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Sifting through vast textual data and summarizing key information from electronic health records (EHR)

imposes a substantial burden on how clinicians allocate their time. Although large language models

(LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy on a

diverse range of clinical summarization tasks has not yet been rigorously demonstrated. In this work,

we apply domain adaptation methods to eight LLMs, spanning six datasets and four distinct clinical

summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue.

Our thorough quantitative assessment reveals trade-offs between models and adaptation methods in

addition to instances where recent advances in LLMs may not improve results. Further, in a clinical

reader study with ten physicians, we show that summaries from our best-adapted LLMs are preferable to

human summaries in terms of completeness and correctness. Our ensuing qualitative analysis highlights

challenges faced by both LLMs and human experts. Lastly, we correlate traditional quantitative NLP

metrics with reader study scores to enhance our understanding of how these metrics align with physician

preferences. Our research marks the first evidence of LLMs outperforming human experts in clinical text

summarization across multiple tasks. This implies that integrating LLMs into clinical workflows could

alleviate documentation burden, empowering clinicians to focus more on personalized patient care and

the inherently human aspects of medicine.

Introduction

Documentation plays an indispensable role in the practice of healthcare. Currently, clinicians spend significant
time summarizing vast amounts of textual information—whether it be compiling diagnostic reports, writing
progress notes, or synthesizing a patient’s treatment history across different specialists [3, 24, 30]. Even for
experienced physicians with a high level of expertise, this intricate task naturally introduces the possibility
for errors, which can be detrimental in a field where precision is paramount [6, 28, 76].

The widespread adoption of electronic health records (EHR) has expanded clinical documentation workload,
directly contributing to increasing stress and clinician burnout [23, 29, 54]. Recent data indicates that
physicians can expend two hours on documentation for each hour of patient interaction [60]. Meanwhile,
documentation responsibilities for nurses consume up to 60% of their time and account for significant work
stress [9, 22, 37]. These tasks divert attention from direct patient care, leading to worse outcomes for patients
as well as disillusionment and decreased job satisfaction for clinicians [3, 55, 57, 68].
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Figure 1 | Overview. First we quantitatively evaluate each valid combination (×) of LLM and adaptation method across four

distinct summarization tasks comprising six datasets. We then conduct a clinical reader study in which ten physicians compare

summaries of the best model/method against those of a human expert.

In recent years, large language models (LLMs) have gained remarkable traction, leading to widespread
adoption of models such as ChatGPT [7], which excel at information retrieval, nuanced understanding, and
text generation [8, 81]. While excellent LLM benchmarks for general NLP tasks exist [41, 82], they do not
evaluate performance on relevant clinical tasks. Addressing this limitation presents a tremendous opportunity
to accelerate the process of clinical text summarization, hence alleviating documentation burden and improving
patient care.

Crucially, machine-generated summaries must be non-inferior to that of seasoned clinicians—especially when
used to support sensitive clinical decision-making. Recent work in clinical natural language processing (NLP)
has demonstrated potential on medical text [66, 75], adapting to the medical domain by either training a
new model [59, 70], fine-tuning an existing model [67, 72], or supplying task-specific examples in the model
prompt [46, 72]. However, adapting LLMs to summarize a diverse set of clinical tasks has not been thoroughly
explored, nor has non-inferiority to humans been achieved.

With the overarching objective of bringing LLMs closer to clinical readiness, we aim to bridge the gap
between theoretical promise and practical utility. We begin by implementing adaptation methods across eight
open-source and proprietary LLMs for four distinct summarization tasks comprising six datasets. To our
knowledge, the subsequent evaluation via NLP metrics is the most comprehensive assessment of contemporary
LLMs for clinical text summarization. Our exploration illustrates the stark benefit of model adaptation
over zero-shot prompting and delves into a myriad of trade-offs concerning different models and adaptation
methods, revealing scenarios where advancements in model size, novelty, or domain specificity do not translate
to superior performance.

Through a rigorous clinical reader study with ten physicians, we demonstrate that LLM summaries can surpass
human summaries in terms of the following attributes: completeness, correctness, and conciseness. This novel
finding affirms the non-inferiority of machine-generated summaries in a clinical context. We qualitatively
analyze summaries to pinpoint challenges faced by both models and humans. Such insights can guide future
enhancements of LLMs and their integration into clinical workflows. To support aligning future model outputs
and NLP metrics directly to clinical preferences, we identify which metrics most correlate with reader scores
on the aforementioned key attributes.

Our results demonstrate that LLMs often outperform human experts for clinical text summarization across the
diverse range of documents we evaluate. This implies that LLMs could be leveraged to reduce documentation
load and thus support clinicians—not supplant them. Once a summary is provided, clinicians are essential to
make treatment recommendations and final decisions. Ultimately, such new tools may improve the clinical
workflow [2], resulting in decreased clinician strain and improved patient care. Accelerating tedious tasks will
enable healthcare providers to dedicate more time to the essential human facets of medicine, such as fostering
patient relationships, understanding their specific goals, and offering personalized advice.
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Figure 2 | Prompt anatomy. Each summarization task uses a slightly different instruction, as depicted in Table A1.

Results

Constructing prompt anatomy

We structured prompts (Figure 2) by following best practices [5, 56] and evaluating a handful of variants
for each component. Table 1 demonstrates the effect of GPT-3.5 model expertise and temperature. For
example, we achieved better performance by nudging the model to have expertise in medicine than expertise in
wizardry, illustrating the value of this additional context for the target task. We also explored the temperature
hyperparameter, which adjusts the LLM’s conditional probability distributions during sampling, hence
affecting how often the model will output less likely tokens. Higher temperatures lead to more randomness and
“creativity,” while lower temperatures produce more deterministic outputs. After searching over temperature
values {0.1, 0.5, 0.9} using GPT-3.5, we found the lowest value, 0.1, performed best and thus set temperature
to this value for all models. Intuitively, a lower value seems appropriate given our goal of factually summarizing
text with a high aversion to hallucinations, or instances where the model generates factually incorrect text.

Identifying the best model/method

When considering which open-source models to evaluate, we first assessed the benefit of fine-tuning open-
source models on medical text. For example, Med-Alpaca [31] is a version of Alpaca [64] which was further
instruction-tuned with medical Q&A text, consequently improving performance for the task of medical
question-answering. Figure 3a compares these models for our setting, showing that most data points are
below the dashed lines denoting equivalence. Hence despite Med-Alpaca’s adaptation for the medical domain,
it actually performed worse than Alpaca for our tasks of clinical text summarization. This suggests that—in

Table 1 | Model performance across different temperature values and expertise.

Parameter Value BLEU ROUGE-L BERTScore MEDCON
0.1 4.9 28.1 89.6 28.2

Temperature 0.5 4.9 27.1 89.7 27.5
0.9 4.3 25.4 89.3 25.3
None 10.4 34.3 90.2 30.7

Expertise Medicine1 11.1 35.5 90.5 35.5

Wizardry2 4.3 27.8 89.7 28.5
1: “You are an expert medical professional.” 2: “You are a mystical wizard in Middle Earth.”
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Figure 3 | Quantitative results. (a) Alpaca vs. Med-Alpaca. Each data point corresponds to one experimental configuration,

and the dashed lines denote equal performance. (b) One in-context example (ICL) vs. QLoRA methods across all open-source

models on the Open-i radiology report dataset. (c) MEDCON scores vs. number of in-context examples across models and

datasets. We also include the best model fine-tuned with QLoRA as a horizontal dashed line for valid datasets. See Figure A3

for results across all four metrics.(d) Model win rate: a head-to-head winning percentage of each model combination, where

red/blue intensities highlight the degree to which models on the vertical axis outperform models on the horizontal axis.

addition to domain adaptation–––task adaptation is also important. With this in mind, and considering that
Alpaca is commonly known to perform worse than our other open-source autoregressive models Vicuna and
Llama-2 [13, 82], for simplicity we excluded Alpaca and Med-Alpaca from further analysis.

Next, we compared ICL (in-context learning) vs. QLoRA (quantized low-rank adaptation) across the remaining
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open-source models using the Open-i radiology report dataset in Figure 3b and the patient health questions
in Figure A2. We chose these datasets because their shorter context lengths allow for training with lower
computational cost. FLAN-T5 generally performed best with QLoRA, although Llama-2 was often comparable.
QLoRA typically outperformed ICL (one example) with the better models (FLAN-T5, Llama-2) but was
often surpassed by ICL when more in-context examples were provided (Figure A3). Surprisingly, FLAN-T5
(2.7B) outperformed its fellow seq2seq model FLAN-UL2 (20B), despite being an older model with almost
10× fewer parameters.

Figure 3c displays MEDCON scores for all models against number of in-context examples up to the maximum
number of examples permitted by each model and dataset. This graph also includes the best performing model
(FLAN-T5) with QLoRA as a reference, depicted by a horizontal dashed line. Compared to zero-shot prompting
(m = 0 examples), adapting with even m = 1 example delivered significantly improved performance in almost
all cases, underscoring the importance of adaptation methods.While ICL and QLoRA were competitive for
open-source models, proprietary models GPT-3.5 and GPT-4 far outperformed other models and methods
given sufficient in-context examples. For a similar graph across all metrics, see Figure A3.

Figure 3d compares models using win rates, i.e. the head-to-head winning percentage of each model combination
across the same set of samples. In other words, for what percentage of samples do model A’s summaries have
a higher score than model B’s summaries? We deemed the best model and method to be GPT-4 (32K context
length) with a maximum allowable number of in-context examples. We note that while FLAN-T5 was more
competitive for syntactic metrics such as BLEU, this model is constrained to shorter context lengths (see
Table 2).

Analyzing reader study results

Given our clinical reader study overview (Figure 4a), pooled results across our physicians (Figure 4b)
demonstrate that GPT-4 summaries were more complete and concise fewer errors compared to human
summaries. The distributions of reader responses in Figure 4c show that human summaries were preferred in
only a minority of cases (19%), while in a majority GPT-4 was either non-inferior (45%) or preferred (36%).
Table A2 contains scores separated by individual readers, while Table A3 affirms the reliability of scores across
readers by displaying positive intra-reader correlation values. Based on physician feedback, we undertook a
rigorous qualitative analysis to illustrate strengths and weaknesses of summaries by GPT-4 and humans; see
Figures 5, A4, A5, and A6. Now, we discuss results with respect to each attribute individually.

We observed that GPT-4 summaries were more complete on average than human summaries, achieving
statistical significance across all three summarization tasks with p-values < 0.001 (Figure 4b). We provide
intuition for completeness by investigating a specific example in progress notes summarization. In Figure A5,
GPT-4 correctly identified conditions that were missed by the human expert, such as “hypotension”, “anemia”,
and “COPD”. GPT-4 was more complete in generating its progress note summary but also missed historical
context (a history of “hypertension”, or “HTN”).

With regards to correctness, GPT-4 generated significantly fewer errors (p-value < 0.001) compared to human
summaries (Figure 4b) overall and on two of three summarization tasks. For radiology reports, GPT-4 always
matched or outperformed the human expert; across five readers’ comparisons of 100 samples, there were
zero instances in which the human outperformed GPT-4 (Figure 4c). As an example of GPT-4’s superior
correctness performance on the radiology report summarization task, we observe that it avoided common
human errors related to lateral distinctions (right vs. left, Figure 5). For the problem list summarization task,
Figure A5 demonstrates that GPT-4 avoided a mistake (including “UTI”) that was incorrectly documented by
the human—for this example, the physician reader commented that “[the human] is hallucinating,” a phrase
often used to describe mistakes made by LLMs. Despite this promising performance, GPT-4 was not perfect
across all tasks. We see a clear example in Figure A6 where GPT-4 mistakenly generated (“hallucinated”)
several conditions in the problem list that were false, such as “eosinophilia”.

With regards to conciseness, GPT-4 performed significantly better (p-value < 0.001) overall and on two of the
three tasks. However, for radiology reports, the conciseness of GPT-4 was similar to that of human experts.
See Figure 5 for an example in which GPT-4’s summary includes correct information which readers deemed
non-important.
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Figure 4 | Clinical reader study. (a) Study design comparing the summarization of GPT-4 vs. that of human experts on

three attributes: completeness, correctness, and conciseness. (b) Results. Highlight colors correspond to a value’s location on

the color spectrum. Asterisks denote statistical significance by Wilcoxon signed-rank test, *p-value < 0.001. (c) Reader study

user interface. (d) Distribution of reader scores for each summarization task across attributes. Horizontal axes denote reader

preference as measured by a five-point Likert scale. Vertical axes denote frequency count, with 1,500 total reports for each plot.

Connecting quantitative and clinical evaluations

We created Figure 6 to capture the correlation between NLP metrics and physicians’ preference. These values
are calculated as the Spearman correlation coefficient between NLP metric scores and the magnitudes of reader
scores. For correctness, the semantic metric BERTScore and conceptual metric MEDCON correlated most
strongly with reader preference. Meanwhile, the syntactic BLEU metric correlated most with completeness
and least with conciseness. Given that BLEU measures sequence overlap, this result seems reasonable, as more
text provides more “surface area” for overlap and reduces the brevity penalty that BLEU applies on generated
sequences which are shorter than the reference [51]. While these results demonstrate that some metrics are
more useful for measuring particular attributes, the low magnitude of correlation values (approximately 0.2)
underscores the need to go beyond NLP metrics when assessing clinical readiness.

Discussion

In this research, we exhaustively evaluated methods for adapting LLMs to summarize clinical text, analyzing
eight models across a diverse set of summarization tasks. Our quantitative results underscore the advantages
of adapting models to specific tasks and domains. The ensuing clinical reader study demonstrates that LLM
summaries are often preferred over human expert summaries due to higher scores for completeness, correctness,
and conciseness. The subsequent qualitative exploration provides deeper insights into the limitations of both
LLMs and human experts. Novel evidence from our research suggests a promising avenue for LLMs—not as
replacements for clinicians, but as tools to reduce documentation burden and so that clinicians can direct
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Input:
The patient is s/p left frontal craniotomy. A small amount of intracranial gas 
is seen posterior to the surgical intervention, which could represent 
postoperative changes. Extensive edema is seen in the left frontal lobe at 
the site of presumed surgery. Additionally multiple foci of hemorrhage are 
seen in the region of the left frontal lobe. Midline shift to the right is seen in 
the frontal region. The ventricles, cisterns, and sulci are unremarkable, 
without effacement. Comparison with prior studies from outside institution 
would be helpful in further evaluation of these findings.

Summary (human expert):
Postoperative changes in the right frontoparietal region identified, with 
decreasing pneumocephalus. No new hemorrhage. Persistent mild leftward 
shift, not significantly changed from prior.

Summary (GPT-4):
Stable post-craniotomy changes with decreasing pneumocephalus and 
persistent mild leftward shift. No new hemorrhage. Increasing opacification 
of ethmoid and sphenoid sinuses. Large right subgaleal hematoma 
unchanged.

Input:
Right frontoparietal craniotomy again identified, with decreasing 
pneumocephalus and small amount of subdural fluid. There is persistent 
mild leftward shift of approximately 2-3 mm, not significantly changed from 
prior study. Size and configuration of the ventricles is unchanged from prior 
study. There is no new hemorrhage. Multiple facial fractures, better 
evaluated on prior dedicated maxillofacial CT. Increasing opacification is 
seen in the ethmoid and sphenoid sinuses. Large right subgaleal 
hematoma again identified.

Example 2: GPT-4 performed worse because it was less concise, i.e. included non-important information (green).

Example 1: GPT-4 performed better because the human made a laterality mistake (red).

Summary (human expert):
1. Left frontal craniotomy. 2. Frontal midline shift to the right. 3. Extensive 
left frontal lobe edema. 4. Multiple foci of hemorrhage in the right frontal 
lobe.

Summary (GPT-4):
Postoperative changes following left frontal craniotomy with intracranial 
gas, extensive edema, and multiple foci of hemorrhage in the left frontal 
lobe. Midline shift to the right is noted.

Attribute Average Example 1 Example 2

Completeness 2.8 5 -1

Correctness 1.7 8 0

Conciseness 0 0 -4

Radiology reports

Blue: correct; exists in input + human + GPT-4
Purple: correct; exists in input + human only
Green: correct; exists in input + GPT-4 only
Orange: incoherent or filler
Red: incorrect

Color key: Reader scores: 

Figure 5 | Annotation of two radiologist report examples from the reader study. The table (lower left) contains reader scores for

these two examples and the task average across all samples.

more attention toward patient care. Now, we discuss insights and future steps enabled by this work.

We first highlight the importance of “prompt engineering,” or modifying and tuning the input prompt to
improve model performance. This is well-reflected in our evaluation of conciseness. We specified the desired
summary length in the instruction, for example with “one question of 15 words or less” for summarizing patient
questions (Table A1). Without this instruction, the model might generate lengthy outputs—occasionally even
longer than the input text. When considering conciseness scores (Figure 4b), radiology reports were the only
task in which physicians did not prefer GPT-4’s summaries to the human experts. This could be attributed
to the relatively vague length specification in the radiology reports instruction, i.e. “...with minimal text,”
while the other two task instructions quantify length.

Overall, we achieve strong results while performing a basic search across 1-2 options for each task instruction
(Table A1). Prompt phrasing and model temperature can be very important for a LLM, as demonstrated
in the literature [62, 73] and in Table 1. This suggests better results could be achieved via further study of
prompt engineering and model hyperparameters, which we leave for future work.

Model performance generally improved with more context. Even one example provided significant benefit
compared to zero-shot prompting, hence underscoring the value of adaptation methods. Note that the number
of allowable examples depends on the number of tokens per example and the model context length. This
motivates future work to pursue more challenging tasks such as summarizing longer documents or multiple
documents of different types. Addressing these cases demands two key advancements: (1) extending GPT-4’s
current context length beyond 32,768 tokens, potentially through multi-query aggregation or methods which
increase context length [21, 52], and (2) introducing open-source datasets that include broader tasks and
lengthier documents.

Now, we discuss trade-offs between lightweight adaptation methods. While QLoRA fine-tuning performed
comparably for some cases, ICL triumphed overall, particularly when including proprietary models GPT-3.5
and GPT-4. The proprietary nature of these models raises an interesting point for healthcare, where data and
model governance are important—especially if summarization tools are cleared for clinical use by the FDA.
This could motivate the use of fine-tuning methods on open-source models. Governance aside, ICL provides
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Figure 6 | Spearman correlation coefficients between NLP metrics and reader preference assessing completeness, correctness,

and conciseness.

many benefits: (1) model weights are fixed, hence enabling queries of pre-existing LLMs (2) adaptation
is feasible even a few examples, while fine-tuning methods such as QLoRA typically require hundreds or
thousands of examples.

We consider trade-offs of different model types: autoregressive and sequence-to-sequence (seq2seq). Seq2seq
models (FLAN-T5, FLAN-UL2) performed very well on syntactical metrics such as BLEU but worse on
others (Figure 3d), suggesting that these models excel more at matching word choice than matching semantic
or conceptual meaning. Note seq2seq models are often constrained to much shorter context length than
autoregressive models such as GPT-4, because seq2seq models require the memory-intensive step of encoding
the input sequence into a fixed-size context vector. Among open-source models, seq2seq (FLAN-T5, FLAN-
UL2) performs better than autoregressive (Llama-2, Vicuna) models on radiology reports but worse on patient
questions and progress notes (Figure 3c). Given that these latter datasets have higher lexical variance (Table 3)
and more heterogeneous formatting compared to radiology reports, we posit that autoregressive models may
perform better with increasing data heterogeneity and complexity.

The overwhelming evidence from our reader study suggests that adapting LLMs can outperform human
experts in terms of completeness, correctness, and conciseness. When qualitatively analyzing summaries,
we notice a few general trends. As implied by the completeness scores, GPT-4 excelled at identifying and
understanding the most relevant information from the source text. However, both GPT-4 and human experts
faced challenges interpreting ambiguity, such as user queries in patient health questions. Consider Example
1 of Figure A4, in which the input question mentioned “diabetes and neuropathy.” GPT-4 mirrored this
phrasing verbatim, while the human expert interpreted it as “diabetic neuropathy.” This highlights GPT-4’s
tendency toward a literal approach without interpretation, which may either be advantageous or limiting.
In Example 2 of Figure A4, GPT-4 simply reformulated the input question about tests and their locations,
while the human inferred a broader query about tests and treatments. In both cases, GPT-4’s summaries
leaned toward literalness, a trait that readers sometimes favored and sometimes did not. In future work, a
systematic exploration of model temperature could further illuminate this trade-off.

Model hallucinations—or instances of factually incorrect text—present a notable barrier to the clinical
integration of LLMs, especially considering the high degree of accuracy required for medical applications. Our
reader study results for correctness (Figure 4b) illustrate that hallucinations are made less frequently by our
adapted LLMs than by humans. This implies that incorporating LLMs could actually reduce summarization
errors in clinical practice. Beyond the scope of our work, there’s further potential to reduce hallucinations
through incorporating checks by a human, checks by another LLM, or using a model ensemble to create a
“committee of experts” [10, 36].

Now, we discuss general trends for our clinical NLP metrics. The syntactic metric BLEU provided the
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highest correlation with physician preference for completeness. Given that BLEU measures sequence overlap,
this result seems reasonable, as more text provides more “surface area” for overlap; more text also reduces
the brevity penalty that BLEU applies on generated sequences which are shorter than the reference [51].
Meanwhile the metrics BERTScore and MEDCON correlated most strongly with physician preference for
correctness. This implies that the semantics (BERTScore) and concepts (MEDCON) measured by these
metrics correspond to correctness more effectively than syntactic metrics BLEU and ROUGE-L.

Many clinical NLP papers rely primarily on quantitative metrics for evaluation. Given the critical nature of
medical tasks, demonstrating clinical readiness requires including human experts in the evaluation process.
To address this, there have been recent releases of expert evaluations for adjacent clinical NLP tasks [24, 79].
Other work employs human experts to evaluate synthesized abstracts, demonstrating that NLP metrics are
not sufficient to measure summary quality [63]. Aside from the low correlation values in Figure 6, our reader
study results in Figure 4 also highlight another limitation of NLP metrics, especially as model-generated
summaries become increasingly viable. These metrics rely on a reference, which we have demonstrated can
be fallible. Hence we advocate that human evaluation is essential when assessing the clinical feasibility of
new methods. When human evaluation is not feasible, Figure 6 suggests that syntactic metrics are better at
measuring completeness, while semantic and conceptual metrics are better at measuring correctness.

This study has several limitations which motivate further work. First, we do not consider the inherently
context-specific nature of summarization. For example, a gastroenterologist, radiologist, and oncologist may
have different preferences for summaries of a cancer patient with liver metastasis. Or perhaps an abdominal
radiologist will want a different summary than a neuroradiologist. Further, individual clinicians may prefer
different styles or amounts of information. While we do not explore such a granular level of adaptation, this
may not require much further development: since our best results were obtained via ICL with a handful of
examples, one could plausibly adapt using examples curated for a particular specialty or clinician. Another
limitation is that radiology report human summaries occasionally recommend further studies or refer to prior
studies, e.g. “... not significantly changed from prior” in Figure 5. These instances are out of scope for the
LLM, as it does not have access to prior studies nor the purview to make recommendations. Hence for our
clinical reader study, physicians were told to disregard these phrases. However in future work, it would be
interesting to provide more context via prior reports and allow the LLM to make a treatment suggestion.

Reproducibility

In an effort to disseminate these methods for further validation and clinical impact, we will make our code
publicly available at github.com/StanfordMIMI/clin-summ prior to publication. While all datasets are publicly
available, we will share our preprocessed versions for those which do not require Physionet [35] access:
Open-i [19] (radiology reports), MeQSum [4] (patient questions), and ACI-Bench [78] (dialogue).

Acknowledgements

Microsoft provided Azure OpenAI credits for this project via both the Accelerate Foundation Models Academic
Research (AFMAR) program and also a cloud services grant to Stanford Data Science. Further compute
support was provided by One Medical, which Asad Aali used as part of his summer internship. Curtis Langlotz
is supported by NIH grants R01 HL155410, R01 HL157235, by AHRQ grant R18HS026886, by the Gordon and
Betty Moore Foundation, and by the National Institute of Biomedical Imaging and Bioengineering (NIBIB)
under contract 75N92020C00021. Akshay Chaudhari receives support from NIH grants R01 HL167974, R01
AR077604, R01 EB002524, R01 AR079431, and P41 EB027060; from NIH contracts 75N92020C00008 and
75N92020C00021; and from GE Healthcare, Philips, and Amazon.

|9



References

1. Abacha, A. B., Yim, W.-w., Adams, G., Snider, N. & Yetisgen-Yildiz, M. Overview of the MEDIQA-Chat 2023 Shared
Tasks on the Summarization & Generation of Doctor-Patient Conversations in Proceedings of the 5th Clinical Natural
Language Processing Workshop (2023), 503–513.

2. Agarwal, N., Moehring, A., Rajpurkar, P. & Salz, T. Combining human expertise with artificial intelligence: experimental
evidence from Radiology tech. rep. (National Bureau of Economic Research, 2023).

3. Arndt, B. G., Beasley, J. W., Watkinson, M. D., Temte, J. L., Tuan, W.-J., Sinsky, C. A. & Gilchrist, V. J. Tethered to the
EHR: primary care physician workload assessment using EHR event log data and time-motion observations. The Annals of
Family Medicine 15, 419–426 (2017).

4. Ben Abacha, A. & Demner-Fushman, D. On the Summarization of Consumer Health Questions in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28th - August 2 (2019).

5. Best Practices for Prompt Engineering with OpenAI API https://help.openai.com/en/articles/6654000-best-practices-for-
prompt-engineering-with-openai-api. Accessed: 2023-09-08. OpenAI, 2023.

6. Bowman, S. Impact of electronic health record systems on information integrity: quality and safety implications. Perspectives
in health information management 10 (2013).

7. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020).

8. Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S.,
et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712 (2023).

9. Chang, C.-P., Lee, T.-T., Liu, C.-H. & Mills, M. E. Nurses’ experiences of an initial and reimplemented electronic health
record use. CIN: Computers, Informatics, Nursing 34, 183–190 (2016).

10. Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., Yang, L., Yi, X., Wang, C., Wang, Y., et al. A survey on
evaluation of large language models. arXiv preprint arXiv:2307.03109 (2023).

11. Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., Jones, L., Parmar, N., Schuster, M., Chen, Z.,
et al. The best of both worlds: Combining recent advances in neural machine translation. arXiv preprint arXiv:1804.09849
(2018).

12. Chen, Z., Varma, M., Wan, X., Langlotz, C. & Delbrouck, J.-B. Toward Expanding the Scope of Radiology Report
Summarization to Multiple Anatomies and Modalities in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers) (Association for Computational Linguistics, Toronto, Canada, July
2023), 469–484. https://aclanthology.org/2023.acl-short.41.

13. Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I. & Xing, E. P. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality Mar. 2023.
https://lmsys.org/blog/2023-03-30-vicuna/.

14. Chung, H., Hou, L., Longpre, S., et al. Scaling Instruction-Finetuned Language Models. https://doi.org/10.48550/arXiv.2210.11416
(2022).

15. Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022).

16. Deka, P., Jurek-Loughrey, A., et al. Evidence Extraction to Validate Medical Claims in Fake News Detection in International
Conference on Health Information Science (2022), 3–15.

17. Delbrouck, J.-B., Varma, M., Chambon, P. & Langlotz, C. Overview of the RadSum23 Shared Task on Multi-modal and
Multi-anatomical Radiology Report Summarization in Proceedings of the 22st Workshop on Biomedical Language Processing
(Association for Computational Linguistics, Toronto, Canada, July 2023).

18. Demner-Fushman, D., Ananiadou, S. & Cohen, K. B. The 22nd Workshop on Biomedical Natural Language Processing
and BioNLP Shared Tasks in The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
(2023).

19. Demner-Fushman, D., Antani, S., Simpson, M. & Thoma, G. R. Design and development of a multimodal biomedical
information retrieval system. Journal of Computing Science and Engineering 6, 168–177 (2012).

20. Dettmers, T., Pagnoni, A., Holtzman, A. & Zettlemoyer, L. Qlora: Efficient finetuning of quantized llms. arXiv preprint
arXiv:2305.14314 (2023).

21. Ding, J., Ma, S., Dong, L., Zhang, X., Huang, S., Wang, W., Zheng, N. & Wei, F. LongNet: Scaling Transformers to
1,000,000,000 Tokens 2023. arXiv: 2307.02486 [cs.CL].

22. Duffy, W. J., Kharasch, M. S. & Du, H. Point of care documentation impact on the nurse-patient interaction. Nursing
Administration Quarterly 34, E1–E10 (2010).

23. Ehrenfeld, J. M. & Wanderer, J. P. Technology as friend or foe? Do electronic health records increase burnout? Current
Opinion in Anesthesiology 31, 357–360 (2018).

24. Fleming, S. L., Lozano, A., Haberkorn, W. J., Jindal, J. A., Reis, E. P., Thapa, R., Blankemeier, L., Genkins, J. Z.,
Steinberg, E., Nayak, A., et al. MedAlign: A Clinician-Generated Dataset for Instruction Following with Electronic Medical
Records. arXiv preprint arXiv:2308.14089 (2023).

25. Frantar, E., Ashkboos, S., Hoefler, T. & Alistarh, D. Gptq: Accurate post-training quantization for generative pre-trained
transformers. arXiv preprint arXiv:2210.17323 (2022).

26. Gao, Y., Dligach, D., Miller, T., Churpek, M. M. & Afshar, M. Overview of the Problem List Summarization (ProbSum)
2023 Shared Task on Summarizing Patients’ Active Diagnoses and Problems from Electronic Health Record Progress Notes.
arXiv preprint arXiv:2306.05270 (2023).

27. Gao, Y., Miller, T., Afshar, M. & Dligach, D. BioNLP Workshop 2023 Shared Task 1A: Problem List Summarization in
Proceedings of the 22nd Workshop on Biomedical Language Processing (2023).

28. Gershanik, E. F., Lacson, R. & Khorasani, R. Critical finding capture in the impression section of radiology reports in
AMIA Annual Symposium Proceedings 2011 (2011), 465.

29. Gesner, E., Gazarian, P. & Dykes, P. The burden and burnout in documenting patient care: an integrative literature review.
MEDINFO 2019: Health and Wellbeing e-Networks for All, 1194–1198 (2019).

30. Golob Jr, J. F., Como, J. J. & Claridge, J. A. The painful truth: The documentation burden of a trauma surgeon. Journal
of Trauma and Acute Care Surgery 80, 742–747 (2016).

|10



31. Han, T., Adams, L. C., Papaioannou, J.-M., Grundmann, P., Oberhauser, T., Löser, A., Truhn, D. & Bressem, K. K.
MedAlpaca–An Open-Source Collection of Medical Conversational AI Models and Training Data. arXiv preprint arXiv:2304.08247
(2023).

32. Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, L. & Chen, W. LoRA: Low-Rank Adaptation of Large Language
Models 2021. arXiv: 2106.09685 [cs.CL].

33. Johnson, A. et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.
https://www.nature.com/articles/s41597-019-0322-0 (2019).

34. Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L. A. & Mark, R. Mimic-iv. PhysioNet. Available online at:
https://physionet. org/content/mimiciv/1.0/(accessed August 23, 2021) (2020).

35. Johnson, A., Pollard, T. & Mark, R. MIMIC-III clinical database 2020.

36. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N. & Wu, Y. Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410 (2016).

37. Khamisa, N., Peltzer, K. & Oldenburg, B. Burnout in relation to specific contributing factors and health outcomes among
nurses: a systematic review. International journal of environmental research and public health 10, 2214–2240 (2013).

38. Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
Journal of chiropractic medicine 15, 155–163 (2016).

39. Lampinen, A. K., Dasgupta, I., Chan, S. C., Matthewson, K., Tessler, M. H., Creswell, A., McClelland, J. L., Wang, J. X.
& Hill, F. Can language models learn from explanations in context? arXiv preprint arXiv:2204.02329 (2022).

40. Lehman, E., Hernandez, E., Mahajan, D., Wulff, J., Smith, M. J., Ziegler, Z., Nadler, D., Szolovits, P., Johnson, A. &
Alsentzer, E. Do We Still Need Clinical Language Models? arXiv preprint arXiv:2302.08091 (2023).

41. Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar, A.,
et al. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110 (2022).

42. Lin, C.-Y. Rouge: A package for automatic evaluation of summaries in Text summarization branches out (2004), 74–81.

43. Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J. & Roberts, A. The
Flan Collection: Designing Data and Methods for Effective Instruction Tuning 2023. arXiv: 2301.13688 [cs.AI].

44. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).

45. Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y. & Paul, S. PEFT: State-of-the-art Parameter-Efficient Fine-Tuning
methods https://github.com/huggingface/peft. 2022.

46. Mathur, Y., Rangreji, S., Kapoor, R., Palavalli, M., Bertsch, A. & Gormley, M. R. SummQA at MEDIQA-Chat 2023:
In-Context Learning with GPT-4 for Medical Summarization. arXiv preprint arXiv:2306.17384 (2023).

47. Nie, F., Chen, M., Zhang, Z. & Cheng, X. Improving few-shot performance of language models via nearest neighbor
calibration. arXiv preprint arXiv:2212.02216 (2022).

48. Okazaki, N. & Tsujii, J. Simple and efficient algorithm for approximate dictionary matching in Proceedings of the 23rd
International Conference on Computational Linguistics (Coling 2010) (2010), 851–859.

49. OpenAI. ChatGPT Accessed: 2023-09-04. 2022. https://openai.com/blog/chatgpt.

50. OpenAI. GPT-4 Technical Report 2023. arXiv: 2303.08774 [cs.CL].

51. Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation in
Proceedings of the 40th annual meeting of the Association for Computational Linguistics (2002), 311–318.

52. Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Baccus, S., Bengio, Y., Ermon, S. & Ré, C. Hyena hierarchy:
Towards larger convolutional language models. arXiv preprint arXiv:2302.10866 (2023).

53. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. & Liu, P. J. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research 21, 5485–5551 (2020).

54. Ratwani, R. M., Savage, E., Will, A., Arnold, R., Khairat, S., Miller, K., Fairbanks, R. J., Hodgkins, M. & Hettinger, A. Z. A
usability and safety analysis of electronic health records: a multi-center study. Journal of the American Medical Informatics
Association 25, 1197–1201 (2018).

55. Robinson, K. E. & Kersey, J. A. Novel electronic health record (EHR) education intervention in large healthcare organization
improves quality, efficiency, time, and impact on burnout. Medicine 97 (2018).

56. Saravia, E. Prompt Engineering Guide. https://github.com/dair-ai/Prompt-Engineering-Guide (Dec. 2022).

57. Shanafelt, T. D., Dyrbye, L. N., Sinsky, C., Hasan, O., Satele, D., Sloan, J. & West, C. P. Relationship between clerical
burden and characteristics of the electronic environment with physician burnout and professional satisfaction in Mayo
Clinic Proceedings 91 (2016), 836–848.

58. Shi, T., Keneshloo, Y., Ramakrishnan, N. & Reddy, C. K. Neural abstractive text summarization with sequence-to-sequence
models. ACM Transactions on Data Science 2, 1–37 (2021).

59. Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
et al. Large Language Models Encode Clinical Knowledge. arXiv preprint arXiv:2212.13138 (2022).

60. Sinsky, C., Colligan, L., Li, L., Prgomet, M., Reynolds, S., Goeders, L., Westbrook, J., Tutty, M. & Blike, G. Allocation of
physician time in ambulatory practice: a time and motion study in 4 specialties. Annals of internal medicine 165, 753–760
(2016).

61. Soldaini, L. & Goharian, N. Quickumls: a fast, unsupervised approach for medical concept extraction in MedIR workshop,
sigir (2016), 1–4.

62. Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H. & Rush, A. M. Interactive and visual prompt
engineering for ad-hoc task adaptation with large language models. IEEE transactions on visualization and computer
graphics 29, 1146–1156 (2022).

63. Tang, L., Sun, Z., Idnay, B., Nestor, J. G., Soroush, A., Elias, P. A., Xu, Z., Ding, Y., Durrett, G., Rousseau, J. F., et al.
Evaluating large language models on medical evidence summarization. npj Digital Medicine 6, 158 (2023).

64. Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P. & Hashimoto, T. B. Stanford Alpaca: An
Instruction-following LLaMA model https://github.com/tatsu-lab/stanford_alpaca. 2023.

65. Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Wei, J., Wang, X., Chung, H. W., Bahri, D., Schuster, T., Zheng, S., et al.
Ul2: Unifying language learning paradigms in The Eleventh International Conference on Learning Representations (2022).

|11



66. Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F. & Ting, D. S. W. Large language models
in medicine. Nature Medicine, 1–11 (2023).

67. Toma, A., Lawler, P. R., Ba, J., Krishnan, R. G., Rubin, B. B. & Wang, B. Clinical Camel: An Open-Source Expert-Level
Medical Language Model with Dialogue-Based Knowledge Encoding. arXiv preprint arXiv:2305.12031 (2023).

68. Toussaint, W., Van Veen, D., Irwin, C., Nachmany, Y., Barreiro-Perez, M., Díaz-Peláez, E., de Sousa, S. G., Millán, L.,
Sánchez, P. L., Sánchez-Puente, A., et al. Design considerations for high impact, automated echocardiogram analysis. arXiv
preprint arXiv:2006.06292 (2020).

69. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S.,
et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

70. Tu, T., Azizi, S., Driess, D., Schaekermann, M., Amin, M., Chang, P.-C., Carroll, A., Lau, C., Tanno, R., Ktena, I., et al.
Towards generalist biomedical ai. arXiv preprint arXiv:2307.14334 (2023).

71. Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).

72. Van Veen, D., Van Uden, C., Attias, M., Pareek, A., Bluethgen, C., Polacin, M., Chiu, W., Delbrouck, J.-B., Chaves, J. M. Z.,
Langlotz, C. P., et al. RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language
Models. arXiv preprint arXiv:2305.01146 (2023).

73. Wang, J., Shi, E., Yu, S., Wu, Z., Ma, C., Dai, H., Yang, Q., Kang, Y., Wu, J., Hu, H., et al. Prompt engineering for
healthcare: Methodologies and applications. arXiv preprint arXiv:2304.14670 (2023).

74. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al.
Transformers: State-of-the-art natural language processing in Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations (2020), 38–45.

75. Wornow, M., Xu, Y., Thapa, R., Patel, B., Steinberg, E., Fleming, S., Pfeffer, M. A., Fries, J. & Shah, N. H. The shaky
foundations of large language models and foundation models for electronic health records. npj Digital Medicine 6, 135
(2023).

76. Yackel, T. R. & Embi, P. J. Unintended errors with EHR-based result management: a case series. Journal of the American
Medical Informatics Association 17, 104–107 (2010).

77. Yim, W., Ben Abacha, A., Snider, N., Adams, G. & Yetisgen, M. Overview of the MEDIQA-Sum Task at ImageCLEF
2023: Summarization and Classification of Doctor-Patient Conversations in CLEF 2023 Working Notes (CEUR-WS.org,
Thessaloniki, Greece, Sept. 2023).

78. Yim, W.-w., Fu, Y., Abacha, A. B., Snider, N., Lin, T. & Yetisgen, M. ACI-BENCH: a Novel Ambient Clinical Intelligence
Dataset for Benchmarking Automatic Visit Note Generation. arXiv preprint arXiv:2306.02022 (2023).

79. Yu, F., Endo, M., Krishnan, R., Pan, I., Tsai, A., Reis, E. P., Fonseca, E., Lee, H., Shakeri, Z., Ng, A., et al. Radiology
Report Expert Evaluation (ReXVal) Dataset 2023.

80. Zhang*, T., Kishore*, V., Wu*, F., Weinberger, K. Q. & Artzi, Y. BERTScore: Evaluating Text Generation with BERT in
International Conference on Learning Representations (2020). https://openreview.net/forum?id=SkeHuCVFDr.

81. Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223 (2023).

82. Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
LLM-as-a-judge with MT-Bench and Chatbot Arena. arXiv preprint arXiv:2306.05685 (2023).

|12



Methods

Large language models

We investigated a diverse collection of transformer-based LLMs for clinical summarization tasks. This included
two broad approaches to language generation: sequence-to-sequence (seq2seq) models and autoregressive
models. Seq2seq models use an encoder-decoder architecture to map the input text to a generated output,
often requiring paired datasets for training. These models have shown strong performance in machine
translation [11] and summarization [58]. In contrast, the autoregressive models typically only use a decoder.
They generate tokens sequentially—where each new token is conditioned on previous tokens—thus efficiently
capturing context and long-range dependencies. Autoregressive models are typically trained with unpaired
data, and they are particularly useful for NLP tasks such as text generation, question-answering, and dialogue
interactions [7, 13].

We included prominent seq2seq models due to their strong summarization performance [58] and autoregressive
models due to their state-of-the-art performance across general NLP tasks [82]. As shown in Table 2, our
choice of models varied widely with respect to number of parameters (2.7 billion to 175 billion) and context
length (512 to 32,000), i.e. the maximum number of input tokens a model can process. We organized our
models into three categories:

Open-source seq2seq models. The original T5 “text-to-text transfer transformer” model [53] demonstrated
excellent performance in transfer learning using the seq2seq architecture. A derivative model, FLAN-T5 [14,
43], improved performance via instruction prompt tuning. This T5 model family has proven effective for
various clinical NLP tasks [40, 72]. The FLAN-UL2 model [15, 65] was introduced recently, which featured an
increased context length (four-fold that of FLAN-T5) and a modified pre-training procedure called unified
language learning (UL2).

Open-source autoregressive models. The Llama family of LLMs [69] has enabled the proliferation of
open-source instruction-tuned models that deliver comparable performance to GPT-3 [7] on many benchmarks
despite their smaller sizes. Descendants of this original model have taken additional fine-tuning approaches,
such as fine-tuning via instruction following (Alpaca [64]), medical Q&A data (Med-Alpaca [31]), user-shared
conversations (Vicuna [13]), and reinforcement learning from human feedback (Llama-2 [69]). Llama-2 allows
for two-fold longer context lengths (4,096) relative to the aforementioned open-source autoregressive models.

Our focus was primarily on the 7B-parameter tier of these models, despite some models such as Llama-2
having larger versions. The benefit of larger models is explored in Figure A1, which found this improvement
marginal for Llama-2 (13B) compared to Llama-2 (7B). While other open-source models might have slightly
outperformed our selections, this likely wouldn’t have significantly changed our analysis—especially since the
clinical reader study employed a state-of-the-art proprietary model [82].

Proprietary autoregressive models. We include GPT-3.5 [49] and GPT-4 [50], the latter of which is
widely regarded as state-of-the-art on general NLP tasks [82]. Both models offer significantly higher context

Table 2 | We quantitatively evaluate eight models, including state-of-the-art sequence-to-sequence and autoregressive models.

Unless specified, models are open-source (vs. proprietary).

Model Context Parameters Proprietary? Seq2seq Autoreg.
FLAN-T5 512 2.7B - ✔

FLAN-UL2 2,048 20B - ✔

Alpaca 2,048 7B - - ✔

Med-Alpaca 2,048 7B - - ✔

Vicuna 2,048 7B - - ✔

Llama-2 4,096 7B, 13B - - ✔

GPT-3.5 16,384 175B ✔ - ✔

GPT-4 32,768 unknown ✔ - ✔
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length (16,384 and 32,768) than open-source models.

Adaptation methods

We considered two proven techniques for adapting pre-trained general-purpose LLMs to domain-specific
clinical summarization tasks:

In-context learning (ICL). ICL is a lightweight adaptation method that requires no altering of model
weights; instead, one includes a handful of in-context examples directly within the model prompt [39]. This
simple approach provides the model with context, enhancing LLM performance for a particular task or
domain [46, 72]. We implemented this by choosing, for each sample in our test set, the m nearest neighbors
training samples in the embedding space of the PubMedBERT model [16]. Note that choosing “relevant”
in-context examples has been shown to outperform choosing examples at random [47]. For a given model
and dataset, we used m = 2x examples, where x ∈ {0, 1, 2, 3, ...,M} for M such that no more than 1% of the
s = 250 samples were excluded due to prompts exceeding the model’s context length. Hence each model’s
context length limited the allowable number of in-context examples.

To demonstrate the benefit of adaptation methods, we included the baseline zero-shot prompting, i.e. m = 0
in-context examples.

Quantized low-rank adaptation (QLoRA). Low-rank adaptation (LoRA) [32] has emerged as an effective,
lightweight approach for fine-tuning LLMs by altering a small subset of model weights—often < 0.1% [72].
LoRA inserts trainable matrices into the attention layers; then, using a training set of samples, this method
performs gradient descent on the inserted matrices while keeping the original model weights frozen. Compared
to training model weights from scratch, LoRA is much more efficient with respect to both computational
requirements and the volume of training data required. Recently, QLoRA [20] has been introduced as a more
memory-efficient variant of LoRA, employing 4-bit quantization to enable the fine-tuning of larger LLMs
given the same hardware constraints. This quantization negligibly impacts performance [20]; as such, we use
QLoRA for all model training. Note that QLoRA could not be used to fine-tune proprietary models on our
consumer hardware, as their model weights are not publicly available.

Data

To robustly evaluate LLM performance on clinical text summarization, we chose four distinct summarization
tasks, comprising six open-source datasets. As depicted in Table 3, each dataset contained a varying number
of samples, token lengths, and lexical variance. Lexical variance is calculated as number of unique words

number of total words
across

the entire dataset; hence a higher ratio indicates less repetition and more lexical diversity. We describe each
task and dataset below. For examples of each task, please see Figures 5, A4, A5, A6, and A7.

Radiology reports Radiology report summarization takes as input the findings section of a radiology study
containing detailed exam analysis and results. The goal is to summarize these findings into an impression
section, which concisely captures the most salient, actionable information from the study. We considered
three datasets for this task, where both reports and findings were created by attending physicians as part

Table 3 | Description of four distinct summarization tasks comprising six open-source datasets with a wide range of token length

and lexical variance, i.e. number of unique words

number of total words
.

Number Avg. number of tokens Lexical
Task (Dataset) Task description of samples Input Target variance
Radiol. reports (Open-i) findings → impression 3.4K 52 ± 22 14 ± 12 0.11
Radiol. reports (MIMIC-CXR) findings → impression 128K 75 ± 31 22 ± 17 0.08
Radiol. reports (MIMIC-III) findings → impression 67K 160 ± 83 61 ± 45 0.09
Patient questions (MeQSum) verbose → short question 1.2K 83 ± 67 14 ± 6 0.21
Progress notes (ProbSum) notes → problem list 755 1,013 ± 299 23 ± 16 0.15
Dialogue (ACI-Bench) dialogue → assessment 126 1,512 ± 467 211 ± 98 0.04
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of routine clinical care. Open-i [19] contains de-identified narrative chest x-ray reports from the Indiana
Network for Patient Care 10 database. From the initial set of 4K studies, Demner-Fushman et al. [19] selected
a final set of 3.4K reports based on the quality of imaging views and diagnostic content. MIMIC-CXR [33]
contains chest x-ray studies accompanied by free-text radiology reports acquired at the Beth Israel Deaconess
Medical Center between 2011 and 2016. For this study, we used a dataset of 128K reports [12] preprocessed
by the RadSum23 shared task at BioNLP 2023 [17, 18]. MIMIC-III [34] contains 67K radiology reports
spanning seven anatomies (head, abdomen, chest, spine, neck, sinus, and pelvis) and two modalities: magnetic
resonance imaging (MRI) and computed tomography (CT). This dataset originated from patient stays in
critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. For this study, we
utilized a preprocessed version via RadSum23 [17, 18]. Compared to x-rays, MRIs and CT scans capture
more information at a higher resolution. This usually leads to longer reports (Table 3), rendering MIMIC-III
a more challenging summarization dataset than Open-i or MIMIC-CXR.

Patient questions Question summarization consists of generating a condensed question expressing the
minimum information required to find correct answers to the original question [4]. For this task, we employed
the MeQSum dataset [4]. MeQSum contains (1) patient health questions of varying verbosity and coherence
selected from the U.S. National Library of Medicine (2) corresponding condensed questions created by three
medical experts such that the summary allows retrieving complete, correct answers to the original question
without the potential for further condensation. These condensed questions were then validated by two
physicians and verified to have high inter-annotator agreement. Due to the wide variety of these questions,
MeQSum exhibited the highest lexical variance of our datasets (Table 3).

Progress notes The goal of this task is to generate a “problem list,” or condensed list of diagnoses and medical
problems using the provider’s progress notes during hospitalization. For this task, we employed the ProbSum
dataset [26]. This dataset was extracted from the MIMIC-III database of de-identified hospital intensive
care unit (ICU) admissions. ProbSum contains (1) progress notes averaging > 1, 000 tokens and substantial
presence of unlabeled numerical data, e.g. dates and test results (2) corresponding problem lists created by
attending medical experts in the ICU. We accessed this data via the BioNLP Problem List Summarization
shared task [18, 26, 27] and Physionet [35].

Dialogue The goal of this task is to summarize a doctor-patient conversation into an “assessment and plan”
paragraph. For this task, we employed the ACI-Bench dataset [1, 77, 78], which contains (1) 207 doctor-
patient conversations (2) corresponding patient visit notes, which were first generated by a seq2seq model and
subsequently corrected and validated by expert medical scribes and physicians. Since ACI-Bench’s visit notes
include a heterogeneous collection of section headers, we chose 126 samples containing an “assessment and
plan” section for our analysis. Per Table 3, this task entailed the largest token count across our six datasets
for both the input (dialogue) and target (assessment).

Experimental Setup

For each dataset, we constructed test sets by randomly drawing the same s samples, where s = 250 for all
datasets except dialogue (s = 100), which included only 126 samples in total. After selecting these s samples,
we chose another s as a validation set for datasets which incorporated fine-tuning. We then used the remaining
samples as a training set for ICL examples or QLoRA fine-tuning.

We leveraged PyTorch for our all our experiments, which included the parameter-efficient fine-tuning [45] and
the generative pre-trained transformers quantization [25] libraries for implementing QLoRA. We fine-tuned
models with QLoRA for five epochs using the Adam optimizer with weight decay fix [44]. An initial learning
rate of 1e−3 was decayed linearly to 1e−4 after a 100-step warm-up; we determined this configuration after
experimenting with different learning rates and schedulers. To achieve an effective batch size of 24 on each
experiment, we adjusted both individual batch size and number of gradient accumulation steps to fit on a single
consumer GPU, a NVIDIA Quadro RTX 8000. All open-source models are available on HuggingFace [74].
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Quantitative metrics

We used well-known summarization metrics to assess the quality of generated summaries. BLEU [51], the
simplest metric, calculates the degree of overlap between the reference and generated texts by considering 1- to
4-gram sequences. ROUGE-L [42] evaluates similarity based on the longest common subsequence; it considers
both precision and recall, hence being more comprehensive than BLEU. In addition to these syntactic metrics,
we employed BERTScore, which leverages contextual BERT embeddings to evaluate the semantic similarity
of the generated and reference texts [80]. Lastly, we included MEDCON [78] to gauge the consistency of
medical concepts. This employs QuickUMLS [61], a tool that extracts biomedical concepts via string matching
algorithms [48]. MEDCON was restricted to relvant UMLS semantic groups (Anatomy, Chemicals & Drugs,
Device, Disorders, Genes & Molecular Sequences, Phenomena and Physiology). All four metrics ranged from
[0, 100] with higher scores indicating higher similarity between the generated and reference summaries.

Reader study

After identifying the best model and method via NLP quantitative metrics, we performed a clinical reader
study across three summarization tasks: radiology reports, patient questions, and progress notes. The dialogue
task was excluded due to the unwieldiness of a human reader parsing many lengthy transcribed conversations
and paragraphs; see Figure A7 for an example and Table 3 for the token count.

Our readers included two sets of physicians: (1) five board-certified radiologists to evaluate summaries of
radiology reports (2) five board-certified hospitalists (internal medicine physicians) to evaluate summaries of
patient questions and progress notes. For each task, each physician viewed the same 100 randomly selected
inputs and their A/B comparisons (human vs. model summaries), which were presented in a blinded and
randomized order. An ideal summary would contain all clinically significant information (completeness)
without any errors (correctness) or superfluous information (conciseness). Hence we posed the following three
questions for readers to evaluate using a five-point Likert scale.

• Completeness: “Which summary more completely captures important information?” This compares
the summaries’ recall, i.e. the amount of clinically significant detail retained from the input text.

• Correctness: “Which summary includes less false information?” This compares the summaries’ precision,
i.e. instances of false information due to hallucination by the model or an error by the human expert.

• Conciseness: “Which summary contains less non-important information?” This compares which
summary is more condensed, as the value of a summary decreases with superfluous information.

Figure 4c demonstrates the user interface for this study, which we created and deployed via Qualtrics.

Given this non-parametric, categorical data, we assessed the statistical significance of responses using a
Wilcoxon signed-rank test with Type 1 error rate = 0.05, adjusted for multiple comparisons using the Bonferroni
correction. We estimated intra-reader correlation based on a mean-rating, fixed agreement, two-may mixed
effects model [38] using the Pingouin package [71]. Additionally, readers provided comments on notable
samples to identify interesting observations for qualitative analysis.

To obfuscate any formatting differences between the human and model summaries, we applied simple
post-processing to standardize capitalization, punctuation, newline characters, etc.

Connecting quantitative and clinical evaluations

We now outline our calculation of correlation values between NLP metrics and clinical reader scores in Figure 6.
Note that in our work, these tools measured different quantities: NLP metrics measured the similarity between
two summaries, while reader scores measured which summary is better. Consider an example where two
summaries are exactly the same: NLP metrics would yield the highest possible score (100), while clinical
readers would provide a score of 0 to denote equivalence. As the magnitude of a reader score increases, the two
summaries are increasingly dissimilar, yielding a lower quantitative metric score. Hence, the correlation values
are calculated as the Spearman correlation coefficients between NLP metric scores and the magnitudes of
the reader scores. Since these features are inversely correlated, for clarity we display the negative correlation
coefficient values.
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Appendix

Table A1 | Instructions for each of the four summarization tasks. For full prompt, see Figure 2.

Task Instruction

Radiology reports
“Summarize the radiology report findings
into an impression with minimal text.”

Patient questions
“Summarize the patient health query
into one question of 15 words or less.”

Progress notes
“Based on the progress note, generate a list of 3-7 prob-
lems (a few words each) ranked in order of importance.”

Dialogue
“Summarize the patient/doctor dialogue
into an assessment and plan.”
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Figure A1 | Comparing Llama-2 (7B) vs. Llama-2 (13B). The dashed line denotes equivalence, and each data point corresponds

to the average score of s = 250 samples for a given experimental configuration, i.e. {dataset × m in-context examples}.
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Figure A2 | Summarization performance comparing one in-context example (ICL) vs. QLoRA across all open-source models on

patient health questions. Figure 3b contains similar results with the Open-i radiology report dataset.
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Table A2 | Reader study results evaluating completeness, correctness, conciseness (columns) across individual readers. Scores

are on the range [-10, 10], where positive scores denote GPT-4 is preferred to the human reference. Intensity of highlight colors

blue (GPT-4 wins) or red (human wins) correspond to the score. See Figure 4 for further details and p-values.

Task Reader Completeness Correctness Conciseness

1 3.5 ± 5.6 1.7 ± 3.6 1.2 ± 4.8

2 3.6 ± 6.6 2.5 ± 4.7 -0.3 ± 5.4

Radiology 3 0.8 ± 2.9 0.6 ± 3.2 -1.7 ± 3.0

reports 4 4.7 ± 4.7 2.9 ± 3.9 1.2 ± 3.8

5 1.4 ± 4.0 0.6 ± 2.2 -0.6 ± 3.4

Pooled 2.8 ± 5.1 1.7 ± 3.7 0.0 ± 4.3

1 1.9 ± 7.1 0.8 ± 3.3 0.3 ± 3.0

2 1.0 ± 5.6 -0.1 ± 3.6 0.1 ± 3.6

Patient 3 2.3 ± 7.2 2.0 ± 5.3 2.2 ± 5.9

questions 4 1.9 ± 6.7 0.0 ± 0.0 0.0 ± 0.0

5 0.9 ± 5.7 0.4 ± 3.6 0.4 ± 3.6

Pooled 1.6 ± 6.5 0.6 ± 3.7 0.6 ± 3.9

1 3.4 ± 7.5 0.5 ± 2.5 0.1 ± 4.5

2 2.3 ± 6.5 0.6 ± 4.4 0.4 ± 4.2

Progress 3 2.7 ± 6.3 1.0 ± 4.4 0.9 ± 3.7

notes 4 2.5 ± 7.2 0.5 ± 6.8 1.7 ± 6.9

5 2.0 ± 6.8 -0.8 ± 4.5 -0.1 ± 1.2

Pooled 2.6 ± 6.9 0.4 ± 4.8 0.6 ± 4.5

Table A3 | Intra-reader correlation values on a range of [−1, 1] where −1, 0, and +1 correspond to negative, no, and positive

correlations, respectively.

Task Completeness Correctness Conciseness

Radiology reports 0.45 0.58 0.48

Patient questions 0.67 0.31 0.21

Progress notes 0.77 0.74 0.42

Overall 0.63 0.56 0.38
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Input:
Where on site does it tell how diabetes and neuropathy causes other things 
like neck and knee pain and other ailments

Summary (human expert):
How can I get tested and treated for trimethylaminuria?

Summary (GPT-4):
What tests are available for trimethylaminuria and where can I get tested?

Input:
Hello, I have been dealing with trimethylaminuria since I was a child. I have 
done some of my own research and it looks like not much can be done for 
this condition. I do not have it all over my body it’s only in my armpits. In the 
past I’ve gone to doctors and dermatologist they gave me no answers until 
I looked online today and finally found out what I have. I don’t know maybe 
I’m wrong. But this disease isn’t even consider common because no one 
has done anything about it. I’m sure they’re thousands of women with it... 
Can I be tested for it and help in some kind of way to finding a cure or 
something?  What testing is done for this?  And where? Thank you

Example 2: GPT-4 performed worse because it did not interpret the patient's implied intention (purple).

Example 1: GPT-4 performed better because it summarized the question more specifically (green).

Summary (human expert):
What can diabetic neuropathy lead to?

Summary (GPT-4):
How does diabetes and neuropathy cause neck and knee pain?

Attribute Average Example 1 Example 2

Completeness 1.6 3 -4

Correctness 0.6 1 -2

Conciseness 0.6 1 -1

Patient questions

Blue: correct; exists in input + human + GPT-4
Purple: correct; exists in input + human only
Green: correct; exists in input + GPT-4 only
Orange: incoherent or filler
Red: incorrect

Color key: Reader scores: 

Figure A4 | Annotation of two patient health question examples from the reader study. The table (lower left) contains reader

scores for these two examples and the task average across all samples.

Example 1: GPT-4 performed better because human missed (green) and mistakenly included (red) some conditions.

Attribute Average Example 1

Completeness 2.6 8

Correctness 0.4 6

Conciseness 0.6 2

Summary (human expert):
GI bleed; CAD; UTI ; HTN; Osteoporosis

Summary (GPT-4):
Gastrointestinal bleed; Hypotension; Anemia; CAD; 
COPD; Osteoporosis

Color key: 

Blue: correct; exists in input + human + GPT-4
Purple: correct; exists in input + human only
Green: correct; exists in input + GPT-4 only
Orange: incoherent or filler
Red: incorrect

Reader scores: 

Progress notes

Input:
<ASSESSMENT> 
Ms. [**Known lastname 12031**] is a [**Age over 90 **] yo 
female with HTN, CAD s/p CABG, osteoporosis, COPD, 
here with painless lower GI bleeding and active 
extravasation from branch of middle colic artery on CTA now 
s/p angiographic coiling of middle colic artery branch. 

<SUBJECTIVE> 
UOP low, gave 500cc NS bolus doing very well clinically 
track serial hcts still having bloody bowel movements as 
expected if hct stable likely plan for scope 2am hct dropped 
to 29 from 35 [**Doctor First Name 91**] - give 2 units and 
recheck 1 hr after 2nd unit, 3-4 hours Lactose Intolerance 
(Oral) (Lactase) Unknown; Codeine Nausea/Vomiting 
Bactrim Ds (Oral) (Sulfamethoxazole/Trimethoprim) 
Unknown; Changes to and f Review of systems is 
unchanged from admission except as noted below 

Review of systems: 
<OBJECTIVE> 
Last dose of Antibiotics: Ciprofloxacin - [**2196-3-31**] 12:29 
AM 
Infusions: Other ICU medications: Pantoprazole (Protonix) - 
[**2196-3-30**] 08:20 PM 
Other medications: Flowsheet Data as of  [**2196-3-31**] 
06:40 AM 
Vital signs Hemodynamic monitoring Fluid balance 24 hours 
Since [**98**] AM 
Tmax: 36.3 C (97.3 Tcurrent: 36.3 C (97.3 
HR: 79 (79 - 92) bpm 
BP: 115/45(62) {93/32(48) - 126/85(96)} mmHg 
RR: 19 (18 - 29) insp/min 
SpO2: 95% 
Heart rhythm: SR (Sinus Rhythm) 
Height: 62 Inch 
Total In: 3,554 mL 2,328 mL 
PO: TF: IVF: 179 mL 1,698 mL 
Blood products: 375 mL 630 mL 

Total out: 230 mL 191 mL 
Urine: 230 mL 191 mL 
NG: Stool: Drains: 
Balance: 3,324 mL 2,137 mL 
Respiratory support O2 Delivery Device: None 
SpO2: 95% 
ABG: ///27/ 

General: Alert, oriented, no acute distress 
HEENT: Sclera anicteric, dry MM, oropharynx clear, dentures 
on upper teeth 
Neck: supple, JVP not elevated, no LAD 
Lungs: Clear to auscultation bilaterally, no wheezes, rales, 
rhonchi 
CV: Regular rate and rhythm, normal S1 + S2, II/VI SEM 
LUSB, well-healed thoracotomy scar 
Abdomen: soft, non-tender, very mildly distended, 
hyperactive bowel sounds, no rebound tenderness or 
guarding, no organomegaly appreciated 
Ext: upper extremities WWP, 2+ pulses; LE cool with weak 
but palpable distal pulses 
107 K/uL 12.6 g/dL 139 mg/dL 0.5 mg/dL 27 mEq/L 4.4 
mEq/L 13 mg/dL 107 mEq/L 139 mEq/L 29.7 % 10.7 K/uL 
image002.jpg] [**2196-3-30**] 03:10 PM [**2196-3-30**] 
09:25 PM [**2196-3-31**] 01:54 AM 

WBC 10.7 
Hct 30 35.9 29.7 
Plt 107 
Cr 0.5 
Glucose 139 

Other labs: PT / PTT / INR:13.5/28.2/1.2, ALT / AST:14/23, 
Alk Phos / T Bili:43/2.0, Lactic Acid:1.1 mmol/L, Albumin:3.0 
g/dL, LDH:223 IU/L, Ca++:7.8 mg/dL, Mg++:1.7 mg/dL, 
PO4:3.9 mg/dL

Figure A5 | Annotation of a progress notes summarization example evaluated in the reader study. The table (lower right)

contains reader scores for this example and the task average across all samples.
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Example 2: GPT-4 performed worse because it missed (purple) and hallucinated (red) several conditions.

Attribute Average Example 2

Completeness 2.6 -5

Correctness 0.4 -7

Conciseness 0.6 -3

Summary (human expert):
S P Ex Plant; Acute Hypoxemic Respiratory Failure; 
pulmonary edema; Hep C cirrhosis; Diabetes

Summary (GPT-4):
Hypoxia; Acute on chronic systolic and diastolic HF; 
Hypertension; Thrombocytopenia; Anemia; DM Type I; 
Eosinophilia

Color key: 

Blue: correct; exists in input + human + GPT-4
Purple: correct; exists in input + human only
Green: correct; exists in input + GPT-4 only
Orange: incoherent or filler
Red: incorrect

Reader scores: 

Progress notes

Input:
<ASSESSMENT> 
9yo woman with HCV cirrhosis s/p TIPS [**2153**] (MELD 15), with ESBL E. Coli 
of R hip, transferred to the MICU in the setting of progressive hypoxia now P.O.D. 
#3 for R ex-plant 

<SUBJECTIVE> 
Intraop hip cx: Coag neg Staph: Per ID, continue [**Last Name (un) **] and Vanc. 
Follow vanco levels (holding now [**1-7**] elevated trough) 
- Weaned vent settings. On [**4-10**] all night. ABG to be obtained. 
- TF held in case extubation 
- Changed Insulin gtt to glargine with HISS 
- Decreased steroids to 25 IV q12 
- Transfused 3 bags platelets to keep >50 
- Increased free water flushes for Hypernatremia 
- Alkalosis stable, given Lasix 80mg IV x 1 in afternoon, 40IV this AM 
- Shellfish Rash; Flexeril (Oral) (Cyclobenzaprine Hcl) 
- Hepatic toxicit Tricyclic Compounds Unknown; f 
- Review of systems is unchanged from admission except as noted below 
- Review of systems: None 

<OBJECTIVE> 
Last dose of Antibiotics: 
- Vancomycin - [**2158-9-21**] 08:14 PM 
- Meropenem - [**2158-9-23**] 04:00 AM 

Infusions: 
- Other ICU medications: 
  - Midazolam (Versed) - [**2158-9-22**] 05:05 AM 
  - Furosemide (Lasix) - [**2158-9-22**] 12:36 PM 
  - Fentanyl - [**2158-9-23**] 02:00 AM 

Other medications: 
- Flowsheet Data as of [**2158-9-23**] 04:31 AM 
- Vital signs 
- Hemodynamic monitoring 
- Fluid balance 24 hours Since 12 AM 

Tmax: 37.2 C (99 Tcurrent: 36.7 C (98.1 
- HR: 86 (71 - 105) bpm 
- BP: 149/70(99) {120/56(78) - 174/86(122)} mmHg 
- RR: 16 (13 - 26) insp/min 
- SpO2: 98% 
- Heart rhythm: SR (Sinus Rhythm) 
- Height: 62 Inch 
- CVP: 4 (2 - 15)mmHg 
- Total In: 2,394 mL 497 mL 
- PO: TF: 965 mL 177 mL 
- IVF: 505 mL 100 mL 
- Blood products: 354 mL 
- Total out: 2,650 mL 145 mL 
- Urine: 2,300 mL 145 mL
- NG: Stool: 100 mL 

- Drains: 250 mL 
- Balance: -256 mL 352 mL 

Respiratory support 
- O2 Delivery Device: Endotracheal tube 
- Ventilator mode: CPAP/PSV 
- Vt (Spontaneous): 504 (425 - 539) mL 
- PS : 5 cmH2O 
- RR (Spontaneous): 16 
- PEEP: 5 cmH2O 
- FiO2: 40% 
- RSBI: 38 
- PIP: 11 cmH2O 
- SpO2: 98% 
- ABG: 7.50/53/95.[**Numeric Identifier 218**]/40/15 
- Ve: 8.1 L/min 
- PaO2 / FiO2: 238 

General: 
- Intubated, Sedated, opens eyes, awakens to voice, following commands 
- HEENT: PEERL, Sclera icteric, MMM 
- Neck: Supple. JVP 7-8cm 
- Resp: Improving exam with coarse BS bilaterally and decreased scattered exp 
wheezes bilaterally 
- Card: S1S2 2/6 systolic ejection murmur 
- Abd: Soft, non-tender, distended, hypoactive BS 
- Extr: [**1-8**]+ Lower and Upper extremity edema; Multiple ecchymoses on UEs. 
R hip VAC in place. RLE hematoma stable 
- 38 K/uL 9.4 g/dL 216 mg/dL 0.5 mg/dL 40 mEq/L 3.5 mEq/L 34 mg/dL 104 mEq/L 
146 mEq/L 26.2 % 7.3 K/uL 
- WBC 8.8 7.6 7.3 
- Hct 24.4 26.5 26.4 25.5 25.0 26.2 
- Plt 66 60 45 66 40 38 
- Cr 0.6 0.5 0.5 0.5 
- TCO2 41 43 43 
- Glucose 104 122 200 216 

Other labs: 
- PT / PTT / INR:23.3/36.9/2.3, 
- CK / CKMB / Troponin-T:128//, 
- ALT / AST:31/49, 
- Alk Phos / T Bili:113/4.2, 
- Amylase / Lipase:25/21, 
- Differential-Neuts:91.0 %, Lymph:5.6 %, Mono:3.3 %, Eos:0.0 %, 
- Fibrinogen:107 mg/dL, 
- Lactic Acid:1.6 mmol/L, 
- Albumin:3.4 g/dL, 
- LDH:357 IU/L, 
- Ca++:9.4 mg/dL, 
- Mg++:2.1 mg/dL, 
- PO4:2.6 mg/dL

Figure A6 | Annotation of a progress notes summarization example evaluated in the reader study. The table (lower right)

contains reader scores for this example and the task average across all samples.

Input:
[DOCTOR] hi , [PATIENT] , how are you ? [PATIENT] hi . good to see you . [DOCTOR] it's good to see you as well . so i know that the nurse 
told you about dax . i'd like to tell dax a little bit about you . [PATIENT] sure . [DOCTOR] okay ? so , [PATIENT] is a 62-year-old male with a 
past medical history significant for a kidney transplant , hypothyroidism , and arthritis , who presents today with complaints of joint pain . 
[PATIENT] , what's going on with your joint ? what happened ? [PATIENT] uh , so , over the the weekend , we've been moving boxes up and 
down our basements stairs , and by the end of the day my knees were just killing me . [DOCTOR] okay . is , is one knee worse than the 
other ? [PATIENT] equally painful . [DOCTOR] okay . [PATIENT] both of them . [DOCTOR] and did you , did you injure one of them ? 
[PATIENT] um , uh , i've had some knee problems in the past but i think it was just the repetition and the weight of the boxes . [DOCTOR] 
okay . all right . and , and what have you taken for the pain ? [PATIENT] a little tylenol . i iced them for a bit . nothing really seemed to help , 
though . [DOCTOR] okay . all right . um , and does it prevent you from doing , like , your activities of daily living , like walking and exercising 
and things like that ? [PATIENT] uh , saturday night it actually kept me up for a bit . they were pretty sore . [DOCTOR] mm-hmm . okay . and 
any other symptoms like fever or chills ? [PATIENT] no . [DOCTOR] joint pain ... i mean , like muscle aches ? [PATIENT] no . [DOCTOR] 
nausea , vomiting , diarrhea ? [PATIENT] no . [DOCTOR] anything like that ? [PATIENT] no . [DOCTOR] okay . all right . now , i know that 
you've had the kidney transplant a few years ago for some polycystic kidneys . [PATIENT] mm-hmm . [DOCTOR] um , how are you doing 
with that ? i know that you told dr. gutierrez- [PATIENT] mm . [DOCTOR] . a couple of weeks ago . [PATIENT] yes . [DOCTOR] everything's 
okay ? [PATIENT] so far , so good . [DOCTOR] all right . and you're taking your immunosuppressive medications ? [PATIENT] yes , i am . 
[DOCTOR] okay . all right . um , and did they have anything to say ? i have n't gotten any reports from them , so ... [PATIENT] no , n- 
nothing out of the ordinary , from what they reported . [DOCTOR] okay . all right . um , and in terms of your hyperthyroidism , how are you 
doing with the synthroid ? are you doing okay ? [PATIENT] uh , yes , i am . [DOCTOR] you're taking it regularly ? [PATIENT] on the clock , 
yes . [DOCTOR] yes . okay . and any fatigue ? weight gain ? anything like that that you've noticed ? [PATIENT] no , nothing out of the 
ordinary . [DOCTOR] okay . and just in general , you know , i know that we've kind of battled with your arthritis . [PATIENT] mm-hmm . 
[DOCTOR] you know , it's hard because you ca n't take certain medications 'cause of your kidney transplant . [PATIENT] sure . [DOCTOR] 
so other than your knees , any other joint pain or anything like that ? [PATIENT] every once in a while , my elbow , but nothing , nothing out 
of the ordinary . [DOCTOR] okay . all right . now i know the nurse did a review of systems sheet when you checked in . any other symptoms 
i might have missed ? [PATIENT] no . [DOCTOR] no headaches ? [PATIENT] no headaches . [DOCTOR] anything like that w- ... okay . all 
right . well , i wan na go ahead and do a quick physical exam , all right ? hey , dragon , show me the vital signs . so here in the office , your 
vital signs look good . you do n't have a fever , which is good . [PATIENT] mm-hmm . [DOCTOR] your heart rate and your , uh , blood 
pressure look fine . i'm just gon na check some things out , and i'll let you know what i find , okay ? [PATIENT] perfect . [DOCTOR] all right . 
does that hurt ? [PATIENT] a little bit . that's tender . [DOCTOR] okay , so on physical examination , on your heart exam , i do appreciate a 
little two out of six systolic ejection murmur- [PATIENT] mm-hmm . [DOCTOR] . which we've heard in the past . okay , so that seems stable . 
on your knee exam , there is some edema and some erythema of your right knee , but your left knee looks fine , okay ? um , you do have 
some pain to palpation of the right knee and some decreased range of motion , um , on exam , okay ? so what does that mean ? so we'll go 
ahead and we'll see if we can take a look at some of these things . i know that they did an x-ray before you came in , okay ? [PATIENT] 
mm-hmm . [DOCTOR] so let's take a look at that . [PATIENT] sure . [DOCTOR] hey , dragon , show me the right knee x-ray . so here's the r- 
here's your right knee x-ray . this basically shows that there's good bony alignment . there's no acute fracture , which is not surprising , 
based on the history . [PATIENT] mm-hmm . [DOCTOR] okay ? hey , dragon , show me the labs . and here , looking at your lab results , you 
know , your white blood cell count is not elevated , which is good . you know , we get concerned about that in somebody who's 
immunocompromised . [PATIENT] mm-hmm . [DOCTOR] and it looks like your kidney function is also very good . so i'm , i'm very happy 
about that . [PATIENT] yeah . [DOCTOR] okay ? so i just wan na go over a little bit about my assessment and my plan for you . [PATIENT] 
mm-hmm . [DOCTOR] so for your knee pain , i think that this is an acute exacerbation of your arthritis , okay ? so i wan na go ahead and if 
... and prescribe some ultram 50 milligrams every six hours as needed . [PATIENT] okay . [DOCTOR] okay ? i also wan na go ahead and 
just order an autoimmune panel , okay ? hey , dragon , order an autoimmune panel . and you know , i , i want , i want you to just take it easy 
for right now , and if your symptoms continue , we'll talk about further imaging and possibly referral to physical therapy , okay ? [PATIENT] 
you got it . [DOCTOR] for your second problem , your hypothyroidism , i wan na go ahead and continue you on this ... on the synthroid , and 
i wan na go ahead and order some thyroid labs , okay ? [PATIENT] sure . [DOCTOR] hey , dragon , order a thyroid panel . and then for your 
last problem , the arthritis , you know , we just kinda talked about that . you know , it's gon na be a struggle for you because again , you ca 
n't take some of those anti-inflammatory medications because of your kidney transplant , so ... [PATIENT] mm-hmm . [DOCTOR] you know , 
let's see how we do over the next couple weeks , and again , we'll refer you to physical therapy if we need to , okay ? [PATIENT] you got it . 
[DOCTOR] you have any questions ? [PATIENT] not at this point . [DOCTOR] okay . hey , dragon , finalize the note.

Summary (human expert):
ASSESSMENT AND PLAN

[PATIENT] is a 62-year-old male with a past medical history significant for a kidney transplant, hypothyroidism, 
and arthritis. He presents today with complaints of joint pain.
 
 Arthritis.
 • Medical Reasoning: The patient reports increased joint pain in his bilateral knees over the past weekend. Given 
that his right knee x-ray was unremarkable, I believe this is an acute exacerbation of his arthritis.
 • Additional Testing: We will order an autoimmune panel for further evaluation.
 • Medical Treatment: Initiate Ultram 50 mg every 6 hours as needed.
 • Patient Education and Counseling: I advised the patient to rest his knees. If his symptoms persist, we can 
consider further imaging and possibly a referral to physical therapy.
 
 Hypothyroidism.
 • Medical Reasoning: The patient is doing well on Synthroid and is asymptomatic at this time.
 • Additional Testing: We will order a thyroid panel.
 • Medical Treatment: Continue Synthroid.
 
 Status post renal transplant.
 • Medical Reasoning: He is doing well and has been compliant with his immunosuppressive medications. On 
recent labs, his white blood cell count was within a normal limits and his kidney function is stable.
 • Medical Treatment: Continue current regimen.

Summary (GPT-4):
ASSESSMENT AND PLAN  

[PATIENT] is a 62-year-old male with a past medical history significant for a kidney transplant, hypothyroidism, 
and arthritis. He presents today with complaints of joint pain.    

Acute exacerbation of arthritis.  
• Medical Reasoning: His right knee is swollen and erythematous, and he has pain with palpation and decreased 
range of motion. His recent history of physical exertion and the findings on his physical exam are consistent with 
an acute exacerbation of his arthritis.  
• Additional Testing: I will order an autoimmune panel to rule out any autoimmune causes of his arthritis.  
• Medical Treatment: I will prescribe Ultram 50 mg every six hours as needed for pain.    

Hypothyroidism.  
• Medical Reasoning: He has been stable on Synthroid.  
• Additional Testing: I will order a thyroid panel to ensure his thyroid levels are within normal limits.  
• Medical Treatment: Continue Synthroid at current dosage.    

Kidney transplant.  
• Medical Reasoning: His kidney function is good, and he has no signs of infection.  
• Medical Treatment: Continue current immunosuppressive medications.  
• Patient Education and Counseling: I advised him to take it easy and avoid physical exertion that could 
exacerbate his arthritis. If his symptoms continue, we will consider further imaging and possibly referral to 
physical therapy.

Dialogue

Figure A7 | Example of the doctor-patient dialogue summarization task, including “assessment and plan” sections generated by

both a human expert and GPT-4.
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