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Abstract

Purpose: To perform automated segmentation of corneal nerves and other structures in corneal 

confocal microscopy (CCM) images of the subbasal nerve plexus (SNP) in eyes with ocular 

surface diseases (OSD).

Methods: A deep learning-based two-stage algorithm was designed to perform segmentation of 

SNP features. In the first stage, to address applanation artifacts, a generative adversarial network 

enabled deep network was constructed to identify 3 neighboring corneal layers on each CCM 

image: epithelium, SNP, and stroma. This network was trained/validated on 470 images of each 

layer from 73 individuals. The segmented SNP regions were further classified in the second stage, 

by another deep network into: background, nerve, neuroma, and immune cells. Twenty-onefold 

cross-validation was used to assess the performance of the overall algorithm on a separate dataset 

of 207 manually segmented SNP images from 43 OSD patients.

Results: For the background, nerve, neuroma, and immune cell classes, the Dice similarity 

coefficients (DSC)s of the proposed automatic method were 0.992, 0.814, 0.748, and 0.736, 

respectively. The performance metrics for automatic segmentations were statistically better or 

equal as compared to human segmentation. Additionally, the resulting clinical metrics had good to 

excellent intraclass correlation coefficients (ICC)s between automatic and human segmentations.

Conclusion: The proposed automatic method can reliably segment potential CCM biomarkers of 

OSD onset and progression with accuracy on par with human gradings in real clinical data, which 

frequently exhibited image acquisition artifacts. To facilitate future studies on OSD, we made our 

dataset and algorithms freely available online as an open-source software package.
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Introduction

The cornea, through its 7000 nerve terminals per square millimeter, is the most densely 

innervated tissue in the body.1 These nerves, in addition to their sensory role, are critical 

for maintaining the homeostasis of the ocular surface. Specifically, they serve as the 

fundamental input channel to a dynamic circuitry known as the lacrimal function unit 

(LFU), which regulates blinking and lacrimation and maintains the structural and functional 

integrity of the ocular surface.2

Naturally, disruptions to the nerves and/or their connections may result in an inappropriate 

response to environmental stressors culminating in ocular surface damage or disease. For 

this reason, ocular surface diseases (OSD), such as dry eye disease (DED) and neuropathic 

corneal pain (NCP), frequently present with corneal nerve anomalies.3,4 In response, 

patients experience behavioral changes and report increased or decreased levels of corneal 

sensitivity. For diagnostic purposes, clinicians cannot rely on functional data alone as it has 

been, thus far, insufficient for objective disease differentiation and progression analysis.5,6 

As a result, clinicians struggle to (a) identify a patient’s position on the neurosensorial 

spectrum, (b) prescribe appropriate therapies for the underlying OSD, and (c) assess 

improvement or decline in the patient’s condition.

Direct visualization of the corneal nerves and their surroundings may prove fruitful in 

solving these challenges. Corneal nerve abnormalities, neuromas, and immune cells in 

the subbasal nerve plexus (SNP) layer of the cornea have been observed in eyes with 

OSD.7–9 Similar to advances in the treatment of retinal diseases,10 one may potentially 

use these structural features to stratify OSD patients into subgroups that reflect specific 

pathophysiological mechanisms and use these subgroupings for better identification and to 

develop rapid, objective, and personalized treatment plans for OSD patients.

Corneal confocal microscopy (CCM), also known as in vivo confocal microscopy, is 

an emerging approach for the visualization of corneal nerves in clinics.11 However, the 

avalanche of data generated by CCM imaging systems (consisting of up to hundreds of 

images per eye) is often too large, costly, and time-consuming to be comprehensively 

evaluated manually by expert scientists and clinicians. Moreover, the subjective nature of 

human image analysis is difficult to consistently reproduce, quantify, and compare with 

other groups. Thus, in recent years, there have been efforts to utilize machine learning to 

segment features of interest in CCM images.12–17 Despite several exciting advances, there is 

a need for a tool that can segment and analyze the nerves, neuromas, and immune cells with 

accuracy on par with human grading on low-quality clinical images, including those with 

applanation artifacts,18 which can impact the performance of segmentation algorithms and 

clinical metrics.

Therefore, we propose a comprehensive and robust AI-based technology to attain fast and 

objective measurements of nerves, neuromas, and immune cells in CCM images of the 

SNP from different subjects. The overall AI algorithm will be implemented in two steps: 

(1) we segment and remove applanation artifacts, and (2) we detect nerves and other 

structures in the unmarred portion of the image. Subsequently, we use these segmentations 
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to automatically calculate clinical metrics, which can be applied at the corneal vortex and 

other (optimally central) cornea locations. To facilitate future studies on OSD, we have 

made the algorithms resulting from this study and the corresponding annotated dataset freely 

available online as an open-source software package.

Materials and Methods

Dataset

CCM images were captured from controls and OSD patients at the Foster Center for 

Ocular Immunology at the Duke Eye Center, under the IRB protocol 00095121. All eyes 

were imaged with the Heidelberg Retina Tomograph 3 with the Rostock Cornea Module 

(Heidelberg Engineering, GmbH, Heidelberg, Germany). Volume imaging with 15 frames 

per second was captured at depths of 0–100 μm to visualize the epithelium, SNP, and 

stroma. Additionally, sequence imaging with 15 frames per second was captured at a depth 

of 50–80 μm to visualize a broader region of the SNP in the central cornea and around the 

corneal whorl. The height and width of the CCM images were 384 pixels, with a resolution 

of 1.04 μm/pixel.

We had two mutually exclusive datasets: the applanation artifact removal network (AAR-

Net) dataset and the subbasal nerve plexus network (SNP-Net) dataset. To avoid the 

algorithm being trained and tested on the same patient, these datasets did not share any 

patients. The AAR-Net dataset patients were exclusively used for training, whereas the 

SNP-Net dataset patients were used for both training and testing (via cross-validation).

The AAR-Net dataset included 470 epithelium, 470 SNP, and 470 stroma images from 

117 eyes (64 controls; 53 OSD) and 73 individuals (40 controls; 33 OSD). The OSD 

eyes included patients with DED, NCP, neurotrophic keratitis, infectious keratitis, and 

keratouveitis. One to ten non-identical images that did not present applanation artifacts were 

selected per eye from each corneal layer. Figure 1 shows an example of CCM images of the 

epithelium (A), SNP (B), and stroma (C).

The SNP-Net dataset included 69 eyes (45 DED; 24 NCP) from 43 OSD patients. All eyes 

came from DED suspects who were imaged sequentially at the Duke Eye Center. Three SNP 

images were randomly selected per eye (207 images total); one image was selected from 

the corneal whorl (if available) and the other images were from other SNP locations in the 

central cornea. Next, a trained reader (Reader 1, Z.Z.Z.) used a custom MATLAB program 

to segment structures in the SNP. In addition to its multi-class capabilities, this program 

enabled the reader to perform more detail-oriented segmentations than possible with 

ACCMetrics.19 The reader manually segmented nerves, presumed neuromas, and presumed 

immune cells. We defined these structures according to a review done by Chinnery et al.20 

and a literature search. Nerves consisted of thin, elongated, and branch-like structures that 

were brighter than the background. Presumed neuromas were defined as an asymmetrical 

thickening of the nerve or a sudden swelling across the nerve.11,21–24 They were usually 

amorphous and hyperreflective as compared to the surrounding nerves and tissue. Finally, 

presumed immune cells in the central cornea had four primary appearances: (1) bright, 

round/globular structures (i.e., non-dendritic immune cells), (2) bright, crescent-shaped 
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structures (i.e., immature dendritic cells), (3) bright, short, serpentine structures (i.e., mature 

dendritic cells), and (4) bright, large trapezoidal-shaped structures with multiple branches 

(i.e., mature dendritic cells) .25–28 Figure 2 shows an example of the manual segmentation of 

the target features on a CCM image.

A subset of the patients from the AAR-Net dataset was also used to train (but not test) 

SNP-Net. Specifically, we obtained SNP images containing corneal compression artifacts 

from these patients. This dataset included 25 images from 11 eyes (5 controls; 6 OSD) and 

7 patients (3 controls; 4 OSD). The corneal compression artifacts were manually segmented 

out (Reader 1, Z.Z.Z) of the image such that they could be used for training without 

incorporating the other regions of the image.

SNP Segmentation Algorithm

The schematic in Figure 3 outlines the core steps in our segmentation algorithm. The 

proposed method consisted of two convolutional neural networks (CNNs) that operated in 

sequential stages. In the first stage, the AAR-Net (Figure 3.B) was developed to segment 

three corneal layers and remove stroma and epithelium layers from an image. For the 

second stage, the SNP-Net (Figure 3.C) was developed to segment structures such as nerve, 

neuromas, and immune cells in the SNP layer.

Both AAR-Net (Figure 3.B) and SNP-Net (Figure 3.C) are patch-based networks, which 

included a trainable, prepended Gabor network and a U-Net backbone. Patch-based 

networks29 are helpful when constrained by a small dataset; the network will have fewer 

weights to train and a greater quantity of images to train on. We prepended a trainable Gabor 

filtering network as they are well-suited for identifying elongated structures such as corneal 

nerves.30 In this Gabor network, the only trainable parameters were the frequency and 

orientation. As such, the addition of a Gabor network facilitated training on a small dataset 

without substantially increasing the number of network parameters. The U-Net backbone is 

frequently utilized for medical image segmentation.31 It had four identical encoder blocks, a 

bottleneck block, four identical decoder blocks, and a prediction block. Every encoder block 

consisted of a “double convolution” followed by a max pooling layer. A double convolution 

included a convolution layer, a batch normalization layer,32 and a ReLU non-linearity 

repeated twice. The bottleneck block was equivalent to the encoder block but without the 

max pooling layer. Every decoder block consisted of a concatenation between the outputs of 

a transposed convolution layer and the corresponding encoder block, followed by a double 

convolution. At the end, the prediction block consisted of a convolution layer and a SoftMax 

operation, which normalized the final outputs to probability values ranging from 0 to 1. This 

probability map, p, had the same dimensionality as the input image, but with one channel for 

every class.

The loss functions of AAR-Net and SNP-Net utilized pixel-wise cross-entropy loss, defined 

as

ℒcross‐entropy = − Σ mlog(p) + (1 − m)log(1 − p),
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where m was the binary manual segmentation map of each class. AAR-Net was further 

optimized by performing inverse class weighting33 and edge weighting34 on the pixel-wise 

cross-entropy loss. The AAR-Net’s loss was defined as

ℒAAR‐Net = ℒinverse‐weighted + ℒedge‐weighted .

Similarly, SNP-Net’s loss was defined as

ℒSNP‐Net = ℒinverse‐weighted + ℒedge‐weighted

Finally, the AAR-Net received supplemental training via image examples (Figure 4.A2–

C2) generated from an auxiliary classifier generative adversarial network (AC-GAN).35 

The AC-GAN consisted of two neural networks trained in opposition to one another: 

the generator and discriminator (Figure 3.A). The generator took a class label (one of 

the three corneal layers) and a random Gaussian noise vector as inputs and output an 

artificial image. It had one fully connected layer followed by three sequential convolutional 

layers. Between each layer, it had batch normalization, leaky ReLU non-linearity, and 

nearest-neighbor up-sampling. The final output was normalized via a Tanh operation. The 

discriminator took either a real training image (Xreal) or an artificial image (Xartificial) as input 

and output probability distributions over sources (real versus artificial) and class labels. It 

had four sequential convolutional layers followed by two parallel fully connected layers. 

Between each layer, it had leaky ReLU non-linearity, dropout, and batch normalization. One 

fully connected layer’s output was normalized via a sigmoid operation whereas the other 

was normalized via a SoftMax operation. These output probability distributions were then 

converted to cross-entropy loss terms ℒsource and ℒclass, respectively. The generator’s loss was 

defined as

ℒGenerator = ℒclass − ℒsource,

and calculated for the artificial images. The discriminator’s loss was defined as

ℒDiscriminator = ℒclass + ℒsource,

but it was calculated for both real and artificial images.

Training and Validation

AAR-Net was designed and trained to identify different corneal layers on singular images, 

a capability beyond previous works that could identify only one layer per image.36 To 

improve the generalizability of AAR-Net, instead of solely relying on traditional image 

augmentations (i.e., rotation, translation, cropping, and scaling), we included an AC-GAN 

to synthesize a diverse set of realistic CCM images for training.35 While training AAR-Net, 

the AC-GAN produced one artificial image for every real image in our training dataset, 

which consisted of 1230 manually labeled images (410 of each class). The remaining 180 

images (60 of each class) were used for validation. Given this curated dataset, we randomly 
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extracted patches (1/4 of total image size) from the single-class areas of the real images. 

These extracted image patches, along with the ones generated by the trained AC-GAN, were 

used in the training of the AAR-Net. Every patch had a random probability of being merged 

with a patch from a different corneal layer. These merged patches were intensity equalized 

and then smoothed and stitched along a randomly generated junction line. The ground truth 

segmentation masks were based on both the original cornea layer classes and the location 

of the junction line. Through this process, we created innumerable permutations of marred 

images to train AAR-Net. Ultimately, image regions containing stroma or epithelium, as 

identified by AAR-net, were not trained, validated, or tested by SNP-Net.

SNP-Net was trained to reproduce the manual segmentations and to ignore corneal 

compression artifacts. We trained it on randomly extracted patches (1/16 of total image 

size) from the applanation artifact-free regions of the SNP images. Every patch had a 

random probability of being merged with patches of segmented images containing corneal 

compression artifacts. Regions that were replaced with a corneal compression artifact were 

then labeled as containing background class.

The AAR and SNP networks’ weights were randomly initialized using He initialization.37 

Adam stochastic gradient descent,38 with learning rates of 0.005 and 0.0005, was used 

to optimize the weights by minimizing ℒAAR‐Net and ℒSNP‐Net in the first and second stages, 

respectively. The learning rates had a decay rate of 0.5 every 20 epochs. Additionally, L2 

weight regularization was applied with a factor of 1e-8. The networks were trained with a 

fixed batch size for a fixed number of epochs. The validation dice similarity coefficient was 

monitored on the validation set for the last 40 epochs, and the weights corresponding to the 

highest Dice similarity coefficient were retained as the final network weights that were then 

used for testing. For AAR-Net, a batch size of 20 and 80 epochs were used, whereas for 

SNP-Net, a batch size of 80 and 100 epochs were used.

Although indirectly involved in the SNP segmentation pipeline, the AC-GAN had to be 

trained as well. The AC-GAN was trained on the same dataset of 1410 manually labeled 

images as the AAR-Net. We randomly extracted patches (1/4 of total image size) from the 

single-class areas of the images and used them to train the AC-GAN. The network’s weights 

were randomly initialized using a normal distribution. Adam stochastic gradient descent, 

with a learning rate of 0.002 and decay rate of 0.5 every 100 epochs, was used to optimize 

the weights. Over 400 epochs, and with a batch size of 20, the parameters of the generator 

were fine-tuned to produce realistic, labeled CCM images from an implicit distribution 

derived from a sampling of the real data distribution.

Testing

During testing, for each SNP image, a trained AAR-Net was used to predict the marred 

regions of the image (i.e., the regions containing stroma or epithelium). AAR-Net performed 

patch-based segmentation29 on the SNP-Net dataset. A weighted amalgamation of the 

patch’s probability maps was used to produce global probability maps from which the 

arguments of the maxima were found. In total, 5 AAR-Net models were trained to 

completion. For each SNP image, the mean of the five AAR-Net outputs was used as the 

final segmentation.

Zemborain et al. Page 6

Cornea. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the second stage, the SNP-Net performed patch-based segmentation on the applanation 

artifact-free regions of the images. A weighted amalgamation of the patch’s probability 

maps was used to produce global probability maps from which the arguments of the maxima 

were found. In total, 5 SNP-Net models were trained to completion for each cross-validation 

group. For each SNP image, the mean of the five SNP-Net outputs was used as the final 

segmentation.

Post-processing

Post-processing techniques were implemented on the SNP-Net segmentation outputs. (1) To 

prevent objects with neuroma and immune cell class mixtures, we assigned all pixels within 

a given mixed object to the majority class. (2) To minimize the occurence of objects with 

nerve and immune cell class mixtures and improve the segmentation of mature immune 

cells, we assigned all pixels to the immune cell class if it was the majority class (3) Non-

background classes that were engulfed by another non-background class were reassigned to 

the surrounding class. (4) Very small non-background class objects were reassigned to the 

background class.

Performance Metrics

To make a quantitative evaluation of automated segmentation results, we calculated the 

overlap with the manual segmentation. Specifically, we used the performance metric, Dice 

similarity coefficient (DSC), for each class. This metric ranges from 0 to 1, with 1 showing 

perfect overlap and 0 indicating no overlap. The DSC was calculated as

DSC = 2TP
2TP + FP + FN ,

where TP was the number of true positives (in pixels), TN was the number of true negatives 

(in pixels), FP was the number of false positives (in pixels), and FN was the number of false 

negatives (in pixels) of the given class for predicted classification of the SNP images. The 

DSC was weighted by the number of positive occurrences of each class in the manually 

segmented images.39

We also calculated the sensitivity and specificity of each class. Sensitivity is a measure of 

the ability to correctly identify regions containing the class of interest, whereas specificity is 

a measure of the ability to correctly identify regions not containing the class of interest. The 

sensitivity and specificity were calculated as

Sensitivity = TP
TP + FN , Specificity = TN

TN + FP .

The sensitivity and specificity were weighted by the number of positive occurrences and 

negative occurrences, respectively, of each class in the manually segmented images.39

Finally, we used the one-sided Wilcoxon signed-rank test to determine the statistical 

significance of the observed differences between automated segmentation and manual 

segmentation.
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Cross Validation

We used twenty-onefold cross validation to evaluate the performance of the SNP-Net on all 

207 images to avoid any selection bias and to ensure independence between the training, 

validation, and testing sets. The 43 patients were randomly divided into 21 groups, each 

consisting of 3–4 eyes. Eyes from the same patient were placed in the same group to avoid 

the algorithm being trained on one eye and tested on the other eye. As such, correlation 

between eyes from the same patient would not influence the performance of the algorithm. 

Nineteen groups were placed in the training set, one group was placed in the validation set, 

and the remaining group was placed in the testing set. The groups were rotated such that 

each group was used once for validation and once for testing. Therefore, a different network 

(trained to completion 5 times and averaged) was used for testing in each group, resulting in 

21 different networks used for testing to enable testing on all available data.

Clinical Metrics

Some of the previous publications in this field15,17 have compared their model performance 

to ACCMetrics,19 which calculates corneal nerve fiber density, corneal nerve branch density, 

corneal nerve fiber length, and corneal nerve fiber tortuosity from manual segmentations. 

These clinical metrics are not specifically designed to be used at the corneal vortex, 

which comprises ~1/3 of our SNP-Net dataset. Clinical metrics such as nerve density, 

average nerve thickness, average nerve segment tortuosity, junction point density, neuroma 

density, and immune cell density, however, can be applied at both the cornea vortex and 

other locations. As such, we will use these metrics and the resulting intraclass correlation 

coefficient (ICC)40 to measure the agreement between automatic and manual segmentations.

The nerve density is defined as the μm2 of nerve in a 160,000 μm2 region of SNP. The 

average nerve thickness is defined as the total nerve area (μm2) divided by the total nerve 

path length (μm). The (weighted) average nerve segment tortuosity is the absolute curvature, 

as defined by Scarpa et al., averaged across nerve segments.41 The junction point density 

is defined as the number of nerve junctions in a 160,000 μm2 region of SNP. The neuroma 

density is defined as the number of neuromas in a 160,000 μm2 region of SNP. The immune 

cell density is defined as the number of immune cells in a 160,000 μm2 region of SNP.

Implementation and Distribution

The proposed method was implemented in Python using the PyTorch (1.11.0) library on 

cloud with an Intel Xeon Platinum 8259CL CPU and one NVIDIA Tesla P100 GPU. All 

code for the method proposed in this paper, along with the annotated datasets, are available 

at https://github.com/ZaneZemborain/SNPNETv1

Results

Qualitative Analysis

The SNP images in our dataset consisted of examples both with (Figure 5.A6–A10) and 

without (Figure 5.A1–A5) real applanation artifacts. Thirty-three of the 207 SNP images 

evaluated by AAR-Net were found to have non-SNP regions occupying more than 5% of 

the image; we considered these images to have applanation artifacts. AAR-Net identified 
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and removed these regions with stroma (Figure 5.B6–B8) and with epithelium (Figure 5.B8–

B10).

The automatic segmentations from SNP-Net (Figure 5.C1–C10) closely replicated the 

manual segmentations from Reader 1 (Figure 5.D1–D10). SNP-Net successfully segmented 

large clusters of immune cells, such as in Figure 5.C4 and Figure 5.C8. It achieved similar 

success with the mature dendritic cell in Figure 5.C2. Additionally, it correctly identified 

clear neuromas such as in Figure 6.C1, Figure 6.C3, and Figure 6.C7. Finally, SNP-Net 

correctly segmented the corneal compression artifact as background (Figure 6.C5).

Quantitative Analysis

The performance metrics of the proposed SNP-Net are shown in Table 1. In this table, the 

average and standard deviation of the DSC, sensitivity, and specificity were calculated for all 

207 SNP-Net dataset images.

The clinical metrics of the proposed SNP-Net segmentations, as compared to Reader 1’s 

manual segmentations, are shown in Table 2. In this table, the average and standard 

deviation of the nerve density, average nerve thickness, average nerve segment tortuosity, 

junction point density, neuroma density, and immune cell density were calculated for all 207 

SNP-Net dataset images.

Inter-reader analysis

The SNP images were also manually segmented by the combined efforts of two additional 

trained readers (Readers 2 & 3, N.S.A. & M.S.). Reader 2 performed the initial segmentation 

of the images and then the more experienced Reader 3 made corrections. In total, they 

segmented 43 images or one image per patient. Reader 2 and Reader 3 completed this task 

independent of Reader 1. Figure 6 provides examples of their manual segmentation set side 

by side with those from Reader 1 and the SNP-Net segmentation.

Table 3 shows the segmentation performance of the Readers 2 & 3 versus Reader 1 

and SNP-Net versus Reader 1 for these 43 images. The SNP-Net achieved a higher (or 

statistically equal) average DSC, sensitivity, and specificity for the background, nerve, and 

immune cell classes.

Discussion

In this paper, we presented a deep learning-based method for automated segmentation of 

corneal nerves and other structures in CCM images of the SNP in eyes with OSD. We 

showed that the proposed automatic method could reliably segment potential biomarkers of 

OSD with accuracy on par with human gradings in real clinical data.

In an ideal practice, the operator of the CCM will acquire unmarred images of the layer 

of interest. However, in real clinical practice, the operator may frequently position the 

microscope’s object plane such that it intersects two or more adjacent layers of the cornea, 

resulting in the applanation artifacts. Even with careful imaging, the operator may be 

unable to avoid producing this artifact as CCM imaging involves pressing a naturally curved 
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cornea against a flat surface. This applanation can be exacerbated by thin layers, excessive 

curvature of the cornea, and a lack of cooperation from patients. Thus, CCM images targeted 

at imaging the SNP layer frequently contain the neighboring epithelium and stroma layers 

(16% of the cases in our study). As such, a preprocessing step was needed to identify the 

marred image regions containing the undesired adjacent layers and exclude them from the 

analysis. We proposed to achieve this by utilizing the AAR-Net, which labels each pixel of 

an image as belonging to one of the three corneal layers. Subsequently, only the regions 

of the image that belong to the SNP layer will be processed by the SNP-Net and used to 

calculate clinical metrics.

SNP-Net’s segmentation of nerve, neuromas, and immune cells enables quantification of 

nerve density, average nerve thickness, average nerve segment tortuosity, junction point 

density, neuroma density, and immune cell density. The ICC’s between the automatic and 

manual segmentations indicate good to excellent reliability. These metrics can be used 

by our lab and others to perform objective disease differentiation, progression analysis, 

and treatment evaluation at the corneal vortex and other locations. Additionally, thse 

automatically generated metrics are expected to facilitate investigations to determine the 

clinical significance of neuromas and immune cells in ocular surface diseases.

It should also be noted that subjectivity is inherent to manual segmentation. Research groups 

may use different criteria, but, even with the same criteria and training, readers may differ in 

their interpretation of the images. For example, in Figure 6.A2–D2, Reader 1 used a slightly 

more conservative approach in terms of nerve thickness, visibility, and connections than 

Readers 2 & 3. Similarly, Readers 2 & 3 appear to have more conservatively labeled objects 

as immune cells than Reader 1. Since the automatic segmentation was trained on Reader 1’s 

gradings, it is reasonable to expect that it objectively replicates Reader 1’s style of grading.

The limitations of this study include its retrospective design and relatively small dataset.. 

Furthermore, as with any other deep learning-based image analysis method, the proposed 

algorithms may not perform as well on images of participants that fall outside the target 

population and imaging protocol. For example, SNP-Net may perform suboptimally when 

applied on images from participants with other corneal diseases or dystrophies. In Figure 

7.C1, SNP-Net incorrectly segmented anterior basement membrane corneal dystrophy in the 

lower lefthand corner of the figure. Other potential limitations include the proper labeling 

of nerve structures as normal (i.e., corneal nerve penetration) or pathologic (i.e., neuroma 

or micro-neuroma). This has been studied in a recent systematic review,20 which observed 

a significant overlap in the literature terminology used to describe healthy and abnormal 

nerve features and argued that the terms ‘neuromas’ and ‘micro-neuromas’ could potentially 

be physiological epithelial nerve penetration sites. We approached this issue with caution 

and strove to properly differentiate neuromas and micro-neuromas (i.e., presumed neuromas) 

from nerve perforation sites, but this remains a potential source of error. Additionally, there 

is a lack of compelling evidence for the correlations between CCM images and the actual 

corneal histology, which might lead to a miscategorization of the segmented structures.

Finally, it is constructive to study the major cases in which AAR-Net or SNP-Net failed to 

accurately segment features of interest. A failure by AAR-Net to segment the epithelium 
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layer would result in SNP-Net erroneously segmenting the epithelial cell borders as nerve. 

Similarly, a failure to segment the stroma layer would result in SNP-Net erroneously 

segmenting the stomal cells as nerve, neuromas, and immune cells. The example of AAR-

Net’s failure to completely segment the stroma, one of the worst segmentation performances 

in our dataset, is shown in the upper righthand corner of Figure 7.B2. Examples of notable 

SNP-Net errors include: (1) changes in nerve elevation near terminal nerve ends were 

sometimes incorrectly segmented as immune cells, (2) immune cells that overlaid nerve 

were sometimes mistaken for neuroma or vice versa, and (3) mature dendritic cells were 

often mistaken for nerve. Because the CCM images came from the central cornea, our 

SNP-Net training set had relatively few mature dendritic cell examples, which are more 

commonly found in the peripheral cornea.42 As such, the failure of SNP-Net in Figure 7.C3 

is unsurprising. It is expected that a large training set will alleviate these types of errors. 

To further improve the accuracy of segmentation, as part of our ongoing work, we will 

extend the capabilities of the proposed SNP-Net by integrating the BiconNet connectivity 

principles,43 which have proven impactful for other image analysis applications.44

Conclusion

In conclusion, we have developed a fully automatic deep learning-based method to remove 

applanation artifacts and segment nerves and other structures on CCM images of the SNP 

in patients with OSD. Furthermore, we created an accompanying set of clinical metrics 

based on our automatic segmentations that can be applied at the cornea vortex and other 

locations. To our knowledge, it is the first study to perform multi-class segmentation of 

nerves, neuromas, and immune cells in clinical images and the first study to specifically 

address applanation artifacts. To promote future research in this area, we have made our 

annotated datasets and corresponding algorithms open-source and freely available online.
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Figure 1. 
Corneal confocal microscopy (CCM) images of the epithelium (A), subbasal nerve plexus 

(SNP) (B), and stroma (C) layers of the cornea.
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Figure 2. 
CCM image of the SNP (A) and its corresponding manual segmentation (B) with nerves 

(red), neuromas (blue), and immune cells (green).
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Figure 3. 
Schematic for the proposed corneal confocal microscopy image analysis method. The 

subbasal nerve plexus (SNP) segmentation algorithm includes: (A) an auxiliary classifier 

generative adversarial network (AC-GAN), (B) an applanation artifact removal network 

(AAR-Net), and (C) an SNP segmentation network (SNP-Net).
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Figure 4. 
A set of real CCM images (1) and a set of AC-GAN-generated CCM images (2) of the 

epithelium (A), SNP (B), and stroma (C)

Zemborain et al. Page 18

Cornea. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison of automatic and manual segmentations of OSD biomarkers on CCM images. 

The 207 SNP-Net dataset images included images without applanation artifacts (A1-A5) 

and with applanation artifacts (A6-A10). The applanation artifacts (or lack thereof) were 

segmented by AAR-Net (B1-B10) as containing epithelium (light green), SNP (pink), and 

stroma (light blue). The SNP-Net and Reader 1 segmentations of background (black), 

nerves (red), neuromas (blue), and immune cells (green) are shown in C1-C10 and D1-D10, 

respectively.
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Figure 6. 
Comparison of different graders’ manual segmentations of OSD biomarkers on CCM images 

with automatic segmentation. The background (black), nerves (red), neuromas (blue), and 

immune cells (green) in SNP images (A) were independently segmented by Reader 1 (B) 

and Readers 2 & 3 (C). These images were also segmented by SNP-Net (D).
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Figure 7. 
Examples of AAR-Net and SNP-Net errors in segmentation: anterior basement membrane 

corneal dystrophy was incorrectly segmented by SNP-Net (1), stroma in the upper righthand 

corner was only partially labeled as stroma by AAR-Net (2), and mature dendritic cells were 

mistaken for nerve by SNP-Net (3). The SNP images (A) were segmented by AAR-Net (B) 

as containing epithelium (light green), SNP (pink), and stroma (light blue). The background 

(black), nerves (red), neuromas (blue), and immune cells (green) in the SNP images were 

also segmented by SNP-Net (C) and Reader 1 (D).
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Table 1.

Average performance metrics (mean ± SD) for the proposed SNP-Net as compared to Reader 1 for the 207 

SNP-Net dataset images.

Background Nerve Neuroma Immune Cell

DSC 0.992 ± 0.004 0.814 ± 0.042 0.748 ± 0.222 0.736 ± 0.104

Sensitivity 0.991 ± 0.004 0.829 ± 0.054 0.780 ± 0.266 0.789 ± 0.152

Specificity 0.839 ± 0.050 0.992 ± 0.004 0.9997 ± 0.0009 0.9991 ± 0.0012

Cornea. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zemborain et al. Page 23

Table 2.

Average clinical metrics (mean ± SD) and intraclass correlation coefficient (ICC) for the proposed SNP-Net as 

compared to Reader 1 for the 207 SNP-Net dataset images.

Nerve Density 
(μm2/160,000μm2)

Average Nerve 
Thickness 

(μm)

Average Nerve 
Segment 

Tortuosity

Junction Point 
Density (count/

160,000μm2)

Neuroma Density 
(count/

160,000μm2)

Immune Cell 
Density (count/

160,000μm2)

SNP-Net 6579 ± 3498 2.8 ± 0.3 18.0 ± 7.4 19.1 ± 20.1 0.8 ± 1.5 14.0 ± 21.1

Reader 1 6342 ± 3450 2.5 ± 0.4 18.9 ± 7.6 25.0 ± 22.3 0.6 ± 1.1 13.6 ± 22.2

ICC 0.99 0.93 0.82 0.98 0.74 0.99
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Table 3.

Average performance metrics (mean ±SD) for Readers 2 & 3 and the proposed SNP-Net segmentation as 

compared to Reader 1 for the 43 images.

Background Nerve Neuroma Immune Cell

DSC

Readers 2 & 3 0.988 ± 0.005 0.721 ± 0.089 0.766 ± 0.200 0.711 ± 0.145

SNP-Net 0.993 ± 0.003 0.823 ± 0.034 0.726 ± 0.245 0.740 ± 0.087

P-Value <0.001** <0.001** 0.858 0.017*

Sensitivity

Readers 2 & 3 0.986 ± 0.007 0.762 ± 0.093 0.721 ± 0.219 0.713 ± 0.190

SNP-Net 0.992 ± 0.003 0.839 ± 0.042 0.722 ± 0.285 0.809 ± 0.153

P-Value <0.001** <0.001** 0.509 <0.001**

Specificity

Readers 2 & 3 0.766 ± 0.093 0.986 ± 0.007 0.9999 ± 0.0002 0.9995 ± 0.0009

SNP-Net 0.846 ± 0.040 0.992 ± 0.004 0.9998 ± 0.0004 0.9993 ± 0.0012

P-Value <0.001** <0.001** 0.957 0.997

P-values were calculated using a one-sided Wilcoxon signed-rank test.

*
A p-value less than 0.05 is denoted with

**
and a p-value less than 0.01 is denoted with.
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