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Key Points 65 
 66 
Question 67 
 68 
How do genomic and clinical risk factors contribute to coronary artery disease (CAD) risk across 69 
a broad age range? 70 
 71 
Findings 72 
 73 
This longitudinal observational study across two cohorts found that both genomic and clinical 74 
risk factors exhibit age-dependent significance for CAD risk. Polygenic risk scores (PRS) are 75 
most informative for individuals younger than 55 years, improving the predictive accuracy of 76 
current risk equations for these individuals. 77 
 78 
Meaning 79 
 80 
The study emphasizes the need to incorporate the dynamic effects of cardiovascular risk factors, 81 
particularly genomic risk, for more accurate early-life risk prediction and efficient CAD 82 
prevention strategies. 83 
 84 
  85 
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Structured Abstract 86 
 87 
Importance 88 
Earlier identification of high coronary artery disease (CAD) risk individuals may enable more 89 
effective prevention strategies. However, existing 10-year risk frameworks are ineffective at 90 
earlier identification. Understanding the variable importance of genomic and clinical factors 91 
across life stages may significantly improve lifelong CAD event prediction. 92 
 93 
Objective 94 
To assess the time-varying significance of genomic and clinical risk factors in CAD risk 95 
estimation across various age groups. 96 
 97 
Design, Setting, and Participants 98 
A longitudinal study was performed using data from two cohort studies: the Framingham 99 
Offspring Study (FOS) with 3,588 participants aged 19-57 years and the UK Biobank (UKB) 100 
with 327,837 participants aged 40-70 years. A total of 134,765 and 3,831,734 person-time years 101 
were observed in FOS and UKB, respectively. 102 
 103 
Main Outcomes and Measures 104 
Hazard ratios (HR) for CAD were calculated for polygenic risk scores (PRS) and clinical risk 105 
factors at each age of enrollment. The relative importance of PRS and Pooled Cohort Equations 106 
(PCE) in predicting CAD events was also evaluated by age groups. 107 
 108 
Results 109 
The importance of CAD PRS diminished over the life course, with an HR of 3.58 (95% CI 1.39-110 
9.19) at age 19 in FOS and an HR of 1.51 (95% CI 1.48-1.54) by age 70 in UKB. Clinical risk 111 
factors exhibited similar age-dependent trends. PRS significantly outperformed PCE in 112 
identifying subsequent CAD events in the 40-45-year age group, with 3.2-fold more 113 
appropriately identified events. The mean age of CAD events occurred 1.8 years earlier for those 114 
at high genomic risk but 9.6 years later for those at high clinical risk (p<0.001). Overall, adding 115 
PRS improved the area under the receiving operating curve of the PCE by an average of +5.1% 116 
(95% CI 4.9-5.2%) across all age groups; among individuals <55 years, PRS augmented the 117 
AUC-ROC of the PCE by 6.5% (95% CI 5.5-7.5%, p<0.001). 118 
 119 
Conclusions and Relevance 120 
Genomic and clinical risk factors for CAD display time-varying importance across the lifespan. 121 
The study underscores the added value of CAD PRS, particularly among individuals younger 122 
than 55 years, for enhancing early risk prediction and prevention strategies.  123 
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Non-standard Abbreviations and Acronyms 124 
CAD  Coronary artery disease 125 
FOS  Framingham Offspring Study  126 
UKB  UK Biobank  127 
PRS  Polygenic risk score  128 
PCE  Pooled Cohort Equations  129 
LDL-C  Low-density lipoprotein cholesterol 130 
ASCVD Atherosclerotic cardiovascular disease 131 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298055doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Introduction  132 

Accurate risk estimation for coronary artery disease (CAD) early in the life course is a 133 

major goal in medicine, as CAD remains the leading cause of mortality and morbidity.1 Since 134 

coronary atherosclerosis often begins early in life and progresses over the life course, early 135 

identification of high-risk individuals offers the possibility for substantial risk mitigation.2   136 

There are several reasons why contemporary risk estimators in clinical practice do not 137 

adequately identify high-risk individuals early in life.  First, guideline-based risk calculators are 138 

valid only for ages 40 years or older and are often limited to short-term (e.g. 10-year) fixed-time 139 

horizons.3,4 Therefore, chronologic age remains the primary determinant of estimated 10-year 140 

risk, and high risk cannot be identified earlier in life, thereby delaying effective prevention 141 

opportunities.5 Second, even when prediction is extended to estimate lifetime risk, it fails to 142 

capture the dynamic trajectory of an individual’s changing risk profile, such as changing 143 

biomarker, biometric measurements, or lifestyle. Finally, models are developed assuming 144 

proportional hazards, which impose that the effect of each risk factor is either constant over the 145 

baseline hazard ratio through life or that interaction is a linear function of time. Both 146 

assumptions are empirically inaccurate for CAD clinical risk factors.6 147 

CAD polygenic risk score (PRS) has emerged as a tool to estimate risk complementary to 148 

clinical risk factors and is uniquely available very early in life. Traditional models considering 149 

these scores often employ a fixed-time horizon and rely on assumptions that do not hold true for 150 

the dynamic and complex landscape of CAD risk factors. We aim to break down existing barriers 151 

in CAD risk prediction by integrating both genomic and clinical risk factors in a single, 152 

dynamically-adjusting model. Using two cohorts ranging from 19 to 70 years of age, followed 153 

for up to 44 years, we illuminate how the relevance of these risk factors shifts over an 154 
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individual's life course, thereby offering a more nuanced and applicable framework for CAD risk 155 

estimation. While recent work by Marston et al. in the UK Biobank has shown that CAD PRS 156 

carries greater effects for younger people,7 its comparative and complementary performance with 157 

clinical risk calculators is less clear for both premature and cumulative events across a broad age 158 

range. The integration of genomic and clinical risk in a single model continues to be a barrier to 159 

clinical implementation of CAD PRS at scale. Such integration will ideally incorporate the 160 

dynamic importance of genomic and clinical risk for CAD over the life course for optimal utility.  161 

Here, we leverage two cohorts of individuals enrolled across the ages of 19 to 70 years 162 

and followed for up to 44 years to show that genomic and clinical risk factors vary in their 163 

importance over the life course and to explain a changing proportion of variation for CAD risk. 164 

We show that CAD PRS adds the most information for young and early middle-aged individuals 165 

when compared with older individuals and predicts a greater number of both premature and 166 

overall events for younger individuals. This framework mitigates current age-dependent 167 

limitations of CAD clinical risk scores.  168 
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Methods 169 

Study participants  170 

Two cohorts were included in this study. First, the Framingham Offspring Study (FOS) is 171 

a longitudinal US-based cohort study consisting of the children of the original participants of the 172 

Framingham Heart Study, recruited between 1971 and 1975 and followed through 2018.9 173 

Clinical data on cardiovascular risk factors and incident disease were available for 3,821 174 

participants, and genetic data for a subset (N=2,754), through the database of Genotypes and 175 

Phenotypes (dbGaP; accession phs000007.v33.p14). We conducted an analysis of clinical risk 176 

factors on the complete dataset (N=3,588) and the genetic analysis on the subset (N=2,629), after 177 

excluding 233 individuals for missing risk factor data, current lipid-lowering medication, or pre-178 

existing CAD (Supplementary Figure 1).  179 

Second, the UK Biobank (UKB) is a prospective nationwide population-based study that 180 

enrolled middle-aged adults between 2006 and 2010 and followed through present.Examiners 181 

collected baseline phenotypic, genetic, self-reported, and electronic health records on 502,485 182 

participants.10  In the present study, we included 327,837 participants from the UKB after 183 

excluding 174,378 who lacked quality-controlled genotyping, risk factor, lipid, or medication 184 

information or carried a diagnosis of CAD at baseline (Supplementary Figure 2).  185 

Informed consent was obtained from all participants, and secondary data analyses of 186 

dbGAP based FOS and UKB were approved by the Mass General Brigham Institutional Review 187 

Board applications 2016P002395 and 2021P002228.  188 

 189 

Study outcomes  190 
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In the FOS, CAD was defined as coronary death or myocardial infarction and recorded 191 

by independent reviewers over a follow-up period of a median 43.0 [Interquartile Range (IQR) 192 

38.6-47.4] years encompassing 134,765.2 person-years, using medical histories, physical 193 

examinations at the study clinic, hospitalization records, and communication with participants’ 194 

physicians, as previously described.11,12  195 

In the UKB, participants were followed for a median of 12.2 [IQR 11.4-15.1] years 196 

encompassing 3,831,734 person-years. CAD was defined as a composite of myocardial 197 

infarction, coronary revascularization, or death related to either as previously described.13 198 

Myocardial infarction was based on self-report or hospital admission diagnosis as performed 199 

centrally and recorded in I21-I21.4, I21.9, I22-I22.1, I22.8, I22.9, I23-I23.6, I23.8, I24-I24.1, 200 

I24.8,I24.9, I25.2.13 Coronary revascularization was assessed based on an OPCS-4 coded 201 

procedure for coronary artery bypass grafting (K40.1–40.4, K41.1–41.4, K45.1–45.5) or 202 

coronary angioplasty with or without stenting (K49.1–49.2, K49.8–49.9, K50.2, K75.175.4, 203 

K75.8–75.9).  204 

 205 

Genomic risk  206 

CAD PRS, a measure of the cumulative risk from many genetic variations across the 207 

genome, was used to quantify genomic risk.14 Genetic data for the FOS were made available 208 

from the NHLBI SNP Health Association Resource (SHARe) project, in which genotyping was 209 

conducted using approximately 550,000 SNPs (Affymetrix 500K mapping array plus Affymetrix 210 

50K supplemental array) and imputed using the 1000 Genomes reference panel as reported 211 

previously.9 The genetic data for UKB was phased and imputed centrally to ~96 million variants 212 

with the Haplotype Reference Consortium (HRC) and the UK10K + 1000 Genomes reference 213 
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panel.10 In both cohorts, we computed a CAD PRS using publicly available weights for GPSCAD, 214 

a genome-wide polygenic score for CAD consisting of 6.6 million variants.14 In clarifying 215 

analyses, participants were classified as having low genomic risk if they fell in the bottom 216 

quintile, intermediate genomic risk if they fell in the middle three quintiles, and high genomic 217 

risk if they fell in the top quintile, of the population distribution of PRS.  218 

 219 

Clinical risk factors  220 

Individual clinical risk factors of CAD as well as a guideline-supported clinical risk 221 

score (i.e., the Pooled Cohort Equations [PCE]) were used to estimate CAD risk. Clinical risk 222 

factors such as current smoking, diagnosis of diabetes, antihypertensives prescription, blood 223 

pressure, and lipids were collected at cohort enrollment based on a combination of self-report, 224 

blood test, and medical chart review.11 Systolic blood pressure measurement was adjusted for 225 

anti-hypertensive medication use by adding 15mmHg. Lipids were adjusted for the use of 226 

lipid-lowering medication by dividing the LDL-C and total cholesterol value by 0.7 and 0.8, 227 

respectively, as previously described.15 228 

The PCE was computed in the UKB, which provided a ten-year risk estimate of 229 

atherosclerotic cardiovascular disease (ASCVD).16 Guideline-based risk strata were indicated 230 

as follows: low or borderline (<7.5%), intermediate (≥7.5 to <20%), and high (≥20%).16   231 

 232 

Statistical Analysis  233 

At enrollment, we computed the age-specific hazard ratios (HRs) and proportions of 234 

variation explained by each risk factor for cumulative risk of CAD.  We divided each dataset into 235 

individuals whose age at enrollment and baseline ascertainment of risk factor levels were within 236 
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one calendar year of each age under consideration. We report the results from a locally estimated 237 

smoothed scatter (loess)17 weighted according to the tricube distance function to borrow 238 

information from nearby windows. After confirming that the Cox proportional hazard 239 

assumption was now satisfied by this approach (Supplementary Figure 3, Supplementary 240 

Methods), we reported the average HR and proportion of variation explained (PVE) of CAD 241 

over the study period with respect to one unit increase in standardized risk factor for individuals 242 

within one calendar year of assessment (Supplementary Methods).  243 

 For age-dependent relative incidence analyses, we computed the incidence rates for each 244 

CAD PRS percentile and divided by the incidence rate for those individuals of the lowest risk 245 

percentile per age group, so that the lowest age-relative incidence rate equals one. For 246 

cumulative hazard analyses, we computed cumulative hazard in strata of PRS and PCE within 247 

each age category (younger than 55 years, 55-65 years, and older than 65 years). Within each age 248 

category, we then stratified by PRS category (bottom quintile, middle three quintiles, top 249 

quintile) and then by age-specific PCE risk categories (bottom quintile, middle three quintiles, 250 

top quintile).  251 

For prediction of cumulative events, we identified individuals with a diagnosis of CAD 252 

over the observed time-period and computed the number of events that were predicted for 253 

individuals categorized as intermediate or high risk by PCE (10-year ASCVD risk ≥7.5%), high 254 

polygenic score (top quintile) at age of enrollment, or both. Traditional area-under-the-curve 255 

(AUC) was evaluated for development of CAD on PRS or PCE categories based on logistic 256 

regression and fitted for each age group separately.  257 

 258 

Results  259 
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Study Participants 260 

 We studied two cohorts free of cardiovascular disease at baseline and spanning the life 261 

course: (i) FOS comprising 3,588 individuals (50.9% female) ages 19-50 years at enrollment and 262 

followed for a median of 43.7 (interquartile range [IQR] 38.7-47.4) years and (ii) UKB, 263 

comprising 327,837 participants (57% female) ages 40-70 years at enrollment followed for a 264 

median of 12.1 (IQR 11.4-12.7) years (Table 1). Apart from smoking, clinical risk factors were 265 

more prevalent in the UKB as expected given the age differences. For example, 1581 (44%) of 266 

FOS participants (enrolled 1971-1975) were current smokers, compared to 33,869 (10%) of 267 

UKB participants (enrolled 2006-2010). During follow-up, 695 (19.4%) of FOS participants and 268 

11,190 (3.4%) of UKB participants developed CAD. Of those incident events, the proportion of 269 

premature CAD events – defined as occurring before age 55 years – were 179 of 695 (25.8%) in 270 

the FOS and 1085 of 11,190 (9.7%) in the UKB, respectively.      271 

 272 

Age-dependent effects of genomic and clinical risk factors  273 

We calculated the hazard ratio of CAD per standard deviation of PRS at each age of 274 

enrollment.  The HR per standard deviation of CAD PRS decreased over the life course – from 275 

3.58 (95% CI 1.39-9.19) at age 19 years to 1.99 (95% CI 1.06-3.70) at age 56 years in FOS, and 276 

from 2.25 (95% CI 1.77-2.87) at age 41 years to 1.39 (95% CI 1.30-1.48) by age 70 years in 277 

UKB (Figure 1, Supplementary Tables 1 and 2).  278 

We next calculated the HR of clinical risk factors at each age of enrollment and similarly 279 

observed decreasing hazard ratios over the life course. For example, the HR (95% CI) of CAD 280 

for smoking decreased from 1.98 (0.44-8.84) at age 19 years to 0.98 (0.41-2.33) at age 56 years 281 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298055doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

in the FOS and from 3.51 (2.13-5.80) at age 41 years to 1.62 (1.28-2.04) at age 70 years in the 282 

UKB. The trends were similar for systolic blood pressure and diabetes (Figure 1, Supplementary 283 

Tables 1 and 2). Excess risk associated with male sex similarly declined with age – from 3.29 284 

(95% CI 0.64-16.95) at age 19 to 2.59 (95% CI 0.92-7.25) at age 57 in the FOS and from 3.20 285 

(95% CI 1.82-5.64) at age 41 to 1.99 (95% CI 1.74-2.26) at age 70 in the UKB (Figure 1, 286 

Supplementary Tables 1 and 2).    287 

When clinical risk factors were considered in composite as part of the PCE, the HR for 288 

CAD for a 1% increase in estimated 10-year risk remained relatively stable over the life course – 289 

1.24 (95% CI 1.18-1.30) at age 41 years and 1.04 (95% CI 1.03-1.04) at age 70 years 290 

(Supplementary Figure 4). However, when scaling the PCE by its SD of 7.2%, HR (95% CI) per 291 

SD ranges from 4.4 (3.31-5.95) at age 41 years to 1.3 (1.29-1.31) at age 70 years (Supplementary 292 

Figure 4). A high PCE was exceedingly rare among young participants (0.14%, 95% CI 0.13-293 

0.16) (Supplementary Figure 5). 294 

We next computed the PVE of CAD on each risk factor for individuals up to and 295 

including the age in question. We observed a decreasing PVE with increasing age for PRS, from 296 

19% (95% 18.9-19.1) at age 19 years to 3.2% (95% CI 3.19-3.21) at age 57 years in the FOS and 297 

from 5.9% (95% CI 5.89-5.91) at age 40 years to 1.7% (95% CI 1.69-1.71) at age 70 years. 298 

(Supplementary Figure 4, Supplementary Tables 3 and 4).  299 

 300 

Relative importance of genomic and clinical risk of CAD by age 301 

To compare the relative importance of genomic versus clinical risk, we limited our 302 

analysis to the UKB where both could be calculated. The distributions of PRS of participants 303 

across all age groups were similar and the absolute risk of CAD increased with increasing PRS 304 
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(Figures 2A and 2B, Supplementary Figure 6). Over the study period, the absolute CAD risk 305 

difference between those < 55 years in the 1st and 99th percentiles was 3.1%, while at >65 years 306 

rose to 7.1% (Figure 2A). However, the corresponding relative risks were 5.2-fold (95% CI 5.1-307 

5.4) and 3.2-fold (95% CI 3.1-3.3), respectively (Figure 2C).  308 

 When classifying PCE and PRS strata within each age group as high (top quintile), 309 

intermediate (middle three quintiles), and low (bottom quintile) (Supplementary Table 5), there 310 

was a marked gradient of cumulative hazard of CAD events over the 12-year follow-up period 311 

(Figure 3). This stratification was highest in the <55 years age group, ranging from 0.045% (95% 312 

CI 0.23-0.67) for individuals with low PRS and low PCE to 14.6% (95% CI 12.8-15.5) for 313 

individuals with high PRS and high PCE.  The corresponding stratification in the >65 years age 314 

group was 4.6% (95% CI 0.01-0.09) to 37.6% (95% CI 0.11-0.64) (Figure 3).   315 

We then compared the ability of a high PRS vs. high PCE in predicting CAD events 316 

across different age groups (Figure 4A). At younger ages of enrollment (40-45 years), high PRS 317 

predicted over 3.5-fold more events compared to high PCE – 32.3% (95% CI 32.0-32.5) of CAD 318 

events occurring in this age group were predicted by high PRS alone compared to only 9.1% 319 

(95% CI 9.0-9.2) by high PCE alone. 320 

 321 

Prediction of premature CAD events  322 

Individuals with high PRS developed CAD earlier in life (mean 65.3 [95% CI 65.0-65.5] 323 

years), whereas the average age of first CAD among high PCE group was 70.8 [95% CI 70.6-324 

71.0] years (Supplementary Tables 7 and 8). Mean age of CAD event decreased with increasing 325 

PRS, from 67.2 (95% CI 66.6-67.8) years in the lowest decile to 64.5 (95% CI 64.1-65.0) years 326 

in the highest decile.  Conversely, individuals in the highest PCE decile had events 13.7 years 327 
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later in life than those of the lowest PCE (Figure 4B, Supplementary Table 9, Supplementary 328 

Figure 8). Among individuals with CAD events occurring at less than 55 years, 427 (39.3%) had 329 

high PRS but only 32 (2.9%) had high PCE.  330 

 331 

Augmenting clinical risk models with genomic risk 332 

Adding PRS to PCE augmented AUC across all ages but with the greatest impact in younger 333 

individuals (Figure 4C, Supplementary Table 10).  For individuals <55 years, the improvement 334 

was 6.3% (95% CI 4.8-7.8) compared to only 2.9% (95% CI 2.2-3.8) for those over 55.  335 

Furthermore, the AUC increased by 8.8% (95% CI 8.4-9.2%) in the 40-45 age group, 7.8% (95% 336 

CI 7.6-8.0%) in the 45–50-year group, and 4.9% (95% CI 4.7-5.1%) in the 50-55 age group, 337 

respectively (Figure 4C).  The net proportion of CAD cases correctly reclassified by genomic 338 

risk (high PRS) was the highest in younger participants (16.1% for age <50 years and 3.4% for 339 

age <55 years) but receded for those over 55. The net proportion of controls correctly reclassified 340 

by genomic risk (low PRS) was the highest at older ages (15.1% at age <75 years) but 341 

diminishes in utility for those younger than 60 (Supplementary Figure 9, Supplementary Table 342 

11).    343 
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Discussion 344 

Our findings enhance our understanding of CAD risk factors by illustrating their dynamic 345 

importance throughout life. Unlike traditional models that operate under the constraints of fixed 346 

windows of time and proportional hazards, our work goes beyond these limitations to embrace 347 

the time-varying nature of these risk factors. The ability to track this dynamic trajectory provides 348 

new granularity in risk assessment, particularly for younger individuals. Our approach not only 349 

reconciles the time-varying impact of genomic and clinical risk factors but also highlights that 350 

CAD PRS offers value for risk assessment in individuals under 55 years over clinical risk factors 351 

alone. 352 

While current risk stratification emphasizes a focus on short-term risk, even an emphasis 353 

on a longer duration of risk fails to capture the dynamic trajectory of an individual’s changing 354 

risk profile over time. Our dynamic model of both genomic and clinical risk factors offers 355 

several practical implications. First, it is more accurate than existing risk calculators based on 356 

clinical risk factors alone. Second, it allows for more precise clinical risk stratification among 357 

younger individuals, for whom clinical risk factors perform least well. Lastly, our work supports 358 

the integration of genomics into clinical practice toward improved prevention of premature CAD 359 

events, which are generally missed by current clinical risk calculators. 360 

Hazard ratios for conventional CAD risk factors and PRS are both age-dependent and 361 

challenges traditional modeling assumptions. This is important for consideration of risk across 362 

the life course beyond the present 10-year estimated risk framework, as recently highlighted in a 363 

National Heart Lung and Blood Institute workshop.18 The Cox proportional hazards model has 364 

been the default approach for cardiovascular risk prediction, but its fundamental assumption – 365 

that the hazards in both groups compared are proportional – is often erroneous, and commonly 366 
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reported hazard ratios and risk estimates, such as the ten-year risk estimate from the PCE, are 367 

weighted averages of time-varying hazard ratios.19  368 

Current risk calculators provide a fixed window estimate, as opposed to a dynamic 369 

trajectory.20,5 An incremental enhancement to the existing approach would include the use of 370 

time-varying covariates and time-varying effects.21,22 The Cox-related approach requires the 371 

specification of repeated measures of a particular risk factor, which can be challenging to obtain 372 

in practice and is often confounded by frequency of ascertainment. The alternative, using time-373 

varying effects,22 is an improvement, but the interpretation of these estimates is altogether 374 

different: each estimate represents the hazard ratio of a particular covariate on risk within a 375 

respective finite time interval, whereas our approach describes the average overall hazard for an 376 

individual of a particular age at prediction and thus a particular age period, which is more 377 

clinically relevant. We emphasize that genomics allows us to predict lifetime risk early and not 378 

only premature events. While the PCE tends to capture individuals who have higher rates of 379 

known clinical risk factors, genetic risk is largely independent with a broadly uniform 380 

distribution of clinical risk factors among varying levels of genetic risk. PCE incorporates age as 381 

a constant interaction with time-to-risk models but our study shows that this change is not linear 382 

nor easily predictable.5,3 Finally, while the advent of machine learning has opened the possibility 383 

of deep-learning for predictive algorithms on much larger data sets, interpretable models that can 384 

be feasibly incorporated and understood within the confines of a short clinical visit are 385 

essential.23 Future approaches need to account for time-varying effects while also considering the 386 

time of assessment. This may require the use of time-varying coefficients,24 multistate models,25 387 

and a more nuanced approach to handling time-varying competing risks.26 388 
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In conclusion, our work highlights three areas in which CAD PRS adds value to current 389 

guideline-based clinical risk prediction using the PCE: (i) CAD PRS had the most value in 390 

augmenting risk prediction for CAD among individuals younger than 55 years of age.  Prior 391 

work for CAD has largely examined AUC augmentation with PRS in aggregate of middle-aged 392 

or even older participants noting minimal incremental value.27,28  (ii) CAD PRS improves 393 

precision in risk estimation for individuals within the strata of clinical risk according to the PCE 394 

throughout the life course, but that such stratification is highest among individuals under age 55 395 

years.   (iii) Integration of genomics in risk prediction enables the detection of premature events 396 

that are missed by current guideline-supported tools. Collectively, these findings support 397 

inclusion of PRS to augment current clinical risk estimation toward better allocation of 398 

preventive therapies.29,30  399 

 400 

Limitations 401 

Our results should be interpreted in the context of potential limitations. First, survival bias is an 402 

important limitation with a broad age of inclusion in any volunteer cohort. However, this also 403 

reflects the dynamic importance of risk factors when considering event-free individuals at 404 

increasing age, which is leveraged in the present study. Second, the two cohorts studied spanned 405 

different countries, time periods, and medical guidelines epochs, making absolute estimates 406 

between FOS and UKB not directly comparable, but the overall dynamic age-dependent trends 407 

were consistent. Third, we do not compare genomic to lifestyle-based “primordial” risk 408 

calculators in individuals under the age of 40 year, which would further illuminate the value of 409 

genomics in comparison to those measures prior to onset of disease risk factors. Fourth, because 410 

this study is predominantly of individuals of European ancestry, additional research is needed to 411 
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evaluate whether these observations are applicable to other ancestries. CAD PRS has reduced 412 

performance in ancestries outside of Europe but cross-ethnic transferability of PRS is improving 413 

with more diverse training data and novel methods.31  414 

Conclusions 415 

In summary, this study extends current CAD risk prediction models by offering a dynamic 416 

framework that also includes genomics toward improved prediction. We show that genomic 417 

information adds the most information for young and middle-aged individuals when compared 418 

with older individuals for the prediction of CAD events.  419 
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Figure 1. Dynamic Hazard Ratio of CAD for Genomic and Clinical Risk Factors by Age at 524 
Estimation 525 
 526 
The age-specific hazard ratio (HR) for risk of CAD is plotted for multiple risk factors at each age 527 
of enrollment (A) between 19 and 57 years in the FOS (N=3,588), and (B) between 40 and 70 528 
years in the UK Biobank (N=327,837). The HR is obtained from Cox proportional hazards 529 
estimate at each age of enrollment for a standardized unit increase in each of polygenic score, 530 
total cholesterol, HDL cholesterol, and systolic blood pressure or a binary indicator for smoking, 531 
male sex, and diabetes mellitus (only in the UK Biobank given the low prevalence of diabetes 532 
mellitus in FOS). We note the different time periods (1970-2010 and 2007-2021) for FOS and 533 
UKB, respectively. The difference in absolute values can thus not be considered as levels of 534 
these clinical risk factors varied between populations (Table 1) and between eras. Accordingly, 535 
excluding individuals on statins results in a different population in each cohort. No covariates are 536 
used in the analysis to isolate the effect of each risk factor separately.  537 
 538 
HR: Hazard Ratio; HDL: High density lipoprotein, CAD: coronary artery disease, FOS: 539 
Framingham Offspring Cohort, 95% CI: 95% Confidence Interval. 540 
  541 
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Figure 2. Absolute and Relative Incidence Rate of CAD by Genomic Risk per Age Group 542 
 543 
In the UK Biobank (N=327,837), three age groups (<55, 55-65, and >65 years) at risk estimation 544 
were used to compare the stratification of the observed absolute and relative risk across 545 
polygenic score percentile. (A) The absolute risk of CAD increased with increasing polygenic 546 
score percentile in all three age groups, and older participants had higher absolute risk of CAD. 547 
Absolute risk of CAD ranged from 0.7 to 3.9% in the <55 years age group, 1.9 % to 7.0 % in the 548 
55-65 years age group, and 3.3 to 10.4% in the >65 years age group. (B) The polygenic score 549 
distribution was similar across three age groups. (C) Relative risk gradient of genomic risk is 550 
greatest for younger age groups. The 99th percentile of polygenic score was associated with a 551 
5.2-fold increase in risk in the <55 years age group, 3.6-fold increased risk in the 55-65 years age 552 
group, and 3.2-fold increase in risk in the >65 years age group.   553 
 554 
CAD: coronary artery disease.  PRS: Polygenic risk score. 555 
  556 
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Figure 3. Cumulative Hazard of Incident CAD by Clinical and Genomic Risk in Three Age 557 
Groups  558 
 559 
In the UK Biobank (N=327,837), three age groups (<55, 55-65 and over 65 years) at risk 560 
estimation were used to compare the cumulative incidence of CAD by genomic (PRS) and 561 
clinical (PCE) risk levels defined as low (bottom quintile), intermediate (middle three quintiles), 562 
and high (top quintile) within each age group. We report the cumulative hazard over the 563 
observed follow-up time (median 12.2 years). The stratification was highest in the <55 years age 564 
group (A), where the cumulative hazard ranged from 0.45% (95% CI 0.23-0.67) for individuals 565 
with low PRS and low PCE to 14.6% (95% CI 12.8-15.5) for individuals with high PRS and high 566 
PCE.  The stratification decreased but persisted in the older age groups (B and C). Here we 567 
feature the same Y axis to emphasize differences in absolute risk among young, middle and older 568 
individuals. 569 
 570 
CAD: coronary artery disease, PRS: polygenic risk score, PCE: Pooled Cohort Equations. 571 

572 
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Figure 4. Augmenting Risk Prediction of CAD in Early Middle-Age with the Addition of 573 
PRS 574 
 575 
In the UK Biobank (N=327,837), we show is the proportion of cumulative CAD events predicted 576 
using high genomic risk (PRS in the top quintile), intermediate to high clinical risk (PCE 10-year 577 
risk ≥7.5%) or both at enrollment, by age of estimation. B. Mean age of CAD event decreased 578 
with increasing PRS (red), from 67.2 (95% CI 66.6-67.8) years in the lowest decile to 64.5 (95% 579 
CI 64.1-65.0) years in the highest decile.  Conversely, those in the highest PCE decile (blue) had 580 
events 13.7 years later in life than those of the lowest PCE. C. AUC of a model considering 581 
clinical risk only when compared to a combined clinical and genomic risk model for participants 582 
in 5-year age strata between ages 40 and 75 years at age of risk estimation. Genomic risk 583 
categories are defined as PRS in the top quintile, middle three quintiles, and bottom quintiles. 584 
Clinical risk categories are defined by PCE predicted 10-year risk <7.5%, 7.5-20%, and > 20%. 585 

 586 
CAD: coronary artery disease, PRS: polygenic risk score, PCE: Pooled Cohort Equations. AUC: 587 
Area Under the Receiver Operator Curve 588 
 589 
  590 
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Table 1. Characteristics of Study Participants from the FOS (N=3,588) and UKB 591 

(N=327,837)  592 

Characteristics FOS (N=3,588) UKB (N=327,837) 
Age at risk estimation, mean (SD), years 35.9 (10.2) 56.1 (8.1) 
Female, n (%) 1,828 (50.9) 186,507 (56.9) 
White race, n (%) 3,588 (100) 274,927 (83.9) 
Incident CAD, n (%) 695 (19.3) 11,190 (3.4) 
Follow-up period, median [IQR) 43.7 [38.7-45.3) 12.1 [11.4-12.7) 
Diabetes mellitus, n (%) 27 (0.7) 2413 (0.7) 
Current smoking, n (%) 1581 (44.1) 33869 (10.3) 
Total cholesterol, mean (SD), mg/dL 197 (38.8) 228.6 (41.4) 
HDL Cholesterol, mean (SD), mg/dL 52.1 (16.0) 57.2 (14.8) 
LDL cholesterol, mean (SD), mg/dL 127 (36.6) 144 .0 (31.9) 
Triglycerides, mean (SD), mg/dL  99.1 (86.7) 151.9 (90.3) 
Diastolic blood pressure, mean (SD), mmHg 78.5 (10.9) 82.8 (11.2) 
Systolic blood pressure, mean (SD), mmHg 121 (16.4) 139.7 (20.4) 
Taking antihypertensive medication, n (%) 102 (2.8) 41,088 (12.5) 
PCE 10-year risk category   
     Low or borderline (<7.5%), n (%) - 207,150 (63.2) 
     Intermediate (≥7.5 to <20%), n (%) - 96,775 (29.5) 
     High (≥20%), n (%) - 23,912 (7.3) 
Genetic data available, n (%) 2,656 (72.5) 327,837 (100.0) 
CAD polygenic risk score category   
     Low, n (%) 531 (20.0) 65,696 (20.0) 
     Intermediate, n (%) 1,593 (60.0) 196,750 (60.0) 
     High, n (%) 532 (20.0) 65,391 (20.0) 

 593 
Characteristics for study participants from the Framingham Offspring Study (FOS) and UK 594 
Biobank are reported for all individuals based on data obtained at enrollment. CAD: coronary 595 
artery disease, PRS: polygenic risk score, PCE: Pooled Cohort Equations, HDL: High-density 596 
lipoprotein cholesterol, LDL: Low-density lipoprotein cholesterol. 597 
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Figure 1 
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Figure 2 
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