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A practical limit to energy efficiency in computation is ultimately from noise, with quantum11

noise [1] as the fundamental floor. Analog physical neural networks [2], which hold promise12

for improved energy efficiency and speed compared to digital electronic neural networks, are13

nevertheless typically operated in a relatively high-power regime so that the signal-to-noise14

ratio (SNR) is large (>10). We study optical neural networks [3] operated in the limit where15

all layers except the last use only a single photon to cause a neuron activation. In this regime,16

activations are dominated by quantum noise from the fundamentally probabilistic nature of17

single-photon detection. We show that it is possible to perform accurate machine-learning18

inference in spite of the extremely high noise (signal-to-noise ratio ∼ 1). We experimentally19

demonstrated MNIST handwritten-digit classification with a test accuracy of 98% using20

an optical neural network with a hidden layer operating in the single-photon regime; the21

optical energy used to perform the classification corresponds to 0.008 photons per multiply–22

accumulate (MAC) operation, which is equivalent to 0.003 attojoules of optical energy per23

MAC. Our experiment also used >40× fewer photons per inference than previous state-24

of-the-art low-optical-energy demonstrations [4, 5] to achieve the same accuracy of >90%.25

Our training approach, which directly models the system’s stochastic behavior, might also26

prove useful with non-optical ultra-low-power hardware.27

The development and widespread use of very large neural networks for artificial intelligence [6, 7]28

has motivated the exploration of alternative computing paradigms—including analog processing—in the29

hope of improving both energy efficiency and speed [2, 8]. Photonic implementations of neural networks30

using analog optical systems have experienced a resurgence of interest over the past several years [3–31

5, 9–16]. However, analog processors—including those constructed using optics—inevitably have noise32

and typically also suffer from imperfect calibration and drift. These imperfections can result in degraded33

accuracy for neural-network inference performed using them [9, 17–19]. To mitigate the impact of noise,34

noise-aware training schemes have been developed [20–27]. These schemes treat the noise as a relatively35

small perturbation to an otherwise deterministic computation, either by explicitly modeling the noise as36

the addition of random variables to the processor’s output or by modeling the processor as having finite37

bit precision. Recent demonstrations of ultra-low optical energy usage in optical neural networks (ONNs)38

[4, 5] were in this regime of noise as a small perturbation and used hundreds to thousands of photons39

to represent the average neuron pre-activation signal prior to photodetection. In Ref. [4], we reported40
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achieving 90% accuracy on MNIST handwritten-digit classification using slightly less than 1 photon per41

scalar weight multiplication (i.e., per MAC)—which is already counterintuitively small—and one might42

be tempted to think that it’s not possible to push the number of photons per MAC much lower while43

preserving accuracy. More typically, millions of photons per activation are used [5, 13, 14, 28]. In this44

paper we address the following question: what happens if we use such weak optical signals in a ONN that45

each photodetector in a neural-network layer receives at most just one, or perhaps two or three, photons?46

Physical systems are subject to various sources of noise. While some noise can be reduced through47

improvements to the hardware, some noise is fundamentally unavoidable, especially when the system is48

operated with very little power—which is an engineering goal for neural-network processors. Shot noise49

is a fundamental noise that arises from the quantized, i.e., discrete, nature of information carriers: the50

discreteness of energy in the case of photons in optics, and of discreteness of charge in the case of electrons51

in electronics [1]. A shot-noise-limited measurement of a signal encoded with an average of Np photons52

(quanta) will have an SNR that scales as
√

Np [29].1 To achieve a suitably high SNR, ONNs typically use53

a large number of quanta for each detected signal. In situations where the optical signal is limited to just54

a few photons, photodetectors measure and can count individual quanta. Single-photon detectors (SPDs)55

are highly sensitive detectors that—in the typical click detector setting—report, with high fidelity, the56

absence of a photon (no click) or presence of one or more photons (click) during a given measurement57

period [31]. In the quantum-noise-dominated regime of an optical signal with an average photon number58

of about 1 impinging on an SPD, the measurement outcome will be highly stochastic, resulting in a59

very low SNR (of about 1).2 Conventional noise-aware-training algorithms are not able to achieve high60

accuracy with this level of noise. Is it possible to operate ONNs in this very stochastic regime and still61

achieve high accuracy in deterministic classification tasks? The answer is yes, and in this work we will62

show how.63

The key idea in our work is that when ONNs are operated in the approximately-1-photon-per-neuron-64

activation regime and the detectors are SPDs, it is natural to consider the neurons as binary stochastic65

neurons: the output of an SPD is binary (click or no click) and fundamentally stochastic. Instead of66

trying to train the ONN as a deterministic neural network that has very poor numerical precision, one67

can instead train it as a binary stochastic neural network, adapting some of the methods from the last68

decade of machine-learning research on stochastic neural networks [32–36] and using a physics-based69

model of the stochastic single-photon detection (SPD) process during training. We call this physics-aware70

stochastic training.71

1The shot-noise limit, which is sometimes also referred to as the standard quantum limit [30], can be evaded if, instead of
encoding the signal in a thermal or coherent state of light, a quantum state—such as an intensity-squeezed state or a Fock state—
is used. In this paper we consider only the case of classical states of light for which shot noise is present and the shot-noise limit
applies.

2Again, this is under the assumption that the optical signal is encoded in an optical state that is subject to the shot-noise
limit—which is the case for classical states of light.
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Figure 1. Deterministic inference using noisy neural-network hardware. a, The concept of
a stochastic physical neural network performing a classification task. Given a particular input image
to classify, repetitions exhibits variation (represented by different traces of the same color), but the
class is predicted nearly deterministically. b, The single-to-noise ratio (SNR) of single-photon-detection
neural networks (SPDNNs) compared to conventional optical neural networks (ONNs). Conventional
ONNs operate with high photon budgets (SNR ≫ 1) to obtain reliable results, whereas SPDNNs oper-
ate with low photon budgets—of up to just a few detected photons per shot (SNR ∼ 1). The relation
between the detected optical energy (in number of photons Np) and SNR is SNR =

√

Np, which is
known as the shot-noise limit.

We experimentally implemented a stochastic ONN using as a building block an optical matrix-vector72

multiplier [4] modified to have SPDs at its output: we call this a single-photon-detection neural network73

(SPDNN). We present results showing that high classification accuracy can be achieved even when the74

number of photons per neuron activation is approximately 1, and even without averaging over multiple75

shots. We also studied in simulation how larger, more sophisticated stochastic ONNs could be constructed76

and what their performance on CIFAR-10 image classification would be. While the proof-of-concept77

experiments we report are based on a specific spatially multiplexed, free-space ONN, our approach doesn’t78

rely on details of this architecture and could be adapted for many other types of ONN, including those79

based on diffractive optics [10, 14, 37], Mach-Zehnder interferometer (MZI) meshes [9, 38, 39], and other80

on-chip or hybrid approaches to matrix-vector multiplication [5, 12, 13, 40].81
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Figure 2. Single-photon-detection neural networks (SPDNNs): physics-aware stochas-

tic training and inference. a, A single layer of an SPDNN, comprising an optical matrix-vector
multiplier (optical MVM, in grey) and single-photon detectors (SPDs; in red), which perform stochas-
tic nonlinear activations. Each output neuron’s value is computed by the physical system as ai =
fSPD(zi)), where zi is the weighted sum (shown in green) of the input neurons to the ith output neu-
ron computed as part of the optical MVM, and ai is the stochastic binary output from a single-photon
detector. b, Forward and backward propagation through the SPD activation function. The optical
energy (λ) incident on an SPD is a function of zi that depends on the encoding scheme used. For-
ward propagation uses the stochastic binary activation function fSPD, while backpropagation involves
the mean-field function of the probability PSPD. c, Probability of an SPD detecting a click (output
a = 1) or not (output a = 0), as a function of the incident light energy λ. d, Optical inference using
an SPDNN with L layers. The activation values from the SPD array of each layer are passed to light
emitters for the optical MVM of the next layer. The last layer uses a conventional photodetector (PD)
array instead of an SPD array. e, In silico training of an SPDNN with L layers. Each forward propaga-
tion is stochastic, and during backpropagation, the error vector is passed to the hidden layers using the
mean-field probability function PSPD instead of the stochastic activation function fSPD. In this figure,
∂x is shorthand for ∂C/∂x, where C is the cost function.

Single-photon-detection neural networks: optical neural82

networks with stochastic activation from single-photon detection83

We consider ONNs in which one or more layers are each constructed from an optical matrix-vector84

multiplier followed by an array of SPDs (Figure 2a–c), and in which the optical powers used are sufficiently85

low that in each execution of the layer, each SPD has at most only a few photons impinging on it, leading86

to stochastic measurement outcomes of no click or click.87
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In our setting, we aim to perform inference using the SPDNN—with its implementation in physical88

hardware—(Figure 2d) and to perform training of the SPDNN in silico (Figure 2e). That is, training is89

performed entirely using standard digital electronic computing.390

Physics-aware stochastic training91

To train an SPDNN, we perform gradient descent using backpropagation, which involves a forward pass,92

to compute the current error (or loss) of the network, and a backward pass, which is used to compute the93

gradient of the loss with respect to the network parameters; our procedure is inspired by backpropagation-94

based training of stochastic and binary neural networks [32, 35]. We model the forward pass (upper part95

of Figure 2e) through the network as a stochastic process that captures the key physics of SPD of optical96

signals having Poissonian photon statistics [29]: the measurement outcome of SPD is a binary random97

variable (no click or click) that is drawn from the Bernoulli distribution with a probability that depends98

on the mean photon number of the light impinging on the detector. However, during the backward pass99

(lower part of Figure 2e), we employ a deterministic mean-field estimator to compute the gradients. This100

approach avoids the stochasticity and binarization of the SPD process, which typically pose difficulties101

for gradient estimation.102

We now give a brief technical description of our forward and backward passes for training; for full103

details see Methods and Supplementary Notes 1A and 2A. We denote the neuron pre-activations of the104

lth stochastic layer of an SPDNN as z(l) = W (l)a(l−1), where a(l−1) is the activation vector from the105

previous layer (a(0) denotes the input vector x of the data to be classified). In the physical realization of106

an SPDNN, z(l) is encoded optically (for example, in optical intensity) following an optical matrix-vector107

multiplier (optical MVM, which computes the product between the matrixW (l) and the vector a(l−1)) but108

before the light impinges on an array of SPDs. We model the action of an SPD with a stochastic activation109

function, fSPD (Figure 2b; Eq. 1). The stochastic output of the lth layer is then a(l) = fSPD(z
(l)).110

For an optical signal having mean photon number λ and that obeys Poissonian photon statistics, the111

probability of a click event by an SPD is PSPD(λ) = 1−eλ (Figure 2c). We define the stochastic activation112

function fSPD as follows:113

fSPD(z) :=















1 with probability p = PSPD(λ(z)),

0 with probability 1− p,

(1)

where λ(z) is a function mapping a single neuron’s pre-activation value to a mean photon number. For an114

incoherent optical setup where the information is directly encoded in intensity, λ(z) = z; for a coherent115

optical setup where the information is encoded in field amplitude and the SPD directly measures the116

3It is not required that the training be done in silico for it to succeed but is just a choice we made in this work. Hardware-in-

the-loop training, such as used in Ref. [23], is a natural alternative to purely in silico training that even can make training easier
by relaxing the requirements on how accurate the in silico model of the physical hardware process needs to be.
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intensity, λ(z) = |z|2. In general, the form of λ(z) is determined by the signal encoding used in the optical117

MVM, and the detection scheme following the MVM. We use fSPD in modeling the stochastic behavior118

of an SPDNN layer in the forward pass. However, during the backward pass, we make a deterministic119

mean-field approximation of the network: instead of evaluating the stochastic function fSPD, we evaluate120

PSPD(λ(z)) when computing the activations of a layer: a(l) = PSPD(λ(z
(l))) (Figure 2b). This is an121

adaptation of a standard machine-learning method for computing gradients of stochastic neural networks122

[32].123

Inference124

When performing inference (Figure 2d), we can run just a single shot of a stochastic layer or we can125

choose to take the average of multiple shots—trading greater energy and/or time usage for reduced126

stochasticity. For a single shot, a neuron activation takes on the value a[1] = a ∈ {0, 1}; for K shots,127

a[K] = 1
K

∑K

k=1 ak ∈ {0, 1/K, 2/K, . . . , 1}. In the limit of infinitely many shots, K → ∞, the activation128

a[∞] would converge to the expectation value, a[∞] = E[a] = PSPD(λ(z)). In this work we focus on the129

single-shot (K = 1) and few-shot K ≤ 5 regime, since the high-shot K ≫ 100 regime is very similar130

to the high-photon-count-per-shot regime that has already been studied in the ONN literature (e.g., in131

Ref. [4]). An important practical point is that averaging for K > 1 shots can be achieved by counting132

the clicks from each SPD, which is what we did in the experiments we report. We can think of K as a133

discrete integration time, so averaging need not involve any data reloading or sophisticated control.134

MNIST handwritten-digit classification with a135

single-photon-detection multilayer perceptron136

We evaluated the performance—both in numerical simulations and in optical experiments—of SPDNNs137

on the MNIST handwritten-digit-classification benchmark task with a simple, 784 → N → 10 multilayer138

perceptron (MLP) architecture (Figure 3a). The activation values in the hidden layer were computed139

by SPDs. The optical power was chosen so that the SNR of the SPD measurements was ∼ 1, falling in140

the low-SNR regime (Figure 1b). The output layer was implemented either with full numerical precision141

on a digital electronic computer, or optically with an integration time set so that the measured signal142

comprised enough photons that a high SNR (Figure 1b) was achieved, as in conventional ONNs. Our use143

of a full-precision output layer is consistent with other works on binary neural networks [35, 41, 42]. In144

a shallow neural network, executing the output layer at high SNR substantially limits the overall energy145

efficiency gains from using small photon budgets in earlier layers, but in larger models, the relatively146

high energy cost of a high-SNR output layer is amortized. Nevertheless, as we will see, even with just a147
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Figure 3. Performance of a single-photon-detection neural network (SPDNN) on MNIST
handwritten-digit classification. a, An SPDNN realizing a multilayer perceptron (MLP) architec-
ture of N neurons in the hidden layer. The hidden layer (784 → N) was computed using an incoherent
optical matrix-vector-multiplier (MVM) followed by a single-photon-detector (SPD) array. Each SPD
realized a stochastic activation function for a single hidden-layer neuron. During a single inference, the
hidden layer was executed a small number of times (1 ≤ K ≤ 5), yielding averaged activation val-
ues. The output layer (N → 10) was realized either optically—using an optical MVM and high photon
budget to achieve high readout SNR, as in conventional ONNs, or with a digital electronic processor,
yielding a result with full numerical precision. b, Simulated test accuracy of MNIST handwritten-digit
classification for models with different numbers of hidden neurons N and shots per activation K. Error
bars have been plotted but are small enough that they are difficult to see. c, Experimental evaluation
of the SPDNN, with the output layer performed with full numerical precision on a digital computer.
Results are presented for both K = 1 (single-shot, i.e., no averaging; top) and K = 2 (bottom) shots
per activation. d, Experimental evaluation of the SPDNN, with both the hidden and the output layer
executed using the optical experimental apparatus. The average number of detected photons used per
inference in the hidden layer was kept fixed and the number used per inference in the output layer was
varied.

single-hidden-layer network, efficiency gains of >40× are possible by performing the hidden layer in the148

low-SNR regime.149

The models we report on in this section used non-negative weights in the hidden layers and real-valued150

weights in the output layers. This allows the hidden layers to be straightforwardly realized with optical151

MVMs using incoherent light.4 In the next section and Supplementary Note 2, we report on extensions152

to the case of real-valued weights in coherent optical processors.153

4A high-SNR layer with real-valued weights can be realized with an incoherent optical MVM if some digital-electronic postpro-
cessing is allowed [4, 43]—which is the approach we take for the optical output layer executions in our experiments. However, the
postprocessing strategy doesn’t directly apply in the low-SNR regime because readout becomes inseparable from the application of
a nonlinear activation function, so we are constrained to non-negative weights and activations in the hidden layers.
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Simulation results154

First, we digitally simulated the SPDNN models shown in Figure 3a. We report the simulated test155

accuracies in Figure 3b for the full test dataset of 10,000 images, as a function of the number of hidden156

neuronsN and the number of shotsK of binary SPD measurements integrated to compute each activation.157

Due to the stochastic nature of the model, the classification output for a fixed input varies from run to158

run. We repeated inferences on fixed inputs from the test set 100 times; we report the mean and standard159

deviation of the test accuracy as data points and error bars, respectively. The standard deviations of the160

test accuracies are around 0.1%.161

If we integrated an infinite number of SPD measurements for each activation (K → ∞)—which is162

infeasible in experiment, but can be simulated—then the SPDNN output would become deterministic.163

The test accuracy achieved in this limit can be considered as an upper bound, as the classification164

accuracy improves monotonically with K. Notably, even with just a single SPD measurement (K = 1)165

for each activation, the mean test accuracy is around 97%. The accuracy is substantially improved with166

just a few more shots of averaging, and approaches the deterministic upper bound when K ≳ 5. The167

mean single-photon-detection probability, averaged over all neurons, is ≈ 0.5, so the simulated number168

of detected photons per shot is very small: ≈ 0.5N . As we will quantify in the next section reporting the169

results of optical experiments, this means high accuracy can be achieved using much less optical energy170

than in conventional ONNs.171

Optical experimental results172

In our experimental demonstrations, we based our SPDNN on a free-space optical matrix-vector multiplier173

(MVM) that we had previously constructed for high-SNR experiments [4], and replaced the detectors174

with SPDs so that we could operate it with ultra-low photon budgets (see Methods). The experiments175

we report were, in part, enabled by the availability of cameras comprising large arrays of pixels capable176

of detecting single photons with low noise [44]. We encoded neuron values in the intensity of incoherent177

light; as a result, the weights and input vectors were constrained to be non-negative. However, this is not a178

fundamental feature of SPDNNs—in the next section, we present simulations of coherent implementations179

that lift this restriction. A single-photon-detecting camera measured the photons transmitted through the180

optical MVM, producing the stochastic activations as electronic signals that were input to the following181

neural-network layer (see Methods, Supplementary Notes 3 and 4).182

In our first set of optical experiments, the hidden layer was realized optically and the output layer was183

realized in silico (Figure 3c): the output of the SPD measurements after the optical MVM was passed184

through a linear classifier executed with full numerical precision on a digital electronic computer. We185

tested using both K = 1 (no averaging) and K = 2 shots of averaging the stochastic binary activations186

in the hidden layer. The results agree well with simulations, which differ from the simulation results187

8



shown in Figure 3b because they additionally modeled imperfections in our experimental optical-MVM188

setup (see Methods, Supplementary Note 7). The test accuracies were calculated using 100 test images,189

with inference for each image repeated 30 times. The hidden layer (the one computed optically in these190

experiments) used approximately 0.0008 detected photons per MAC, which is ≥ 6 orders of magnitude191

lower than is typical in ONN implementations [5, 13, 14, 28] and ≥ 3 orders of magnitude lower than the192

lowest photons-per-MAC numbers reported to date [4, 5].193

We then performed experiments in which both the hidden layer and the output layer were computed194

optically (Figure 3d). In these experiments, we implemented a neural network with 400 hidden neurons195

and used 5 shots per inference (N = 400, K = 5). The total optical energy was varied by changing the196

number of photons used in the output layer; the number of photons used in the hidden layer was kept197

fixed (see Methods, Table S6 and Supplementary Note 9).198

The results show that even though the output layer was operated in the high-SNR regime (Figure199

1b), the full inference computation achieved high accuracy yet used only a few femtojoules of optical200

energy in total (equivalent to a few thousand photons). By dividing the optical energy by the number201

of MACs performed in a single inference, we can infer the per-MAC optical energy efficiency achieved:202

with an average detected optical energy per MAC of approximately 0.001 attojoules (0.003 attojoules),203

equivalent to 0.003 photons (0.008 photons), the mean and standard deviation of test accuracy achieved204

92.0± 2.3% (98.0± 1.3%).205

We can also compare our results with what has been published previously. Our experiments, with206

N = 50 hidden neurons and K = 5 shots of SPD measurements per activation (see Supplementary207

Figure 20) achieved a test accuracy of 90.6% on MNIST handwritten-digit recognition while using only208

an average of 1390 detected photons per inference (corresponding to ∼0.5 fJ of detected optical energy209

per inference). This represents a >40× reduction in the number of photons per inference to achieve >90%210

accuracy on this task versus the previous state-of-the-art [4, 5].211

Simulation study of possible future deeper, coherent212

single-photon-detection neural networks213

We have successfully experimentally demonstrated a two-layer SPDNN, but can SPDNNs be used to214

implement deeper and more sophisticated models? One of the limitations of our experimental apparatus215

was that it used an intensity encoding with incoherent light and as a result could natively only perform216

operations with non-negative numbers. In this section we will show that SPDNNs capable of implementing217

signed numbers can be used to realize multilayer models (with up to 6 layers), including models with218

more sophisticated architectures than multilayer perceptrons—such as models with convolutional layers.219

9



Figure 4. Simulation study predicting the performance of proposed coherent single-
photon-detection neural networks (SPDNNs). a, The probability of detecting a photon as a
function of the input light amplitude in a coherent SPDNN. Real-valued numbers are encoded in coher-
ent light with either 0 phase (positive numbers) or π phase (negative numbers). Measurement by a
single-photon detector (SPD) results in the probabilistic detection of a photon that is proportional to
the square of the encoded value z, in comparison to intensity encodings with incoherent light. b, Struc-
ture of a convolutional SPDNN with a kernel size of 5 × 5. Single-shot SPD measurements (K = 1)
are performed after each layer (by an SPD array), except for the output layer. Average 2 × 2 pooling
is applied after each convolutional operation. A digital rectified linear unit (ReLU) [45] activation func-
tion can also be used in the linear layer as an alternative. c, Schematic of a convolutional layer with
SPD activations. d, Simulated test accuracy of coherent SPDNNs with varying architecture perform-
ing MNIST handwritten-digit classification. The multilayer perceptron (MLP) models had 400 neurons
in each hidden layer. The convolutional model consisted of a convolutional layer with 16 output chan-
nels, followed by two linear layers with an SPD activation inbetween. e, Simulated test accuracy of
coherent SPDNNs with varying architecture performing CIFAR-10 image classification. The models
have four convolutional layers, each followed by SPD activation functions. The two linear layers can
either be implemented in full-precision with a ReLU activation function (in purple) or using the SPD
activation function. The number of output channels for each convolutional layer is indicated above the
corresponding data point.

ONNs based on coherent light can naturally encode sign information in the phase of the light and220

have been realized in many different physical platforms [9, 10, 12, 13, 37, 46, 47]. We propose—and221

study in simulation—SPDNNs using coherent light. Neuron values are encoded in optical amplitudes222

that are constrained to have phases that are either 0 (positive values) or π (negative values). With this223

encoding, detection by an SPD—which measures intensity and is hence insensitive to phase—results224

in a stochastic nonlinear activation function that is symmetric about zero (Figure 4a; see Methods).225

Alternative detection schemes could be employed that would modify the activation function, but we have226

focused on demonstrating the capabilities of this straightforward case, avoiding introducing additional227

experimental complexity.228
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We performed two sets of simulation experiments: one on coherent SPDNNs trained to performMNIST229

handwritten-digit classification, and one on coherent SPDNNs trained to performed CIFAR-10 image230

classification. Figure 4d shows the architectures tested and simulation results for the MNIST benchmark231

(see Methods, Supplementary Note 2B). The accuracy achieved by MLPs with either one or two hidden232

layers was higher than that of the single-hidden-layer MLP simulated for the incoherent case (Figure233

3b), and an architecture with a single convolutional layer followed by two linear layers achieved >99%234

accuracy even in the single-shot (K = 1) regime.235

Figure 4e shows the results of simulating variants of a 6-layer convolutional SPDNN (comprising 4236

convolutional layers and 2 fully connected, linear layers) on CIFAR-10 image classification. All these237

simulation results were obtained in the single-shot (K = 1) regime. The number of channels in each238

convolution layer was varied, which affects the total number of MACs used to perform an inference. We239

observed that the test accuracy increased with the size of the SPDNN, with accuracies approaching those240

of conventional convolutional neural networks of comparable size [48], as well as of binarized convolutional241

neural networks [35, 49, 50]. In the models we simulated that only used SPD as the activation function242

(i.e., the ones in which there are no ‘Digital ReLU’ blocks), the high-SNR linear output layer had only243

4000 MAC operations, so the number of MACs in the high-SNR layer comprises less than 0.01% of the244

total MACs performed during an inference. The models we simulated are thus sufficiently large that the245

total optical energy cost would be dominated by the (low-SNR) layers prior to the (high-SNR) output246

layer. Equivalently, the optical energy cost per MAC would be predominantly determined by the cost247

of the low-SNR layers. These simulation results illustrate the ability of SPDNNs to scale to larger and248

deeper models, enabling them to perform more challenging tasks.249

Discussion250

Our research is an example of realizing a neural network using a stochastic physical system. Beyond optics,251

our work is related and complementary to recent investigations in electronic, spintronic, and quantum252

neuromorphic computing [2, 51–58], including in training physical systems to perform neural-network253

inference [23, 59–65]. Noise is a fundamental feature and the ultimate limit to energy efficiency in com-254

puting with all analog physical systems. It has long been realized that noise is not always detrimental: not255

only does it not necessarily prevent accurate computation, but can in some cases even enable fundamen-256

tally new and more efficient algorithms or types of computation. Our work shows that using a quantum257

physical model of a particular hardware’s noise at the software level can enable surprisingly large gains258

in energy efficiency.259

While there are many reasons computer science has traditionally favored the abstraction of hardware260

from software, our work is part of a broad trend, spanning many different physical platforms [8, 66, 67], in261

which researchers engineer computations in a physics-aware manner. By short-circuiting the abstraction262
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hierarchy—in our case, going from a physics-aware software description of a stochastic neural network263

directly to a physical optical realization of the constituent operations—it is possible to achieve orders-of-264

magnitude improvements in energy efficiency [3, 26] versus conventional CMOS computing. Physics-aware265

software, in which software directly incorporates knowledge of the physics of the underlying computing266

hardware—such as in the physics-aware stochastic training we used in this work—is understudied com-267

pared to purely software-level or hardware-level innovations (i.e., “at the top” or “at the bottom” of the268

hierarchy [68]). It is thus ripe for exploration: within the domain of neural networks, there are a multi-269

tude of emerging physical platforms that could be more fully harnessed if the physical devices were not270

forced to conform to the standard abstractions in modern computer architecture [23]. Beyond neural-271

network accelerators, communities such as computational imaging [69] have embraced the opportunity272

to improve system performance through co-optimizing hardware and software in a physics-aware man-273

ner. We believe there is an opportunity to make gains in even more areas and applications of computing274

technology by collapsing abstractions and implementing physics-aware software with physical hardware275

that could be orders of magnitude faster or more energy efficient than current digital CMOS approaches276

but that doesn’t admit a clean, digital, deterministic abstraction.277
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Methods278

Stochastic optical neural networks using single-photon detection as the279

activation function280

In the single-photon-detection neural networks (SPDNNs), the activation function is directly determined281

by the stochastic physical process of single-photon detection (SPD). The specific form of the activation282

function is dictated by the detection process on a single-photon detector (SPD). Each SPD measurement283

produces a binary output of either 0 or 1, with probabilities determined by the incident light intensity.284

Consequently, each SPD neuron activation, which corresponds to an SPD measurement in experiments,285

is considered as a binary stochastic process [70–72].286

Following the Poisson distribution, the probability of an SPD detecting a photon click is given by

PSPD(λ) = 1 − e−λ when exposed to an incident intensity of λ photons per detection. Note that this

photon statistics may vary based on the state of light (e.g. squeezed light), but here we only consider the

Poissonian light. Therefore, the SPD process can be viewed as a Bernoulli sampling of that probability,

expressed as fSPD(z) = 1t<PSPD(λ(z)), where t is a uniform random variable t ∼ U [0, 1] and 1x is the

indicator function that evaluates to 1 if x is true. This derivation leads to Equation 1 in the main text. In

our approach, the pre-activation value z is considered as the direct output from an optical matrix-vector

multiplier (MVM) that encodes the information of a dot product result. For the ith pre-activation value

in layer l, denoted as z
(l)
i , the expression is given by:

z
(l)
i =

Nl−1
∑

j=1

w
(l)
ij · a

(l−1)
j , (1)

where Nl−1 is the number of neurons in layer l − 1, w
(l)
ij is the weight between the ith neuron in layer287

l and the jth neuron in layer l − 1, a
(l−1)
j is the activation of the jth neuron in layer l. The intensity288

λ(z) is a function of z that depends on the detection scheme employed in the optical MVM. In optical289

setups using incoherent light, the information is directly encoded in the intensity, resulting in λ = z.290

If coherent light were used in a setup, where 0 and π phases represent the sign of the amplitude, the291

intensity is determined by squaring the real-number amplitude if directly measured, resulting in λ = z2.292

While more sophisticated detection schemes can be designed to modify the function of λ(z), we focused293

on the simplest cases to illustrate the versatility of SPDNNs.294

During the inference of a trained model, in order to regulate the level of uncertainty inherent in295

stochastic neural networks, we can opt to conduct multiple shots of SPD measurements during a single296

forward propagation. In the case of a K-shot inference, each SPD measurement is repeated K times, with297

the neuron’s final activation value a[K] being derived from the average of these K independent stochastic298
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binary values. Consequently, for a single shot, a[1] = a ∈ {0, 1}; for K shots, a[K] = 1
K

∑K

k=1 ak ∈299

{0, 1/K, 2/K, . . . , 1}. By utilizing this method, we can mitigate the model’s stochasticity, enhancing the300

precision of output values. Ideally, with an infinite number of shots (K → ∞), the activation a[∞] would301

equate to the expected value without any stochasticity, that is, a[∞] = E[a] = PSPD(λ(z)). The detailed302

process of an inference of SPDNNs is described in Algorithm 2 in Supplementary Note 1A.303

The training of our stochastic neuron models takes inspiration from recent developments in train-304

ing stochastic neural networks. We have created an effective estimator that trains our SPDNNs while305

accounting for the stochastic activation determined by the physical SPD process. To train our SPDNNs,306

we initially adopted the idea of the “straight-through estimator” (STE) [32, 73], which enables us to307

bypass the stochasticity and discretization during neural network training. However, directly applying308

STE to bypass the entire SPD process led to subpar training performance. To address this, we adopted a309

more nuanced approach by breaking down the activation function and treating different parts differently.310

The SPD process can be conceptually divided into two parts: the deterministic probability function PSPD311

and the stochasticity introduced by the Bernoulli sampling. For a Bernoulli distribution, the expectation312

value is equal to the probability, making PSPD the expectation of the activation. Instead of applying the313

“straight-through” method to the entire process, we chose to bypass only the Bernoulli sampling process.314

At the same time, we incorporate the gradients induced by the probability function, aligning them with315

the expectation values of the random variable. In this way, we obtained an unbiased estimator [74] for316

gradient estimation, thereby enhancing the training of our SPDNNs.317

In the backward propagation of the lth layer, the gradients of the pre-activation z(l) can be computed

as (the gradient with respect to any parameter x is defined as gx = ∂C/∂x where C is the cost function):

gz(l) =
∂a(l)

∂λ(l)
◦
∂λ(l)

∂z(l)
◦ ga(l) = P ′

SPD(λ
(l)) ◦

∂λ(l)

∂z(l)
◦ ga(l) , (2)

where a(l) = fSPD(z
(l)) = 1t<PSPD(λ(z(l))) and the gradients ga(l) is calculated from the next layer (previous318

layer in the backward propagation). Using this equation, we can evaluate the gradients of the weights319

W (l) as gW (l) = g⊤
z(l)a

(l−1), where a(l−1) is the activation values from the previous layer. By employing320

this approach, SPDNNs can be effectively trained using gradient-based algorithms (such as SGD [75] or321

AdamW [76]), regardless of the stochastic nature of the neuron activations.322

For detailed training procedures, please refer to Algorithm 1 and 3 in Supplementary Notes 1A and323

2A, respectively.324

Simulation of incoherent SPDNNs for deterministic classification tasks325

The benchmark MNIST (Modified National Institute of Standards and Technology database) [77] hand-326

written digit dataset consists of 60,000 training images and 10,000 testing images. Each image is a327
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grayscale image with 28×28 = 784 pixels. To adhere to the non-negative encoding required by incoherent328

light, the input images are normalized so that pixel values range from 0 to 1.329

To assess the performance of the SPD activation function, we investigated the training of the MLP-330

SPDNN models with the structure of 784
W (1)

−−−→ N
W (2)

−−−→ 10, where N represents the number of neurons331

in the hidden layer, W (1) (W (2)) represents the weight matrices of the hidden (output) layer. The SPD332

activation function is applied to the N hidden neurons, and the resulting activations are passed to the333

output layer to generate output vectors (Figure 3a). To simplify the experimental implementation, biases334

within the linear operations were disabled, as the precise control of adding or subtracting a few photons335

poses significant experimental challenges. We have observed that this omission has minimal impact on336

the model’s performance.337

In addition, after each weight update, we clamped the elements of W (1) in the positive range in order338

to comply with the constraint of non-negative weights of an incoherent optical setup. Because SPD is339

not required at the output layer, the constraints on the last layer operation are less stringent. Although340

our simulations indicate that the final performance is only marginally affected by whether the elements341

in the last layer are also restricted to be non-negative, we found that utilizing real-valued weights in the342

output layer provided increased robustness against noise and errors during optical implementation. As a343

result, we chose to use real-valued weights in W (2).344

During the training process, we employed the LogSoftmax function on the output vectors and used345

cross-entropy loss to formulate the loss function. Gradients were estimated using the unbiased estimator346

described in the previous section and Algorithm 1.347

For model optimization, we found that utilizing the SGD optimizer with small learning rates yields348

better accuracy compared to other optimizers such as AdamW, albeit at the cost of slower optimization349

speed. Despite the longer total training time, the SGD optimizer leads to a better optimized model. The350

models were trained with a batch size of 128, a learning rate of 0.001 for the hidden layer and 0.01 for351

the output layer, over 10,000 epochs to achieve optimized parameters. To prevent gradient vanishing in352

the plateau of the probability function PSPD, pre-activations were clamped at λmax = 3 photons.353

It should be noted that due to the inherent stochasticity of the neural networks, each forward prop-354

agation generates varying output values even with identical weights and inputs. However, we only used355

one forward propagation in each step. This approach effectively utilized the inherent stochasticity in356

each forward propagation as an additional source of random search for the optimizer. Given the small357

learning rate and the significant noise in the model, the number of epochs exceeded what is typically358

required for conventional neural network training processes. The training is performed on a GPU (Tesla359

V100-PCIE-32GB) and takes approximately eight hours for each model.360

We trained incoherent SPDNNs with a varying number of hidden neurons N ranging from 10 to 400.361

The test accuracy of the models improved as the number of hidden neurons increased (see Supplementary362
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Note 1B for more details). During inference, we adjusted the number of shots per SPD activation K to363

tune the SNR of the activations within the models.364

For each model configuration with N hidden neurons and K shots of SPD readouts per activation, we365

repeated the inference process 100 times to observe the distribution of stochastic output accuracies. Each366

repetition of inference on the test set, which comprises 10,000 images, yielded a different test accuracy.367

The mean values and standard deviations of these 100 repetitions of test accuracy are plotted in Figure368

3b (see Supplementary Table 1 for more details). It was observed that increasing either N or K led to369

higher mean values of test accuracy and reduced standard deviations.370

Experimental implementation of SPDNNs371

Incoherent optical matrix-vector multiplier372

The optical matrix-vector multiplier setup utilized in this work is based on the design presented in [4].373

The setup comprises an array of light sources, a zoom lens imaging system, an light intensity modulator,374

and a photon-counting camera. For encoding input vectors, we employed an organic light-emitting diode375

(OLED) display from a commercial smartphone (Google Pixel 2016 version). The OLED display features376

a 1920 × 1080 pixel array, with individually controllable intensity for each pixel. In our experiment,377

only the green pixels of the display were used, arranged in a square lattice with a pixel pitch of 57.5378

µm. To perform intensity modulation as weight multiplication, we combined a reflective liquid-crystal379

spatial light modulator (SLM, P1920-500-1100-HDMI, Meadowlark Optics) with a half-wave plate (HWP,380

WPH10ME-532, Thorlabs) and a polarizing beamsplitter (PBS, CCM1-PBS251, Thorlabs). The SLM381

has a pixel array of dimensions 1920 × 1152, with individually controllable transmission for each pixel382

measuring 9.2 × 9.2 µm. The OLED display was imaged onto the SLM panel using a zoom lens system383

(Resolv4K, Navitar). The intensity-modulated light field reflected from the SLM underwent further de-384

magnification and was focused onto the detector using a telescope formed by the rear adapter of the zoom385

lens (1-81102, Navitar) and an objective lens (XLFLUOR4x/340, Olympus).386

We decompose a matrix-vector multiplication in a batch of vector-vector dot products that are com-387

puted optically, either by spatial multiplexing (parallel processing) or temporal multiplexing (sequential388

processing). To ensure a more accurate experimental implementation, we chose to perform the vector-389

vector dot products in sequence in most of the data collection. For the computation of an optical390

vector-vector dot product, the value of each element in either vector is encoded in the intensity of the391

light emitted by a pixel on the OLED and the transmission of an SLM pixel. The imaging system aligned392

each pixel on the OLED display with its corresponding pixel on the SLM, where element-wise multiplica-393

tion occurred via intensity modulation. The modulated light intensity from pixels in the same vector was394

then focused on the detector to sum up the element-wise multiplication values, yielding the vector-vector395

dot product result. Since the light is incoherent, only non-negative values can be allowed in both of the396
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vectors. For more details for the incoherent optical MVM, please refer to Supplementary Note 3. The397

calibration of the vector-vector dot products on the optical MVM is detailed in Supplementary Note 5.398

Single-photon-detector array399

In this experiment, we used a scientific CMOS camera (Hamamatsu ORCA-Quest qCMOS Camera400

C15550-20UP) [44] to measure both conventional light intensity measurement and SPD. This camera,401

with 4096× 2304 effective pixels of 4.6× 4.6 µm each, can perform SPD with ultra-low readout noise in402

its photon counting mode. This scientific CMOS camera is capable of carrying out the SPD process with403

ultra-low readout noise. When utilized as an SPD in the photon-counting mode, the camera exhibits an404

effective photon detection efficiency of 68% and a dark count rate of approximately 0.01 photoelectrons405

per second per pixel (Supplementary Note 4). We typically operate with an exposure time in the millisec-406

ond range for a single shot of SPD readout. For conventional intensity measurement that integrates higher407

optical energy for the output layer implementation, we chose another operation mode that used it as a408

common CMOS camera. Further details on validating the stochastic SPD activation function measured409

on this camera are available in Supplementary Note 6.410

Experimental implementation of the SPD activations411

We adapted our SPDNNs training methods to conform to the real-world constraints of our setup, ensuring412

successful experimental implementation (see Supplementary Note 7). First, we conducted the implemen-413

tation of the hidden layers and collect the SPD activations experimentally by the photon-counting camera414

as an SPD array. Each SPD realized a stochastic activation function for a single hidden-layer neuron.415

During a single inference, the hidden layer was executed a small number of times (1 ≤ K ≤ 5), yielding416

averaged activation values. Then we performed the output layer operations digitally on a computer. This417

aims to verify the fidelity of collecting SPD activations from experimental setups. Supplementary Figure418

16 provides a visual representation of the distribution of some of the output vectors. For the experiments419

with 1 shot per activation (K = 1), we collected 30 camera frames from the setup for each fixed input420

images and weight matrix, which are regarded as 30 independent repetitions of inference. They were then421

used to compute 30 different test accuracies by performing the output linear layer on a digital computer.422

For the experiments with 2 shots per activation (K = 2), we divided the 30 camera frames into 15 groups,423

with each group containing 2 frames. The average value of the 2 frames within each group serves as the424

activations, which are used to compute 15 test accuracies. For additional results and details, please refer425

to Supplementary Note 8.426
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Optical implementation of the output linear layer427

Second, to achieve the complete optical implementation of the entire neural networks, we utilized our428

optical matrix-vector multiplier again to carry out the last layer operations. For example, we first focused429

on the data from the model with 400 hidden neurons and performed 5 shots per inference. In this case,430

for the 30 binary SPD readouts obtained from 30 frames, we performed an averaging operation on every 5431

frames, resulting in 6 independent repetitions of the inference. These activation values were then displayed432

on the SLM as the input for the last layer implementation. For the 5-shot activations, the possible values433

included 0, 0.2, 0.4, 0.6, 0.8, and 1. When the linear operation were performed on a computer with full434

precision, the mean test accuracy was approximately 99.17%. To realize the linear operation with real-435

valued weight elements on our incoherent optical setup, we divided the weight elements into positive436

and negative parts. Subsequently, we projected these two parts of the weights onto the OLED display437

separately and performed them as two different operations. The final output value was obtained by438

subtracting the results of the negative weights from those of the positive weights. This approach requires439

at least double the photon requirement for the output layer and offers room for optimization to achieve440

higher energy efficiency. Nevertheless, even with these non-optimized settings, we demonstrated a photon441

budget that is lower than any other ONN implementations known to us for the same task and accuracy.442

For additional data and details, please refer to Supplementary Note 9.443

Deeper SPDNNs operating with coherent light444

Optical processors with coherent light have the ability to preserve the phase information of light and445

have the potential to encode complex numbers using arbitrary phase values. In this work, we focused446

on coherent optical computing utilizing real-number operations. In this approach, positive and negative447

values are encoded in the light amplitudes corresponding to phase 0 and π, respectively.448

As the intensity of light is the square of the amplitude, direct detection of the light amplitude, where449

the information is encoded, would involve an additional square operation, i.e., λ(z) = |z|2. This leads450

to a “V-shape” SPD probability function with respect to the pre-activation z, as depicted in Figure 4a.451

We chose to focus on the most straightforward detection case to avoid any additional changes to the452

experimental setup. Our objective is to demonstrate the adaptability and scalability of SPDNN models453

in practical optical implementations without the need for complex modifications to the existing setup.454

Coherent SPDNNs for MNIST classification455

MLP-SPDNNs Classifying MNIST using coherent MLP-SPDNNs was simulated utilizing similar con-456

figurations as with incoherent SPDNNs. The only difference was the inclusion of the coherent SPD457

activation function and the use of real-valued weights. Contrary to the prior scenario with incoherent458

light, the input values and weights do not need to be non-negative. The models were trained using the459
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SGD optimizer [75] with a learning rate of 0.01 for the hidden layers and 0.001 for the last linear layer,460

over a period of 10,000 epochs.461

Convolutional SPDNNs The convolutional SPDNN model used for MNIST digit classification, illus-462

trated in Figure 4b, consists of a convolutional layer with 16 output channels, a kernel size of 5 × 5, a463

stride size of 1, and padding of 2. The SPD activation function was applied immediately after the con-464

volutional layer, followed by average pooling of 2× 2. The feature map of 14× 14× 16 = 3136 was then465

flattened into a vector of size 3136. After that, the convolutional layers were followed by a linear model466

of 3136 → 400 → 10, with the SPD activation function applied at each of the 400 neurons in the first467

linear layer.468

The detailed simulation results of the MNIST test accuracies of the coherent SPDNNs can be found469

in Supplementary Table 2 with varying model structures and shots per activation K. For additional470

information, see Supplementary Note 2B.471

Coherent convolutional SPDNNs for Cifar-10 classification472

The CIFAR-10 dataset [78] has 60,000 images, each having 3× 32× 32 pixels with 3 color channels, that473

belong to 10 different categories, representing airplanes, automobiles, birds, cats, deers, dogs, frogs, horses,474

ships and trucks. The dataset is partitioned into a training set with 50,000 images and a test set with475

10,000 images. The pixel values have been normalized using the mean value of (0.4914, 0.4822, 0.4465)476

and standard deviation of (0.2471, 0.2435, 0.2616) for each of the color channels. To boost performance,477

data augmentation techniques including random horizontal flips (50% probability) and random 32 × 32478

crops (with 4-pixel padding) were implemented during training.479

The convolutional SPDNN models for Cifar-10 classification have deeper structures. Same as the480

convolutional models trained for MNIST, the convolutional layers use a kernel size of 5×5, a stride size of481

1 and padding of 2. Each convolutional layer is followed by the SPD activation function, average pooling482

of 2 × 2, as well as batch normalization. After Nconv convolutional layers (Nconv = 4 in Figure 4e) with483

the number of output channels of the last one to be N last
chan, the feature map of (32/2Nconv)2 × N last

chan is484

flattened to a vector, followed by two linear layers of (32/2Nconv)2N last
chan → 400 → 10. In the first linear485

layer, either SPD or ReLU [45] activation function were used for each of the 400 neurons, as depicted486

in Figure 4e. We vary the number of convolutional layers and number of output channels of them to487

change the different model size (Figure 4e and Supplementary Figure 5). In these results, we only used a488

single shot of SPD measurement (K = 1) to compute the SPD activations in the models, including the489

convolutional and linear layers. For additional information, please refer to Supplementary Note 2C.490
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Data and code availability491

The data and code needed to reproduce the results presented in this paper are available for download492

at https://doi.org/10.5281/zenodo.8188270. We have included the raw data resulting from our numerical493

(simulation) and optical experiments, the code used to process this data, the training datasets and494

trained-model parameters, as well as examples to demonstrate the operation of our data-collection and495

data-processing code. We have also made available a pedagogical code repository, available at https:496

//github.com/mcmahon-lab/Single-Photon-Detection-Neural-Networks, which may be adapted to train497

models for different stochastic physical hardware setups.498
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