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Abstract

Protein mutations can significantly influence protein solubility, which results in altered
protein functions and leads to various diseases. Despite of tremendous effort, machine
learning prediction of protein solubility changes upon mutation remains a challenging task
as indicated by the poor scores of normalized Correct Prediction Ratio (CPR). Part of the
challenge stems from the fact that there is no three-dimensional (3D) structures for the
wild-type and mutant proteins. This work integrates persistent Laplacians and pre-trained
Transformer for the task. The Transformer, pretrained with hunderds of millions of protein
sequences, embeds wild-type and mutant sequences, while persistent Laplacians track the
topological invariant change and homotopic shape evolution induced by mutations in 3D
protein structures, which are rendered from AlphaFold2. The resulting machine learning
model was trained on an extensive data set labeled with three solubility types. Our model
outperforms all existing predictive methods and improves the state-of-the-art up to 15%.
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1 Introduction

Genetic mutations alter the genome sequence, leading to changes in the corresponding amino

acid sequence of a protein. These alternations have far-reaching implications on the protein’s

structure, function, and stability, affecting attributes such as folding stability, binding affinity,

and solubility. The consequences of protein mutations have been extensively studied in diverse

fields such as evolutionary biology, cancer biology, immunology, directed evolution, and protein

engineering [1]. Understanding the impact of genetic mutations on protein solubility is crucial

in various fields, including protein engineering, drug discovery, and biotechnology. Accurately

analyzing and predicting the impact of mutations on protein solubility is therefore crucial in

many fields, facilitating the engineering of proteins with desirable functions. There are nu-

merous intricately interconnected factors impacting protein solubility, ranging from amino acid

sequence arrangement, post-translational modifications, protein-protein interactions, to envi-

ronmental conditions, such as solvent type, ion type and concentration, the presence of small

molecules, temperature, etc. Unfortunately, the existing data set does not contain sufficient

information. This complexity poses significant challenges for the accurate prediction and mod-

eling of protein solubility, often requiring multifaceted computational approaches for reliable

outcomes.

Computational predictions serve as a valuable complement to experimental mutagenesis

analysis of protein stability changes upon mutation. Such computational approaches offer sev-

eral advantages, including being economical, efficient, and provide a viable alternative to labor-

intensive site-directed mutagenesis experiments [2]. As a result, the development of accurate

and reliable computational techniques for mutational impact prediction could substantially en-

hance the throughput and accessibility of research in protein engineering and drug discovery.

Over the years, a variety of computational methods have been developed to explore the ef-
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fects of mutations on protein solubility, including but not limited to CamSol [3], OptSolMut [4],

PON-Sol [5], SODA [6], Solubis [7], and others as summarized in a recent review [8]. Cam-

Sol employs an algorithm to construct a residue-specific solubility profile, although no explicit

method has been made publicly available. OptSolMut is trained on 137 samples, each featur-

ing single or multiple mutations affecting solubility or aggregation. PON-Sol utilizes a random

forest model trained on a dataset of 406 single amino acid substitutions labeled as solubility-

increasing, solubility-decreasing, or exhibiting no change in solubility. SODA, which is based

on the PON-Sol data, specifically targets samples with decreasing solubility [6]. Solubis is an

optimization tool that increases protein solubility and integrates interaction analysis from FoldX

[2], aggregation prediction from TANGO [9], and structural analysis from YASARA [10]. Re-

cently, PON-Sol2 [11] extended the original PON-Sol dataset and employed a gradient boosting

algorithm for sequence-based predictions. Despite of intensive effort, the current prediction ac-

curacy in terms of normalized Correct Prediction Ratio (CPR) remains very low, calling for

innovative strategies.

Topological data analysis (TDA) is a relatively new approach for data science. Its main tech-

nique is persistent homology [12, 13]. The essential idea of persistent homology is to construct

a multiscale analysis of data in terms of topological invariants. The resulting changes of topo-

logical invariants over scales can be used to characterize the intricate structures of data, leading

to an unusually powerful approach in describing protein structure, flexibility, and folding [14].

Persistent homology was integrated with machine learning for the classification of proteins in

2015 [15], which was one the first integrations of TDA and machine learning, and the predic-

tions of mutation-induced protein stability changes [16, 17] and protein-protein binding free

energy changes [18, 19]. One of the major achievements of TDA is its winning of D3R Grand

Challenges, an annual worldwide competition series in computer-aided drug design [20, 21]. A

nearly comprehensive summary of the early success of TDA in biological science was given in
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a review [22].

However, persistent homology only tracks the changes in topological invariants and cannot

capture homotopic shape evolution of data over scales or induced by mutations. To overcome

this limitation, Wei and coworkers introduced persistent combinatorial Laplacians, also called

persistent spectral graphs, on point clouds [23] and evolutionary de Rham-Hodge method on

manifolds [24] in 2019. The essence of these methods is the persistent topological Laplacians

(PTLs) either on point clouds or on manifolds. PTLs not only fully capture the topological

invariants in its harmonic spectra as those given by persistent homology, but also capture the

homotopic shape evolution of data during the multiscale analysis or a mutation process. PTLs

were applied to the predictions of protein flexibility [25] and protein-ligand binding free ener-

gies [26], protein–protein interactions[27, 28], and protein engineering [1]. The most remark-

able accomplishment by persistent Laplacian is its accurate forecasting of emerging dominant

SARS-CoV-2 variants BA.4 and BA.5 about two months in advance [29].

However, TDA approaches depend on the biomolcular structures, which may not be avail-

able. In fact, many proteins involved in the present study do not have 3D structures. In recent

years, advanced natural language processing (NLP) models, including Transformers and long

short-term memory (LSTM), have been widely implemented across various domains to extract

protein sequence information. For example, Tasks Assessing Protein Embedding (TAPE) intro-

duced three different architectures, namely transformer, dilated residual network (ResNet), and

LSTM [30]. Additionally, LSTM-based models like Bepler [31] and UniRep [32] have been

developed. Additionally, large-scale protein transformer models trained on extensive datasets

comprising hundreds of millions of sequences have made significant advancements in the field.

These models, including Evolutionary Scale Modeling (ESM) [33] and ProtTrans [34, 35], have

exhibited exceptional performance in capturing a variety of protein properties. ESM, for in-

stance, allows for fine-tuning based on either downstream task data or local multiple sequence
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alignments [36]. In the present work, we leverage the pre-trained ESM transformer model to

extract crucial information from protein sequences.

In this work, we will integrate transformer-based sequence embedding and persistent topo-

logical Laplacians to predict protein solubility changes upon mutation. While sequence-based

models can be applied without 3D structural information, the PTL-based features require high-

quality structures. We generate 3D structures of wild type proteins from AlphaFold2 [37] to

facilitate topological embedding. By combining both embedding approaches, they naturally

complement each other in classifying protein solubility changes upon mutation. These em-

beddings are fed into an ensemble classifier, gradient boosted trees (GBT), to build a ma-

chine learning model, called TopLapGBT. We validate TopLapGBT on the classification of

protein solubility changes upon mutation. We demonstrate that this integrated machine learning

model gives rise to a substantial improvement as compared to existing state-of-the-art models.

Residue-Similarity plots are also applied to assess how well the TopLapGBT model classify

three solubility labels.

2 Results

2.1 Overview of TopLapGBT

TopLapGBT integrates both structure-based and sequence-based features, derived from protein

structures and sequences respectively, into a unified model. Our architecture comprises three

distinct embedding modules: persistent Laplacian-based embeddings, sequence-based embed-

dings, and auxiliary feature embeddings, all of which feed into an ensemble classifier as de-

picted in Figure 1.

In the persistent Laplacian-based feature embedding module, we employ persistent Lapla-

cian techniques to generate features that encapsulate the structural attributes of proteins both

pre- and post-mutation. This approach is particularly effective in capturing the structural alter-
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Figure 1: The illustration of the workflow for TopLapGBT. Protein sequences are first prepro-
cessed by AlphaFold 2 to generate wild type protein structures. Mutant proteins are generated
from the Jackal software [38]. The structure-based features from persistent Laplacian, auxiliary
and sequence-based features are then concatenated to form a long feature input for gradient
boosting tree to classify the protein solubility changes upon mutation. The predicted labels are
also analyzed on Residue-Similarity (R-S) plots.

ations induced by mutations within the localized neighborhoods of the mutation sites. Mathe-

matically, the persistent Laplacian builds a sequence of simplicial complexes through a filtra-

tion process, thereby characterizing atom-atom interactions across multiple scales (details in

the Methods section). In the sequence-based feature embedding module, a pre-trained trans-

former model generates latent feature vectors extracted from protein sequences. Specifically,

the transformer model used here is a 650M-parameter protein language model, trained on a

corpus of 250M protein sequences spanning multiple organisms [39]. Finally, the auxiliary fea-

ture embedding module incorporates a variety of attributes such as surface area, partial charge,

pKa shifts, solvation free energy, and secondary structural information, synthesized from both
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protein sequences and structures. These three distinct sets of feature embeddings are subse-

quently concatenated to produce a comprehensive feature vector. This vector is then fed into a

gradient-boosting tree classifier to categorize the mutation-induced samples.

2.2 Performance of TopLapGBT on PON-Sol2 dataset

In our study, we utilize the dataset employed by PON-Sol2 as detailed in [11]. The dataset is

comprised of 6,328 mutation samples, originating from 77 distinct proteins. These samples are

categorized into three labels: decrease in solubility, increase in solubility, and no change in sol-

ubility. Specifically, the dataset contains 3,136 samples demonstrating a decrease in solubility,

1,026 samples showing an increase, and 2,166 samples with no change. Notably, the dataset

exhibits a class imbalance, with a ratio of 1 : 0.69 : 0.34, indicating a bias towards samples

that exhibit a decrease in solubility. To assess the performance of our model, we initially carry

out a random 10-fold cross-validation on the dataset. Subsequently, an independent blind test

prediction is executed to provide further validation of the model’s efficacy.

In Table 1, we present a comparative analysis of the performance of existing classifiers

by PON-Sol [5] and PON-Sol2 [11] against our proposed model, TopLapGBT, using 10-fold

cross-validation. It should be noted that PON-Sol2 incorporates feature selection techniques

such as recursive feature elimination (RFE). To provide a robust assessment of TopLapGBT’s

performance, we conduct 10 repeated runs, and the mean values of these runs are reported to

account for any randomness in the model’s output.

Performance evaluation of our model, TopLapGBT, is conducted using a range of metrics,

including Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, Speci-

ficity, Correct Prediction Ratio (CPR), and Generalized Squared Correlation (GC2). PPV and

NPV quantify the proportions of correct positive and negative predictions for each solubility

class, respectively. Given that we are dealing with a K-class problem with three distinct solu-
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Table 1: Comparison of performance metrics between TopLapGBT and both single layer and
double layer classifiers of PON-Sol2 in the 10-fold crossvalidation. The negative solubility
samples are denoted as ”-” whereas the positive solubility change samples are denoted as ”+”.
The samples with no solubility change are denoted as ”N”. Performance metrics include the
positive predicted values (PPV), negative predicted values (NPV), sensitivity, specificity, cor-
rect prediction ratio (CPR) and generalised correlation (GC2). PPV refers to the proportions
of positive predictions for each solubility class while NPV refers to the proportions of negative
predictions for each solubility class. CPR calculates the percentage of correctly classified sam-
ples while GC2 measures the correlation coefficient of the classification. All normalized metrics
are also reported. For each metric, the first value is without normalization while the second one
is with normalization.

Performance
Metric

Model
PON-Sol2 [11] TopGBT TopLapGBT

Single Three-Class Classifier Two-Layer Three-Class Classifier - -

All Features
30 Features

Selected by RFE All Features
34 Features

Selected by RFE - -

PPV
-
N
+

0.842/0.742
0.657/0.536
0.563/0.730

0.835/0.729
0.658/0.543
0.586/0.752

0.875/0.793
0.635/0.521
0.520/0.696

0.869/0.781
0.647/0.534
0.538/0.714

0.868/0.785
0.686/0.554
0.646/0.797

0.873/0.797
0.681/0.557
0.627/0.779

NPV
-
N
+

0.913/0.954
0.841/0.824
0.877/0.737

0.901/0.947
0.847/0.832
0.877/0.738

0.893/0.942
0.847/0.829
0.877/0.736

0.891/0.941
0.855/0.838
0.878/0.739

0.932/0.965
0.864/0.849
0.886/0.749

0.931/0.964
0.858/0.842
0.888/0.757

Sensitivity
-
N
+

0.919/0.919
0.701/0.701
0.329/0.329

0.906/0.906
0.717/0.717
0.326/0.326

0.892/0.892
0.724/0.724
0.336/0.336

0.891/0.891
0.738/0.738
0.340/0.340

0.937/0.937
0.752/0.752
0.359/0.359

0.934/0.934
0.735/0.735
0.395/0.395

Specificity
-
N
+

0.831/0.839
0.812/0.697
0.948/0.938

0.825/0.831
0.807/0.697
0.954/0.947

0.875/0.883
0.785/0.667
0.938/0.927

0.868/0.874
0.792/0.678
0.941/0.932

0.860/0.872
0.821/0.697
0.962/0.954

0.867/0.881
0.823/0.707
0.953/0.944

CPR 0.747/0.650 0.746/0.650 0.743/0.651 0.747/0.656 0.780/0.682 0.792/0.688
GC2 0.317/0.298 0.309/0.289 0.322/0.313 0.323/0.312 0.371/0.354 0.376/0.361

bility classes, CPR and GC2 are particularly relevant for providing a holistic view of the model’s

performance [40]. Specifically, CPR measures the overall accuracy of the model, while GC2

quantifies the correlation coefficient of the classification, ranging from 0 to 1. Larger values for

these metrics denote better performance. Importantly, due to the class imbalance in the number

of mutation samples across the categories, all performance metrics are normalized to ensure

a robust and reliable evaluation of the model’s efficacy (further details are elaborated in the

Methods section).

The proposed model, TopLapGBT, demonstrates significant performance gains over exist-
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ing featurization methods in PON-Sol2 across all evaluation metrics [11]. Specifically, nor-

malized CPR and GC2 scores of TopLapGBT stand at 0.688 and 0.361, marking improvements

of 4.88% and 15.71% over PON-Sol2, respectively. These gains underscore the merit of in-

corporating both structure-based and sequence-based features into the model. To elucidate the

contribution of Persistent Laplacian (PL)-based features, we also present a comparative analysis

with our TopGBT model in Table 1. The TopGBT model utilizes persistent homology-based

embeddings alongside auxiliary and pre-trained transformer features. While TopGBT still out-

performs all existing PON-Sol2 models, the incorporation of PL-based features in TopLapGBT

leads to an incremental improvement of 1% and 2% in CPR and GC2 metrics, respectively. This

validates our approach of leveraging Persistent Laplacian to comprehensively capture both the

topological and homotopic nuances in the evolution of protein structures.

2.3 Performance of TopLapGBT on independent test set

To robustly assess the performance of TopLapGBT, we subjected it to an independent test using

the same dataset employed by PON-Sol2 [11]. In this validation, TopLapGBT consistently out-

performed all five existing models, as evidenced in Table 2. Specifically, TopLapGBT registers

a normalized CPR of 0.564 and a normalized GC2 of 0.185, surpassing PON-Sol2 by 3.49% and

17.83%, respectively. Relative to TopGBT, the inclusion of PL-based features in TopLapGBT

yielded incremental gains in both CPR and GC2 metrics, thereby further substantiating the util-

ity of Persistent Laplacian in capturing the homotopic shape evolution within protein structures.

3 Discussion

The performance of machine learning models generally relies on the nature of the input fea-

tures. In our model, the PL-based features depend on one main element which is the quality

of the protein structures from AlphaFold 2 (AF2). The quality of AF2 structures are crucial
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Table 2: Performance of TopLapGBT with existing state-of-the-art models on the independent
blind test classification. The negative solubility samples are denoted as ”-” whereas the posi-
tive solubility change samples are denoted as ”+”. The samples with no solubility change are
denoted as ”N”. Performance metrics include the positive predicted values (PPV), negative
predicted values (NPV), sensitivity, specificity, correct prediction ratio (CPR) and generalised
correlation (GC2). PPV refers to the proportions of positive predictions for each solubility class
while NPV refers to the proportions of negative predictions for each solubility class. CPR
calculates the percentage of correctly classified samples while GC2 measures the correlation
coefficient of the classification. All normalized metrics are also reported. For each metric, the
first value is without normalization while the second one is with normalization.

Performance
Metric

Independent Test

PON-Sol [5] SODA
SODA(5 as
Threshold)

SODA(10 as
Threshold)

SODA(17 as
Threshold) PON-Sol2 [11] TopGBT TopLapGBT

PPV
-
N
+

0.593/0.428
0.427/0.385
0.151/0.373

0.427/0.258
NaN/NaN
0.080/0.229

0.606/0.428
0.425/0.365
0.047/0.149

0.673/0.468
0.397/0.357
0.060/0.184

0.742/0.585
0.383/0.350
0.098/0.284

0.804/0.643
0.600/0.475
0.233/0.472

0.781/0.649
0.617/0.462
0.524/0.761

0.789/0.645
0.624/0.475
0.476/0.718

NPV
-
N
+

0.514/0.691
0.685/0.700
0.881/0.693

0.373/0.537
0.642/0.667
0.832/0.605

0.508/0.684
0.761/0.739
0.848/0.633

0.502/0.677
0.797/0.782
0.858/0.649

0.501/0.677
0.797/0.782
0.858/0.649

0.794/0.887
0.804/0.793
0.879/0.684

0.843/0.920
0.816/0.795
0.881/0.692

0.842/0.918
0.826/0.809
0.880/0.688

Sensitivity
-
N
+

0.263/0.263
0.456/0.456
0.448/0.448

0.488/0.488
0.000/0.000
0.253/0.253

0.195/0.195
0.759/0.759
0.069/0.069

0.098/0.098
0.886/0.886
0.057/0.057

0.068/0.068
0.954/0.954
0.046/0.046

0.802/0.802
0.671/0.671
0.161/0.161

0.867/0.867
0.692/0.692
0.126/0.126

0.864/0.864
0.713/0.713
0.115/0.115

Specificity
-
N
+

0.812/0.824
0.659/0.636
0.617/0.623

0.318/0.297
1.000/1.000
0.558/0.573

0.867/0.869
0.426/0.340
0.786/0.802

0.951/0.944
0.249/0.204
0.863/0.872

0.975/0.976
0.144/0.116
0.936/0.942

0.796/0.777
0.751/0.630
0.920/0.910

0.747/0.765
0.760/0.597
0.983/0.980

0.759/0.763
0.760/0.606
0.981/0.977

CPR 0.356/0.389 0.282/0.247 0.381/0.341 0.375/0.347 0.382/0.356 0.671/0.545 0.707/0.562 0.711/0.564
GC2 0.010/0.011 NaN/NaN 0.041/0.045 0.022/0.022 0.016/0.016 0.181/0.157 0.205/0.184 0.206/0.185

in determining the performance of TopLapGBT. Recently, AF2 structures have been reported

to achieve comparable performance to nuclear magnetic resonance (NMR) structures while

ensemble methods can be used to enhance the performance by combining multiple NMR struc-

tures [1]. This allows AF2 structures to serve as a practical substitute for experimental structural

data. Although AF2 structures are not as reliable as X-ray structures, the fusion of sequence-

based pre-trained transformer features and PL-based features provides robust featurization even

for low quality AF2 structural data. PL elucidates the precise mutation geometry and topol-

ogy, while sequence-based pre-trained transformer features capture evolutionary patterns from

an extensive sequence library. This synergy holds significance and can be applied to a diverse

range of other challenges in the field of biomolecular research. For the rest of this section, we

analyze the model’s performance based on the region of the mutations and the type of muta-
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tions. We also discuss the performance of different feature types using the Residue-Similarity

plots.

3.1 Performance analysis based on different mutation regions

To delve deeper into the model’s performance, we categorize mutation samples based on their

structural regions: interior and surface, as depicted in Figure 2 pre- and post-mutations. These

regions are defined by their relative accessible solvent area (rASA), using a cutoff value c.

A residue at the mutation site is classified as buried or interior if its rASA falls below this

cutoff. While the discrete nature of c initially raised concerns, given that amino acids have a

continuous exposure profile, empirical analyses on databases from organisms like Escherichia

coli, Saccharomyces cerevisiae, and Homo sapiens have shown that an optimal rASA cutoff of

approximately 25% is effective for distinguishing between surface and interior residues [41]. In

our analysis, we apply this framework to identify surface and interior residues in the solubility

dataset. We observe that some mutation sites undergo a regional transition, moving from one

structural domain to another, consequent to the mutation.

To gain nuanced insights into TopLapGBT’s performance, we segment the results accord-

ing to the mutation’s structural location within the protein. We present these segmentations as

heatmap plots that delineate both mutation regions and amino acid types. Structural regions are

defined based on relative accessible surface area (rASA) [41]. By categorizing residues as either

interior or surface, we can examine the influence of continuous amino acid exposure on solubil-

ity change classification post-mutation. Figure 2(b) displays accuracy scores for four types of

mutations: interior-interior, interior-surface, surface-interior, and surface-surface. TopLapGBT

attains an average accuracy score of 0.770 across these categories. Extended data in Figure

S1 further breaks down accuracy scores for all 20 distinct amino acids within each region-pair,

revealing variations in residue-residue pair performance.
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Figure 2: (a) The definitions of the structural regions on the protein label 213133708 with mu-
tation ID: I283W. For both wild type and mutant type, amino acids in the proteins are classified
under surface or interior regions based on the rASA of the residue. The residue ID 283 of
protein label 213133708 was mutated from isoleucine (interior region) to trytophan (surface re-
gion). Structures are plotted with the software Illustrate[42]. (b) A comparison of performance
of TopLapGBT among different mutation region types. The y-axis represents the region type
for the original residue and the x-axis represents the region type for the mutated residue. The
numbers indicated in each cell corresponds to the number of mutation samples in each region-
region mutation pair. The accuracy scores (CPR) for both interior-interior and interior-surface
are 0.813 and 0.812 while the accuracy score for both surface-interior and surface-surface are
0.725 and 0.730.

3.2 Performance analysis based on different mutation types

Switching focus to mutation types, our model’s capability in classifying solubility changes also

merits exploration across the 20 distinct amino acid types in the dataset. In addition to this,

we subgroup amino acids as charged, polar, hydrophobic, or special case. Table S1 enumer-

ates the sample counts for each mutation group pair. Figure 3(a) displays accuracy scores for

each mutation group pair, while Figure 3(b) shows scores for each amino acid pair. Notably,

the special-charged and special-polar groups register the highest accuracy, whereas the polar-

hydrophobic and polar-special groups underperform. One plausible reason could be the inherent

complexity in accurately classifying mutations with non-negative solubility changes. It’s worth

noting that PON-Sol2 employed a two-layer classifier to improve classification [11]. Our results
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indicate that TopLapGBT surpasses the performance of this two-layer system.

Figure 3: A comparison of 10-fold cross validation accuracy scores (CPR) for (a) different
mutation groups and (b) its associated amino acid types. The y-axis labels the residue type
of the original protein, whereas the x-axis labels the residue type of the mutant. The squares
colored in black in (b) have zero mutation samples. For a reverse mutation, the labels are taken
with reverse solubility change unless the change is zero.

3.3 Feature analysis based on Residue-Similarity plots

The Residue Similarity Index (RSI) serves as a potent metric for evaluating the efficacy of

dimensionality reduction in both clustering and classification contexts [43]. RSI has proven

its value in generating classification accuracy scores that align well with supervised methods

in single-cell typing. When applied to our solubility change dataset, Residue-Similarity (R-S)

plots can be constructed to scrutinize how the Residue Index (RI) and Similarity Index (SI) may

indicate the quality of cluster separation.

Figure 4 juxtaposes the R-S plots derived from TopLapGBT against those from various

feature sets utilized in model training. Across all visualizations, samples manifest a range of

classification outcomes—both correct and incorrect—for each true label. However, a notewor-

thy observation is that Transformer-pretrain and persistent Laplacian-based features demon-
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strate superior clustering attributes compared to auxiliary features. The high RI and SI scores

for auxiliary features cause these data points to cluster near the upper regions of their respec-

tive sections. Despite this, the integrative use of all three feature types in TopLapGBT results

in appreciable clustering performance, corroborated by the CPR metrics obtained in 10-fold

cross-validation. To solidify the rationale behind adopting robust supervised classifiers like

TopLapGBT, we contrast the R-S plots with UMAP visualizations (shown in Figure S2). It

becomes evident that UMAP plots fail to form clusters that are as distinct as those observed in

R-S plots, thereby reinforcing the need for a specialized approach to classify mutation samples

effectively.

The impetus for utilizing structure-based features stems from the multifaceted relationship

that exists among protein sequence, structure, and solubility. Factors such as hydrophobic-

ity, charge distribution, and intermolecular interactions contribute to the complexity of protein

solubility. Traditional prediction methods, which often rely on empirical rules or rudimen-

tary descriptors, fall short in capturing this intricate molecular interplay. By employing ad-

vanced mathematical techniques like persistent Laplacian (PL) coupled with machine learning

algorithms, we can decipher the complex patterns and relationships embedded within protein

sequences and structures. Persistent Laplacian, in particular, provides a robust mathematical

representation that captures both the topological and homotopic evolution of protein structures.

Furthermore, machine learning models rooted in advanced mathematics offer several advan-

tages for classifying changes in protein solubility. These models are well-suited for handling

high-dimensional and complex data sets, such as those involving protein sequences and struc-

tures. They are also capable of learning non-linear relationships and capturing nuanced de-

pendencies that are often overlooked by traditional linear models. Importantly, these advanced

models can adeptly manage class-imbalanced datasets, which are commonly encountered in

protein solubility studies.
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Figure 4: The comparison of R-S plots between the different types of features used in
TopLapGBT model. The y-axis represents the residue score, whereas the x-axis represents
the similarity score. RS scores were computed for the testing set, and all 10-folds were visual-
ized. Each section corresponds to one of the 3 true solubility labels, and the sample’s color and
marker correspond to the predicted label from TopLapGBT.

4 Conclusion

In the multifaceted quest to understand mutation-induced solubility changes, various scientific

domains including quantum mechanics, molecular mechanics, biochemistry, biophysics, and

molecular biology have made significant contributions. Despite these concerted efforts, state-
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of-art models have limitations, as evidenced by their normalized CPR value of 0.656 even after

employing feature selection methods. Persistent homology (PH) has emerged as a powerful tool

for capturing the complexity of biomolecular structures and has achieved noteworthy success

in drug discovery applications. However, its inability to capture the nuances of homotopic

shape evolution, crucial for delineating molecular interactions in proteins, presents a critical

shortcoming.

Our study introduces TopLapGBT, a novel model that integrates persistent Laplacian (PL)

features with pretrained transformer features, thereby bridging the gap in capturing both topol-

ogy and homotopic shape evolution. This innovative fusion leads to significant advancements

in classification performance. Specifically, TopLapGBT achieves normalized CPR and GC2

scores of 0.688 and 0.361, respectively, marking improvements of 4.88% and 15.71% over the

state-of-the-art PON-Sol2. These findings are further corroborated by an independent blind test,

where TopLapGBT continues to outperform existing models.

In summary, our proposed TopLapGBT model not only achieves superior performance over

existing state-of-the-art methods but also introduces a more nuanced approach for the classifi-

cation of protein solubility changes upon mutation. These results underscore the transformative

potential of integrating geometric and topological features with machine learning in advancing

the field of molecular biology.

5 Materials and Methods

In this section, we endeavor to elucidate key mathematical and computational foundations that

are instrumental for the work presented in this study. Specifically, we delve into spectral graph

theory, simplicial complex, and persistent Laplacian methods, highlighting their significance

in capturing topological and spectral properties essential for the characterization of proteins.

Additionally, we discuss machine learning and deep learning paradigms, focusing on their role
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in processing, analyzing, and interpreting these complex features, especially within the confines

of test datasets and validation settings.

5.1 Persistent Laplacian characterization of proteins

Simplicial complex A simplicial complex is made up of a set of simplices and generalises

beyond graph networks at higher dimensions [44, 45, 46, 47]. Every simplex is a finite set of

vertices which can be interpreted as the atoms in a protein structure. Essentially, simplices can

be a point (0-simplex), an edge (1-simplex), a triangle (2-simplex), a tetrahedron (3-simplex),

or in higher dimensions, a p-simplex. In other words, a k-simplex σk = {v0, v1, · · · , vk} is the

convex hull formed by k + 1 affinely independent points v0, v1, · · · , vk as follows,

σk =

{
λ0v0 + λ1v1 + λ2v2 + · · ·+ λkvk|

k∑
i=0

λi = 1;∀i, 0 ≤ λi ≤ 1

}
A geometric simplicial complex K is a finite set of geometric simplexes that satisfy two

essential conditions. First, any face of a simplex from K is also in K. Second, the intersection

of any two simplexes in K is either empty or shares faces. Commonly used methods to con-

struct simplicial complexes are Čech complex, Vietoris-Rips complex, Alpha complex, Clique

complex, Cubic complex, and Morse complex [44, 45, 46, 47].

Chain Group A k-th chain group Ck is a free Abelian group generated by oriented k-simplices

σk. A boundary operator ∂k : Ck → Ck−1 defined on an oriented k-simplex σk can be written

as

∂kσ
k =

k∑
i=0

(−1)i[v0, v1, v2, · · · , v̂i, · · · , vk],

where [v0, v1, v2, · · · , v̂i, · · · , vk] is an oriented (k − 1)-simplex, which is constructed by the

all the vertices except vi, i.e., removing vi from the simplex. The boundary operator satisfies

∂k−1∂k = 0.
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The adjoint of ∂k, which is

∂∗
k : Ck−1 → Ck,

satisfies the inner product relation ⟨∂k(f), g⟩ = ⟨f, ∂∗
k(g)⟩, for every f ∈ Ck, g ∈ Ck−1. This

will be used in the combinatorial Laplacian.

Combinatorial Laplacian For the k-boundary operator ∂k : Ck → Ck−1 in K, define Bk to

be an m × n matrix representation of the boundary operator under the standard bases {σk
i }ni=1

and {σk−1
j }mj=1 of Ck and Ck−1. Similarly, the matrix representation of ∂∗

k is the transpose matrix

B⊤
k , with respect to the same ordered bases of the boundary operator ∂k.

More specifically, let m and n be the number of (k − 1)-simplices and p-simplices respec-

tively in a simplicial complex K. The m×n boundary matrix Bk has entries defined as follows:

Bk(i, j) =


1, if σk−1

i < σk
j , σ

k−1
i ∼ σk

j .

−1, if σk−1
i < σk

j , σ
k−1
i ≁ σk

j .

0, if σk−1
i ≮ σk

j .

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Here, σk−1
i < σk

j represents the i-th (k − 1)-simplex σk−1
i

is a face of j-th k-simplex σk
j and σk−1

i ∼ σk
j indicates the coefficient of σk−1

i in ∂k(σ
k
j ) is 1.

Likewise, σk−1
i ≮ σk

j means that σk−1
i is not a face of σk

j and σk−1
i ≁ σk

j indicates that the

coefficient of σk−1
i in ∂k(σ

k
j ) is −1.

Then the k-combinatorial Laplacian or the topological Laplacian is a linear operator ∆k :

Ck(K) → Ck(K)

∆k := ∂k+1∂
∗
k+1 + ∂∗

k∂k. (1)

The k-combinatorial Laplacian exhibits an n× n matrix representation Lk and is given by

Lk = Bk+1B
⊤
k+1 +B⊤

k Bk. (2)

In the case k = 0, then L0 = B1B
⊤
1 since ∂0 is a zero map.
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The number of rows in Bk represents the number of (k− 1)-simplices in K and the number

of columns refers to the number of k-simplices in K. Furthermore, the upper k-combinatorial

Laplacian matrix is LU
k = Bk+1B

⊤
k+1 and the lower k-combinatorial Laplacian matrix is LL

k =

B⊤
k Bk. Recall that since ∂0 is a zero map, hence L0(K) = B1B

⊤
1 with B0 being a zero

matrix and K being an oriented simplicial complex of dimension 1. In fact, the 0-combinatorial

Laplacian matrix L0(K) is actually the graph Laplacian in spectral graph theory.

The above graph Laplacian matrices can be explicitly described in terms of the simplex

relations. More precisely, L0 can be described as

L0(i, j) =


d(σ0

i ), if i = j

−1, if i ̸= j and σ0
i ⌢ σ0

j

0, if i ̸= j and σ0
i ̸⌢ σ0

j ,

which is equivalent to the graph Laplacian. Furthermore, when k > 0, Lk can be expressed as

Lk(i, j) =


d(σk

i ) + k + 1, if i = j

1, if i ̸= j, σk
i ̸⌢ σk

j , σ
k
i ⌣ σk

j and σk
i ∼ σk

j

−1, if i ̸= j, σk
i ̸⌢ σk

j , σ
k
i ⌣ σk

j and σk
i ̸∼ σk

j

0, if i ̸= j, and either σk
i ⌢ σk

j or σk
i ̸⌣ σk

j .

Here, we denote σk−1
j ∼ σk

i if they have the same orientation, i.e. similarly oriented. Fur-

thermore, we say that two k-simplices σk
i and σk

j are upper adjacent (resp. lower adjacent)

neighbors, denoted as σk
i ⌢ σk

j (resp. σk
i ⌣ σk

j ), if they are both faces of a common (k + 1)-

simplex (resp. they both share a common (k − 1)-simplex as their face). In addition, if the

orientations of their common lower simplex are the same, it is called similar common lower

simplex (σk
i ⌣ σk

j and σk
i ∼ σk

j ). On the other hand, if the orientations are different, it is called

dissimilar common lower simplex (σk
i ⌣ σk

j and σk
i ≁ σk

j ). The (upper) degree of a k-simplex

σk
i , denoted as d(σk

i ), is the number of (k + 1)-simplices, of which σk
i is a face.

The eigenvalues of combinatorial Laplacian matrices are independent of the choice of the

orientation [48]. Furthermore, the multiplicity of zero eigenvalues, i.e. the total number of
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zero eigenvalues, of Lk corresponds to the kth Betti number βk, according to the combinatorial

Hodge theorem [49]. The kth Betti numbers are topological invariants that describe the k-

dimensional holes in a simplicial complex. In particular, β0, β1 and β2 represents the numbers

of independent components, rings and cavities, respectively.

Persistent Laplacian Persistent Laplacian (PL) were first introduced by integrating graph

Laplacian and multiscale filtration [25]. Analyzing the spectra of k-combinatorial Laplacian

matrix allows both topological and geometric information (i.e. connectivity and robustness of

simple graphs) to be obtained. However, this method is genuinely free of metrics or coordinates,

which induced too little topological and geometric information that can be used to describe a

single configuration.

Therefore, PL was extended to simplicial complexes. This allows a sequence of simplicial

complexes from a filtration process to generate persistent Laplacian which is largely inspired by

persistent homology and in earlier works in multiscale graphs. For the rest of this section, we

introduce mainly on the construction of PL. First, a k-combinatorial Laplacian matrix is sym-

metric and positive semi-definite. Therefore, its eigenvalues are all real and non-negative. The

multiplicity of zero spectra (also called harmonic spectra) reveals the topological information,

and the geometric information will be preserved in the non-harmonic spectra.

A key concept of PL is the filtration process. Essentially, an ever-increasing filtration value

f is used to generate a series of topological spaces, which are represented by a nested sequence

of multiscale simplicial complexes. Naturally, PL generates a sequence of simplicial complexes

induced by varying a filtration parameter [25]. For an oriented simplicial complex K, its filtra-

tion is a nested sequence of simplicial complexes (Kt)
m
t=0 of K

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K.
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This nested sequence of simplicial complexes induces a family of chain complexes{
· · ·

∂t
k+2

⇋
∂t∗
k+2

Ct
k+1

∂t
k+1

⇋
∂t∗
k+1

Ct
k

∂t
k

⇋
∂t∗
k

· · ·
∂t
1

⇋
∂t∗
1

Ct
0

∂t
0

⇋
∂t∗
0

∅

}
t∈R+

. (3)

where Ct
k = Ck(Kt) is the chain group for the subcomplex Kt, and its k-boundary operator is

∂t
k : Ck(Kt) → Ck−1(Kt). In the case k < 0, then Ck(Kt) is an empty set and ∂t

k is a zero map.

For 0 < k < dim(Kt), the boundary operator

∂t
k(σk) =

k∑
i=0

(−1)iσk−1
i , σk ∈ Kt, (4)

with σk = [v0, · · · , vk] being the k-simplex, and σk−1
i = [v0, · · · , v̂i, · · · , vk] being the (k− 1)-

simplex for which its vertex vi is removed. Similarly, the adjoint of ∂t
k is the operator ∂t∗

k :

Ck−1(Kt) → Ck(Kt). The topological and spectral characteristics can then be studied from

Lk(Kt) by varying the filtration parameter and diagonalizing the k-combinatorial Laplacian

matrix. The multiplicity of the zero spectra of Lt
k is the persistent Betti number βt

k, which

represents the number of k-dimensional holes in Kt. In other words,

βt
k = dim(Lt

k)− rank(Lt
k) = nullity(Lt

k) = # of harmonic spectra of Lt
k. (5)

In particular, βt
0 represents the number of connected components in Kt, βt

1 counts the num-

ber of one-dimensional cycles in Kt and βt
2 reveals the number of two-dimensional voids in Kt.

In addition, the spectra of Lt
k can be written in the following ascending order

Spectra(Lt
k) = {(λ1)

t
k, (λ2)

t
k, · · · , (λn)

t
k}, (6)

where Lt
k here is an n× n matrix. The p-persistent k-combinatorial Laplacian can be extended

based on the boundary operator as well. Further details can be found in [25].

In order to illustrate the difference between PL and PH, Figure 5 describes a point cloud,

basic simplices, a filtration process and the comparison between persistent Laplacian and per-

sistent homology barcodes of 13 points. The filtration process in Figure 5(c) shows the different
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stages of a Rips filtration process for the 13 points. Figure 5(d) shows the persistent homology

barcodes (in blue) and persistent non-harmonic spectra (in red). It can be seen that the non-

harmonic spectra provides the additional homotopic shape evolution that is missing in persistent

homology in the later part of the filtration process.

5.2 Persistent Laplacian descriptors

In order to capture the mutation-induced solubility change, we apply the persistent Laplacian

(PL) to characterize the interactions between the mutation site and the rest of the protein.

To describe these interactions, we first propose the interactive PL with the distance function

DI(Ai, Aj) describing the distance between two atoms Ai and Aj defined as

DI(Ai, Aj) =

{
∞, if Loc(Ai) = Loc(Aj),

DE(Ai, Aj), otherwise.
(7)

where DE(·, ·) is the Euclidean distance between the two atoms and Loc(·) refers to the atom’s

location which is either in the mutation site or in the rest of the protein. Here, we construct

two types of simplicial complexes in our PL computation, such as Vietoris-Rips complex (VC)

and Alpha complex (AC). Both complexes are used to characterize the first order interactions

and higher order patterns respectively. To capture and characterize different types of atom-

atom interactions, we generate the PL based on different atom subsets by selecting one type of

atom in the mutation site and one other atom type in the rest of the protein. Different types of

atom-atom interactions characterize the different interactions in proteins. For example, inter-

actions generated from carbon atoms are associated with hydrophobic interactions. Similarly,

interactions between nitrogen and oxygen atoms correlate to hydrophilic interactions and/or hy-

drogen bonds. Both types of interactions are illustrated in Figure 6. Interactive PLs have the

capability to unveil additional details about bonding interactions and offer a fresh and distinct

representation of molecular interactions in proteins.
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β0

β1

λ0

λ1

Figure 5: The illustration of (a) point cloud, (b) basic simplices and (c) the filtration process
and (d) Comparison between PH barcodes [50, 12] and the non-harmonic spectra of persistent
Laplacians (PLs) [25] from the filtration process in (c). The x-axis represents the filtration
parameter f . By discretising the filtration region into equal-sized bins and adding all the Betti
bars together, the topological invariants are summarized into persistent Betti numbers that acts
a topological descriptor extracted from protein structures. Persistent Laplacians (PLs) [25] for
thirteen points. The first non-zero eigenvalues of dimension 0, λ0(r), and dimension 1, λ1(r),
of PLs are depicted in red. The harmonic spectra of PLs return all the topological invariants of
PH, whereas the non-harmonic spectra of PLs capture the additional homotopic shape evolution
of PLs during the filtration that are neglected by PH.
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The set of persistent spectra from each persistent Laplacian computation consists of V DI
γ,α,β

and V DE
γ,α,β where γ ∈ {M,W} refers to the mutant protein or the wild type protein, α ∈

{C,N,O} is the atom type chosen in the rest of the protein and β ∈ {C,N,O} is the atom

type chosen in the mutation site. V DI
γ,α,β applies the distance DI-based filtration to generate

0-dimensional Laplacian using the Vietoris-Rips complex and V DE
γ,α,β applies the Euclidean dis-

tance DE-based filtration to generate 1 and 2-dimensional Laplacian using the alpha complex.

In total, there are 54 sets of persistent spectra. The persistent spectra from PL contains both

harmonic and non-harmonic spectra that are capable of revealing the molecular mechanism of

protein solubility.

β0

β0

β1

λ0

λ0

λ1

Figure 6: An illustration of interactive PL showing hydrophillic interactions based on DI-based
filtration (left) and hydrophobic interactions based on DE-based filtration (right) at a mutation
site. (a) Hydrophillic interactions between the nitrogen atoms (red) and oxygen atoms (yellow).
(b) Hydrophobic interactions between the carbon atoms (cyan) and oxygen atoms (dark blue).
The hexagon ring is colored in red and the triangle is colored in yellow. (c) The PH barcodes
and PL for dimension 0 of the hydrophillic interactions in (a). (d) The PH barcodes and PL for
dimension 0 and dimension 1 of the hydrophobic interactions in (b). The Betti-1 bar is due to
the red hexagon ring in (b).

For zero dimensions, we consider both the harmonic spectra and non-harmonic spectra in-
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formation for each persistent Laplacian. Filtration using Rips complex with DI distance is

used. The 0-dimensional PL features are generated from 0Å to 6Å with 0.5Å gridsize. For the

non-harmonic spectra information, we count the number of non-harmonic spectra and calcu-

late seven statistical values of non-harmonic spectra such as sum, minimum, maximum, mean,

standard deviation, variance and the sum of eigenvalues squared. This generates eight statistical

values for each of the nine atomic pairs. Therefore, the dimension of 0-dimensional PL features

for a protein is 72. In total, the 0-dimensional PL-based feature size after concatenating features

at different dimensions for wild type and mutant is 1872.

For one or two dimensions, we perform the filtration using Alpha complex with the DE

distance. The limited number of atoms in the local protein structure can create only a few

high-dimensional simplexes, resulting in minimal alterations in shape. As a result, it suffice to

consider features from only harmonic spectra of persistent Laplacians by coding the topologi-

cal invariants for the high-dimensional interactions. Using GUDHI[51], the persistence of the

harmonic spectra can be represented by persistent barcodes. The topological feature vectors

are generated by computing the statistics of bar lengths, births and deaths. Bars shorter than

0.1Å are excluded as they do not exhibit any clear physical meaning. The remaining bars are

then used for computing the statistics: (1) sum, maximum and mean for lengths of bars; (2)

minimum and maximum for the birth values of bars; (3) minimum and maximum for the death

values of bars. Each set of point clouds leads to a seven-dimensional vector. These features

are calculated on nine single atomic pairs and one heavy atom pair. The dimension of one-

and two-dimensional PL feature vectors for a protein is 140. In total, the higher-dimensional

PL-based feature size after concatenating features at different dimensions for wild type, mutant

and their difference is 420.
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5.3 Persistent Homology

Persistent homology is part of the harmonic spectra of PL. The homology groups in PH illustrate

the persistence of topological invariants, hence providing the harmonic spectral information in

PL. The site- and element-specific PH features are generated in a similar way as compared to

PL. Similar to PL, filtration construction is also employed to PH. For the zero dimension, the

filtration parameter can be discretized into several equally spaced bins, namely [0, 0.5], (0.5, 1],

· · · , (5.5, 6]Å. The death value of the bars are summed in each bin resulting in 12×18 features.

For each bin, we count the numbers of persistent bars, resulting in a nine-dimensional vector

for each point cloud. Similarly, this is performed for each of the nine single atomic pairs. Hence,

the dimension of PH features for a protein is 216. For one or two dimensions, the identical

featurization from the statistics of persistent bars in PH is used. The PH embedding combines

features at different dimensions as described above and concatenated for wild type, mutant and

their difference, resulting in a 648-dimensional vector.

5.4 Transformer Features

Recently, we have seen significant advancements in modelling protein properties using large-

scale protein transformer models trained on hundreds of millions of sequences. These models,

like ESM [33] (evolutionary scale modeling) and ProtTrans[34, 35], have demonstrated impres-

sive performance. Moreover, hybrid fine-tuning approaches that leverage both local and global

evolutionary data have proven to enhance these models even further. For instance, eUniRep

is an improved LSTM-based UniRep model achieved through fine-tuning with knowledge ex-

tracted from local multiple sequence alignments (MSAs). Additionally, the ESM model can

be fine-tuned using either downstream task data or local MSAs. In our research, we employed

the ESM-1b transformer, a model that falls under the transformer architecture. This particular

variant was trained on a dataset of 250 million sequences using a masked filling procedure and
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boasts an architecture comprising 34 layers with a whopping 650 million parameters. The ESM

transformer’s primary role in our work was to generate sequence embeddings. At each layer of

the ESM model, it encoded a sequence of length L into a matrix sized at 1,280×L, excluding

the start and terminal tokens. For our study, we utilized the sequence representation derived

from the final (34th) layer and computed the average along the sequence length axis, resulting

in a 1,280-component vector.

5.5 Performance Metrics

PPV and NPV assesses the true positive and true negative proportion of the predicted results for

each solubility class. PPV and NPV are computed based on TP, TN, FP and FN which represents

the true positive, true negative, false positive and false negative values for each solubility class.

For each solubility class, PPV and NPV can be computed by:

PPV =
TP

TP + FP
. (8)

NPV =
TN

TN+ FN
. (9)

Furthermore, specificity and sensitivity can be computed by the following:

Specificity =
TN

TN + FP
. (10)

Sensitivity =
TP

TP + FN
. (11)

The correct prediction ratio (CPR) and generalized squared correlation (GC2) are used to evaulate

the overall performance of TopLapGBT. CPR and GC2 can be computed as

CPR =
1

N

∑
i

zii, and (12)

GC2 =
1

N(K − 1)

∑
ij

(zij − eij)
2

eij
, (13)
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where K is the number of classes and N is the number of samples. Here, zij represents the

number of samples of class i to class j. Let xi =
∑

j zij be the number of inputs from class

i, and yj =
∑

i zij be the number of inputs predicted to class j. Then the expected number of

samples in (i, j)-th entry of the multiclass confusion matrix is

eij =
xiyj
N

.

Since the mutational samples across the three solubility classes are imbalanced, we normalized

the values to provide more reliable calculation of performance metrics.

6 Software and resources

Protein sequences are first preprocessed by AlphaFold 2 to generate wild type protein struc-

tures. In particular, 3D protein structures are generated from protein sequences using Colab-

Fold [52]. Mutant proteins are generated from the Jackal software[38]. All TopLapGBT mod-

els are built using the sklearn machine learning library [53]. The hyperparameters for all the

TopLapGBT are: n estimators = 20000, learning rate = 0.05, max depth = 7, subsample=0.4,

min sample split = 3 and max features = sqrt. The PQR files, which contains the partial charge

information of the proteins, are generated from the PDB2PQR software [54]. The PQR files for

both the wild type proteins are generated with AMBER force field. The solvation energy and

surface area information are calculated from the in-house online software package ESES [55]

and MIBPB [56]. The pKa values are computed from the PROPKA software package [57]. The

position-specific-scoring matrices (PSSM) are computed from the BLAST+ software [58] using

the nr database. The secondary structure features and torsion angle sequence-based information

are calculated from SPIDER [59]. The persistent Laplacian descriptors for both VR complexes

and alpha complexes are calculated using the GUDHI software library [60]. All computational

work in support of this research was performed using the resources from the National Super
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Computing Centre of Singapore (NSCC).

Code and Data Availability

The 3D protein structures and the TopLapGBT code can be found in

https://github.com/ExpectozJJ/TopLapGBT. The source code for the R-S plot can be found at

https://github.com/hozumiyu/RSI.

Supporting Information

Supporting Information is available for supplementary tables, figures, and methods.
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