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ABSTRACT 

Background: Per- and poly-fluoroalkyl substances (PFAS) exposure can occur through 

ingestion of contaminated food and water, and inhalation of indoor air contaminated with these 

chemicals from consumer and industrial products. Prenatal PFAS exposures may confer risk for 

pregnancy-related outcomes such as hypertensive and metabolic disorders, preterm birth, and 

impaired fetal development through intermediate metabolic and inflammation pathways.  

Objective: Estimate associations between maternal pregnancy PFAS exposure (individually and 

as a mixture) and bioactive lipids. 

Methods: Our study included pregnant women in the Environmental influences on Child Health 

Outcomes Program: Chemicals in our Bodies cohort (CiOB, n=73), Illinois Kids Developmental 

Study (IKIDS, n=287), and the ECHO-PROTECT cohort (n=54). We measured twelve PFAS in 

serum and 50 plasma bioactive lipids (parent fatty acids and eicosanoids derived from 

cytochrome p450, lipoxygenase, and cyclooxygenase) during pregnancy (median 17 gestational 

weeks). Pairwise associations across cohorts were estimated using linear mixed models and 

meta-analysis. Associations between the PFAS mixture and individual bioactive lipids were 

estimated using quantile g-computation. 

Results: PFDeA, PFOA, and PFUdA were associated (p<0.05) with changes in bioactive lipid 

levels in all three enzymatic pathways (cyclooxygenase [n=6 signatures]; cytochrome p450 [n=5 

signatures]; lipoxygenase [n=7 signatures]) in at least one combined cohort analysis. The 

strongest signature indicated that a doubling in PFOA corresponded with a 24.3% increase (95% 

CI [7.3%, 43.9%]) in PGD2 (cyclooxygenase pathway) in the combined cohort. In the mixtures 

analysis, we observed nine positive signals across all pathways associated with the PFAS 

mixture. The strongest signature indicated that a quartile increase in the PFAS mixture was 
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associated with a 34% increase in PGD2 (95% CI [8%, 66%]), with PFOS contributing most to 

the increase.  

Conclusions: Bioactive lipids were revealed as biomarkers of PFAS exposure and could provide 

mechanistic insights into PFAS’ influence on pregnancy outcomes, informing more precise risk 

estimation and prevention strategies. 

 

Keywords: PFAS; Mixtures; Bioactive lipids; Eicosanoids 
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Abbreviations: 

CiOB, Chemicals in Our Bodies; 

CV, coefficient of variation; 

Et-PFOSA-AcOH, 2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid; 

IKIDS, Illinois Kids Development Study; 

Me-PFOSA-AcOH, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid; 

NHANES, National Health and Nutrition Examination Study; 

PFAS, Per- and poly-fluoroalkyl substances; 

PFBS, Perfluorobutanesulfonic acid; 

PFDeA, Perfluorodecanoic acid;   

PFDoA, Perfluorododecanoic acid;   

PFHpA, Perfluoroheptanoic acid; 

PFHxS, Perfluorohexane sulfonate; 

PFNA, Perfluorononanoic acid;   

PFOA, Perfluorooctanoic acid;   

PFOS, Perfluorooctanesulfonic acid; 

PFOSA, Perfluorooctanesulfonamide; 

PFUdA, Perfluoroundecanoic acid; 

R2, regression coefficients; 

RSD, relative standard deviation; 

UIUC, University of Illinois Urbana-Campaign; 

WQS, weighted quantile sum.  
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1. Introduction 

 Widespread environmental contamination of per- and poly-fluoroalkyl substances 

(PFAS) poses a major public health concern. Human exposure to PFAS can occur through 

ingestion of contaminated food and water, as well inhalation of indoor air from contaminated by 

consumer products (e.g., clothing, furniture, cookware) (Sunderland et al., 2019). Biomonitoring 

in the National Health and Nutrition Examination Study (NHANES) has reported over 98% 

detection of multiple PFAS compounds in serum among individuals in the United States. 

(Calafat et al., 2007). Importantly, PFAS metabolism and excretion is slow due to their strong 

carbon-fluorine bonds, with half-lives in the human body spanning from several months to years 

(Chiu et al., 2022). Increasing experimental and epidemiological evidence indicates adverse 

health effects attributable to PFAS exposure, including liver toxicity, kidney dysfunction, 

hormone disruption, and reproductive and developmental toxicity (Fenton et al., 2021). 

Additionally, biomonitoring of PFAS in NHANES and the Environmental influences on Child 

Health Outcomes Program indicates moderate correlation between individual compounds, 

highlighting the need to consider PFAS as a mixture to evaluate cumulative health effects and 

ameliorate residual confounding (Calafat et al., 2007, Padula et al. 2023).   

 Pregnancy is a sensitive period of the life course, during which prenatal PFAS exposures 

have been identified as potential risk factors for adverse birth outcomes and pregnancy 

complications alike. For example, a systematic review of prenatal PFAS exposures identified 

select compounds associated with increased odds of preterm birth and miscarriage (Gao et al., 

2021). There is also evidence indicating disparities in associations between PFAS exposure in 

women and chronic health outcomes. For example, a previous study identified that Black women 

(median age 49) had higher risk of developing hypertension compared to White women (Ding et 
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al. 2023). Our team also identified increased depressive symptoms in association with higher 

PFAS exposure among immigrant pregnant women compared to U.S. born pregnant women 

(median age 34) in the Chemicals in Our Bodies cohort (Aung et al. 2023). Widespread evidence 

of environmental and human exposure, coupled with associated health effects, warrants detailed 

investigation into intermediate mechanisms of PFAS toxicity to inform risk assessment and 

identify potential intervention targets.  

 Bioactive lipids, including poly-unsaturated fatty acids such as arachidonic acid are 

metabolized by conserved families of enzymes (e.g. cytochrome p450s, lipoxygenases, and 

cyclooxygenases) to yield secondary eicosanoid metabolites with important downstream 

physiological functions (Yuan et al., 2018). For example, eicosanoids partly regulate 

inflammation and influence cardiovascular and renal function, and perturbations in circulating 

eicosanoids may be important biomarkers of adverse pregnancy outcomes (Eek et al., 2012; Ma 

et al., 2017; Patel et al., 2004). In a previous metabolomic study in Atlanta, Georgia, lipid 

metabolism pathways were associated with gestational age at birth, including bioactive lipid 

compounds such as linoleic acid (Taibl et al., 2023). We have also shown in a previous study in 

the LIFECODES cohort that several eicosanoid metabolites were associated with increased risk 

of spontaneous preterm birth (Aung et al., 2019). Another study in the LIFECODES cohort 

identified eicosanoid metabolites from the cytochrome p450 and lipoxygenase pathway 

associated with greater risk of being born small for gestational age (Welch et al., 2020).  

 A review of PFAS exposures and non-targeted metabolomics in epidemiologic studies 

identified substantial evidence that PFAS are associated with changes to several biological 

pathways, including metabolism of bioactive lipids, amino acids, and xenobiotic detoxification 

(Guo et al., 2022). These findings are supported by experimental studies indicating that PFAS 
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can interfere with cytochrome p450 signaling, which is critical for cellular metabolism (Hvizdak 

et al., 2023; Zanger and Schwab, 2013). PFAS can also interfere with homeostasis of 

intracellular calcium gradients, which in turn can impact calcium dependent enzymatic activity 

and alter systemic bioactive lipid profiles (Cao and Ng, 2021). Given the increasing evidence 

that PFAS are linked to whole pathways of lipid metabolism, there is a need for deeper 

investigation of targeted lipid metabolites to determine precise molecular signatures of PFAS 

exposure and implications for pregnancy outcomes and fetal development. 

 The objective of this study was to quantify maternal PFAS exposures and bioactive lipids 

during pregnancy and estimate the individual and cumulative associations of PFAS on these 

biomarkers. There is a need for modern epidemiology studies to integrate greater racial, 

socioeconomic, and geographic diversity to better inform risk estimation across historically 

marginalized communities and for varied contexts of PFAS exposure levels. Thus, in the current 

study, we utilized a diverse study sample across three birth cohorts in the Environmental 

influences on Child Health Outcomes Program. Our study hypothesis was that higher 

concentrations of PFAS are associated with increased bioactive lipid signatures across enzymatic 

groups that govern eicosanoid synthesis.  

 

2. Methods 

 

2.1 Study Populations 

 The Environmental influences on Child Health Outcomes (ECHO) Program comprises 69 

ongoing and new pregnancy and pediatric cohorts. The ECHO Program’s goal is to advance 

research that increases understanding of how environmental factors spanning from preconception 
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through childhood influences child health and development (Knapp et al. 2023). This study 

integrates data across three ECHO cohorts (Table 1): Chemicals in Our Bodies (CiOB), Illinois 

Kids Development Study (IKIDS), and the ECHO-PROTECT cohort (Eick et al., 2021; 

Ferguson et al., 2019). The CiOB cohort participants are based in San Francisco, CA, and were 

recruited during the second trimester of pregnancy at three University of California San 

Francisco hospitals. Women included in the CiOB cohort had to be at least 18 years of age, 

speak English or Spanish as a primary language, and be having a singleton pregnancy. The 

IKIDS cohort participants were recruited between 10 and 14 weeks’ gestation from two obstetric 

clinics in Champaign-Urbana, Illinois. Women included in the IKIDS cohort had to be between 

18 and 40 years of age, have English fluency, have a singleton pregnancy, be ≤ 15 weeks 

gestation at enrollment, not have a child already in the IKIDS cohort, reside within a 30 minute 

drive from the University of Illinois Urbana-Campaign (UIUC) campus, and plan to remain in 

the area until at least the child’s first birthday. The ECHO-PROTECT cohort participants were 

recruited before 20 weeks’ gestation from two hospitals and five clinics in the Northern Karst 

aquifer region in Puerto Rico. Enrollment of the cohort began in 2011 and is ongoing. Inclusion 

criteria for the women in the ECHO-PROTECT cohort included being between 18 and 40 years 

of age, residing in the Northern Karst aquifer region, not have used oral contraceptives during 

the three months pre-pregnancy, not have undergone in-vitro fertilization, and have no major 

pre-existing conditions. Detailed information on study recruitment and data collection on 

sociodemographic and health information for each cohort has been previously described (Eick et 

al., 2021; Ferguson et al., 2019). Participants in each cohort provided written informed consent 

to be included in this study and local institutional review boards for each cohort reviewed and 

approved study protocols. Sample sizes for each cohort are described in greater detail below, and 
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the flow diagram for selection of the final analytical dataset used in statistical analyses is 

illustrated in Supplemental Figure 1.  

 

2.2. PFAS Exposure Assessment 

 In the CiOB cohort (n = 73, median gestational age of sample collection = 23 weeks) and 

IKIDS (n = 287, median gestational age of sample collection = 17 weeks) cohorts, twelve PFAS 

compounds were quantified in maternal serum during pregnancy: Perfluorononanoic acid  

(PFNA), Perfluoroheptanoic acid (PFHpA), Perfluorodecanoic acid  (PFDeA), 

Perfluorododecanoic acid  (PFDoA), Perfluorooctanoic acid  (PFOA), 

Perfluorooctanesulfonamide (PFOSA), 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid 

(Me-PFOSA-AcOH), 2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid (Et-PFOSA-AcOH), 

Perfluoroundecanoic acid (PFUdA), Perfluorohexane sulfonate (PFHxS), 

Perfluorooctanesulfonic acid (PFOS), and Perfluorobutanesulfonic acid (PFBS). After sample 

collection, serum was frozen at -80°C. Samples were processed at the Environmental Chemical 

Laboratory at the California Department of Toxic Substances Control using a previously 

described analytical protocol (Morello-Frosch et al., 2016). PFAS quantification was achieved 

using internal standards in each serum sample and an automated on-line solid phase extraction 

method coupled to liquid chromatography and tandem mass spectrometry. The limits of 

detection for individual PFAS compounds were equal to three times the standard deviation of the 

blank negative control sample (Morello-Frosch et al., 2016). In each batch of serum PFAS 

analyses, analytes were quantified using a constructed calibration, and regression coefficients 

(R2) of 0.98 to 0.99 were generally obtained. We utilized in-house quality control materials that 

were prepared by spiking a known amount of PFAS compounds in blank bovine serum at low 
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and high levels. We utilized standard reference materials (SRM 1958) from the National Institute 

of Standards and Technology (Gaithersburg, MD), and quality control samples spiked with 

known PFAS concentrations from the United States Centers for Disease Control and Prevention 

as reference materials. Blank samples of bovine serum (Hyclone/GE Healthcare LifeSciences) 

were also processed with each batch of samples, and no PFAS were detected above their 

respective limited of detection in these blank samples. 

 Maternal serum samples from the ECHO-PROTECT cohort (n = 54, median gestational 

age of sample collection =26 weeks) were used to quantify nine PFAS compounds (PFNA, 

PFHpA, PFDeA, PFOA, PFOSA, Me-PFOSA-AcOH, PFUdA, PFHxS, PFOS). After sample 

collection, serum was frozen at -80°C and processed at NSF International (Ann Arbor, MI, 

USA). PFAS quantification was also performed by liquid chromatography and tandem mass 

spectrometry. The method simulates the Centers for Disease Control and Prevention’s 

polyfluoroalkyl chemicals laboratory procedure method No: 6304.1. Standards of known purity 

and identity were used during preparation of the calibration, quality control, and internal 

standards. The validated analyte calibration curve correlation coefficient (R2) ranges were 0.996 

or greater. The method accuracy (% nominal concentration) and precision (% relative standard 

deviation [RSD]) were determined through six replicate analyses of analytes spiked at three 

different concentrations in pooled human serum across validation runs on three separate days (n 

= 18), which reflects both the intra-day and inter-day variability of the assay. The accuracy (% 

nominal concentration) range across all analytes was 95.1–103% with precision (%RSD) range 

for the serum quality control samples across all analytes being 2.3–16%. 

 For samples with values below the limit of detection, we used machine read values (if 

reported) or concentrations imputed using the limit of detection divided by the square root of 2 
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(Hornung and Reed, 1990). Of the PFAS compounds measured, we selected to analyze those 

with a detection rate of ≥ 70%, which included PFNA, PFHpA, PFDeA, PFOA, Me-PFOSA-

AcOH, Et-PFOSA-AcOH, PFUdA, PFHxS, and PFOS in the CiOB cohort; PFNA, PFDeA, 

PFOA, Me_PFOSA-AcOH, PFUdA, PFHxS, and PFOS in the IKIDS cohort; and PFNA and 

PFOS in the ECHO-PROTECT cohort (Table 2A). 

 

2.3. Bioactive Lipids Assay 

Maternal plasma samples were used to quantify a targeted panel of 50 bioactive lipids (Table 

2B) in the CiOB (n = 73, median gestational age of sample collection = 24 weeks), IKIDS (n = 

287, median gestational age of sample collection = 17 weeks), and PROTECT (n = 54, median 

gestational age of sample collection = 26 weeks) cohorts. For ECHO-PROTECT and CiOB 

cohorts, plasma was collected using ethylenediaminetetraacetic acid plasma tubes and 

temporarily stored at +4°C for less than four hours. Blood was subsequently centrifuged for 20 

minutes and stored at -80°C. For participants in the IKIDS cohort, women provided a fasted (10 

to 12 hours) blood sample collected in green-top sodium heparin tubes. IKIDS participant blood 

samples were kept at room temperature for two hours prior to processing and centrifuged at room 

temperature for 20 minutes. The resulting plasma was aliquoted immediately into cryovials for 

storage at -80°C. The targeted bioactive lipids panel consisted of five parent fatty acid 

compounds and 45 eicosanoid metabolites derived from three enzymatic groups (lipoxygenases, 

cytochrome p450s, and cyclooxygenases), and full names and abbreviations are documented in 

Table 2B. Quantification of bioactive lipid concentrations was achieved using a 6490 Triple 

Quadrupole mass spectrometer (Agilent, New Castle, DE, USA). In this setting, the mass 

spectrometer was set to a targeted multiple reaction monitoring mode and individual biomarkers 
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were identified based on metabolite-specific fragmentation and retention time. Limits of 

detection were not calculated across individual instrument analysis cycles and all measured 

bioactive lipids had machine read values. Further information on instrumental parameters and 

quality control/assurance have been previously documented (Afshinnia et al., 2020). Briefly, we 

conducted sequential dilution of each internal standard in duplicate to establish linearity and 

estimate the coefficient of variation (CV) of the measurements at various concentrations. We 

also ran a pool of study samples at the beginning of each batch and then after each 12 samples 

during mass spectrometry to assess drift in measurements over time as well as the batch-to-batch 

variability. 

 

2.4. Statistical Analyses 

We utilized a conceptual model (Figure 1) to inform our statistical analyses. We tabulated 

distributions of key covariates from our conceptual model for each of the cohorts in our study. 

Spearman correlations were estimated between all high-detect (i.e., ≥ 70% of observations 

exceeded minimum level of detection in cohort) PFAS compounds and bioactive lipids within 

each of the cohorts. Combined-cohort correlations were not conducted due to differences in high-

detect PFAS across cohorts. Based on which PFAS were highly detected in each cohort (Table 

2A), associations were estimated in combined cohort samples with two (CiOB and IKIDS) or 

three cohorts (CiOB, IKIDS, and ECHO-PROTECT) using linear mixed effect regressions 

(random intercept for cohort), and meta-analysis. Significance was evaluated at a level of  α ≤ 

0.05. Associations between PFAS mixtures and bioactive lipids were estimated using quantile g-

computation in the combined cohort consisting of IKIDS and CiOB participants (Keil et al., 
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2020). All analyses are described in greater detail below and were performed with R (version 

4.3.0). 

 

2.4.1. Combined cohort analysis  

 Linear mixed effects models were utilized to test combined-cohort pairwise associations 

between all sampled bioactive lipids and common high-detect PFAS, using natural log-

transformed lipid levels as outcomes and natural log-transformed PFAS as exposures. These 

linear mixed effects models included a random intercept for the cohort identity to partly 

ameliorate bias from different laboratory analysis of PFAS and for heterogeneity in demographic 

characteristics between cohorts. All effect estimates were back-transformed to enhance 

interpretability and represent a percent change in a given bioactive lipid corresponding to a 

doubling (or 100% increase) of individual PFAS. Unadjusted and adjusted random intercept 

models were generated for all three cohorts using PFAS common to all three cohorts: PFNA and 

PFOS (Table 2A). Unadjusted and adjusted random intercept models were also generated 

combining the CiOB and IKIDS cohorts, using the high-detect PFAS common to those two 

cohorts as exposures: ME-PFOSA-AcOH, PFDEA, PFHxS, PFNA, PFOA, PFOS, and PFUDA 

(Table 2A). Adjusted models included variables selected a priori based on our previous 

investigation of PFAS and biomarkers of lipid peroxidation and oxidative stress (Taibl et al., 

2022). The covariates included in the adjusted models were maternal age in years, education 

(categorized into less than high school, high school/GED/some college, bachelor’s degree, and 

graduate degree), pre-pregnancy BMI, parity (categorized into 0 and 1 or more), and gestational 

age in weeks at sampling collection for bioactive lipids. Missing observations for covariates were 
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omitted from adjusted models. Q-values were calculated for all pairwise models to control for 

false discovery rates (Storey et al., 2015) 

 

2.4.2. Meta-analysis 

 Pairwise effect estimates for PFAS and bioactive lipids from each individual cohort were 

estimated using linear regression, adjusted for the same covariates modeled in the combined 

cohort analysis with the exception of ECHO-PROTECT, which did not include parity as a 

covariate due to 0% variance in the variable within the ECHO-PROTECT cohort. We combined 

these effect estimates by meta-analysis using the METAL method (Willer et al., 2010), yielding 

overall effect estimates and p values for pairwise associations between individual bioactive lipids 

and PFAS. This method, used previously in genome-wide association studies, utilizes an inverse 

variance calculation to weigh all beta coefficients by their standard errors. In doing so, this 

approach allows researchers to obtain effect estimates across models with different underlying 

populations and covariates, without requiring access to the raw data. Meta-analysis was 

implemented for all three cohort-specific models, and then for the IKIDS and CiOB cohort-

specific models. Interpretation of cohort-specific effect estimates were treated as a sensitivity 

analysis to evaluate consistencies in combined cohort and meta-analysis and reported in 

supplementary materials. 

 

2.4.3. PFAS mixtures analysis  

 To address the study goal of estimating the cumulative effect of multiple PFAS on 

bioactive lipids, we used quantile g-computation (Keil et al., 2020), a generalization of the 

weighted quantile sum (WQS) regression method (Carrico et al., 2015; Czarnota et al., 2015), 
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which does not assume directional homogeneity of the exposures’ effects on the outcome. This 

method outputs an unbiased estimate of the effect on a particular bioactive lipid associated with 

simultaneously increasing all PFAS exposures by one quartile. Quantile g-computation was 

implemented in the combined CiOB and IKIDS sample to measure the mixtures effect of log-

transformed high-detect PFAS common to both the CiOB and IKIDS cohorts (Et-PFOSA-AcOH, 

PFDEA, PFHxS, PFNA, PFOA, PFOS, and PFUDA; Table 2A) on all log-transformed bioactive 

lipids, while controlling for the same covariates included in the adjusted combined CiOB and 

IKIDS random intercept model. The cohort itself was included as an additional fixed effect 

covariate in the models to account for any between-cohort differences (Taibl et al., 2022).  

 

3. Results 

3.1. Descriptive statistics  

 Table 1 shows the distribution of maternal race/ethnicity, age, education, pre-pregnancy 

BMI, parity, household income category, and gestational age at plasma collection for bioactive 

lipids across all three cohorts. White women represented the largest group in CiOB (47%) and 

IKIDS (78%), and ECHO-PROTECT had only Hispanic women (100%). Women in CiOB were 

the oldest with a median age of 33 years, followed by IKIDS (median age = 32 years), and 

ECHO-PROTECT (median age = 28 years) (p < 0.01). Women in IKIDS had the highest 

educational attainment, with 86% having completed a bachelor’s or graduate degree, followed by 

CiOB (72%) and ECHO-PROTECT (47%; p < 0.01). All mothers in ECHO-PROTECT reported 

having at least one previous birth, which was much higher compared to CiOB (49%) and IKIDS 

(46%, p < 0.01). The annual household income for women in CiOB was the highest with 65% 

reporting annual household incomes of ≥ $100,000, followed by women in IKIDS (34%), while 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.03.23297930doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23297930
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

93% of women in ECHO-PROTECT reported a household income < $50,000 (p < 0.01). Income 

was not adjusted for local cost of living or median salary. Pre-pregnancy BMI was similar across 

all three cohorts (median 24 kg/m2 in CIOB and 25 kg/m2 in IKIDS and ECHO-PROTECT, p = 

0.2).  

 Distributions of PFAS and bioactive lipids by cohort are reported in Table 2A and 

Supplemental Table 1, respectively. Among the high-detect PFAS common to all three cohorts, 

PFNA (median 0.20 ng/mL) and PFOS (median 1.78 ng/mL) concentrations were the lowest in 

the ECHO-PROTECT cohort, (p < 0.01) while the CiOB cohort had the highest median 

concentration of PFNA (0.53 ng/mL), and the IKIDS cohort had the highest median 

concentration of PFOS (3.27 ng/mL). Among the high-detect PFAS common to only the CiOB 

and IKIDS cohorts, the greatest differences were observed for PFUdA (median 0.18 ng/mL in 

CiOB and median 0.06 ng/mL in IKIDS; p < 0.01) and PFHxS (median 0.55 ng/mL in CiOB and 

median 0.76 ng/mL in IKIDS; p = 0.02). Among the bioactive lipids, we observed the greatest 

difference across cohorts for linoleic acid concentrations (median 668 µMol/L in CiOB, 1,185 

µMol/L in IKIDS, and 102 µMol/L in ECHO-PROTECT; p < 0.01) and 20-carboxy arachidonic 

acid (CAA) concentrations (median 185 nMol/L in CiOB, 302 nMol/L in IKIDS, and 74 nMol/L 

in ECHO-PROTECT; p < 0.01).  

 

3.2. Within-Cohort Correlations   

 Within-cohort Spearman correlations between bioactive lipids and PFAS are shown in 

Figure 2A for the CiOB cohort, Figure 2B for the IKIDS cohort, and Figure 2C for the ECHO-

PROTECT cohort. In CiOB, correlation coefficients between bioactive lipids and PFAS ranged 

between -0.31 and 0.38, with the strongest negative correlation between DHA and PFOS, and the 
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strongest positive correlation between 13S-HODE and PFUDA. For bioactive lipids in the CiOB 

cohort, correlation coefficients ranged from -0.47 (16-HETE and 13-oxoODE) and 1 (12(13)-

EpoME and 13S-HODE), while correlation coefficients for PFAS were between -0.08 (PFDeA 

and Et-PFOSA-AcOH) and 0.81 (PFNA and PFOS). In IKIDS, correlation coefficients between 

bioactive lipids and PFAS ranged between -0.14 and 0.22, with the strongest negative correlation 

between 15-HETE and PFHxS, and the strongest positive correlation between arachidonic acid 

and PFNA. Correlation coefficients for bioactive lipids in the IKIDS cohort were between -0.75 

(13,14-D-PGJ2 and 18-HETE) and 0.89 (9S-HODE and 13S-HODE), and between 0.05 (PFOA 

and Me-PFOSA-AcOH) and 0.75 (PFNA and PFOA) for PFAS. In ECHO-PROTECT, 

correlation coefficients between bioactive lipids and PFAS ranged between -0.37 and 0.32, with 

the strongest negative correlation between 9,10-DiHOME and PFNA, and the strongest positive 

correlation between 13,14-D-PGJ2 and PFNA. Bioactive lipid correlation coefficients within the 

ECHO-PROTECT cohort were between 0.59 (PGA2 and 11-HETE) and 0.8 (9(10)-EpoME and 

12(13)-EpoME), and the correlation coefficients between PFNA and PFOS in the ECHO-

PROTECT cohort was 0.57.  

 

3.3. Pair-wise associations between individual PFAS and bioactive lipids 

All coefficients representing the pairwise associations between bioactive lipids and PFAS from 

the adjusted random intercept models and meta-analyses are presented in a heatmap in Figure 3 

as the effect per doubling of PFAS concentration. Additional output of these models, including 

exact p values and standard errors can be found in Supplemental Tables 2-5. Additionally, 

effect estimates and 95% confidence intervals from significant associations found in at least one 

of the four models are reported in Table 3. With the exception of the associations between 9-
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oxoODE (cytochrome p450 pathway) and PFNA, 15-HETE (lipoxygenase pathway) and PFHxS, 

and �LA and PFUdA (parent compounds), all significant associations observed in at least one of 

the four combined models were positive.  

 In the cyclooxygenase pathway, 15 significant associations between bioactive lipids and 

PFAS were observed in at least one of the four combined cohort models. Of these, the 

association between BCPGE1 and PFNA was significant in all four models (doubling effect in 

PFNA ranging from 10.3% to 12.8% increase in BCPGE1 across models). Additionally, the 

associations between 9-oxoODE and PFNA (doubling effect in PFNA ranging from 2.3% to 

2.4% decrease in 9-oxoODE), PGD2 and PFOS (doubling effect in PFOS ranging from 11.9% to 

17.0% increase in PGD2), and PGD3 and PFOS (doubling effect in PFOS ranging from 10.0% to 

11.5% increase in PGD3) were significant in three of the four models. In the cytochrome p450 

pathway, no significant associations were found which were common to all four models; 

however, there were significant positive associations between 14(15)-EET and PFDeA (doubling 

effect ranging from 6.4% to 6.6%) and between 8(9)-EET and Me-PFOSA-AcOH (doubling 

effect ranging from 5.4% to 5.8%) observed in the CiOB and IKIDS random intercept model and 

in the meta-analysis integrating effect estimates from CiOB and IKIDS. Within the lipoxygenase 

pathway, significant positive associations were observed between 12-oxoETE and PFOS 

(doubling effect ranging from 7.1% to 8.2%) and 15-oxETE and PFOS (doubling effect ranging 

from 10.3% to 10.4%) across all four combined cohort models. Among the parent compounds, 

significant positive associations were observed for arachidonic acid and PFNA (doubling effect 

ranging from 8.7% to 10.9%) and arachidonic acid and PFOS (doubling effect ranging from 

8.0% to 9.7%) across all four combined cohort models. 
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 We explored multiple testing comparison adjustments in the linear mixed effects models 

(Supplemental Tables 2 and 3). While none were below a threshold of 0.1 in the two cohort or 

three cohort models, there were eight PFAS and bioactive lipid pairs (PGD2 and PFOA; PGD3 

and PFUdA; 13,14DHK-PGF2a* and PFUdA; 12-oxoETE and PFUdA; 15-oxoETE and PFUdA; 

15-oxoETE and PFOS; arachidonic acid and PFNA; arachidonic acid and PFOS) below the 0.2 

threshold in the two cohort models. Our sensitivity analysis of within-cohort pairwise 

associations can be found in Supplemental Tables 6-11. While individual cohort analyses are 

underpowered to detect associations, directions of pair-wise associations between individual 

cohorts and combined cohorts were largely consistent. 

 

3.4. PFAS Mixture Associations 

 Quantile g-computation utilizing the CiOB and IKIDS cohorts indicated that 

simultaneously increasing all log-transformed PFAS (PFNA, PFDeA, PFoA, Me-PFOSA, 

PFUdA, PFHxS, and PFOS) in the mixture by one quartile corresponded to increases in 

BCPGE1, PGD2, PGD3, and PGE3 in the cyclooxygenase pathway; 12,13-DiHOME and 5(6)-

EET in the cytochrome p450 pathway; 12-oxoETE, 15-oxoETE, and 5-ETE in the lipoxygenase 

pathway, and arachidonic acid and linoleic acid parent compounds. The largest increase in the 

cyclooxygenase pathway was observed in PGD2 (34% increase, 95% CI [8%, 66%]), with 

decomposition of the quantile g-computation effect estimate for PGD2 indicating that PFOS 

exhibited the greatest positive weight to the overall mixture effect relative to the other PFAS 

compounds in the overall sample (Supplemental Table 12). In the cytochrome p450 pathway, 

the largest increase associated with a simultaneous one quartile increase in all PFAS in the 

mixture was in 5(6)-EET (31% increase, 95% CI [5%, 64%]), with PFHxS contributing the most 
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to this increase. The largest increase in the lipoxygenase pathway was observed in 12-oxoETE 

(16% increase, 95% CI [4%, 30%]), with PFUdA having the largest contribution to this increase. 

In the parent compounds, linoleic acid had the largest increase (18% increase, 95% CI [1%, 

38%]), driven predominantly by PFUdA. No significant decreases in bioactive lipids were 

observed. These effects are visualized in Figure 4 and reported in detail in Supplemental Table 

12.  

 

4. Discussion 

 

4.1. Summary of findings across statistical approaches 

 In the present study, we advanced mechanistic insight into PFAS exposures during 

pregnancy by estimating associations between PFAS and bioactive lipids in single pollutant and 

mixture models. We utilized multiple statistical approaches to estimate associations, including 

cohort stratified analyses, combined cohort analyses, and meta-analyses. Combined cohort 

analyses and meta-analyses identified mostly positive associations of PFAS with parent fatty 

acid compounds and their secondary eicosanoid metabolites derived from the lipoxygenase, 

cytochrome p450, and cyclooxygenase pathways. Individual cohorts have limited power to 

detect significant associations, which underscores the utility of exploring combined cohort 

analyses and meta-analyses. Additionally, mixtures analysis using quantile g-computation 

revealed that the entire PFAS mixture exhibited predominantly positive associations with 

bioactive lipids across all three enzymatic pathways (BCPGE1, PGD2, PGD3, PGE3, 12(13)-

DiHOME, 5(6)-EET, 12-oxoETE, 15-oxoETE, 5-HETE, arachidonic acid, and linoleic acid), 

and, with the exception of 12(13)-DiHOME, at least one individual PFAS was associated with 
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these bioactive lipids in the single pollutant models for either combined cohort analyses or meta-

analyses. Largely consistent results between mixtures analysis and pair-wise associations 

strengthen confidence in targeted bioactive lipids as a potential mechanistic biomarker of PFAS 

exposure and provide insight into addressing the health effects of PFAS as an entire class. Doing 

so can inform more precise risk estimation and ameliorate the influence of residual confounding 

resulting from co-occurring PFAS compounds. Although our estimated associations are 

susceptible to false-positive associations, our findings still allow for prioritization of pairs of 

PFAS and bioactive lipids for future hypothesis testing and replication in independent samples. 

 

4.2. Biological context of associations in bioactive lipid enzymatic pathways 

 The physiological implications of our findings vary based on the metabolic pathway 

under investigation. In our study, we observed the strongest positive effect between the PFAS 

mixture and cyclooxygenase derived metabolite PGD2, which was consistent with individual 

PFAS compound analyses for PFDeA, PFOA, and PFOS in the CiOB and IKIDS meta-analyses. 

Systemic inflammation and oxidative stress are both antecedent physiological states that increase 

the risk of adverse pregnancy outcomes such as spontaneous preterm birth and preeclampsia 

(Ferguson and Chin, 2017; Gomez-Lopez et al., 2022). Cyclooxygenases have been implicated in 

promoting inflammation through the production of prostaglandins (Ricciotti and FitzGerald, 

2011). Prostaglandin production is also sensitive to imbalances in reactive oxygen species and 

oxidative stress (Burdon et al., 2007). Previous mechanistic studies indicate that 

cyclooxygenases are also important for regulating reproductive health and fetal development, 

where animal models have found that deficiencies in the genes encoding these enzymes result in 

altered implantation, increased mortality, and impaired organ development in offspring (Xu et 
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al., 2007). Animal studies indicate that disruptions in cyclooxygenase function and prostaglandin 

synthesis can also lead to altered neurodevelopment and behavior (Davis-Bruno and Tassinari, 

2011; Wong et al., 2019). For example, a previous study in an experimental rat model found that 

the PGD2 signaling pathway is involved in neuroinflammation, and induction of this pathway 

results in neurodegenerative pathologies (Corwin et al., 2018). Evidence from previous 

experimental mechanistic studies in combination with our findings that PFAS are linked to 

altered eicosanoid concentrations within the cyclooxygenase pathway underscore the need to 

further investigate this pathway as a potential mediator between PFAS and adverse pregnancy 

outcomes. 

 In our study, we observed that the PFAS mixture was associated with two cytochrome 

p450 derived eicosanoids: 12,13-DiHOME and 5(6)-EET. Cytochrome p450 enzymes have 

varied regulatory roles, including biosynthesis of endogenous hormones, detoxification of 

xenobiotics, and cellular metabolism (Zanger and Schwab, 2013). Importantly, in vitro 

experiments indicate that multiple PFAS compounds can directly interfere and inhibit 

cytochrome p450 activity (Hvizdak et al., 2023). 12,13-DiHOME has been classified as an 

oxylipin derived from linoleic acid, and is involved with inflammation, endocrine signaling, and 

adipogenesis (Hildreth et al., 2020; Macêdo et al., 2022). In a previous case-control study that 

our research team led in the LIFECODES cohort using the same bioactive lipids panel measured 

(median 26 weeks’ gestation) in this present study, we reported that 12,13-DiHOME was 

associated with increased risk of spontaneous preterm birth (ncases = 31, ncontrols = 115) (Aung et 

al., 2019). Further, placental 5(6)-EET has been detected at higher levels in preeclamptic women 

compared to controls, linking 5(6)-EET to regulation pathways associated with preeclampsia 

(Dalle Vedove et al., 2016; Herse et al., 2012). Additionally, a study of 146 adult women 
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reported that single nucleotide polymorphisms of cytochrome p450 genes amplified cancer risk 

attributable to PFAS exposures (Ghisari et al., 2014). While bioactive lipids were not measured 

in that study, this is consistent biological inference based on their findings of increased breast 

cancer risk in association with higher PFOS and PFOA and polymorphisms in cytochrome p450 

genes. Therefore, cytochrome p450 derived eicosanoids may link PFAS to adverse maternal 

health outcomes and serve as early signals to inform precise prevention efforts. 

 Lipoxygenases are calcium dependent enzymes that catalyze the formation of 

hydroperoxides from poly-unsaturated fatty acids and have been associated with several adverse 

health outcomes including asthma, skin disorders, and cancers (Mashima and Okuyama, 2015). 

In our study, we observed that the PFAS mixture was associated with higher levels of the 

lipoxygenase derived eicosanoids 12-oxoETE, 15-oxoETE, and 5-HETE. These oxylipins may 

be important biomarkers for metabolic and cardiovascular disorders. For example, 12-oxoETE 

has been explored as a biomarker of diabetic macular edema (Rhee et al., 2021) and 

experimental models indicate that 15-oxoETE may influence atherosclerosis (Ma et al., 2017). 

Additionally, our previous study in the LIFECODES cohort identified higher levels of 12-

oxoETE and 5-HETE in association with spontaneous preterm birth (Aung et al., 2019). Our 

present study findings showing that increases in 12-oxoETE and 15-oxoETE were associated 

with increased PFAS exposure are further aligned with previous experimental evidence showing 

that PFAS can interfere with intracellular calcium gradients which can influence the catalytic 

activity of lipoxygenases (Cao and Ng, 2021). Therefore, future studies should continue to 

investigate this pathway as a mechanistic link between PFAS exposure and adverse maternal and 

child health outcomes. 
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 We observed differences in bioactive lipid compound distributions between individual 

cohorts, which may be driven by the variation in genetic makeup of the populations caused by 

heterogeneous ethnic composition of the cohorts (Sergeant et al., 2012), or differences in 

environmental exposures of the cohorts due to diet (Saadatian-Elahi et al., 2009). Among the 

parent poly-unsaturated fatty acids, the PFAS mixture was associated with increased 

concentrations of arachidonic acid and linoleic acid. These findings are aligned with the positive 

signatures we observed for the secondary eicosanoid metabolites described above that are 

derived from these parent compounds. Our reported findings can partially be contextualized with 

previous metabolomics studies to confer biological inference of PFAS-induced effects on lipid 

metabolism. One metabolomics study investigated a mixture of six common PFAS (PFOS, 

PFHxS, PFHpS, PFOA, PFNA, and PFDA) in children and adolescents (n = 137) based in Los 

Angeles, CA, and observed positive associations of the mixture with arachidonic acid and 

linoleic acid (Goodrich et al., 2023). Another study of 267 maternal-newborn dyads in Atlanta, 

GA, reported that maternal PFAS exposures were associated with newborn metabolomic 

signatures for bioactive lipid metabolism (including leukotrienes), cytochrome p450 pathway, 

and linoleic acid (Taibl et al., 2023). Collectively, metabolomics studies underscore the 

importance of lipid metabolism as a potential intermediate mechanism of PFAS exposure. 

 

4.3. Strengths and limitations 

 Our study has notable strengths. First is the diversity of our study population, which 

included pregnant women from three distinct geographic areas, with high heterogeneity across 

demographics, socioeconomic status, and PFAS exposures. Second is our statistical approach. 

We performed combined-cohort analysis utilizing two methods (linear mixed effects models and 
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meta-analysis), and a mixtures analysis using quantile g-computation to assess cumulative 

associations with PFAS mixtures. The combination of methods applied and the consistency in 

results across methods strengthens inference in identified associations. Third was our selection of 

outcomes, which was a targeted assay of bioactive lipids that has not been previously tested for 

associations with PFAS. This targeted assay directly complements existing studies that have 

utilized non-targeted metabolomics by deepening knowledge of specific lipid metabolite features 

to contextualize larger biological pathways and processes observed in past studies. Combined, 

this resulted in a robust investigation, substantiated by the corroboration of our key findings both 

within our study and with previous literature. 

 Our study also has limitations to consider. First is the cross-sectional nature of data 

collection, as serum PFAS and plasma bioactive lipids were measured during the same visit. 

Single time point assessment is more susceptible to measurement error and reverse causation 

than longitudinal studies. Because of their long half-lives, PFAS measures may be relatively 

stable during pregnancy, however, future studies should consider repeated measures of both 

PFAS and bioactive lipid levels to reduce measurement error and evaluate more precise windows 

of vulnerability during pregnancy. Additionally, some confounding variables (e.g. maternal 

education and parity) were heterogenous across cohorts. There are also unmeasured confounders 

that we did not model in the present study such as consumer product use and dietary intake 

which may influence both PFAS and bioactive lipid concentrations. However, exploration of 

these confounders warrants more comprehensive assessment of the contribution that diet and 

consumer products have on both PFAS and bioactive lipids, which was beyond the scope of the 

present study. In terms of statistical approaches, we recognize there are multiple important 

approaches for analyzing chemical mixtures in health studies. Our study focused on cumulative 
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PFAS mixture associations. However, future studies may consider alternative approaches such as 

investigation of non-linear effects, high-order interactions across multiple exposure variables, 

latent clustering of correlated exposure variables, and dimension reduction through development 

of risk scores or summation based on sources of exposures. Our study evaluated 12 serum PFAS 

compounds, and there are thousands of PFAS compounds that humans may be exposed to. 

Therefore, we are likely underestimating the effect of PFAS as a whole class on bioactive lipids. 

Further, limited sample size and low detection rates of PFAS chemicals in the PROTECT cohort 

limited our ability to examine differences in associations between Hispanic and White women 

exposed to PFAS. Additionally, we have previously documented associations between other 

classes of endocrine disrupting chemicals (e.g., phthalates, phenols, and parabens) and bioactive 

lipids during pregnancy in the LIFECODES cohort (N = 173) (Aung et al. 2021). It is possible 

that these chemicals are correlated with prenatal PFAS exposures, contributing to residual 

confounding and potential interactions, which may influence the effects of PFAS on maternal 

bioactive lipid profiles. Therefore, future investigations should consider broader chemical 

mixtures analyses with bioactive lipids and pregnancy outcomes.  

 

4.4. Conclusions 

In conclusion, we observed associations between PFAS exposure and bioactive lipids during 

pregnancy in all three enzymatic pathways (cytochrome p450, lipoxygenase, and 

cyclooxygenase), most of which were positive. Our study complements recent efforts in 

disentangling endogenous biomarker signatures of PFAS exposures by identifying specific lipid 

metabolites as biomarkers of exposure and potential mechanistic targets. Future studies should 

confirm these findings among cohorts of different demographic and socioeconomic makeup, 
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including consideration of meta-analysis and PFAS mixture analysis to strengthen confidence in 

reported associations. These findings may be utilized to develop hypothesis driven mediation 

analyses to link PFAS exposures to downstream maternal and child health outcomes. Further, 

these findings can inform precise risk estimation aimed at reducing the harm of the PFAS 

exposures on vulnerable populations.  
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Table 1 
Demographic profile of CiOB, IKIDS, and ECHO-PROTECT cohorts.   
         Cohort    
Characteristic       Overall CiOB, N = 73a   IKIDS, N = 287a   ECHO-PROTECT, N = 54a   p valueb  

Mother's Race                    <0.001  

 Non-Hispanic White   253 (62%) 34 (47%)   219 (78%)   0  

 Black   19 (54.6%) -   14 (5.0%)   0   

 Asian   48 (12%) 14 (19%)   34 (12%)   0    

 Hispanic   78 (19%) 17 (23%)   7 (2.5%)   54 (100%)    

 Other   11 (2.7%) -   8 (2.8%)   0   

    Missing  5 0   5   0     
Maternal age (years)       31.8 (28.8, 34.5) 33.1 (29.9, 36.0)   31.8 (29.1, 34.3)   28.0 (24.0, 33.0)   <0.001  
    Missing 6 1   0   5      
Maternal education                    <0.001  

 < HS   11 (2.7%) -   -   -    

 HS/GED/some college   77 (19%) 16 (22%)   39 (14%)   22 (45%)    

 Bachelors   142 (35%) 15 (21%)   111 (39%)   16 (33%)    

 Graduate   179 (44%) 37 (51%)   135 (47%)   7 (14%)    

    Missing   5 0   0   5      
Pre-pregnancy BMI 
(kg/m2) 

    25 (22, 29) 24 (22, 27)   25 (22, 30)   25 (21, 29)   0.2  
    Missing  20 11   1   8      
Parity                    <0.001  

 0   191 (47%) 35 (51%)   156 (54%)   0 (0%)    

 1 or more   214 (53%) 34 (49%)   131 (46%)   49 (100%)    

    Missing   9 4   0   5      
Maternal household 
Income  

                 <0.001  

 <$50,000   110 (28%) 18 (26%)   52 (18%)   40 (93%)    

 $50,000-$99,999   145 (36%) 6 (9%)   137 (48%)   -    

 >$100,000   143 (36%) 45 (65%)   97 (34%)   -    

    Missing   16 4   1   11      
Gestational age at visit 
(weeks)  

    17.4 (16.6, 18.9) 23.1 (19.7, 25.7)   17.0 (16.4, 17.7)   25.7 (24.4, 27.9)   <0.001  
    Missing   10 0   0   10      
an (%), cells with counts ≤ 5 have been masked; Median (IQR)   
bKruskal-Wallis rank sum test; Pearson’s Chi-squared test 
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Table 2A  
PFAS detection rates and distributions across cohorts. 

Bolded measurements denote PFAS with detection rates ≥ 70% and used in analyses. 
aMethod Detection Limits (ng/mL). 
bKruskal-Wallis Rank Sum Test; performed only across cohorts which had ≥ 70% detection rates for specific PFAS. 
  

PFAS (ng/mL) CiOB, N = 73 IKIDS, N = 287 ECHO-PROTECT, N = 54 
Full name  
(abbreviation) MDLa 

% 
Detected 

Median 
(IQR) MDLa 

% 
Detected 

Median 
(IQR) MDLa 

% 
Detected 

Median 
(IQR) p valueb 

Perfluorononanoic acid 
(PFNA) 0.04; 0.03 99% 0.53 (0.34, 0.72) 0.03 100% 0.40 (0.26, 0.59) 0.1 81% 0.20 (0.16, 0.29) <0.001 

Perfluoroheptanoic acid 
(PFHpA) 0.04; 0.02 82% 0.03 (0.02, 0.05) 0.02 58% 0.03 (0.015, 0.03) 0.1 0% 0.10 (0.10, 0.10) - 

Perfluorodecanoic acid 
(PFDeA) 0.06; 0.04 96% 0.17 (0.11, 0.29) 0.04 98% 0.11 (0.07, 0.19) 0.1 31% 0.10 (0.10, 0.16) <0.001 

Perfluorododecanoic acid 
(PFDoA) 

0.14; 0.04 66% 0.06 (0.02, 0.16) 0.08 55% 0.10 (0.01, 0.11) - - - - 

Perfluorooctanoic acid 
(PFOA) 0.04 99% 1.13 (0.66, 1.92) 0.04 100% 1.03 (0.62, 1.73) 0.5 41% 0.50 (0.50, 0.96) 0.4 

Perfluorooctanesulfonamide 
(PFOSA) 

0.02; 0.01 66% 0.01 (0.004, 0.02) 0.01 55% 0.01 (0.009, 0.01) 0.1 0% - - 

2-(N-Methyl-perfluorooctane 
sulfonamido) acetic acid  
(Me-PFOSA-AcOH) 

0.01 93% 0.06 (0.02, 0.09) 0.008 95% 0.07 (0.03, 0.15) 0.1 0% - 0.07 

2-(N-Ethyl-perfluorooctane 
sulfonamido) acetic acid  
(Et-PFOSA-AcOH) 

0.009; 0.008 71% 0.01 (0.006, 0.01) 0.008 40% 0.01 (0.01, 0.01) - - - - 

Perfluoroundecanoic acid 
(PFUdA) 0.04; 0.02 96% 0.18 (0.11, 0.29) 0.02 91% 0.06 (0.03, 0.12) 0.1 24% 0.10 (0.10, 0.10) <0.001 

Perfluorohexane sulfonate 
(PFHxS) 0.01 99% 0.55 (0.33, 0.98) 0.06 99% 0.76 (0.40, 1.42) 0.1 50% 0.12 (0.10, 0.17) 0.016 

Perfluorooctanesulfonic acid 
(PFOS) 0.04 99% 2.96 (1.88, 5.52) 0.04 100% 3.27 (2.01, 5.28) 0.1 100% 1.78 (1.40, 2.28) 0.8 

Perfluorobutanesulfonic acid 
(PFBS) 

0.02 48% 0.03 (0.02, 0.03) 0.02 40% 0.03 (0.01, 0.03) - - - -  . 
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Table 2B 
Bioactive lipids sampled from maternal plasma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathway Full name Abbreviation 
Cyclooxygenase  13,14-dihydro-15-keto Prostaglandin F2α 13,14DHK-PGF2a*  
Cyclooxygenase  13,14-Dihydro-15-keto Prostaglandin J2 13,14-D-PGJ2 
Cyclooxygenase  15-deoxy-Δ12,14-Prostaglandin J2 15DO12,14-PGJ2  
Cyclooxygenase  Bicyclo Prostaglandin E2 BCPGE2  
Cyclooxygenase  Bicyclo Prostaglandin E1 BCPGE1  
Cyclooxygenase  Prostaglandin A2 PGA2  
Cyclooxygenase  Prostaglandin B2 PGB2  
Cyclooxygenase  Prostaglandin D2 PGD2  
Cyclooxygenase  Prostaglandin D3  PGD3  
Cyclooxygenase  Prostaglandin E1 PGE1  
Cyclooxygenase  Prostaglandin E2 PGE2  
Cyclooxygenase  Prostaglandin E3  PGE3  
Cyclooxygenase  Prostaglandin J2 PGJ2  
Cyclooxygenase  Thromboxane B2 TXB2  
Cyclooxygenase  9-Oxooctadeca-dienoic acid 9-oxoODE  
Cytochrome p450  20-carboxy Arachidonic Acid CAA 
Cytochrome p450  9,10-Dihydroxy-octadecenoic acid 9,10-DiHOME  
Cytochrome p450  12,13-Dihydroxy-octadecenoic acid 12,13-DiHOME  
Cytochrome p450  13,14-dihydro-15-keto Prostaglandin D2 13,14DHK-PGD2  
Cytochrome p450  5,6-Dihydroxy-eicosatrienoic acid 5,6-DHET  
Cytochrome p450  8,9-Dihydroxy-eicosatrienoic acid 8,9-DHET  
Cytochrome p450  11,12-Dihydroxy-eicosatrienoic acid 11,12-DHET  
Cytochrome p450  9,10-Epoxy-octadecenoic acid 9(10)-EpoME  
Cytochrome p450  12,13-Epoxy-octadecenoic acid 12(13)-EpoME  
Cytochrome p450  5,6-Epoxy-eicosatrienoic acid 5(6)-EET  
Cytochrome p450  8,9-Epoxy-eicosatrienoic acid 8(9)-EET  
Cytochrome p450  11,12-Epoxy-eicosatrienoic acid 11(12)-EET  
Cytochrome p450  14,15-Epoxy-eicosatrienoic acid 14(15)-EET  
Cytochrome p450  11-Hydroxy-eicosatetraenoic acid 11-HETE 
Cytochrome p450  16-Hydroxy-eicosatetraenoic acid 16-HETE 
Cytochrome p450  17-Hydroxy-eicosatetraenoic acid 17-HETE 
Cytochrome p450  18-Hydroxy-eicosatetraenoic acid 18-HETE 
Cytochrome p450  20-Hydroxy-eicosatetraenoic acid 20-HETE  
Cytochrome p450  9S-Hydroxy-octadecadienoic acid 9S-HODE  
Lipoxygenase  13S-Hydroxy-octadecadienoic acid 13S-HODE  
Lipoxygenase  5-Hydroxy-eicosatetraenoic acid 5-HETE  
Lipoxygenase  8-Hydroxy-eicosatetraenoic acid 8-HETE  
Lipoxygenase  12-Hydroxy-eicosatetraenoic acid 12-HETE  
Lipoxygenase  15-Hydroxy-eicosatetraenoic acid 15-HETE  
Lipoxygenase  5-Oxoeicosatetraenoic acid 5-oxoETE  
Lipoxygenase  12-Oxoeicosatetraenoic acid 12-oxoETE  
Lipoxygenase  15-Oxoeicosatetraenoic acid 15-oxoETE  
Lipoxygenase  13-Oxooctadeca-dienoic acid 13-oxoODE  
Lipoxygenase  Resolvin D1             RVD1 
Lipoxygenase  Resolvin D2              RVD2 
Parent Compound α-Linolenic Acid αLA  
Parent Compound Arachidonic Acid AA  
Parent Compound Docosahexaenoic Acid DHA 
Parent Compound Eicosapentaenoic Acid EPA 
Parent Compound Linoleic Acid LA 
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Table 3 
β estimates and 95% confidence intervals corresponding to percentage change in bioactive lipids associated (p ≤ 0.05) with a doubling 
in PFAS; for joint cohort and meta-analyses. 

   

All 3 cohorts,  
random intercept  

(N = 387) 

CiOB & IKIDS, 
random intercept  

(N = 347) 

All 3 cohorts,  
meta-analysis  

(N = 387) 

CiOB & IKIDS,  
meta-analysis  

(N = 347) 

Bioactive Lipid 
Pathway/Group 

Lipid PFAS 
β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper 

Cyclooxygenase 13,14-D-PGJ2 
Me-PFOSA-
AcOH - - - - - - - - - 3.8 0.1 7.7 

Cyclooxygenase 
13,14DHK-
PGF2a* PFNA 10.6 1.6 20.4 10.4 1.7 20.0 - - - - - - 

Cyclooxygenase 
13,14DHK-
PGF2a* PFUdA - - - 6.8 2.4 11.5 - - - 6.4 1.9 11.1 

Cyclooxygenase 9-oxoODE PFNA - - - -2.4 -4.6 -0.1 -2.28 -4.24 -0.29 -2.3 -4.3 -0.3 

Cyclooxygenase BCPGE1 PFNA 12.8 2.9 23.6 10.3 0.3 21.3 11.57 1.79 22.29 10.6 0.6 21.7 

Cyclooxygenase BCPGE1 PFOA - - - 11.8 1.6 23.1 - - - 11.6 1.4 22.9 

Cyclooxygenase PGD2 PFDeA - - - - - - - - - 13.2 1.4 26.4 

Cyclooxygenase PGD2 PFNA 16.5 1.9 33.1 - - - 15.6 2.2 30.8 - - - 

Cyclooxygenase PGD2 PFOA - - - 24.3 7.3 43.9 - - - 21.7 7.3 38.1 

Cyclooxygenase PGD2 PFOS 11.9 0.4 24.7 - - - 16.6 5.6 28.8 17.0 5.8 29.3 

Cyclooxygenase PGD3 PFOS 11.5 1.5 22.5 10.4 0.4 21.4 10.0 1.2 19.6 - - - 

Cyclooxygenase PGD3 PFUdA - - - 10.3 3.5 17.6 - - - - - - 

Cyclooxygenase PGE3 PFNA 13.8 1.2 28.1 - - - - - - - - - 

Cyclooxygenase PGE3 PFOA - - - 16.3 2.6 31.9 - - - 15.6 2.2 30.7 

Cyclooxygenase TXB2 
Me-PFOSA-
AcOH - - - 5.4 0.2 10.8 - - - 5.4 0.2 10.9 

Cytochrome 
p450 

13,14DHK-
PGD2 

Me-PFOSA-
AcOH - - - 5.2 0.5 10.2 - - - - - - 

Cytochrome 
p450 14(15)-EET PFDeA - - - 6.4 1.0 12.0 - - - 6.6 1.3 12.2 
Cytochrome 
p450 20-HETE PFNA 6.9 0.5 13.6 - - - - - - - - - 
Cytochrome 
p450 5(6)-EET PFOA - - - - - - - - - 20.6 4.4 39.3 
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All 3 cohorts,  
random intercept  

(N = 387) 

CiOB & IKIDS, 
random intercept  

(N = 347) 

All 3 cohorts,  
meta-analysis  

(N = 387) 

CiOB & IKIDS,  
meta-analysis  

(N = 347) 

Bioactive Lipid 
Pathway/Group 

Lipid PFAS 
β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper β 

95% 
CI 

lower 

95% 
CI 

upper 
Cytochrome 
p450 5(6)-EET PFUdA - - - 9.3 0.9 18.5 - - - - - - 
Cytochrome 
p450 8(9)-EET 

Me-PFOSA-
AcOH - - - 5.4 0.9 10.0 - - - 5.8 1.5 10.2 

Cytochrome 
p450 8,9-DHET PFNA - - - 6.9 0.3 13.8 - - - - - - 
Cytochrome 
p450 8,9-DHET PFUdA - - - 3.6 0.2 7.1 - - - - - - 

Lipoxygenase 12-oxoETE PFDeA - - - 8.0 1.6 14.8 - - - 7.9 1.4 14.7 

Lipoxygenase 12-oxoETE PFNA 10.1 1.9 19.0 - - - 8.7 0.8 17.3 - - - 

Lipoxygenase 12-oxoETE PFOS 8.2 1.8 15.0 7.2 1.2 13.5 7.4 1.4 13.9 7.1 1.0 13.5 

Lipoxygenase 12-oxoETE PFUdA - - - 5.9 1.7 10.2 - - - 5.9 1.7 10.3 

Lipoxygenase 15-HETE PFHxS - - - -7.8 -13.6 -1.5 - - - -7.5 -13.5 -1.2 

Lipoxygenase 15-oxoETE PFDeA - - - 8.5 1.6 15.8 - - - 7.5 0.7 14.8 

Lipoxygenase 15-oxoETE PFOA - - - 9.6 1.0 19.0 - - - 9.1 0.6 18.2 

Lipoxygenase 15-oxoETE PFOS 10.3 1.9 19.3 10.4 3.9 17.4 10.3 3.8 17.3 10.3 3.8 17.2 

Lipoxygenase 15-oxoETE PFUdA - - - 6.5 2.1 11.2 - - - 6.0 1.5 10.7 

Lipoxygenase 5-HETE PFDeA - - - 6.7 1.5 12.1 - - - 5.8 0.6 11.3 

Lipoxygenase RVD2 PFUdA - - - 7.3 1.9 13.0 - - - 6.8 1.3 12.6 
Parent 
Compound AA PFNA 10.9 3.0 19.4 10.6 2.9 19.0 9.5 2.3 17.3 8.7 1.4 16.6 
Parent 
Compound AA PFOS 9.7 3.4 16.3 9.1 3.2 15.3 8.2 2.5 14.2 8.0 2.3 14.0 
Parent 
Compound EPA PFUdA - - - 3.7 0.3 7.2 - - - 3.8 0.2 7.4 
Parent 
Compound LA PFOA - - - 11.4 0.1 24.0 - - - - - - 
Parent 
Compound LA PFUdA - - - 6.6 1.0 12.6 - - - 7.9 2.0 14.2 
Parent 
Compound �LA PFUdA - - - -4.9 -9.1 -0.5 - - - - - - 
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   Figure 1. Directed acyclic graph of the relationships between maternal per- and poly-fluoroalkyl substances and bioactive lipids 
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Figure 2A. Correlation Matrix of Bioactive Lipids and High-Detect PFAS in the CiOB Cohort 
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Figure 2B. Correlation Matrix of Bioactive Lipids and High-Detect PFAS in the IKIDS Cohort 
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Figure 2C. Correlation Matrix of Bioactive Lipids and High-Detect PFAS in the ECHO-PROTECT Cohort 
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Figure 3. Heatmap of β Estimates Corresponding to Percentage Change in Bioactive Lipids as a Result of 
Doubling Log-Transformed PFAS for Adjusted Joint Analyses and Meta-Analyses run on Adjusted Within-
Cohort Models. The magnitude of effect estimates in each cell in the heatmap corresponds to the intensity of the 
color band in the legend. Non-significant values (p > .05) are marked with black “X”. Sample sizes range from 
343 to 383 (see Supplemental Tables 3, 4, 5, and 12 for exact pair-wise sample sizes). 
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Figure 4. Forest Plot of Quantile g-computation Effect Estimates in the Combined Cohort Analysis with IKIDS 
and CIOB Cohorts (N=343), showing of β Estimates Corresponding to Percentage Change in Bioactive Lipids 
as a Result of Simultaneous 1-Quartile Increase in All Log-Transformed PFAS. Model adjusted for Maternal 
Age, Maternal Education, Pre-Pregnancy BMI, Parity, Gestational Age at Visit, and Cohort.  
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