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Abstract

For antigenically variable pathogens such as influenza, strain fitness is partly
determined by the relative availability of hosts susceptible to infection with that strain
compared to others. Antibodies to the hemagglutinin (HA) and neuraminidase (NA)
confer substantial protection against influenza infection. We asked if a cross-sectional
antibody-derived estimate of population susceptibility to different clades of influenza A
(H3N2) could predict the success of clades in the following season. We collected sera
from 483 healthy individuals aged 1 to 90 years in the summer of 2017 and analyzed
neutralizing responses to the HA and NA of representative strains. The clade to which
neutralizing antibody titers were lowest, indicating greater population susceptibility,
dominated the next season. Titers to different HA and NA clades varied dramatically
between individuals but showed significant associations with age, suggesting dependence
on correlated past exposures. Despite this correlation, inter-individual variability in
antibody titers to H3N2 strains increased gradually with age. This study indicates how
representative measures of population immunity might improve evolutionary forecasts
and inform selective pressures on influenza.

Author summary

The rapid evolution of influenza requires semi-annual updates to the strains included in
influenza vaccines. New vaccine strains are frequently chosen based on their ability to
escape immunity to other strains, with the degree of escape estimated from
experimental infections of ferrets. However, the cross-reactivity derived from ferret
experiments does not always match measures in people, who often have a long history of
influenza exposures. We conducted a large cross-sectional serological study involving
483 individuals between 1 and 90 years of age and tested their sera against the major
surface protein of eight circulating influenza strains. Levels of neutralizing antibody
successfully predicted the dominant strain in the next influenza season. Different age
groups showed different patterns of binding, although there was substantial variability
in responses within age groups and an increase in the diversity of neutralizing antibody
profiles with age. Our study demonstrates the feasibility of using cross-sectional sera to
estimate major selection pressure on influenza.
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Introduction 1

The epidemiological and evolutionary dynamics of antigenically variable pathogens are 2

intrinsically sensitive to immunity in the host population. This understanding has long 3

shaped vaccination strategies against influenza. Twice each year, representative strains 4

from circulating clades are evaluated for their ability to escape antibodies to current 5

vaccine strains, under the expectation that these clades might come to dominate and 6

could be poorly matched by the current vaccine. As surrogates for the human 7

population, influenza-naive ferrets are infected or vaccinated with one of a set of 8

reference influenza strains (e.g., current vaccine strains), and their post-exposure sera 9

are tested against candidate strains for the next vaccine. The extent to which these sera 10

cross-react or neutralize candidate strains is taken as a measure of their immune escape 11

or antigenic distance [1, 2]. These experimental measures of immune escape, alongside 12

other estimates of variant growth rates and sequence-based fitness models [3], are used 13

to anticipate the dominant clade and need for vaccine updates. In the past few years, 14

escape from human sera has been considered too (e.g., [4]). 15

An open question is whether more direct and representative estimates of population 16

immunity could lead to better vaccine choices while potentially shedding light on the 17

mechanisms of coevolution between the viral population and host immunity. In the past 18

decade, large differences have occasionally appeared in the antigenic distances inferred 19

from ferret compared to human sera [5, 6]. It’s possible that these differences arise at 20

the species level, although the antibody responses of ferrets and humans after their first 21

influenza exposures appear roughly similar [7]. A more likely explanation comes from 22

the observation of original antigenic sin, whereby individuals exposed to the same strain 23

of influenza can mount antibody responses with different cross-reactivity profiles shaped 24

by their distinct histories of exposure [5, 8–11]. These past infections and vaccinations 25

lead to biases in which viral sites or epitopes antibodies recognize. Consequently, a 26

mutation in one epitope might be antigenically important for some people (or ferrets) 27

but not others. Since most influenza infections occur in people with preexisting 28

immunity to influenza, and antibodies to influenza surface proteins contribute 29

substantially to protection (and transmission) [5, 12–16], accurate measures of 30

population immunity may be useful in viral forecasting and vaccine strain selection. 31

Using the 2017-2018 influenza season in North America as a case study, we 32

characterized a cross-sectional, age-representative estimate of antibody-mediated 33

immunity in an urban population and asked whether it could predict which of several 34

circulating clades of H3N2 would dominate regionally in the next influenza season. 35

Forecasting for vaccine strain selection often focuses on antigenic changes to the 36

hemagglutinin (HA) surface protein, which vaccines attempt to match. We measured 37

neutralizing antibody titers to the neuraminidase (NA) protein as well as to HA because 38

antibodies to NA are also protective and should thus affect clade fitness. We found 39

large differences in the expected susceptibility of the population to different clades’ HA 40

and NA, and these differences in susceptibility predicted clade dominance. They also 41

partially predicted the relative attack rates of clades by age. We furthermore quantified 42

the heterogeneity in neutralizing titers in the population, finding patterns consistent 43

with age-associated epitope targeting, despite a high diversity of neutralization profiles 44

that gradually increases with age. 45
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Results 46

Human sera from the summer of 2017 poorly neutralize the clade 47

that dominated in North America in the next influenza season 48

We investigated whether neutralizing antibody titers to HA and NA from H3N2 clades 49

circulating in early 2017 could predict the dominant (most frequent) clade in the next 50

influenza season. Antibodies to HA can protect against infection [12,13,15–17], and we 51

expected that the clade to which the largest fraction of the population had poorly 52

neutralizing anti-HA titers would be most successful. This expectation assumes that 53

exposure rates, other factors affecting susceptibility, and the average infectiousness or 54

transmissibility of an infected person do not differ starkly between age groups; it also 55

assumes that antibody-mediated protection derives primarily from neutralization and 56

not Fc-mediated effector functions, or that the two are well correlated. Antibody 57

neutralization was measured by the focus reduction neutralization test (FRNT). 58

Correlates of protection have not been established for FRNT-derived titers, but because 59

microneutralization titers correlate well with hemagglutination inhibition (HAI) [18], 60

and a 1:40 HAI titer is traditionally associated with a 50% reduction in infection 61

risk [12], we initially assumed a 1:40 FRNT titer corresponds to a 50% chance of 62

infection, testing other assumptions in sensitivity analyses. We looked at the fraction of 63

the population below this cutoff for each clade to obtain the expected relative 64

susceptibility and ranked clades by this measure. We also estimated the relative 65

susceptibility according to the geometric mean titer (GMT) to each clade, with lower 66

GMT implying higher susceptibility. With both measures, the population-level 67

susceptibility was estimated by weighting the susceptibility of different age groups 68

according to their proportion in the population (Methods). We initially assumed 1:80 69

NA titer by the enzyme-linked lectin assay (ELLA) to be the 50% protective titer and 70

later explored other assumptions. 71

We collected serum samples from May to August of 2017 from the University of 72

Pennsylvania BioBank and Children’s Hospital of Philadelphia [19] (Methods). Samples 73

from children were primarily obtained for lead testing. Adults with certain health 74

conditions were excluded. No information on vaccination status was available. We 75

measured neutralizing titers to the 8 HA and 2 NA representing common current or 76

recently circulating H3N2 clades (Fig 1A left for HA and Fig S1A left for NA). 77

The genetic diversity of the H3N2 HA was high in 2017. Two distinct clades, 3C.2A 78

and 3C.3A, which last shared a common ancestor in 2012 circulated globally. These 79

clades differed by amino acid substitutions in epitopes A and B (Fig 1B, C) and in 80

non-epitope sites. Clade 3C.2A had gained a potential glycosylation site at epitope B 81

(K160T; H3 numbering used throughout) and had lost a glycosylation motif at epitope 82

A (N144S). Clade 3C.3A had lost a different glycosylation site in epitope A (T128A) 83

(Fig 1B, C). 84

We picked at least one reference virus for each clade, further splitting clade 3C.2A 85

into subclades 3C.2A1, 3C.2A2, and 3C.2A3. We chose as the reference virus for basal 86

clade 3C.2A the H3N2 vaccine strain in the 2016-2017 season (A/Hong 87

Kong/4801/2014). For subclades 3C.2A1, 3C.2A2, and 3C.2A3, we picked 3, 2, and 1 88

reference viruses, respectively, each carrying subclade-specific nonsynonymous 89

substitutions and (for 3C.2A1 and 3C.2A2) potentially important amino acid 90

polymorphisms within the subclade. Each subclade contained an epitope A substitution 91

compared to the 3C.2A reference strain (Fig 1B, C). Notably, one reference virus for 92

clade 3C.2A1 (virus 3C.2A1-3) had the T135K mutation, which removes a glycosylation 93

motif in epitope A. For clade 3C.3A, we picked one reference virus. 94

For all reference viruses, an undetectable HA titer (titer of 1:10) was the most 95

common HA titer in all age groups except children 5-17 years old (Figs 2A, S2). Most 96
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Fig 1. Reference viruses representing co-circulating H3N2 clades during the
2016-2017 season. A. Genealogies of H3N2 HA through the 2016-2017 (left) and
2017-2018 season (right). Branches are colored by clade. Tips are shown as filled circles
if collected in North America during the most recent season. B. Amino acid and
glycosylation site variation among reference viruses. Clades 3C.3A and 3C.2A diverge at
additional non-epitope sites (not shown). Residue 128 belongs to antigenic site B, but
the substitution T128A results in loss of glycosylation on residue 126 of epitope A.
Therefore, we show residue 128 in epitope A and in the glycosylation site involving
residues 126-128, following [1]. C. Variable residues among the reference viruses are
shown on the H3 structure of A/Aichi/2/1968 (Protein Data Bank: 1HGG) and colored
by epitope as in panel B. For each strain, residues differing from 3C.2A are numbered
and darker in color. D. Glycosylation sites used in the model shown on the H3 structure.

people over 4 years old had detectable NA titers (1:≥ 20) (Figs 3A, S3). Even though 97

detectable antibody to H3N2 HA or NA is expected among older children and adults, 98

who have been infected and possibly vaccinated with H3N2, surprisingly large variation 99

was observed among individuals of the same age (Figs 2A, 3A). These are likely genuine 100
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differences in titer, as technical replicates had high agreement. 101

The population-level relative susceptibility inferred using the 1:40 protective cutoff in 102

HA titer was highest to the 3C.2A2 subclade, specifically the group of viruses with 261Q 103

in epitope E (3C.2A2-2 reference strain; the susceptibility to 3C.2A2-2 is higher than 104

the susceptibility to 3C.2A2-1 and 3C.3A, both bootstrap p < 0.001), followed by the 105

rest of the 3C.2A2 subclade (3C.2A2-1 reference strain; the susceptibility to 3C.2A2-1 is 106

higher than the susceptibility to 3C.2A1-1, bootstrap p < 0.05) and the 3C.3A clade 107

(p < 0.01 for the same test; Fig 2B, left panel) (Methods). The GMTs also suggested 108

the susceptibility was highest to the 3C.2A2-2 reference strain followed by 3C.2A2-1 109

(Fig S4). The greatest protection or lowest susceptibility in the population by both 110

measures was to strains of the 3C.2A1 subclade with 135K in epitope A and 121K in 111

epitope D (reference strain 3C.2A1-3) and subclade 3C.2A3 (reference strain 3C.2A3). 112

Fig 2. Antibody titers and inferred relative susceptibilities to co-circulating
H3 strains show variability by strain and age group. A. FRNT titers with points
jittered slightly along the x- and y-axes. Lines are Loess curves showing smoothed
geometric mean titers. B. Inferred relative susceptibility and its rank to each reference
strain for the whole population (left) and by age group (right). The bars indicate 95%
CIs obtained from bootstrapping. A lower rank indicates significantly higher
susceptibility.

Consistent with simple predictions, clade 3C.2A2 dominated in North America in 113

the 2017-18 season (Fig 1A, right panel), followed by 3C.3A. To assess dominance, 114

influenza sequences were downloaded from GISAID [20]. We assigned 9913 sequences 115

collected in North America during the 2016-2017 and 2017-2018 influenza seasons to 116
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reference viruses based on their genetic similarity at segregating sites and found that 117

the frequency of sequences genetically similar to reference strain 3C.2A2-2 in clade 118

3C.2A2 increased from 21% in the 2016-2017 season to 85% in the 2017-2018 season 119

(Fig S11). Clade 3C.3A increased from 6% to 8% over that period. However, we did not 120

find a perfect correlation between the rank measured by inferred relative susceptibilities 121

and rank by relative growth: despite having higher estimated susceptibility than 122

subclade 3C.2A1 (3C.2A1-3), subclade 3C.2A1 (3C.2A1-2) experienced a more severe 123

decline. Although the available sequences are not generated from any kind of systematic 124

surveillance program and thus may not accurately reflect relative prevalence, trends 125

were stable regionally (Fig S11A). The results suggest that population-average anti-HA 126

neutralizing titers reflect strain fitness, but that other factors may be relevant for 127

detailed predictions. 128

We next measured antibody responses to NA reference strains representing the NAs 129

of clades 3C.2A and 3C.2A2 (“3C.2A (NA)” and “3C.2A2-2 (NA)”, respectively) (Fig 130

3A) [19]. The two reference viruses differ by 7 amino acid substitutions in the NA head: 131

176, 245, 247, 329, 334, 339, and 386. We first estimated population-level relative 132

susceptibilities to the two clades using a 1:80 protective cutoff (Fig 3B, left panel). 133

Similar to our findings for HA, serological responses to NA indicated higher 134

susceptibility to 3C.2A2-2 (NA) than to 3C.2A (NA) across all age groups. The GMT 135

values also suggested higher susceptibility to 3C.2A2-2 (Figs 3A, S8). Because only two 136

NA reference strains were used, we cannot conclude if anti-NA titers would have 137

predicted clades’ rank frequencies as accurately or perhaps better than titers to HA. 138

Age groups differ in their susceptibility to and relative attack 139

rates with different H3N2 clades 140

Because age-specific patterns of antibody titers have been associated with age-specific 141

infection risk [5, 21], we estimated relative susceptibility to each clade within each age 142

group and measured correlations with their estimated relative clade-specific infection 143

rates in the 2017-2018 influenza season. Age groups differed slightly in their expected 144

susceptibilities to different clades of H3N2 (Fig 2B, right panel). Assessed by their 145

anti-HA titers, children 1 to 4 years old appear equally susceptible to all reference 146

viruses. The anti-HA titers of older children and adults showed heightened susceptibility 147

to the 3C.2A2 clade: titers from 5- to 17-year-olds indicated the highest susceptibility 148

to the basal 3C.2A2 clade (reference strain 3C.2A2-1) followed closely by 3C.2A2 149

(reference strain 3C.2A2-2), whereas people aged 18-64 y had pronounced susceptibility 150

to reference strain 3C.2A2-2 compared to other clades. All age groups with previous 151

influenza experience (≥ 5 y) were least susceptible to clades 3C.2A1 and 3C.3A 152

(reference strains 3C.2A1-3 and 3C.2A3, respectively). Interestingly, 5- to 17-year-olds 153

were least susceptible to 3C.3A, while adults were relatively susceptible to 3C.3A. We 154

also found that children 1 to 4 years old had comparable susceptibility to the two clades 155

of NA, and all older age groups demonstrated greater susceptibility to the 3C.2A2 clade 156

(3C.2A2-2 (NA)) (Fig 3B, right panel). 157

We evaluated whether the age-associated trends in relative susceptibilities to 158

different clades in the summer of 2017 were mirrored in their relative rate of infection 159

with each clade in the 2017-2018 influenza season. Due to lack of systematic 160

surveillance, unbiased estimates of attack rates by clade do not exist for this population. 161

We nonetheless examined the ages associated with sequences uploaded into GISAID to 162

approximate the proportion of infections caused by each clade in each age group. 163

Because the 3C.2A2 clade dominated in the 2017-2018 season and all but the youngest 164

age groups showed particularly high susceptibility to this clade, we expected clade 165

3C.2A2 to be the most frequent within each age group. This is what we found (Fig S12). 166
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Fig 3. Antibody titers and relative susceptibilities to co-circulating N2
stains show differences by strain and age group. A. ELLA titers with points
jittered slightly along the x- and y-axes. Lines are Loess curves showing smoothed
geometric mean titers. B. Inferred relative susceptibility and its rank for each NA for
the whole population (left) and by age group (right). A lower rank indicates
significantly higher susceptibility.

However, we observed that children < 5 y old, who seemed approximately equally 167

susceptible to all clades by HA and NA, had a relatively lower proportion of 3C.2A2 168

infections compared to adults (chi-square test, p < 0.001). Children 5-17 y old, who 169

were only slightly more susceptible to 3C.2A2 than other clades, also had a lower 170

proportion of 3C.2A2 infections compared to adults (p < 0.001). Consistent with our 171

observation that 18- to 64-year-olds were disproportionately susceptible to clade 3C.2A2, 172

the age distribution of that clade was slightly more skewed toward adults compared to 173

non-3C.2A2 clades, which were more common in children (Fig S13). 174

Correlations between titers to different strains vary by age, 175

suggesting age-associated differences in epitope targeting 176

We next investigated the correlations in titers to different clades (Fig 4A, blue lines): 177

Do individuals with high titers to 3C.3A tend also to have high titers to 3C.2A2, for 178

instance? Closely correlated titers to related viruses suggest that individuals might 179

target epitopes conserved among them. (It could also indicate recent infections or 180

immunizations with each of those strains and responses to their non-shared epitopes, 181
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although H3N2 infections typically occur at least several years apart and are less 182

frequent in adults compared to children [17,22,23].) Aside from providing insight into 183

the mechanisms generating immunity, understanding the structure of titers within the 184

population might lead to improved estimates of selective pressures on viruses. For 185

instance, weakly correlated titers to different clades suggest a population with more 186

heterogeneous immunity, which can affect viral coexistence, vaccination thresholds, and 187

other dynamics [24–27]. 188
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Fig 4. Correlations in titers to different clades and similarities of titer
vectors of individuals A. Schematics demonstrating calculation of the correlation of
titers to different strain pairs (within age groups; blue lines) and of the correlation
between vectors of titers between pairs of individuals (cosine similarity; red lines). B.
Correlations between titers to different strains differ by age group, suggesting
age-dependent patterns of epitope targeting. Each cell is colored by the correlation
coefficient for titers to that viral pair within that age group. Individuals with
undetectable titers across all reference viruses have been removed. C. The similarity of
titer vectors declines with age. In the upper panel, points show cosine similarities of HA
titers between pairs of individuals. Each cosine similarity was calculated from a
randomly drawn pair of individuals who were within a 3-year age difference. The
regression line is shown in red. The lower panel shows the distribution of estimates
obtained by regressing cosine similarity on age using 1000 different sets of random pairs.
The black line is the mean of the predicted cosine similarity and the gray shading
indicates the 95% interval of predicted values.

We found that the strength of correlation differed by age group and virus pair. In 189

general, titers to all the reference viruses were highly correlated in 1- to 4-year-old 190

children and less correlated in older ages (Figs 4B, S14). (Individuals with undetectable 191

titers to all strains were removed from the main analysis.) This suggests that young 192

children target epitopes common to many reference viruses or have been infected by 193
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close relatives of each, whereas older age groups target epitopes conserved among only a 194

subset (Figs S18, S19, S20). Results hold when age groups are chosen to span an equal 195

number of years (Fig S15), showing that the weaker correlation in titers across all 196

reference viruses in adults 18-44 y, 45-64 y, and 65-90 y is not due simply to the groups’ 197

relative sizes or the diversity of childhood exposures represented in them. In all age 198

groups, titers to 3C.3A were least correlated with titers to other viruses (Fig S16). This 199

might be explained by reduced exposure to 3C.3A viruses and/or the targeting of sites 200

on 3C.2A clade viruses that are not shared with 3C.3A (Fig S17). 201

The strength of correlation between titers to 3C.2A clades varied between age 202

groups. In contrast to younger age groups, middle-aged and older adults (≥ 45 y) 203

showed uniquely strong correlations in titers to 3C.2A, 3C.2A3 and 3C.2A1 with 135T 204

(reference strains 3C.2A, 3C.2A3, 3C.2A1-1, and 3C.2A1-2). The pattern might be 205

explained by responses focused on epitope A (e.g., sites 131, 135, and 142) residues that 206

are disrupted in other reference strains. 207

Titer profiles or local antibody landscapes diversify with age 208

The prior analysis measured typical correlations between titers from the same individual 209

to different reference strains and found that those correlations differed by age, 210

suggesting that age groups vary in which sites they target. A distinct question is 211

whether individuals tend to target the reference strains similarly, i.e., do individuals of 212

the same age have consistently high and low titers to the same strains, and do these 213

titer profiles (vectors) diverge or converge with age (Fig 4A, red lines)? This is 214

analogous to measuring the diversity of antibody landscapes [28], although here we are 215

looking at very recent H3N2 evolution. We excluded individuals with only undetectable 216

titers (for which cosine similarity is undefined) and calculated the cosine similarity of 217

randomly chosen pairs of people, requiring that members of the pair have a ≤ 3-year 218

age difference. Cosine similarity declined gradually with age (linear regression, 219

p < 0.001, Fig 4C, upper panel). The significance of this trend holds across different 220

random pairings (Fig 4C, lower panel). The decline in cosine similarity suggests that 221

antibody responses diversify with age: children start with relatively consistent patterns 222

of epitope targeting, and individuals’ patterns diverge over time. The result also holds 223

when we combine all HA and NA strains in the titer vector (Fig S21). 224

Clustering suggests two general titer profiles 225

Given the high variance in titers within and between age groups, we next examined if 226

there were more clearly distinguishable subpopulations that shared similar titer profiles 227

(had high cosine similarity) to co-circulating viruses. We used k-means clustering to 228

separate individuals by their FRNT titers to the eight HA reference strains. Clustering 229

into two groups was best supported (Figs 5, S22). The first group has high titers to 230

clade 3C.3A and low titers to clade 3C.2A viruses across all age groups. The second 231

group shows similar titers to all viruses, with lowest titers to some 3C.2A2 strains 232

(reference strain 3C.2A2-2) in adults. There was no mean age difference between the 233

groups (mean age difference = 3.7 y, Pearson’s test, p = 0.44), indicating that people 234

who have higher titers to 3C.3A compared to 3C.2A exist across all age groups, and 235

showing that age or birth year does not strongly predict relative titers to 236

contemporaneous strains. 237

Relatively large differences in antibody titers to 3C.3A and 3C.2A strains are 238

consistent with their sequence dissimilarity. Three potential N-linked glycosylation sites 239

(PNGS) differ between 3C.3A and 3C.2A in epitopes A and B (Fig 1B): 3C.3A is 240

missing a PNGS at sites 126-128 in epitope A and another at sites 158-160 in epitope B, 241

whereas 3C.2A has no PNGS at sites 144-146 in epitope A. Epitope B is frequently 242
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Fig 5. Individuals cluster into two groups by their vectors of HA titers or
local antibody landscapes A. Titers of individuals in each group. Points are jittered
slightly along the x- and y-axes. Lines are Loess curves showing smoothed geometric
mean titers. B. The age distribution of each group.

immunodominant [29,30], and glycosylation at epitope B might shield some of the 243

epitope [29]. Therefore, individuals with a high titer to 3C.3A relative to 3C.2A may 244

have more antibodies directed toward epitope B. Alternatively or additionally, they may 245

have epitope A immunodominance, and the PNGS at sites 126-128 in clade 3C.2A 246

effectively shields the epitope. 247

Overall, the variance of differences in 3C.3A and 3C.2A log titers among individuals 248

within an age group was as high as the variance among age groups (ANOVA, F = 1.56, 249

p = 0.18), indicating factors other than age explain these coarse differences in specificity. 250

However, the variance of differences between 3C.3A log titers and 3C.2A1-3, 3C.2A2-2, 251

and 3C.2A3 log titers was more age-associated, although the results were not significant 252

after correction for multiple tests (ANOVA, p = 0.02, 0.01, and 0.02, respectively; the 253

cutoff for significance is 0.007 after Bonferroni correction; Table 1). 254

NA-focused antibody responses are more common in 255

middle-aged adults 256

We next compared HA and NA antibody titers. The fraction of individuals with 257

detectable HA titers decreased with age (Fig 6; logistic regression, p < 0.01; Methods). 258

The fraction of people with titers only to NA increased with age (logistic regression, 259

p < 0.001) and was highest among 51- to 60-y-olds, who were born between 1957 and 260

1966 (45% have NA only titers), followed by 41- to 50-y-olds, who were born between 261

1967 and 1976 (33% have NA only titers; Fig 6). This was the only period in which 262

H1N1 did not circulate, and individuals in this age range were imprinted to or 263
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Table 1. ANOVA test for whether the difference with 3C.3A log titers is
higher among than within age groups

Ref. virus Mean square (age group) Mean square (residuals) F p
3C.2A 1.82 1.17 1.56 0.18

3C.2A1 3.14 1.41 2.22 0.07
3C.2A1-2 2.60 1.22 2.13 0.08
3C.2A1-3 4.16 1.47 2.84 0.02
3C.2A2 1.05 1.22 0.86 0.49

3C.2A2-2 5.15 1.41 3.64 0.01
3C.2A3 3.60 1.27 2.83 0.02

experienced original antigenic sin with the N2 NA through primary infection with H2N2 264

(which circulated from 1957-1968) or H3N2 (which circulated from 1968). We 265

nonetheless find a positive correlation between individuals’ HA and NA titers across all 266

age groups, with a shift toward weaker correlations and higher NA than HA titers in 267

older adults (Figs S23, S24). 268

Fig 6. Antibody distributions for each age group. For both HA and NA, titers
1:≥ 20 were defined as detectable antibody.

Discussion 269

Current approaches for forecasting influenza and mapping its antigenic evolution rely on 270

antigenic distance measurements that do not always reflect immunity in the human 271

population. Understanding the size of the difference and how much it matters would 272

require analyzing discrepancies between antibody titers and traditional ferret-based 273

measurements over multiple years from representative cross-sectional surveys in different 274

populations. Multiple years of sampling could also resolve the subpopulations and 275

measures needed to assess immune selective pressures and compare them to other 276

factors influencing fitness [3, 31,32]. Here, as a proof of principle, we demonstrate that 277

several hundred sera obtained as convenience specimens from hospitals reveal differences 278

in expected susceptibility to circulating HA clades that predict the clade circulating in 279
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the following season. They also demonstrate high heterogeneity in neutralizing titers, 280

which is partly age- and possibly birth-year-associated, and the consequences of which 281

remain unclear. 282

The 2017-2018 influenza season in the United States was severe, causing 283

approximately 41 million illnesses and 52,000 deaths [33]. The moderate effectiveness of 284

the vaccine that season has been attributed to egg adaptations that created a mismatch 285

to circulating strains [34]. The H3N2 component of the vaccine, A/Hong 286

Kong/4801/2014 (a basal 3C.2A strain), had been unchanged from the previous season 287

because no clear indication of antigenic evolution was apparent by early 2017, when 288

vaccine strain composition for the Northern Hemisphere was decided; the 3C.2A2 clade 289

was nonetheless noted to be growing quickly [35]. Over 90% of 3C.2A2 strains isolated 290

from the United States in the 2017-2018 season were described as well inhibited by ferret 291

antisera raised against the cell-propagated reference virus for A/Hong Kong/4801/2014 292

(A/Michigan/15/2014), and in early 2018, the H3N2 vaccine component was updated 293

only to avoid egg adaptations, not because antigenic change had been detected [36]. 294

(However, a later investigation of H3N2 viruses circulating in Japan in 2017-2018 did 295

detect antigenic differences between 3C.2A and 3C.2A2 strains using ferret antisera [37].) 296

Our study suggests that antigenic changes were detectable in human antisera by at least 297

the summer of 2017, and they could predict the dominance of 3C.2A2. Consistent with 298

this prediction, Ursin et al. found that individuals testing positive for H3N2 in the 299

2017-2018 season had consistently lower serum neutralization titers to the 3C.2A2 clade 300

than those testing negative—with no differences between the two groups’ titers to 301

cell-grown A/Hong Kong/4801/2014—underscoring the consequences of these 302

neutralization differences for protection and probably transmission [38]. 303

Measurements of population immunity could be substantially more efficient and 304

useful for forecasting if we understood exactly what to measure and in whom. Antibody 305

titers to HA have been an established correlate of protection for half a century, and 306

antibodies to NA for approximately a decade. The generally good concordance between 307

hemagglutination inhibition assays and microneutralization suggest neutralization is a 308

decent surrogate, but it is unclear how much protection each immune response confers 309

in different people and whether measures of neutralization, total binding, 310

antibody-dependent cellular cytoxicity or phagocytosis activity, and/or potentially other 311

B- or T-cell or innate immune measures could improve estimates of relative 312

susceptibility. Correlates likely vary in quality over time: large discrepancies between 313

binding antibody titers and neutralization or protection have been reported and are 314

likely associated with birth cohort [19,39,40]. Furthermore, an accurate evolutionary 315

forecasting model would be grounded on correlates of transmission rather than simply 316

protection against disease. It might also be important to weight immunity in different 317

subpopulations differently: for instance, an infected child might be more likely to 318

transmit than an infected adult. These considerations would affect the need to sample 319

particular populations, such as unvaccinated members of certain age groups. Over larger 320

geographic scales, samples from typical “source” populations may be better predictors 321

or provide a longer lead time than populations that export fewer strains [41–43]. 322

Our data revealed variation in antibody titers between age groups that are broadly 323

consistent with influenza’s epidemiology but lack precise explanation. Children over five 324

years old had the highest geometric mean titers to all strains. This is consistent with 325

the high attack rates in school-age children [44] and other studies that report young 326

children having the high titers to recent strains [45]. Children also had relatively high 327

vaccination coverage (approximately 59% in the 2016-2017 season in children ≥ 6 mos.) 328

compared to younger adults [46]. These two factors might interact, since recent 329

infection can boost vaccine immunogenicity [47,48]. The relatively high vaccination 330

coverage in the oldest age group (approximately 65% in adults ≥ 65 y) might explain 331
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their higher titers compared to middle-aged and younger adults. Their relatively high 332

titers might also be explained by a disproportionately NA-focused response among 333

middle-aged adults whose likely first infections were with H2N2 between 1957 and 1968; 334

most 40- to 60-year-old individuals had no detectable neutralizing antibodies to the HAs 335

of circulating H3N2 clades. (These results suggest antibodies to HA may be a poor 336

correlate of protection in this age group and complement other reports of their 337

discrepant anti-HA titers [49].) Finally, we observed age-associated correlations in titers, 338

with all strains except 3C.3A showing correlated titers in younger children but only a 339

subset of 3C.2A strains (test strains 3C.2A3, 3C.2A1-1, 3C.2A1-2 and 3C.2A) showing 340

correlated titers in older adults. This suggests differences in which epitopes are being 341

targeted. 342

A prominent result, as in other seroepidemiological studies on influenza, is the large 343

heterogeneity even within age groups [17,28,40,45,49,50]. A clustering analysis 344

suggested two major profiles of targeting, distinguished primarily by high vs. low titers 345

to the 3C.3A clade, but these clusters are not strongly age-associated. Although not 346

presented here, we fitted dozens of generalized linear mixed models to attempt to 347

explain individuals’ titers to these strains as a function of potential recent infections, 348

vaccinations, early infections with strains with homologous epitopes, and 349

individual-specific biases in the contributions of different epitopes to titers. These 350

models were inconclusive, suggesting a need for more careful study of how a person’s 351

antibody titers change over time in response to particular exposures, and potentially 352

with some deconvolution of the response to specific epitopes [51]. That repeated 353

exposures might diversify responses was suggested by our discovery of a decline in the 354

similarity of the vectors of titers with age. 355

Our results demonstrate the feasibility of detecting significant differences in 356

neutralizing titers to different H3N2 clades in a sample of few hundred sera. This 357

approach could entail substantial improvements over the use of ferret sera, which do not 358

capture the immune history and heterogeneity in the human population. Testing 359

improved sampling protocols and forecasting models, which would be facilitated by the 360

existence of global blood banks [52,53] and common standards [54], might yield rapid 361

advances in forecasting not only the dominant clade but also potentially the dominant 362

subtype, and ideally at longer lead times than shown here. If linked to other forms of 363

surveillance, cross-sectional sera might also predict season severity and attack rates by 364

age, as suggested here. The same samples and similar models might also predict the 365

dynamics of other pathogens. 366

Materials and methods 367

Serological data 368

Sera from 489 individuals were collected between May and August of 2017 from the 369

Children’s Hospital of Philadelphia (1- to 17-year-olds) and from the University of 370

Pennsylvania Health care system via Penn BioBank (18- to 90-y-olds), as reported 371

om [19]. Serum samples were originally collected from children for lead testing, and 372

leftover de-identified samples were then used for this study. The Penn BioBank 373

routinely collects serum samples from individuals visiting the University of Pennsylvania 374

Health care system. We did not include samples collected by the Penn BioBank from 375

donors who had a pregnancy reported during the last 9 months, who had a medical 376

history of cancer or organ transplantation, or who had a reported infectious disease 377

within the previous 28 days. The study complied with all relevant ethical regulations 378

and was approved by the Institutional Review Board of the University of Pennsylvania. 379

Leftover de-identified samples collected at CHOP were considered exempt from human 380
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research (exemption 4) since the samples were leftover discarded samples that were 381

completely de-identified before our research team received them. 382

Foci reduction neutralization tests (FRNT) were performed on 437 individuals’ sera 383

using 8 viruses (3C.3A, 3C.2A, 3C.2A1-1, 3C.2A1-2, 3C.2A1-3, 3C.2A2-1, 3C.2A2-2 and 384

3C.2A3), and enzyme-linked lectin assays (ELLA) were performed on 352 individuals 385

using NAs from two strains (3C2.A (NA) and 3C.2A2-2 (NA)) as described in [19]. HA 386

and NA test virus used for 3C.2A is A/Colorado/15/2014, which is a reference virus for 387

vaccine strain for the 2016-17 season and is used as a wild type strain to make viruses 388

within 3C.2A. There were no significant titer differences between batches. 389

Genealogy of H3N2 and clade-specific amino acid substitutions 390

Prior to our analyses, we downloaded all available H3N2 HA and NA sequences from 391

the 2012-13 season through the 2017-18 season from GISAID (accessed in 01/10/2022). 392

Sequences were aligned using MAFFT 7.310 [55]. 393

We downsampled sequences to construct the phylogeny. From the 2012-13 through 394

the 2015-16 season, we sampled 20 sequences per season. For the 2016-17 and 2017-18 395

season, 100 sequences were sampled per season. The GISAID accession IDs and 396

metadata of the sequences used for the analysis are available in the Supporting 397

Information. We used BEAST 2.6.6 to reconstruct the genealogy [56] with a HKY 398

substitution model [57] with a four-category gamma site model with 4 and a log normal 399

relaxed clock. A coalescent Bayesian Skyline tree was used for the prior. We ran the 400

chain for 50 million steps and saved every 1000 trees, using 5 million steps as burn-in. 401

The maximum clade credibility tree was obtained using TreeAnnotator 2.6.6 version. 402

To visualize the tree, we used the R package ggtree 3.0.4 [58]. The trees were colored 403

by clade. For the genealogy of the 2016-17 season, only tips of sequences collected in 404

North America during the 2016-17 season were shown; these circled tips are colored 405

according to their assigned clade. For sequences collected in other areas or seasons, only 406

branches were shown. Similarly, for the genealogy of the 2017-18 season, only sequences 407

collected in North America in that season are shown as colored circles. 408

Sequence samples were assigned to reference viruses according to reference 409

virus-specific mutations at segregating sites, shown in Fig 1B. Here, sequences were 410

assigned to each reference virus rather than the subclade represented by each reference 411

strain. This is because sequences with 171K, 121K, and 135K, such as reference strain 412

3C.2A1-3, occur multiple times in clade 3C.2A1, and thus these sequences do not belong 413

to any one subclade of 3C.2A1. Additionally, within a subclade, mutations at 414

segregating sites occur so that a sequence in the same clade as a reference virus may not 415

share the same genetic characteristics. Due to frequent mutation at residue 142 across 416

most of clades, we allowed residue 142 to have any amino acid across most of clades, 417

except for clade 3C.2A2, which has a clade-specific 142K substitution. We confirmed 418

that all the sequences assigned to a reference virus fall in the same subclade as the 419

reference virus. 420

Clade-specific substitutions were colored by epitope on the H3 structure using 421

PyMOL version 2.3.3 [59]. 422

Inferring relative susceptibility from titers 423

The “inferred relative susceptibility” to a strain equals the fraction of an age group’s 424

titers to that strain under some threshold (here, initially 40 for HA and 80 for NA), 425

weighted by the fraction of the U.S. population projected to be in that age group in 426

2017 [60]. When there were fewer than eight titer measurements for a year of age, that 427

age was grouped with the next year of age until the age group contained at least eight 428

titer measurements. We found that using alternate titer thresholds for HA (Figs S5, S6, 429
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and S7) and NA (Figs S9 and S10) resulted in consistent relative susceptibilities across 430

strains. 431

The relative susceptibility was alternatively measured by the geometric mean titer 432

(GMT). The GMT was weighted analogously by the population fraction of each age bin. 433

Because lower GMTs correspond to higher susceptibility, we used a reverse scale when 434

showing the relative susceptibility by GMT. 435

To test for meaningful differences in relative susceptibilities, we bootstrapped 436

individuals to determine if the difference in inferred relative susceptibilities between two 437

viruses was significantly greater than zero [61]. For each age bin, individuals were 438

resampled 1000 times with replacement, and the fraction of individuals susceptible to 439

each virus was calculated. For a given pair of viruses, we defined the relative 440

susceptibility difference observed in the data as θ̂. The bootstrap value of θ̂, θ̂∗, was 441

obtained 1000 times by resampling individuals. Then we obtained the null distribution 442

of (θ̂∗ − θ̂) and calculated the probability (p) of observing θ̂ or a greater value under 443

this null distribution. If p < 0.05, the relative susceptibility difference is significantly 444

greater than zero, i.e., susceptibility to the first virus significantly exceeded that to the 445

second virus. For a given virus, we perform this comparison against all other viruses 446

and counted the number of significant results. The more significant results, the lower 447

the rank (closer to 1) of the relative susceptibility to a virus. We used the same 448

approach and significance level for all other bootstrapping analyses. 449

Frequencies of subclades 450

To calculate the frequencies of different subclades in the 2016-17 and 2017-18 seasons, 451

we downloaded sequences from GISAID on January 10, 2022, and assigned sequences to 452

each subclade using the same method as was used to construct the genealogy. Because 453

there were few sequences from Philadelphia, we calculated subclade frequencies in three 454

different ways, using sequences collected from North America, United States, or the 455

northeastern US. We considered Region 1, Region 2, and Region 3 of the U.S. 456

Outpatient Influenza-like Illness Surveillance Network (ILINet, [46]) as the Northeastern 457

U.S. states. These states are Connecticut, Maine, Massachusetts, New Hampshire, 458

Rhode Island, Vermont, New Jersey, New York, Delaware, the District of Columbia, 459

Maryland, Pennsylvania, Virginia, and West Virginia. Region 2 of ILINet includes 460

Puerto Rico and the Virgin Islands, but we excluded them from the analysis of the 461

northeastern U.S. For estimates derived from North American sequences, we used 4488 462

and 5425 sequences from the 2016-17 and 2017-18 seasons, respectively. For the US, 463

3707 and 3782 sequences were used. For the northeastern US, 782 and 676 sequences 464

were used. The GISAID accession IDs and metadata of the sequences used for the 465

analysis are available in the Supporting Information. 466

Correlations between titers to different strains 467

For each age group and pair of viruses, we calculated Spearman’s ρ using the cor 468

function in R. For each virus pair, we tested the difference in correlation coefficients 469

between the youngest age group and each other age group by bootstrapping (Fig S14). 470

We also used bootstrapping to evaluate differences in correlation coefficients between 471

viral pairs within an age group. For each virus pair, we did a series of bootstrap tests 472

comparing the pair’s correlation coefficient with the coefficient for each of the other 473

pairs. Then, for each virus pair, the number of tests in which the pair’s correlation was 474

significantly weaker than that of other pairs within the group was counted. In each age 475

group, there are 28 virus pairs whose correlation coefficient was calculated. One of the 476

pairs, for example, is 3C.3A and 3C.2A, and this pair’s correlation coefficient is 477

compared with the other 27 correlation coefficients of other virus pairs. The 3C.3A v. 478
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3C.2A pair’s correlation was weaker than 15 other pairs’ correlations. This number of 479

tests in which the pair’s correlation was significantly weaker than other pairs within the 480

group is shown as the color intensity of the heat map of Fig S16. 481

Cosine similarities 482

To calculate the cosine similarities of titer vectors between pairs of individuals, we 483

randomly drew pairs with a ≤ 3-year age difference. We sampled the pairs such that 484

each person was represented only once (so the pairs would be statistically independent). 485

Individuals with undetectable titers to all strains or with any missing data were 486

removed from the analysis, because cosine similarity for such individuals cannot be 487

defined. There were 244 individuals for analysis of HA titer vectors. For analysis of 488

HA-NA titer vectors, there were 241 individuals, because HA and NA data were not 489

available for all participants. Ultimately, there were 120 pairs for the HA titer vector 490

analysis and 117 pairs for the HA-NA vector analysis. A pair’s age was defined as the 491

average age of the two individuals. Linear regression was performed to regress cosine 492

similarity on age using the lm function in R. We repeated this analysis by randomly 493

sampling pairs 1000 times to confirm that the trend by age is not caused by a particular 494

pairing. For each set of sampled pairs, we recorded the slopes and predicted values. 495

From this record, the mean and 95% interval of predicted values for each age year were 496

calculated to show the distribution of the trend by age. 497

Clustering of individuals using titers 498

We used k-means clustering to partition individuals using their HA titers. For each 499

individual, a vector of log2 titers was normalized and used as input for clustering based 500

on cosine similarity. Vectors with all 0 (undetectable titers) were removed as their 501

cosine similarity is undefinable. The CascadeKM function of the R vegan package was 502

used with the Calinski-Harabasz criterion and the number of iterations set to 1500. 503

To test whether the between-group variance of differences in 3C.3A log titer and 504

other reference viruses’ log titers exceeded the within-group variance, we performed 505

ANOVA. We first calculated differences between 3C.3A log titers and each of other 506

reference viruses’ log titers for each individual. Then we used the aov function in R 507

4.1.1 to perform ANOVA to test difference in the mean of the log titer differences 508

among age groups. 509

The fraction of individuals with detectable HA or NA antibody 510

An individual was determined to have detectable HA antibody if there was at least one 511

detectable HA titer to HA reference viruses (3C.3A, 3C.2A, 3C.2A1-1, 3C.2A1-2, 512

3C.2A1-3, 3C.2A2-1, 3C.2A2-2, and 3C.2A3). An individual was determined to have 513

detectable NA antibody if there was at least one detectable titer to a NA reference virus 514

(3C.2A (NA) and 3C.2A2 (NA)). For both HA and NA, titers ≥ 20 were defined as 515

detectable. 516

We performed logistic regression using the glm function in R to test if the fraction of 517

individuals with detectable HA antibody, detectable NA antibody, detectable HA 518

antibody (only), and detectable NA antibody (only) changes with age. 519
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Fig S1. NA of co-circulating H3N2 clades during the 2016-17 and 2017-18
seasons. A. Genealogy of H3N2 showing NA sequence samples through the 2016-17
season (left) and through the 2017-18 season (right). Tips are filled circles if collected in
North America during the 2016-17 season (left) and the 2017-18 season (right) and
colored according to the associated test virus. B. Variable amino acids and PNGS
between test viruses. Between clade 3C.2A (NA)and clade 3C.2A2 (NA), only
substitutions at NA head are shown. C. The differences between clade 3C.2A (NA) and
3C.2A2-2 (NA) are shown on N2 head structure (Protein Data Bank: 6n4d). Amino
acid differences between the two test viruses are colored in red. D. PNGS that vary
between 3C.2A (NA) and 3C.2A2 (NA) are shown on the N2 structure.
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Fig S2. Distribution of HA titers for each strain by age group. A titer of 10
indicates the titer is below the limit of detection.
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Fig S3. Distribution of NA titers for each strain by age group. A titer of 10
indicates the titer is below the limit of detection.

Fig S4. The inferred relative susceptibility for each HA reference strain
calculated using geometric mean titers (GMT). Since lower GMT corresponds to
higher susceptibility, we use an inverse scale to show the relative susceptibility. Lower
ranks (closer to 1) indicate greater susceptibility.
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Fig S5. The inferred relative susceptibility and its rank to each HA
reference strain using a 1:20 titer threshold. Inferred relative susceptibility and
its rank to each reference strain for the whole population (left) and by age group (right).
The bars indicate 95% CIs obtained from bootstrapping. Lower ranks (closer to 1)
indicate greater susceptibility.

Fig S6. The inferred relative susceptibility and its rank to each HA
reference strain using a 1:80 titer threshold. Inferred relative susceptibility and
its rank to each reference strain for the whole population (left) and by age group (right).
The bars indicate 95% CIs obtained from bootstrapping. Lower ranks (closer to 1)
indicate greater susceptibility.
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Fig S7. The inferred relative susceptibility and its rank to each HA
reference strain using a 1:160 titer threshold. Inferred relative susceptibility and
its rank to each reference strain for the whole population (left) and by age group (right).
The bars indicate 95% CIs obtained from bootstrapping. Lower ranks (closer to 1)
indicate greater susceptibility.

Fig S8. The relative susceptibility for each NA strain calculated using
geometric mean titer(GMT). Since lower GMT corresponds to higher susceptibility,
we use an inverse scale to show the relative susceptibility. The bars indicate 95% CIs
obtained from bootstrapping. The lower rank (rank 1) indicates significantly higher
susceptibility.
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Fig S9. The inferred relative susceptibility and its rank to each NA
reference strain using a 1:20 threshold. Inferred relative susceptibility and its rank
to each reference strain for the whole population (left) and by age group (right). The
bars indicate 95% CIs obtained from bootstrapping. The lower rank (rank 1) indicates
significantly higher susceptibility.

Fig S10. The inferred relative susceptibility and its rank to each NA
reference strain using a 1:40 titer threshold. Inferred relative susceptibility and
its rank to each reference strain for the whole population (left) and by age group (right).
The bars indicate 95% CIs obtained from bootstrapping. The lower rank (rank 1)
indicates significantly higher susceptibility.
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Fig S11. Comparison of H3 frequencies by clade (reference strain) and
inferred relative susceptibilities. A. Frequencies of H3 sequences assigned to each
test virus were calculated using GISAID sequences from North America, US, and the
Northeastern US during the 2016-17 and 2017-18 season. B. Inferred relative
susceptibilities to test viruses.
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Fig S12. Frequencies of H3 sequences in the 2017-18 season assigned to each
reference virus by age group. Frequencies were calculated using GISAID sequences
collected in North America, US, and the Northeastern US, respectively.
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Fig S13. Age distributions of 3C.2A2-2-associated and other reference
strains in the 2017-18 season. Strains from GISAID were characterized as belonging
to the 3C.2A2 clade or not. Lines show the respective densities.

October 27, 2023 31/41

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.26.23297569doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297569
http://creativecommons.org/licenses/by-nc/4.0/


Fig S14. Compared to the youngest age group, older children and adults
have significantly more weakly correlated titers to different strains. For each
pair of viruses, the correlation between HA titers was calculated. The cells are colored
blue if the correlation is significantly weaker in the age group compared to the same
pair in 1- to 4-year-olds. Individuals with undetectable titers have been removed.

Fig S15. Correlations between titers to different test viruses by age group
with equal number of years. For each pair of viruses, the correlation between HA
titers was calculated. Individuals with undetectable titers have been removed.
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Fig S16. Weakly correlated reference pairs by age group. For each pair of
reference viruses, the correlation between HA titers was calculated. The correlation
coefficients of the virus pairs within each age group were compared to each other to test
whether one correlation was significantly weaker than the other. Then, for each virus
pair, the number of comparisons in which the pair’s correlation was significantly weaker
than that of other pairs (within that age group) was counted. Stronger colors indicate
virus pairs with especially weak correlations.
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Fig S17. Correlations between 3C.3A titers and other titers in all ages.
Points are slightly jittered. Blue line indicates the regression line. Individuals with
undetectable titers to all strains were removed from the analysis.
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Fig S18. Correlation between 3C.2A1-1 titers and other titers in 45- to
90-year-olds. Points are slightly jittered. Blue line indicates the regression line.
Individuals with undetectable titers to all strains were removed from the analysis.
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Fig S19. Correlations between 3C.2A1-2 titers and other titers in 45- to
90-year-olds. Points are slightly jittered. Blue line indicates the regression line.
Individuals with undetectable titers to all strains were removed from the analysis.
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Fig S20. Correlations between 3C.2A3 titers and other titers in 45- to
90-year-olds. Points are slightly jittered. Blue line indicates the regression line.
Individuals with undetectable titers to all strains were removed from the analysis.
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Fig S21. The similarity of HA-NA titer vectors declines with age. A. Cosine
similarities of HA-NA titers between pairs of individuals (points) and the regression line
(line). Each cosine similarity was calculated from a random pair of individuals within a
3-year age difference. B. The distribution of trends in cosine similarity by age obtained
by regressing cosine similarity by age in 1000 different random pairings. The line
indicates the mean of the 1000 regression lines, and the shade indicates the 95% interval
of the regression lines.
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Fig S22. Correlations between titers to different strains within each group.
Each cell is colored by the correlation coefficient. Individuals with undetectable titers to
all reference viruses have been removed.
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Fig S23. Correlations between HA and NA titers A. Titers to 3C.2A HA and
NA. B. Titers to 3C.2A2 HA and NA. Points have been slightly jittered to show density.
Blue lines indicate the regression lines.
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Fig S24. Correlations between HA and NA titers by 10-year age bins
A.Titers to 3C.2A HA and NA. B. Titers to 3C.2A2 HA and NA. Points have been
slightly jittered to show density. Blue lines indicate the regression lines.
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