jointly cover the 

dataset. For each minibatch, we only update variables for the "interior" anchors and pixels that 

are independent from the rest of data conditional on this minibatch. We randomize the order 

of minibatches so that different cell types are similarly represented across the course of 
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stochastic optimization. Coordinate ascent update rules based on the above mean-field 

approximation resemble that for LDA (Supplementary Text).  

In the fully unsupervised FICTURE, we initialize this model from the standard LDA. We 

collapse pixels into hexagons of side length 𝑟 and train a LDA model as if the hexagons were 

independent. We use the posterior distributions 𝑃H𝛽1; 𝜆i1I of the 𝛽1’s in this spatially agnostic 

model as the prior 𝑃(𝛽1; 𝜂1) in the full model. 

 

Pixel level decoding from reference cell types 

When external reference is available or when other clustering methods have been applied to 

collapsed low resolution data, we aggregate the gene counts within each cell type or cluster to 

a pseudobulk expression count matrix 𝐻 ∈ ℝAB
7×#, and substitute it for the posterior Dirichlet 

parameter of factor level gene expression profiles. We then either fix this global parameter and 

only update local parameters as in Equation (6) in the Supplementary Text, or treat it as a prior 

and replace Equation (7) in the Supplementary Text with 𝛬i ∝ 𝐻 + 𝛷⊙ (𝛹𝟏8𝟏7C ). 

 

Simulation 

Simulating cells. We first simulate cell centers as uniformly random perturbation of regular grid 

points. We set the distance between adjacent grid points as 𝐴	(10	𝑜𝑟	15µ𝑚), and perturb each 

grid point as 𝑥 = 𝑥B + δ* , 𝑦 = 𝑦B + δ-, where δ* , δ- ∼ Unif(−0.5𝐴, 0.5𝐴). We simulate cells of 

three shapes, circle, rod, and rhombus, and randomly assign 40% cells as circles, 30% as rod, 

and 30% as rhombus. We set the radius of the circles to 6µ𝑚, the length and width of the rod 

to be 16 and 4µ𝑚, and the side length and the acute angle of the rhombus to be 15µ𝑚 and 

π/16. We also simulate a buffer region of width 2µ𝑚 around each cell to mimic RNA diffusion, 

and randomly sample 50% of molecules in the buffer region to be from the focal cell. We place 
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cells according to a randomized sequence and cells positioned later partially superimpose cells 

positioned earlier when they overlap.  

We simulate molecules uniformly distributed in the region covered by cells with a 

desired molecule density, often between 1 to 8 molecules per µ𝑚% according to different 

technologies. Regions outside any cell's buffer region have molecule density 20% that of cellular 

regions. 

Simulating gene expression. We simulate gene expression based on annotated scRNA-seq data 

from Tabula Muris27. To benchmark with Baysor22, which is developed for imaging-based 

technologies and does not scale to large number of genes, we choose 500 highly variable genes 

from the whole transcriptome based on the genes’ variance to mean ratios across cells. We 

choose 10 cell types, assign 8 of them to specific spatial domains and scatter cells from the 

other 2 cell types uniformly across the space (Fig. 3A). For these 8 localized cell types we 

simulate two types of cell type boundaries, deterministic and probabilistic. We construct the 

deterministic boundaries as smooth lines and assign each cell to a cell type domain by its 

centroid location. We construct the fuzzy, probabilistic boundaries by sampling cell type 

identities from a mixture distribution with two components. The mixing probabilities smoothly 

change from (0.5,0.5)  to (0,1) and (1,0) moving away from the hypothetical boundary line.  

We assign intracellular molecules the cell type of the cells they originate from and assign 

extracellular molecules the cell type of their nearest cell. We then simulate gene identity of 

each molecule from a categorical distribution defined by the relative expression level of its cell 

type. Equivalently, each cell's gene expression follows a multinomial distribution. 

 

Submicron resolution spatial transcriptomics datasets across four platforms 

The colon samples were obtained from C57BL/6 mice after 24 hrs of biopsy-induced physical 

wounding, as previously described25. The Seq-Scope procedure was performed on the injured 

colon sample as previously described8 with minor modifications involving the use of the 
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Illumina HiSeq 2500 flow cells and chemical strategies to increase RNA sequence capture38. 

Seurat factors were learned from a dataset with hexagonal grids with 14 µm sides, using Seurat 

v4. In brief, mitochondrial genes and hypothetical gene models were removed from the 

dataset, and feature cutoff was applied at 200. Data were normalized by SCTransform function, 

and clustering was performed using FindClusters function (resolution = 2). A macrophage 

cluster was subjected to an additional round of clustering to get separation between different 

macrophage subtypes. Top markers from each cluster were used to infer and annotate cell 

types. 

 The Stereo-seq pixel-level expression data was downloaded from the “Bin1 matrix” 

section in the STOmicsDB39 (https://db.cngb.org/stomics/mosta/download/) for the embryo 

E16.5_E1S3. “Cell_bin” matrix was also downloaded to obtain the raw expression data used for 

cell-level segmentation. The published annotations of segmented cells were obtained from the 

"Embryo Data” section (E16.5_E1S3_cell_bin.h5ad).  

 The 10X Xenium breast cancer dataset was downloaded from the 10X Genomics web 

page (https://www.10xgenomics.com/resources/datasets/ffpe-human-breast-with-pre-

designed-panel-1-standard). Transcript-level data (transcripts.csv.gz) was used to identify the 

spatial coordinates of each transcript. The published clusters were obtained from the analysis 

output based on graph clustering 

(analysis/clustering/gene_expression_graphclust/clusters.csv). The same procedure was 

repeated for the 10X Xenium healthy lung preview dataset available at 

(https://www.10xgenomics.com/resources/datasets/xenium-human-lung-preview-data-1-

standard). 

 The Vizgen MERSCOPE mouse liver data was download from  

https://info.vizgen.com/mouse-liver-access. The sample L1R1 was used for the analysis. The 

transcript level data (detected_transcripts.csv.gz) was used as input for FICTURE in addition to 

the DAPI staining image at a selected z-coordinate (z3). The Mouse Liver map browser on the 

Vizgen web site was used to show the cell segmentation and clusters as such dataset was not 

available in the released full dataset. 
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Images obtained from grid, cell segmentation and FICTURE analyses of these datasets 

were linearly adjusted to visualize dim regions and highlight different factors/clusters.    

 

Processing submicron resolution spatial transcriptomic datasets 

Filtering 

We only performed filtering for Seq-scope data. We first filtered out low density region 

assuming tissue regions have much higher transcript density than low quality regions 

dominated by noise. We aggregated transcripts by a coarse sliding grid and calculate transcript 

density in each grid cell, then fit a two-component Gaussian mixture model on the log-

transformed grid densities. We kept grids assigned to the high-density component. We then 

filtered out pixels outside manually drawn tissue boundaries. For Stereo-seq and Vizgen 

MERSCOPE we performed analysis on all transcripts in the released data. For 10X Xenium we 

kept transcripts with quality score above 15.  

Grid level analysis  

We performed model training and anchor initialization at hexagon level. We aggregated 

transcripts to hexagons with side length 14 µm (Seq-scope colon data), 8.7 µm (stereo-seq 

embryo data) or 7 µm (all in situ datasets) according to the regular hexagonal grid, and trained 

LDA on these hexagons. For Seq-scope colon data we transformed the hexagonal data with 

sctransform40 and applied the Louvain algorithm as implemented in Seurat16. We chose anchors 

as the lattice points on a denser hexagonal grid where the distance between two adjacent 

lattice points is 4 µm. We initialize the factor mixture probabilities at each anchor by applying 

the trained LDA model on the hexagon centered at the anchor, where the size of the hexagon is 

the same as that used in the model training. We then flatten the mixture probabilities by lower-

bounding the minimum to 1/2K (K is the number of factors) then normalize again to weaken the 

prior information from this hexagonal level analysis.  
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Comparison with other methods 

We ran Baysor and GraphST with default settings on CPUs with a single thread. For Baysor we 

set the key parameter, expected cell radius, to the simulated cell radius. In the Vizgen mouse 

liver subset, we set the expected cell radius to 7 µm. For GraphST we chose Leiden for final 

cluster assignment because it works most reliably. We did not use the “refinement” option in 

GraphST because it tended to create smoother spatial pattern that does not match our 

simulation setting resulting in lower accuracy. Baysor and FICTURE’s runtime is stable across 

runs, but GraphST’s runtime was highly variable. We ran GraphST 10 times and took the 

average runtime and memory as shown in Fig. 3E.  

 

 

Data availability  

The source code and python package for FICTURE method is publicly available in the GitHub 

repository at https://github.com/seqscope/ficture. The full results from the 5 real datasets are 

available in Zenodo with DOI https://doi.org/10.5281/zenodo.10070621. The Seq-Scope mouse 

colon data will be publicly available in the Gene Expression Omnibus. Other datasets can be 

accessed from the sources indicated in the Methods section.  
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Figure Legends 

Figure 1. Overview of FICTURE (A) Illustration of the ST analysis on a two-dimensional (2D) 

section of three-dimensional (3D) tissue. The 2D view of each cell varies substantially 

depending on the shape of the cells and the location and orientation of the cutting plane. A 2D 

slice may not capture some nuclei, leading to bias in nuclear segmentation based on histological 

staining (bottom left, dashed lines). Uniform gridding substantially compromises the original 

resolution (bottom center). FICTURE preserves the original resolution at the pixel level (bottom 

right). (B) The proportion of transcripts included (yellow) or excluded (navy) in the cell 

segmentation analysis across five high-resolution datasets used in this study. Asterisks (*) 

indicate that Seq-Scope dataset was not segmented into cells. (C) Schematic illustration of the 

FICTURE’s workflow. FICTURE’s pixel-level inference is based on factor-specific expression 

profiles. These can be generated from (i) unsupervised factorization using Latent Dirichlet 

Allocation (LDA) on spot level gene counts collapsed according to a hexagonal grid (default; D, 

left), (ii) other tools that provide clustering or factorization (e.g. Seurat, scanpy, squidpy) on 

collapsed data, or (iii) external sc/snRNA-seq reference with cell type specific gene expressions. 

(D) Schematic illustration of the FICTURE’s algorithm. Based on the initial factors, FICTURE 

places anchors on a lattice denser than cells (D, center) and infers a mixture distribution over 

factors at each anchor based on the gene expressed at pixels in its neighborhood. Each pixel is 

assigned to a nearby anchor probabilistically and the pixel’s sparse gene expression is modeled 

by that anchor’s mixture distribution. Initially pixels are assigned to the nearest anchors 

deterministically, then the anchors’ mixture distributions over factors and the pixel-to-anchor 

assignments are updated iteratively. Upon convergence, pixels are assigned to anchors with 

factor mixtures best explaining the pixels’ gene expression; and anchors tend to collect 

information from a more homogeneous set of pixels (D, right).  

 

Figure 2. Grid-based vs. pixel-level analysis of Seq-Scope mouse colon. Mouse colon sections 

with biopsy-induced injuries were profiled with Seq-Scope, segmented into hexagons with side 
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length 14 µm, and clustered with Seurat, similar to the published study8. These clusters are 

provided as input factors for spatial factorization in three different resolutions. Nine sections 

were analyzed (Supplementary Fig. 3), and one is shown here. Wound sites are indicated by red 

arrows in (A), (J) and (K). (A) Hematoxylin and eosin (H&E) staining. (B) Density of transcripts 

observed at each pixel. (C) Cluster assignments of the original 14 µm-sided hexagons. (D) 

Projection of the clusters onto 7 µm-sided hexagons. (E) Pixel-level decoding using FICTURE. (F-

I) Close-up view of blue rectangles in (A), (C), (D) and (E), showing normal colonic wall layers in 

H&E (F), hexagonal clusters (G, H), and FICTURE inference (I). Arrows indicate muscle layers 

(yellow), ganglion cells in myenteric and submucosal plexus (green), fibroblasts in submucosa 

and lamina propria (orange), crypt epithelial cells (light blue), goblet cells (purple), and surface 

colonocytes (light green). (J) Visualization of clusters corresponding to injury-response and 

immune cell infiltration near the injury site. (K) Visualization of normal colon cells and 

fibroblasts in the same region. The full color codes and marker genes of each factor are shown 

in Supplementary Table 1. 

 

Figure 3. Comparison between FICTURE, Baysor, and GraphST using simulation. (A) The 

simulated ground truth with 10 cell types, which are colored as indicated. The top panel shows 

the full region, and the bottom panel shows the close-up view of yellow-boxed region (100 µm 

x 100 µm). (B) Comparisons between GraphST (left), Baysor (center), and the fully unsupervised 

FICTURE initialized by LDA (right). The top row represents pixel-level cluster assignment; the 

middle row represents the difference between inferred and true clusters; the bottom row 

magnifies the same area as in the bottom panel of (A). (C) Robustness to over-specified number 

of clusters when the true number of clusters is 10. Metrics are quantified as the coverage of the 

pixels by top 10 factors (top) and pixel-level assignment errors (bottom) of GraphST, Baysor, 

and FICTURE. Densely packed data are presented in Supplementary Fig. 4, while sparse 

background data are presented above in (A) and (B). (D) Comparisons of segmentation-free 

methods (Baysor vs. FICTURE) in terms of memory consumption (top) and running time 

(bottom) as a function of the area processed (mm2) or the number of molecules (pixels). The 
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top and bottom figures are based on the same set of experiments. (E) Comparison with 

segmentation-based methods (GraphST) in terms of memory consumption and running time as 

a function of the number of cells (although FICTURE is performed at the pixel level). (F) 

Projected memory consumption and computational time to perform the analysis on real 

datasets using each method. Due to the limited scalability of Baysor, the projection assumes 

that only 500 genes are used in Stereo-seq.   

 

Figure 4. Application of FICTURE to a whole mouse embryo dataset by Stereo-seq. (A) The 

published E16 mouse embryo Stero-seq dataset was used to produce following images. Left: 

DAPI staining image. Center: published analysis based on cell segmentation. Right: pixel-level 

analysis using a fully unsupervised FICTURE. (B) Yellow-boxed area was magnified focusing on 

developing skeletal muscle. From top to bottom: DAPI staining image, cell-based segmentation 

image from the MOSTA browser, pixel-level decoding with FICTURE, and two FICTURE factors 

representing myoblasts (red) and differentiating myofibers (yellow). (C) Magnification of the 

submandibular gland. The upper left corner is the DAPI image. The lower left corner shows the 

cell-based segmentation visualized at the pixel level. The lower right corner shows the pixel-

level decoding with FICTURE. The upper right corner shows the posterior probability of an 

epithelial factor at each pixel. (D) Spatial distribution of meningeal cell types from the published 

cell segmentation analysis (left), and pixel-level inference with FICTURE (right). (E) Spatial 

distribution of chondrocyte cell type from the published cell segmentation analysis (left), 

compared with pixel-level inference by FICTURE (right), distinguishing ossification activity (blue) 

and other chondrocytes (yellow). The numbers in (D) and (E) indicate the number of cells or 

pixels found in the regions marked by the yellow dotted rectangles where the corresponding 

cell types are expected to be absent. The regions marked by the pink (D) or green (E) rectangles 

are magnified at the bottom. The full color codes and marker genes of each factor are shown in 

Supplementary Table 1. 
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Figure 5. Application of FICTURE to a published Human Breast Cancer Dataset by 10X Xenium. 

(A) H&E image of the whole tissue section profiled by 10X Xenium. (B) The pixel-level factor 

inference using fully unsupervised FICTURE. (C, D) Adipose tissue surrounding ductal carcinoma 

in situ (red boxes in (A) and (B)) was magnified. (C) Cell segmentation-based clustering, H&E, 

and DAPI image (from left to right) from the published 10X Xenium analysis using Xenium 

Ranger. (D) Inference from unsupervised FICTURE. Left: all factors. Center: adipocyte-

representing factor. Right: factors representing endothelial cells (blue), macrophages (yellow), 

and fibroblasts (pink). (E, F) Region between lesions of atypical ductal hyperplasia (yellow boxes 

in (A) and (B)) was magnified. (E) Cell segmentation-based clustering, H&E, and DAPI image 

(from left to right) from the published 10X Xenium analysis using Xenium Ranger. (F) Inference 

from unsupervised FICTURE. Left: all factors. Center: Factors representing three stromal cell 

populations, with CXCL12 (blue), SFRP4 (yellow), and POSTN (pink) as the top markers. Right: 

Factors representing immune cell types including B cells (blue), CD8+ T cells (yellow), and the 

other T cells (pink). The full color codes and marker genes of each factor are shown in 

Supplementary Table 1. 

 

Figure 6. Application of FICTURE to a Mouse Liver dataset by Vizgen MERSCOPE (A) A wide 

view of the pixel-level inference result of the mouse liver section, showing all factors as 

different colors. The two squares indicate the region magnified in the other panels. (B) A close-

up view of pixel-level factorization near a hepatic sinusoid focusing on periportal and 

pericentral hepatocytes. (C) Corresponding view of the same region as in (B), focusing on non-

parenchymal cells. (D) Close-up view of non-parenchymal factors around portal vein. Yellow box 

was further magnified in (E-F). (E) A further magnified view of nuclei (blue) and cell boundary 

markers (yellow) near the portal vein from the Vizgen browser. (F) The magnified view of the 

same region as in (E) showing the segmented cells colored by their Leiden cluster assignments 

from the Vizgen browser. (G) Factors from FICTURE in the same regions as in (E, F), focusing on 

non-parenchymal cells.  The full color codes and marker genes of each factor are shown in 

Supplementary Table 1.   
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