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Recent studies have emphasized the importance of single-cell spatial

biology, yet available assays for spatial transcriptomics have limited gene
recovery or low spatial resolution. Here we introduce CytoSPACE, an
optimization method for mappingindividual cells from a single-cell RNA
sequencing atlas to spatial expression profiles. Across diverse platforms
and tissue types, we show that CytoSPACE outperforms previous methods
with respect to noise tolerance and accuracy, enabling tissue cartography at
single-cell resolution.

Single-cell spatial organization is a key determinant of cell state and
function. For example, in human tumors, local signaling networks dif-
ferentiallyimpactindividual cells and their surrounding microenviron-
ments, withimplications for tumor growth, progression and response
to therapy'°. Although spatial transcriptomics (ST) has become a pow-
erful tool for delineating spatial gene expression in primary tissue
specimens, commonly used platforms, such as 10x Visium, remain
limited to bulk gene expression measurements, where each spatially
resolved expression profileis derived from as many as ten cells or more”.
Accordingly, several computational methods have been developed
to infer cellular composition in a given bulk ST sample®* 2. Most such
methods use reference profiles derived from single-cell RNA sequenc-
ing (scRNA-seq) data to deconvolve ST spots into a matrix of cell type
proportions. However, these methods lack single-cell resolution, hin-
dering the discovery of spatially defined cell states, their interaction
patterns and their surrounding communities (Extended Data Fig.1).
To address this challenge, we developed cellular (Cyto) Spatial
Positioning Analysis via Constrained Expression alignment (Cyto-
SPACE), an efficient computational approach for mapping individual
cells from a reference scRNA-seq atlas to precise spatial locations
in a bulk or single-cell ST dataset (Fig. 1a and Extended Data Fig.1).
Unlike related methods**, we formulate single-cell/spot assignment
as a convex optimization problem and solve this problem using the
Jonker-Volgenant shortest augmenting path algorithm?. Our approach

guarantees an optimal mapping result while exhibiting improved
noise tolerance (Methods). The outputis a reconstructed tissue speci-
men with both high gene coverage and spatially resolved scRNA-seq
data suitable for downstream analysis, including the discovery of
context-dependent cell states. Onboth simulated and real ST datasets,
we found that CytoSPACE substantially outperforms related methods
for resolving single-cell spatial composition.

CytoSPACE proceedsin four main steps (Fig. 1a). First,toaccount
for the disparity between scRNA-seq and ST datain the number of cells
per celltype, two parameters are required: (1) the fractional abundance
of each cell type within the ST sample and (2) the number of cells per
spot. The former is determined using an external deconvolution tool,
such as Spatial Seurat™, RCTD'¢, SPOTlight*, cell2location” or CIBER-
SORTx*. By default, the latter is directly inferred by CytoSPACE using
an approach for estimating RNA abundance, although alternative
methods, including cell segmentation approaches®*°, can also be
used (Methods). Once both parameters are estimated, the sScRNA-seq
dataset is randomly sampled to match the predicted number of cells
per cell type in the ST dataset. Upsampling is done for cell types with
insufficient representation, either by drawing with replacement
or by introducing placeholder cells (Methods). Finally, CytoSPACE
assigns each cell to spatial coordinates in a manner that minimizes a
correlation-based cost function constrained by the inferred number of
cells per spot viaashortest augmenting path optimization algorithm.
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a Framework for alignment of single-cell and spatial transcriptomes
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Fig.1|Development and technical assessment of CytoSPACE. a, Schematic of
atypical CytoSPACE workflow. Given an ST dataset A and an annotated scRNA-seq
dataset B, where the latter covers major cell types in A, CytoSPACE consists of
the following key steps: (1) application of an existing ST deconvolution method
(for example, Spatial Seurat or RCTD) to estimate cell type fractions in A using
reference profiles from B; (2) estimation of the number of cells per spotin A;

(3) sampling of Bto match the inferred number of cells per cell typein A; and

(4) alignment of single-cell and spatial transcriptomes (B~>A) using shortest
augmenting path-based optimization. Thelabels a,.a,,...,d;,d, denote individual
single cells of celltype a,a,...,d,d, respectively. b-d, Technical assessment of
CytoSPACE. b, Framework for evaluating CytoSPACE using simulated ST datasets
with fully defined single-cell composition and spot resolution (Methods).

¢, Heat maps depicting CytoSPACE performance for aligning scRNA-seq data
(with 5% added noise) to spatial locations in ST datasets simulated with five cells

correlation

per spot, on average (Methods). Only cell types with distinct spatial structure
areshown here for clarity. d, Performance across distinct methods, mouse
brain regions and noise levels for assigning individual cells to the correct spot
insimulated ST datasets (Methods). Each point represents asingle cell type
(mouse cerebellum, n =11; mouse hippocampus, n=17). The box center lines,
box bounds and whiskers indicate the medians, first and third quartiles and
minimum and maximum values within 1.5x the interquartile range of the box
limits, respectively. Statistical significance was assessed relative to CytoSPACE
using a two-sided paired Wilcoxon test. The resulting P values were Benjamini—
Hochberg adjusted for each noise level and tissue type combination and reported
asthe maximum Q value (*Q < 0.05 and ***Q < 0.001). Performance for all 13
evaluated methodsis provided in Extended Data Fig. 4. Raw data are provided in
Supplementary Table 2.
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An efficient integer programming approximation method that yields
similar resultsis also provided® (Methods).

Totest the performance of CytoSPACE, we began by simulating ST
datasets with fully defined single-cell composition. For this purpose,
we leveraged previously published mouse cerebellum (n =11 major
cell types) and hippocampus (n =17 major cell types) data generated
using Slide-seq, a platform with high spatial resolution (approximately
single-cell) but limited gene coverage®” (Fig. 1b and Supplementary
Table1). Toincrease transcriptome representation while maintaining
spatial dependencies, we first replaced each Slide-seq bead with the
most correlated single-cell expression profile of the same cell type
derived from an scRNA-seq atlas of the same brain region® (Extended
Data Fig. 2a and Methods). We then superimposed a spatial grid with
tunable dimensions to pool single-cell transcriptomes into pseudo-bulk
transcriptomes. This was done across a range of realistic spot resolu-
tions (mean of 5,15and 30 cells per spot). To guarantee a unique spatial
address for every cell in the scRNA-seq query dataset, we created a
paired scRNA-seq atlas from the cells underlying each pseudo-bulk
ST array. Finally, to emulate technical and platform-specific varia-
tion between scRNA-seq and ST datasets, we added noise in varying
amounts tothe scRNA-seq data (Extended DataFig. 2b-e and Methods).
Collectively, these datasets allow rigorous assessment of cell-to-spot
alignment, including orthogonal approaches for studying alignment
quality (Supplementary Fig.1).

Next, we evaluated methods for CytoSPACE parameter inference.
For cell type enumeration, we employed Spatial Seurat, which showed
strong concordance with known global proportions in simulated ST
datasets (Extended Data Fig. 3a). To approximate the number of cells
per spot, weimplemented a simple approach based on RNA abundance
estimation (Methods). This approach was correlated withground truth
expectations in simulated ST data and cell segmentation analysis®
of the matching histological image from real ST data (Extended Data
Fig.3b-e and Methods).

We then benchmarked CytoSPACE against 12 previous methods
(Methods), including two recently described algorithms for scRNA-seq
and ST alignment: Tangram, which integrates scRNA-seqand ST datavia
maximization of a spatial correlation function using non-convex opti-
mization®; and CellTrek, which uses Spatial Seurat™ to identify ashared
embedding between scRNA-seqand ST dataand then applies random
forestmodeling to predict spatial coordinates. We also assessed naive
approaches, including Pearson correlation and Euclidean distance.
To compare outputs, each cell was assigned to the spot with the high-
est score (all approaches but CellTrek) or the spot with the closest

Euclidean distance to the cell’s predicted spatial location (CellTrek
only). The full benchmarking analysis is provided in the supplement;
further details are in Methods.

Across multiple evaluated noise levels and cell types, CytoSPACE
achieved substantially higher precision than other methods for map-
ping single cells to their known locations in simulated ST datasets
(Fig.1c,d, Extended DataFig. 4, Supplementary Fig. 2 and Supplemen-
tary Table2). This was true for multiple spatial resolutions independent
of brainregion, both for individual cell types and across all evaluable
cells (Fig.1d and Extended Data Fig. 4). We also obtained similar results
with anindependent method for determining cell type abundance in
ST data (RCTD'®) (Supplementary Fig. 3).

We next assessed the robustness of CytoSPACE to variationin key
input parameters (steps 1-3 in Fig. 1a). First, we considered estimated
cell type abundance, which ranged from a mean of 0.025% to 32% in
simulated ST datasets (Extended Data Fig. 5). Despite this range, we
observed no significant correlation with mapping precision (Extended
Data Fig. 5). Next, we performed experiments in which estimates of
(1) cell type abundance and (2) the number of cells per spot were sys-
tematically perturbed (Methods). In all cases, CytoSPACE continued
to outperform previous methods (Extended Data Fig. 6). Lastly, we
tested output stability when sampling the scRNA-seq query dataset
with different seeds (step 3in Fig. 1a) and when using different distance
metrics to calculate the CytoSPACE cost function. Across multiple runs
and distance metrics, results remained consistent (Supplementary
Fig.4). Collectively, these data highlight the robustness of CytoSPACE
and underscore its potential to deliver improved spatial mapping of
scRNA-seq data.

To evaluate performance on real ST datasets, we next examined
primary tumor specimens from three types of solid malignancy: mela-
noma, breast cancer and colon cancer. In total, six sScRNA-seq/ST com-
binations, encompassing six bulk ST samples (n =4 Visium; n=2legacy
ST), including one HER2" formalin-fixed, paraffin embedded (FFPE)
breast tumor specimen and three scRNA-seq datasets from matching
tumor subtypes, were analyzed®* (Supplementary Tables 1and 3).
All cell types in each scRNA-seq dataset were aligned by CytoSPACE
(Fig.2aand Supplementary Fig.5) and compared to Tangram and Cell-
Trek (Supplementary Fig. 5). CytoSPACE was highly efficient, process-
ingaVisium-scale datasetinapproximately 5 minutes, on average, with
asingle CPU core (Supplementary Table 4). This was true regardless of
whether we applied shortest augmenting path or integer programming
approximation approaches, both of which achieved similar results
(Supplementary Table 5). To quantitatively compare the recovery of

Fig.2|Single-cell cartography across diverse tissue types and platforms
with CytoSPACE. a, scRNA-seq tumor atlases mapped onto clinically matched
ST datasets by CytoSPACE (see also Supplementary Fig. 5). BRCA, breast cancer;
CRC, colorectal cancer; N/A, missing from author-supplied annotations.

b, Workflow for evaluating spatial enrichment in the tumor core or periphery.
DEGs, differentially expressed genes. ¢, Spatial enrichment of T cell exhaustion
genesinT cell transcriptomes mapped by CytoSPACE to a melanoma sample
(row1,a).NES, normalized enrichment score. d, Same as ¢ but showing NES

for six scRNA-seq/ST pairs (n =12 values per box) and three methods. e, Spatial
enrichments of CE9-specific and CE10-specific cell states in data mapped by
CytoSPACE and analyzed by pre-ranked GSEA. Datasets without annotations are
indicated in grey. f, Same as d and e but across 13 methods and 66 combinations
of dataset pairs and cell states. To unify the expected enrichment direction of cell
states, NES values for CE10 were multiplied by -1. Methods indicated by a prime
symbol failed to map all evaluated cell types to regions both closer and farther
from tumor cells, precluding the use of GSEA on the affected cell types. In such
cases, paired Wilcoxon tests were performed relative to CytoSPACE but ignoring
N/As. Underlying data are provided in Supplementary Table 7. g, Schematic of
the mouse nephron and collecting duct system. Known locations of epithelial
states are denoted by numbers (for phenotype labels, see Supplementary

Table 8), recreated from https://cello.shinyapps.io/kidneycellexplorer/. h, Top:
epithelial cell transcriptomes from a mouse kidney scRNA-seq atlas mapped

onto al0x Visium sample of normal mouse kidney by CytoSPACE, shown using
jitter within assigned spots. Bottom: same as above but colored by known
distance to the inner medulla (state 32; Supplementary Table 8). States 12 and 14
were imputed with zero abundance and not mapped. i, Concordance between
predicted and known distances of each epithelial state to the base of the inner
medulla. j, Left: MERSCOPE profile of a breast cancer specimen, colored by cell
type. Right: scRNA-seq data® mapped to the MERSCOPE profile by CytoSPACE,
with previously annotated cell types from the scRNA-seq atlas distinguished by
color.k, Enrichment of CD4 T cell states within tumor regions (pre-ranked GSEA),
comparing scRNA-seq data mapped to MERSCOPE (CytoSPACE) with MERSCOPE
alone (for underlying data, see Supplementary Table 9). Color scale is defined in
Extended Data Fig. 10i. Two-sided nominal Pvalues in ¢ and fwere determined
by GSEA.Ind andf, the box center lines, box bounds and whiskers denote the
medians, first and third quartiles and minimum and maximum values within

1.5x the interquartile range of the box limits, respectively. Group comparisonsin
dand fwere determined relative to CytoSPACE via a two-sided, paired Wilcoxon
test.Iniand k, concordance was assessed by Pearson correlation and linear
regression, with 95% confidence intervalsindicated ini. A two-sided t-test

was used to assess whether each correlation result was significantly non-zero.
Adjustments for multiple comparisons were made in fusing the Benjamini-
Hochberg method.
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Workflow for evaluating spatial enrichment of cell states
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cell states with respect to spatial localization patterns in the tumor
microenvironment (TME), we dichotomized assigned cells into two
groups withineach cell type by their proximity to tumor cells. We then
assessed whether gene sets marking TME cell states with known locali-
zation were skewed in the expected orientation (Fig. 2b and Methods).

Wesstarted by considering T cell exhaustion, acanonical state of dys-
function arising from prolonged antigen exposure intumor-infiltrating
T cells®®. Consistent with expectation, CytoSPACE recovered spatial
enrichment of T cell exhaustion genes® in CD4 and CD8 T cells mapped
closest to cancer cells in all six scRNA-seq and ST dataset combina-
tions (Fig. 2c,d, Supplementary Fig. 6a and Supplementary Tables 6
and7).Incontrast, Tangram and CellTrek produced single-cellmappings
with substantially lower enrichment of T cell exhaustion genes in the
expected orientation, with 25% to 33% of cases showing enrichmentin
the opposite direction, away from the tumor core (Fig. 2d, Supplemen-
tary Fig. 6aand Supplementary Tables 6 and 7).

To demonstrate applicability to other spatially biased cell states,
we next extended our analysis to diverse TME lineages, identifying
cell-type-specific genes that vary in expression as a function of dis-
tance from tumor cells. To validate our results, we considered two
recently defined cellular ecosystem subtypesin human carcinoma, CE9
and CE10 (ref. *). These ‘ecotypes’, which were also observed in mela-
noma, each encompass B cells, plasma cells, CD8 T cells, CD4 T cells
and monocytes/macrophages with stereotypical spatial localization.
CE9 cell states are preferentially localized to the tumor core, whereas
CE10 states are preferentially localized to the tumor periphery*. Using
marker genes specific to each state* (Supplementary Table 6), we
asked whether single cells mapped by each method were consistent
with CE9-specific and CE10-specific patterns of spatial localization.
Indeed, as observed for T cell exhaustion factors, CytoSPACE suc-
cessfully recovered expected spatial biases in CE9 and CE10 cell states
across lymphoid and myeloid lineages (Fig. 2e), outperforming 12
previous methods in both the magnitude and orientation of marker
gene enrichments (Fig. 2f, Supplementary Fig. 6 and Supplementary
Table 7). Furthermore, consistent with simulation experiments, Cyto-
SPACE results remained robust to perturbations of itsinput parameters
(Extended Data Fig. 7). As further validation, we analyzed predicted
spatial localization patterns of TREM2" and FOLR2" macrophages,
which were recently shown to localize to the tumor stroma and to the
tumor mass, respectively, across diverse cancer types® (Extended Data
Fig. 8a). Compared to Tangram and CellTrek, only CytoSPACE reca-
pitulated these prior findings with statistical significance (Extended
DataFig.8b). Moreover, wheninferred spatial locations (close to tumor
versus far from tumor) were projected onto uniform manifold approxi-
mationand projection (UMAP) embeddings of scRNA-seq data, single
cellsgenerally failed to cluster on the basis of their distance from tumor
cells (SupplementaryFig. 7). These dataunderscore the ability of Cyto-
SPACE to accurately identify spatially resolved cell states, including
those not discernible from scRNA-seq or ST data alone.

To further demonstrate how CytoSPACE can illuminate spatial
biology, we explored two additional scenarios. First, we asked whether
CytoSPACE can uncover densely packed cellular substructuresinbulk
ST data. For this purpose, we selected normal mouse kidney, which has
highly granular spatial architecture. After mapping a well-annotated
scRNA-seq atlas with more than30 spatially resolved subtypes of kidney
epithelium* to a10x Visium profile of normal mouse kidney*' (55-um
diameter per spot) (Fig. 2g and Supplementary Table 8), we assessed
whether CytoSPACE recapitulates known patterns of spatial organi-
zation. Indeed, CytoSPACE (1) reconstructed known zonal regions
(Fig. 2h, top, and Supplementary Fig. 8a); (2) identified cell types that
preferentially co-localize to the glomerulus (-70-um diameter*; Sup-
plementary Fig. 8b); and (3) arranged nearly 30 epithelial statesin spots
consistent with their known locations in the nephron epithelium and
collecting duct system*’, outperforming previous methods (Fig. 2h,
bottom, Fig. 2i and Extended Data Fig. 9).

Finally, we asked whether CytoSPACE can enhance single-cell ST
datasets with low gene throughput. To do so, we analyzed a breast
cancer specimen with more than 550,000 annotatable cells and 500
pre-selected genes profiled by MERSCOPE (Vizgen) (Methods). First,
we confirmed that CytoSPACE could accurately map single cells
profiled by MERSCOPE and recapitulate their spatial dependencies
(Extended Data Fig. 10a-e). Next, we mapped an scRNA-seq breast
cancer atlas® to the same MERSCOPE dataset. In addition to observ-
ing strong inter-platform agreement for most annotated cell types
(Fig. 2j and Extended Data Fig. 10f,g), we confirmed striking biases
in cancer-associated T cell signatures enriched in tumor or adjacent
normal tissue® (Fig. 2k, Extended Data Fig. 10h,i and Supplementary
Table 9). Such enrichments were markedly more correlated with
expected enrichments* than those calculated from MERSCOPE data
alone (Fig. 2k, Extended Data Fig. 10i and Supplementary Table 9).
Collectively, these data emphasize the versatility of CytoSPACE for
complex tissue reconstruction at the single-cell level.

In summary, CytoSPACE is a tool for aligning single-cell and spa-
tial transcriptomes via global optimization. Unlike related methods,
CytoSPACE ensures a globally optimal single-cell/spot alignment
conditioned on a correlation-based cost function and the number of
cells per spot. Moreover, it can be readily extended to accommodate
additional constraints, such as the fractional composition of each cell
type per spot (as inferred by RCTD™ or cell2location?, for example).
In contrast, CellTrek is dependent on the co-embedding learned by
Spatial Seurat, which can erase subtle yet important biological sig-
nals (for example, cell state differences), as was recently shown**.
Although Tangramisrobustinidealized settings, it cannot guarantee
a globally optimal solution. Although CytoSPACE requires two input
parameters, both parameters can be reasonably well estimated using
standard approaches, suggesting that they are unlikely to pose amajor
barrierinpractice. Furthermore, on bothsimulated and real datasets,
CytoSPACE was substantially more accurate thanrelated methods. As
such, we anticipate that CytoSPACE will prove useful for deciphering
single-cell spatial variation and community structure in diverse physi-
ological and pathological settings.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

CytoSPACE analytical framework

CytoSPACE leverages linear optimization to efficiently reconstruct ST
datausingsingle-cell transcriptomes from areference scRNA-seqatlas.
To formulate the assignment problem mapping individual cells in
scRNA-seq data to spatial coordinates in ST data, let an N x C matrix A
denote single-cell gene expression profiles with Ngenes and Ccells; let
an MxSmatrix Bdenote gene expression profiles (GEPs) of ST datawith
Mgenesand Sspots; andlet Gbethe vector of length gthat containsthe
subset of desired genes shared by both datasets. For both GEP matrices,
values are first normalized to counts per million (CPM) (or transcripts
per million for platforms covering the full gene body) and then trans-
ferredintolog,space. Thus, inits defaultimplementation, CytoSPACE
usesallgenesasinput and does notinvolve adimension reduction step.
Next, we estimate (by default) thenumber n,, s=1,---,S, of cells contribut-
ing RNA content in the sth spot of ST data (see ‘Estimating the number
of cells per spot’). We assume that the sth spot contains n, sub-spots
that can each be assigned to asingle cell and build an M x L matrix Bby
replicating the sth column of B, n,times, where L = Zle ngdenotes the
total number of estimated sub-spotsin the ST data. As describedinthe
following sections, we then sample the scRNA-seq matrix A such that
the totalnumber of cells, with cell types represented according to their
inferred fractional abundances, matches the total number of columns
in B, yielding an N x K matrix A, where K =L. Next, define an assignment
x:=[xg,0<x,<1,k=1,-- Kand [=1,---,L, where x,,denotes the assign-
ment of the kth cell in the scRNA-seq data to the /th sub-spot in the ST
data. Of note, although x,, is only explicitly constrained to real values
within this range, a globally optimal solution will naturally satisfy
Xy € {0,1}. We find the optimal cell/sub-spot assignment x* that mini-
mizes the following linear cost function:

K L
x* = argmin Cost (x) = argmin Y, " diXy;
o

subject to:

L K
Dxy=Lk=1-KY xg=LI=1-,1L,
=1 k=1

where d,,denotes the distance between the GEPs of the kth celland the
lthsub-spot. The above constraints guarantee that each cellis assigned
only to one sub-spot, and each sub-spot receives only one cell. In gen-
eral, d;;canbe obtained using any metric that quantifies the similarity
between the GEPs of the reference and target datasets. We examined
different similarity metrics for simulated data and selected Pearson
correlation as below due to its computational efficiency:

dyy = —corr (A¢,B°),

where Z:and E,G denote the kthand Ith columns of expression matrices
Aand B, respectively, for the shared genesin G.

We provide two possible solvers for CytoSPACE, both of which
will return the globally optimal solution of the above problem as
formulated. The first of these implements the shortest augmenting
paths-based Jonker-Volgenant algorithm, in which we solve the dual
problem of the above formulation defined as:

K L
max (2 g+ ZU,),
k=1 =1
subject to:
rg i=dy— (e +v)>20,0=1,--,Lk=1,- K,

where for the dual variables u, and v, the reduced cost ry is defined
asd,,— (u,+v,). The dual problem reformulates our optimization task

to find an alternative reduction of the cost function with maximum
sum and non-negative reduced costs. In summary, this algorithm
constructs the auxiliary network (or, equivalently, a bipartite graph)
and determines from an unassigned row k to an unassigned column/
an alternative path of minimal total reduced cost and uses it to aug-
ment the solution®. In practice, despite time complexity O(L?), the
Jonker-Volgenant algorithm is substantially faster than most available
algorithms for solving the assignment problem. By default, CytoSPACE
callsthelapjv solver fromthe lapjv software package (version1.3.14) in
Python 3, which makes use of AVX2intrinsics for speed (https://github.
com/src-d/lapjv)*. With this solver, CytoSPACE runs in approximately
5 minutes, on average, using a single core on a 2.4-GHz Intel Core i9
chip for a standard 10x Visium sample with an estimated average of
five cells per spot.

We provide analternate solver based on the cost scaling push-rela-
bel method* using the Google OR-Tools software package in Python 3.
Thissolveris aninteger programming approximation method in which
exact costs are converted to integers with some loss of numerical
precisionand which runs with time complexity O(L*log (LC)), where C
denotes the largest magnitude of an edge cost. In practice, this solver
isapproximately as fast as the Jonker-Volgenant-based solver detailed
above. However, for very large numbers of cells to be mapped, it can
offer faster runtimes. Furthermore, itis supported more broadly across
operating systems, so we recommend this solver for users working
on systems that do not support AVX2 intrinsics as required by the
lapjv solver. For users who want to obtain the exact results of lapjv on
operating systems that do not support the lapjv package, an equivalent
but considerably slower solver implementing the Jonker-Volgenant
algorithm is provided via the ‘lap’ package (version 0.4.0), which has
broad compatibility.

Estimating cell type fractions

To overcome variability in cell type fractional abundance between a
given ST sample and a reference scRNA-seq dataset, the first step of
CytoSPACE requires estimating cell type fractions in the ST sample
(Fig. 1a). Of note, only global estimates for the entire ST array are
required, and these may be obtained by combining spot-level fractions
by cell type. Although an intriguing future extension of CytoSPACE
would be to estimate cell type fractions as part of the optimization
routine, many deconvolution methods have been proposed to deter-
mine cell type composition from ST spots'“***?% and any such method
canbe deployed for this purpose. In this study, we used Spatial Seurat™*
from Seurat version 3.2.3 for our primary analyses, and we show that
correlations between estimated and true fractions of distinct cell
types are high in simulated data (Extended Data Fig. 3a). After load-
ing raw count matrices, we performed SCTransform() and RunPCA()
with default parameters followed by FindTransferAnchors() in which
the pre-processed scRNA-seq and ST data served as the reference
and query, respectively. We then obtained spot-level predictions by
TransferData() and obtained global predictions by summing predic-
tion scores per cell type across all spots and scaling the sum of cell
typescorestol.

Inaddition to Spatial Seurat, we tested the performance of RCTD'
for estimating global cell type fractions as input to CytoSPACE (Sup-
plementary Fig. 3). RCTD version 2.0.0 (package spacexr in R) was
employed with doublet_mode =‘full’and otherwise default parameters
to obtain cell type fraction estimates per spot, followed by summing
spot-normalized result weights per cell type across all spots and scal-
ingthesumtol.

Estimating the number of cells per spot

The number of detectably expressed genes per cell (‘gene counts’)
tightly corresponds to total captured mRNA content, as measured
by the sum of unique molecular identifiers (UMIs) per cell”. As gene
counts are routinely used as a proxy for doublets or multiplets in
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scRNA-seq experiments, we hypothesized that the sum of UMIs per
ST spot may reasonably approximate the number of cells per spot, as
required for the second step of CytoSPACE (Fig. 1a). To test this hypoth-
esis while blunting the effect of outliers, technical variation and the
impact of cell volume*®, we first normalized UMIs to CPM per spot and
then performedlog,adjustment. We then estimated the number of cells
per ST spot by fitting alinear function through two points. For the first
point, we assumed that the minimum number of cells per spotis1and
that this minimum in cell number corresponds to the minimum sum
of UMIsinlog,space. For the second point, we assumed that the mean
number of cells per spot corresponds to the mean sum of UMIs inlog,
space and set this value according to user input. For 10x Visium samples
in which spots generally contain 1-10+ cells per spot, we employed a
mean of five cells per spot throughout this work. For legacy ST samples
with larger spot dimensions, we selected a mean of 20 cells per spot.
The number of cells for every spot was calculated from this fitted func-
tion. Insupport of our hypothesis, for simulated ST datasets, we found
that the Pearson correlation between the estimated and real number of
cellsranged between 0.80 and 0.93, depending on the dataset and spot
resolution evaluated, with log, adjustment outperforming the sum of
UMIlsinthe original linear scale (thatis, without CPM) (Extended Data
Fig.3b-d). The same was true when comparing against the number of
cells per spot analyzed by cell segmentation (VistoSeg?’) applied to
previously analyzed imaging data from a mouse brain Visium sample
(Extended Data Fig. 3e), further validating our approach. Although
this estimation component is provided by default, users may also
provide their own estimates for this step, including those generated by
cell segmentation methods (for example, VistoSeg® and Cellpose’).

Harmonizing the number of cells per cell type

The third step of CytoSPACE equalizes the number of cells per cell type
betweenthe query scRNA-seqdataset and the target ST dataset (Fig. 1a).
This is accomplished by sampling the former to match the predicted
quantities in the latter using one of the following methods:

Duplication. Let num,, and numg;, denote the real and estimated
number of cells per cell type kin scRNA-seq and ST data, respectively.
For cell type k, if num;., < numg;,, CytoSPACE retains all available cells
inthe scRNA-seq data and also randomly samples numg;, — num cells
from the same num,, cells. Otherwise, it randomly samples numg;;
from the num,, available cells with cell type label k in the scRNA-seq
data. By default, CytoSPACE applies this method for real datato ensure
thatall cells assigned are biologically appropriate.

Generation. Here, when numy, , < numg;,, instead of duplicating cells,
new cells of a specific type are generated with independent random
gene expression levels by sampling each gene from the gene expression
distribution of cells of the same type uniformly at random. We used
this method for benchmarking simulations to avoid biasin measuring
precision owing to the presence of duplicated cells (Fig. 1b-d, Extended
DataFigs. 4-6 and Supplementary Figs.2-4).

Simulation framework

Toevaluate the accuracy and robustness of CytoSPACE (Fig. 1b), we sim-
ulated ST datasets with known single-cell composition using previously
annotated Slide-seq datasets of mouse cerebellum and hippocampus
sections™. Let SIbe an M x Bgene expression matrix of aSlide-seq puck
with Mgenes and Bbeads. To create a higher gene coverage version of
Sl,denoted Sc, we used previously annotated scRNA-seq datasets of the
samebrain regions® toreplace S/beads with single-cell transcriptomes.
After quality control, inwhich outlier cells with more than1,500 genes
were removed, we matched each bead in the Slide-seq datasets with the
nearest cell of the same cell type in the scRNA-seq dataset by Pearson
correlation. We did this separately for each mouse brain region. As
single cells may be matched with more than one bead, to obtainunique

single-cell transcriptomes we permuted genes between cells of the
same cell type. For each cell, we replaced 20% of its transcriptome,
with genes randomly selected per cell, with that of another randomly
selected cell of the same cell type such that the latteris nota duplicate
ofthe former. For simplicity, we matched the number of beads present
inthe two tissues by randomly sampling beads from the hippocampus
data down to the number present in the cerebellum data.

Having created an Sc matrix for each brain region, we next sought
togenerate ST datasets with defined spot resolution. For this purpose,
weimposed anm x nspatial grid over the entire puck. Ineach grid spot
X;i=1,...,n,j=1,...,m, we calculated the sum of raw counts Sc; of the
cells located within the grid spot x;. Because the spatial resolution of
ST data varies depending on the technology used, we simulated ST
datasets with an average of 5,15 and 30 cells per spot.

Finally, to (1) leverage the scRNA-seq data underlying each Sc
matrix asa query dataset and (2) emulate technical variation between
platforms, we added noise to the scRNA-seq datain defined amounts.
To this end, we selected a percentage of genes p to perturb and then
randomly selected a corresponding subset of genes from each cell to
which noise was added from the exponentiated Gaussian distribution
20D We considered noise perturbations for the following values of p:
5%,10% and 25%. Despite the addition of noise, UMAP plots of perturbed
transcriptomes remained similar to the original data, implying mainte-
nance of biologically realistic data structure (Extended Data Fig. 2b-e).

Quality control considerations for cell-to-spot alignment
There aretwo key scenarios inwhich mismatch between scRNA-seqand
ST data canoccur. Inthefirst scenario, cell types are detectable in the
scRNA-seqdatasetbut notinthespatial dataset. CytoSPACE addresses
thisissue by requiring celltype abundance estimates asinput (for exam-
ple, using Seurat™, RCTD" or cell2location”). In doing so, cell types
missing from the ST dataset will generally be omitted from the spatial
mapping (ifimputed with zero fractional abundance) or inferred with
low fractional abundance, minimizing their impact on performance.
Inthe second scenario, cell types are detectable in the spatial data-
set but not in the scRNA-seq dataset, leading to incorrect mapping.
Exceptfor celltypesthatare either rare or prone to dissociation-induced
losses, this scenario is uncommon, as droplet sequencing can readily
canvas all major cell types in a given tissue sample. Other methods for
spatial spot decomposition, including Seurat™, RCTD™ and cell2loca-
tion”, have the same limitation, whichis usually negligible in practice.
Although the Jonker-Volgenant algorithmis guaranteed to opti-
mally solve the assignment problem given its cost function, there
is no underlying probabilistic framework for estimating mapping
uncertainty. An alternative is to determine whether a given cell type
belongs to a given spatial spot after mapping—thatis, whether aspot
contains at least one cell of the same cell type. Notably, this definition
isconsiderably less demanding than the metric described in the ‘Per-
formance assessment’ subsection below. Nevertheless, to explore this
possibility, weimplemented the following procedure. First, to identify
the top marker genes for each cell type mapped by CytoSPACE, we
sequentially applied NormalizeData(), ScaleData() and FindAlIMark-
ers() from Seurat version 4.0.1to the scRNA-seq query dataset using
default parameters. We then normalized and scaled the ST dataset
using the same workflow. For each cell type i with at least five, and
up to 50, marker genes (denoted by m) identified by -log,,-adjusted
P value with log, fold change >0, we randomly selected 50 spatial
spots for which CytoSPACE assigned at least one cell of cell type i and
50 spatial spots without at least one cell of cell type i. If fewer than 50
spots satisfied a given condition, we sampled 50 spots with replace-
ment. Next, we used cell-to-spot assignments to reconstitute each
selected spot as a pseudo-bulk transcriptome from the normalized
and scaled scRNA-seq dataset by averaging over the assigned cells. We
subsequently trained asupport vector machine (e1071version1.7.8in
R) to distinguish the two groups of pseudo-bulks from the previous
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step using the top m marker genes of cell type i. With this model,
we calculated the probability, termed a confidence score, that cell
type i belongs to each spot in the normalized and scaled ST dataset.
Finally, for each mapped cell of type i, we retrieved its spot-specific
confidence score.

We evaluated this approach on simulated ST data where ground
truthisknown (Supplementary Fig.1a). Although the fraction of incor-
rectlymapped cells (defined as above) was already low before applying
this filter (<5%), it successfully distinguished correctly mapped cells
fromincorrectly mapped cells with high statistical significance, with
nearly all areas under the curve (AUCs) exceeding 0.8 for classifying
individual cell types (Supplementary Fig. 1b,c). Moreover, at a confi-
dence threshold above 10%, virtually every correctly mapped cell was
retained, whereas more than 75% of incorrectly mapped cells were
removed (Supplementary Fig. 1d,e). Thus, this procedure, which is
available via the CytoSPACE GitHub repository, may be used as an
optional post-processing step for exploring alignment quality.

Benchmarking analysis with simulated datasets

To fully evaluate the performance of CytoSPACE, we performed an
extended benchmarking analysisincluding Tangram, CellTrek and ten
additional methods that may be adapted for our use case (Extended
Data Fig. 4). In considering which methods to include, we required
methods that (1) are applicable to a single-cell query dataset and spa-
tial reference dataset, including bulk ST data; (2) produce an output,
orinvolve anintermediate step, in which the two datasets are aligned,
allowing imputation of single-cell spatial coordinates in the query
dataset (for example, scRNA-seq integration techniques, some gene
imputation methods and naive distance metrics); and (3) are peer
reviewed with a publicly available software implementation.

Many previous methods for ST analysis fail to satisfy these require-
ments, including methods designed for spot-level decomposition (for
example, cell2location” and RCTD*; Extended Data Fig. 1), spatial clus-
tering (for example, BayesSpace®’) and spatial coordinate prediction
without a spatial reference (for example, novoSpaRc”). Accordingly,
our benchmarking analysis consists of three dedicated cell-to-spot
mapping methods (CytoSPACE, Tangram and CellTrek); three single-cell
integration methods (Harmony*®, LIGER* and Seurat version 3 (ref.'*));
four methods from which cell-to-spot assignments can be extracted
(DistMap®’, SpaGE®', DEEPsc*? and SpaOTsc*®); and three naive methods
(Pearson correlation, Spearman correlation and Euclidean distance).
Below we describe the application of each approach.

CytoSPACE. For each ST resolution and scRNA-seq noise level, we esti-
mated the fractional abundance of known cell types in the ST sample
via Spatial Seurat, as described in the ‘Estimating cell type fractions’
subsection. We then ran CytoSPACE with the ‘generated cells’ option
and with the lapjv solver implemented in Python (package lapjv, ver-
sion1.3.14).

Tangram. Like CytoSPACE and in contrast to the other methods consid-
ered here, Tangram seeks to arrange input cells across spots optimally,
and cell-to-spot mappings for each input cell are strongly inseparable
from the cell-to-spot mappings of other cells. Thus, to ensure a fair
comparison with CytoSPACE, we ran Tangram (version 1.0.2) with the
same input cells mapped by CytoSPACE, including cells newly gener-
ated after resampling to match predicted cell type numbers. We also
provided a normalized vector of CytoSPACE'’s cell number per spot
estimate as the density prior (density_prior argument). We trained Tan-
gramon CPM-normalized scRNA-seq dataintwo ways: (1) using all avail-
able genes per cell and (2) using the top marker genes stratified by cell
type. Toidentify marker genes using Seurat (version 4.1.0), we applied
NormalizeData() with default parameters and FindAlIMarkers() with
only.pos=TRUE, min.pct =0.1and logfc.threshold = 0.25. The top 100
genes by average log, fold change were then selected for each cell type.

CellTrek. Given that CellTrek heavily duplicates input cells (by default)
andalsofiltersinput cells based on whether mutual nearest neighbors
areidentified between cells and spots®, we provided CellTrek (version
0.0.0.9000) withall cells present in each simulated ST dataset (without
the newly generated cells mapped by CytoSPACE and Tangram). After
single cells were assigned to spatial coordinates, we selected the closest
ST spot for each cell via Euclidean distance. As the CellTrek wrapper
does not handle ST input without associated h5 and image files, we
modified the code to accommodate ST datasets from other sources.
CellTrek was run with default parameters, with the exception of
(1) limiting the repel functionality (repel_r=0.0001), as this parameter
forces imputed spatial coordinates to arbitrarily deviate from their
original predictions, and (2) setting spot_n to twice the mean number
of cells per spot for each spatial resolution tested.

DistMap. DistMap seeks to computationally reconstruct ST data at
single-cell resolution from paired scRNA-seq. It uses marker genes and
abinarizationapproach calculating Matthews correlation coefficients
to obtain distributed positional assignments for each cell*°.

For our benchmarking, we provided DistMap (version 0.1.1) with
allinput cells and spots, restricting genes to marker genes (selected as
described for benchmarking Tangram with top genes) expressed in at
least five cells and five spots. Count matrices were CPM normalized and
log, adjusted. After creation of a DistMap object with the normalized
ST data provided for the insitu argument, we binarized the scRNA-seq
data via binarizeSingleCellData(dm, seq(0.15, 0.5, 0.01)) per author
recommendations. We prepared a binarized version of the ST data
matrix by setting allnon-zero countstoland thenreplaced theinsitu.
matrix member variable of the DistMap object with this binarized
version. We performed the cell-to-spot mapping with mapCells() and
assigned each cell to the spot with the highest score asreturnedin the
mcc.scores member variable.

SpaOTsc. SpaOTsc is a method for inferring spatial properties of
scRNA-seq data, designed primarily for the investigation of spatial
cell-cell communications®. As the first step in this process, SpaOTsc
computes a map between single cells and a spatial dataset using an
optimal transport approach on marker genes.

For our benchmarking, we provided SpaOTsc (version 0.2) with
allinput cells and spots, restricting genes to marker genes (selected
as described for benchmarking Tangram with top genes) expressed
in at least five cells and five spots. Following tutorial instructions, we
implemented SpaOTsc as follows. We first normalized counts to sum
t010,000 per cell or spot, respectively, and then log, transformed the
resulting scRNA-seq (df _sc) and ST (df is) matrices. From the normal-
ized scRNA-seq data, we performed principal component analysis
(PCA) with prcomp in R and then computed the Pearson correlation
coefficient matrix (sc_pcc) between single cells from the top 40 prin-
cipal components. To obtain aMatthews correlation coefficient matrix
(mcc) between cells and spots, we binarized each normalized data
matrix (resultingin df_sc_binand df_is_bin for scRNA-seqand ST matri-
ces, respectively) with a quantile threshold of 0.7 and then computed
the Pearson correlation coefficient over all cell-spot pairs. We then
ran SpaOTsc with the following set of commands: C = np.exp(1-mcc),
issc = SpaOTsc.spatial_sc(sc_data = df sc, sc_data_bin = df sc_bin, is_
data = df is, is_data_bin = df_is_bin, sc_.dmat = np.exp(1-sc_pcc), is_
dmat=is_dmat), out=issc.transport_plan(C**2,alpha=0.1,rho=100.0,
epsilon =1.0, cor_matrix = mcc, scaling = False). Each cell was then
assigned to the spot with the highest score as returned in the output
ofiissc.transport_plan().

DEEPsc. DEEPscis adeep-learning-based method for imputing spatial
information onto scRNA-seq data given a spatial reference atlas®.
DEEPsc first transfers the spatial reference atlas data to a space of
reduced dimensionality via PCA and then performs network training
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overit. The scRNA-seqdataare projected into the same PCA space and
fedinto the DEEPsc network, which outputs amatrix of likelihoods that
each cell originated from each spotinthe ST tissue.

For our benchmarking, we provided DEEPsc (version number
not available; last GitHub commit when cloned: 5June 2022) with all
inputcells and spots, with each input matrix CPM normalized and then
log transformed via loglp and with genes restricted to those present
in both matrices. DEEPsc was run with 50,000 iterations in parallel
mode for training as previously described”* and with otherwise default
parameters.

SpaGE. SpaGE, or Spatial Gene Enhancement using scRNA-seq, is a
method forincreasing gene coverage in ST measurements by integrat-
ing spatial datawith higher-coverage scRNA-seq datasets®. SpaGE uses
the domain adaptation algorithm PRECISE to project datasets into a
shared space, in which gene expression predictions are then computed
through ak-nearest neighbors approach. Although SpaGE was designed
for gene expression prediction rather than mappingcellsto spots, as it
includes anintegration step, itis possible to use thisintegration space
for cell-to-spot mapping.

To do so while making full use of the SpaGE framework (ver-
sion number not available; last GitHub commit when cloned: 20 July
2021), we added to the source code a command to return the single
nearest spot neighbor for each cell in the SpaGE integrated space.
We then provided the modified SpaGE code with all input cells and
spots. Following the tutorial recommendations, we excluded genes
not expressed in at least ten cells and then CPM normalized and log,
transformed the scRNA-seq matrix while normalizing the ST matrix to
median counts per spot, followed by log, transformation. SpaGE was
runwithn_pv =30, again per tutorial recommendations, and otherwise
default parameters.

Spatial Seurat. Seurat, awell-known method for integrating single-cell
expression datasets that works by identifying ‘anchors’ between data-
sets, canbe used with spatial data as well'*. We tested Spatial Seurat inte-
gration for assigning cells to spots using Seurat version 3. After loading
scRNA-seqand ST count matrices into Seurat objects, we pre-processed
bothwith SCTranform() and then used the standard integration proto-
col of FindTransferAnchors(normalization.method =‘SCT’), followed
by TransferData(). Cell-to-spot assignments were determined by the
predicted.id returned from the resulting predictions assay.

Harmony. Harmony is a method for integrating multiple scRNA-seq
datasetsintoajointembedding space, employing clustering methods
over principal component representations of the data to obtain linear
correction factors for integration®®, As a dataset integration method,
Harmony does not provide direct cell-to-spot mapping results. Thus,
for our benchmarking, we used the method to first integrate the full
single-cell and corresponding spatial datasets and then assigned each
celltoitsnearest spot within theintegration space by selecting the spot
with minimum Euclidean distance to the cell.

To obtainthe integration space representations, we followed the
standard Harmony protocol. We first merged Seurat objects created
from the scRNA-seq and ST count matrices and then applied the stand-
ard Seurat processing pipeline of NormalizeData(), FindVariableFea-
tures(), ScaleData() and RunPCAJ(), all with default parameters. With
the resulting Seurat object, we ran Harmony version 0.1 with group.
by.vars = ‘orig.ident’ and otherwise default parameters.

LIGER. Like Harmony, LIGER is another method designed for single-cell
expression dataset integration®, although LIGER relies instead on an
integrative non-negative matrix factorization approach to embed fea-
turesinalow-dimensional space, incorporating both dataset-specific
and shared factors. As described above for Harmony, we used LIGER
to obtain a shared embedding space between the scRNA-seq and ST

datasets and then assigned cells to spots according to minimum Euclid-
eandistance.

To run LIGER (version 1.0.0), we created a LIGER object and then
processed it with package functions normalize(), selectGenes(var.
thresh=0.2) and scaleNotCenter(), for normalization, gene selection
and scaling, respectively, and then applied online_iNMF() and quan-
tile_norm() to align the datasets following the tutorial*’. All parameters
not specified here were set to defaults. Embeddings were extracted
fromthe LIGER object member variable H.norm.

In addition to the above methods, we tested Euclidean distance
(calculated with the spatial.distance.cdist function of scipy version
1.8.0), Pearson correlation and Spearman correlation. Here, each
cell was assigned to the spot that either minimized distance (Euclid-
ean distance) or maximized correlation (Pearson and Spearman
correlations). All ground truth cells were evaluated without resam-
pling, and input datasets were CPM normalized and log, adjusted
before analysis.

Performance assessment. To determine the accuracy of single-cell
mapping (Fig. 1d, Extended Data Figs. 4-6 and Supplementary
Figs.2-4), we classified assigned locations that exactly matched ground
truthspotsas correct. Letting 7P, . denote the number of correct assign-
ments, we defined single-cell precision (Pr,.) as

TP
" No.unique mapped cells with ground truth locations

Prq.

Ofnote, because generated cells (see the ‘Harmonizing the number of
cells per cell type’ subsection) did not have a corresponding ground
truth location, they were excluded from this calculation. Separately,
although CellTrek can assign the same cell ID i to multiple spots, any
cell of ID i mapped to the correct spot at least once was considered
correct. This was done without inflating the denominator or penalizing
incorrect mappings for other cells with ID i.

Measuring robustness of CytoSPACE in simulation
Tobebroadly useful,acomputational method such as CytoSPACE must
exhibit robustnesstoreasonable variation orerrorininputs. With this
inmind, we tested CytoSPACE’s consistency and robustness to variation
across input parameters.

Robustness to cell fraction estimation error. To mimic realistic tech-
nical error in estimating cell type fractions, in which proportionally
larger error can be expected for rarer cell types, we introduced multi-
plicative noise within a four-fold range, with noise inversely dependent
uponthe original fraction estimate. First, for each celltypeiinasample,
werandomly sampled y,from a Gaussian distribution with mean zero
and standard deviation inversely dependent on the original fraction
estimate x; for cell type:

Here, the cubic root smooths the distribution toward the four-fold
perturbation range desired. To restrict the range strictly to within a
four-fold perturbation, we imposed a maximum absolute value of 2
ontheresulting value:

2, = max (=2, min (2,),))

The perturbation of each original estimate was then computed as

X =x;- 2%

with the resulting values then renormalized to unit sum.
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We tested CytoSPACE with this noise modelin simulation with five
replicates for each simulated test case (see the ‘Simulation framework’
subsection), evaluating results via single-cell assignment precision
as described in the ‘Performance assessment’ subsection (Extended
DataFig. 6a,b).

Robustness to cell number per spot estimation error. We introduced
noise to estimates of number of cells per spot with asimilar protocol to
that described above for perturbing cell type fraction estimates. First,
foreach spotinasample, werandomly sampledy,;from a Gaussian dis-
tribution with mean zero and standard deviation inversely dependent
onthe original estimate n; for cell type i:

o= n%,yi ~N(0,0%)

i

Inthe above distribution, p denotes a tuning parameter that we set by
spatial resolution in such away asto produce similar Pearson correla-
tions between the original and perturbed estimate as we observed
between the CytoSPACE estimate, based on RNA content, and the
VistoSeg estimate, based onimage segmentation (within the range of
0.50-0.55; Extended DataFig. 3e). To achieve this, we set pto 1.4 (simu-
lated data with estimated mean of five cells per spot), 1.7 (simulated
mouse cerebellum data with estimated mean of 15 cells per spot), 2.2
(simulated mouse cerebellum data with estimated mean of 30 cells per
spot), 2.6 (simulated mouse hippocampus data with estimated mean
of15cells per spot) and 3.7 (simulated mouse hippocampus data with
estimated mean of 30 cells per spot).

To restrict the range of values to a feasible region, we imposed a
minimum number of cells per spot of 1and a maximum number of cells
per spot of 110% of the original maximum M. The perturbed values n;
were, thus, computed as

n; = max (1, min (n; - Round (2%),11M))

We tested CytoSPACE with this noise modelin simulation with five
replicates for each simulated test case (see ‘Simulation framework’
subsection), evaluating results via single-cell assignment precision
as described in the ‘Performance assessment’ subsection (Extended
DataFig. 6¢c-e).

Robustness to sampling variation. Although most steps of the algo-
rithmare deterministic, CytoSPACE requires that the input scRNA-seq
dataset beresampled to create a pool of cells matching those expected
inthe ST dataset; this sampling is done at random. To test consistency
of results across different samples, we ran CytoSPACE ten times with
different seeds for each simulation case described in the ‘Simulation
framework’ subsection. Single-cell precision of the assignment was
calculated as described above (‘Performance assessment’ subsection).
Results for this analysis are shown in Supplementary Fig. 4a.

Robustness to distance metric. Inaddition to Pearson correlation, the
default distance metric that we implement for CytoSPACE, we tested
CytoSPACE performance with alternative distance metrics Spearman
correlationand Euclidean distance asshownin Supplementary Fig. 4b.
For each ST resolutionand scRNA-seq noise level in simulated data (as
describedin the ‘Simulation framework’ subsection), we ran CytoSPACE
with Spearman correlation and Euclidean distance substituted for the
distance metric.

ST datasets for TME community analysis

Melanoma ST data generated by Thrane et al.*® were downloaded
from https://www.spatialresearch.org/resources-published-datasets/
doi-10-1158-0008-5472-can-18-0747/. Pre-processed ST datasets of
breast cancer (Visium fresh-frozen and FFPE) and colorectal cancer

(CRC) (fresh-frozen) specimens were downloaded from 10x Genomics
(https://www.10xgenomics.com/spatial-transcriptomics/). Annota-
tions of regions containing tumor cells were downloaded from 10x
Genomics for the Visium FFPE breast cancer sample and shared by
10x Genomics upon request for the Visium fresh-frozen breast can-
cer sample analyzed in this work. A pre-processed Visium array of a
fresh-frozentriple-negative breast cancer (TNBC) specimen (1160920F)
was obtained from Wu et al.”” along with tumor boundaries. Additional
details are available in Supplementary Table 1.

scRNA-seq tumor atlases

All analyzed tumor scRNA-seq data, which were downloaded as
pre-processed count (UMI-based) or transcript (non-UMI-based)
matrices (Supplementary Table 1), were selected and curated to clini-
cally match the ST specimens analyzed in this work (see the ‘Molecular
classification of breast cancer specimens’ subsection). Additionally,
author-supplied annotations were used for all ScRNA-seq reference
datasets analyzed in Fig. 2 (detailed in Supplementary Table 1), with
the following modifications. For the melanoma dataset generated by
Tiroshetal.’, we excluded normal melanocytes and divided T cells into
CD4 and CDS8 subsets by the expression of CD8A/CD8B and CD4/IL7R,
respectively, as previously described®. For the breast cancer dataset
from Wu et al.” and for the CRC dataset from Lee et al.**, the authors’
annotations were mapped to cell types according to the scheme in
Supplementary Table 3. Of note, we excluded T cells that could not
be confidently classified as CD8 or CD4 T cells and myeloid cells that
could not be confidently classified as monocytes/macrophages or
dendritic cells.

Molecular classification of breast cancer specimens
Whenavailable, author annotations were used to determine estrogen
receptor (ER) and human epidermal growth factor receptor 2 (HER2)
enrichment status for each scRNA-seq and ST tissue breast cancer sam-
ple.For the FFPE breast cancer specimen from 10x Genomics without
receptor status annotation, we examined the expression of ESRI (ER)
and ERBB2 (HER2) genes. We reclassified the FFPE breast cancer ST
specimen as HER2/ER™ based on high expression of ERBB2 without
appreciable ESRI expression.

Mapping of single-cell transcriptomes onto tumor ST samples
For the analyses in Fig. 2a-f, Extended Data Figs. 7 and 8 and Supple-
mentary Figs. 5and 6, CytoSPACE and the other benchmarking meth-
odsdescribed inthe ‘Benchmarking analysis with simulated datasets’
subsection were applied as follows:

CytoSPACE. Cell type fractions were computed using Spatial Seurat
(see the ‘Estimating cell type fractions’ subsection), and CytoSPACE
wasrun with the ‘duplicated cells’ option and the lapjv solver asimple-
mentedinthelapjv Python package onasingle CPU core. For all Visium
samples, we set the mean number of cells per spot to 5, whereas, for
legacy ST samples (melanoma ST data), we set this parameter to 20.

Tangram. As input, we analyzed the same single-cell transcriptomes
mapped by CytoSPACE, including duplicates, along with a density
prior (density_prior argument) determined by the number of cells per
spot estimated by CytoSPACE. Because Tangram performed best with
all genes when used for simulated ST datasets (Fig. 1d, Extended Data
Fig.4 and SupplementaryFigs.2and 3), weran Tangram (version 1.0.2)
on CPM-normalized scRNA-seq datawith 24 CPU cores on all available
genes. Other parameters were set to default.

CellTrek. Given CellTrek’s internal filtering mechanism (see the ‘Bench-
marking analysis with simulated datasets’ subsection), we provided all
cellsinthe corresponding scRNA-seqatlases asinput (without duplica-
tion or downsampling). For Visium samples, we ran CellTrek (version
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0.0.0.9000) with default parameters with 24 CPU cores (reduction =
‘pca’, intp =T, intp_pnt=10,000, intp_lin=F, nPCs =30, ntree =1,000,
dist_thresh=0.4, top_spot =10, spot_n=10, repel_r=5, repel_iter=10,
keep_model =T) and then assigned cells from raw output coordinates
to their nearest spot by Euclidean distance. For the legacy ST samples
(melanoma), we modified the code to handle inputs without h5 and
image files, as detailed above. To fit the larger spot resolution in the
legacy ST datasets, we fixed spot_n to 40. Other parameters were the
same as above.

Other methods. The other benchmarking methods (DistMap, SpaOTsc,
DEEPsc, SpaGE, Spatial Seurat, Harmony, LIGER, Euclidean distance,
Pearson correlation and Spearman correlation) were implemented
according to the details described in their corresponding sections in
‘Benchmarking analysis with simulated datasets’, with the following
exception: for computational feasibility over especially large scRNA-seq
datasets, we ran SpaOTsc for two scRNA-seq/ST pairs (CRC and TNBC)
with the protocol described above for ‘Tangram’, providing the cells
mapped by CytoSPACE rather than the entire scRNA-seq dataset.

Running time analysis

To evaluate the efficiency of CytoSPACE in practice and bench-
mark against recent dedicated cell-to-spot mapping methods, we
recorded running times for CytoSPACE, Tangram and CellTrek across
all scRNA-seq tumor atlas/ST pairs tested (n =4 pairs with Visium ST
data, n =2 pairs with lower-resolution legacy ST data) (Supplementary
Table 4) with parameter details as described above. For CytoSPACE,
wereportrunningtimes for both exact (shortest augmenting pathvia
thelapjv solver) and integer approximation solvers and both with and
without a Spatial Seurat pre-processing step for obtaining input cell
type fractional abundances. Data loading and file writing steps were
excluded from running times for all methods. Methods were tested on
similar, although notidentical, systems, with CytoSPACE, Spatial Seu-
rat pre-processing steps and Tangram tested on a computing cluster
providing Intel E5-2640v4 (2.4-GHz base and 3.4-GHz max frequen-
cies, with an associated 128 GB RAM), Intel 5118 (2.3 GHz base and
3.2 GHzmax frequencies, with an associated 191 GB of RAM) and AMD
7502 (2.5-GHz base and 3.35-GHz max frequencies, with an associated
256 GB of RAM) processors and with CellTrek tested on a server with
an Intel E5-2680v3 processor and an associated 230 GB of RAM. With
the exception of CytoSPACE, in which the core mapping function uses
only asingle core, all methods were provided with 24 cores.

Validation of alternative solver

To verify that the integer approximation solver we provide as a fast
alternative to the recommended exact solver (lapjv) yields similar
results, we measured the proportion of single cells mapped to the
same location across the two solver methods. For each scRNA-seq
tumor atlas/ST pair tested, we mapped the same single cells after
pre-processing for duplication and downsampling to match the esti-
mated cell type fractionsintissue via CytoSPACE with exact and integer
approximationsolvers, and we report the percentage of cells mapped
to the same spot in each method (Supplementary Table 5). For dupli-
cated cells, no distinction was made between the copies.

Spatial enrichment analysis

To determine whether single cells mapped to ST spots showed enrich-
ment of known spatially resolved gene expression programs, cells were
first partitioned into two groups (‘close’ and ‘far’) based on their dis-
tance from cancer cells. For breast cancer ST samples, all of which were
profiled by 10x Visium, we used tumor boundary annotations deter-
mined by apathologist to group cells. For melanoma and CRC datasets,
the mean Euclidean distance of each TME cell to the nearest five tumor
cells (mapped by the respective alignment method) was determined.
For the melanoma dataset, melanoma cells were considered as tumor

cells, whereas, in the CRC dataset, tumor epithelial cells were con-
sidered for the purpose of identifying tumor locations in tissue. For
each TME celltype, the resulting distances were median stratified into
‘close’ and ‘far’ groups. This was done for two main reasons. First, the
CRC sample lacked tumor boundary annotations. Second, although
melanoma datasets included such annotations, the low spatial resolu-
tion of the legacy ST platform prevented precise co-registration with
spatial spots at the tumor-stromainterface.

To quantify spatial enrichment, we used pre-ranked gene set enrich-
mentanalysis (GSEA) implemented in fgsea (version 1.14.0) with nperm
=10,000. Asinput, all spatially mapped single-cell transcriptomes were
loaded by cell typeinto Seurat version 4.1.0 (min.cells=5) and normal-
ized with NormalizeData(). For each method and cell type, we then
generated agene list ranked by log, fold change for the identity classes
‘near’ and ‘far’ using FoldChange(). If fewer than ten cells of a cell type
were assigned to spots within one partition by at least one method, we
excluded that cell type from the enrichment analysis. Of note, several
methods (SpaOTsc, DEEPsc, Seurat, Hamony and Euclidean distance)
failed to map all evaluated cell types toregions both closer to and farther
fromtumor cells, precluding the use of GSEA (as described belowin the
‘Spatial enrichment analysis’ subsection) on the affected cell types.
In such cases, statistical comparisons to CytoSPACE were performed
excludingthe affected cell types. As CytoSPACE and Tangram were each
run with the same scRNA-seq input, before running Seurat and fgsea
we performed random sampling of cells mapped by all other methods
to match the number of cells per cell type mapped by CytoSPACE and
Tangram and to ensure a fair comparison among methods. This was
done as described in ‘Harmonizing the number of cells per cell type—
Duplication’. Gene sets for T cell exhaustion and CE9/CE10-associated
cell states were derived by Zheng et al.*” and Luca et al.*, respectively.
Allevaluated gene sets and underlying GSEA results are provided inthe
supplement (Supplementary Tables 6 and 7, respectively).

Measuring robustness of CytoSPACE on real data

Werepeated the robustness testing described previously in ‘Measuring
robustness of CytoSPACE on simulated data’ with real data, applying
CytoSPACE under various perturbations to the task of spatial enrich-
ment analysis in TME samples and quantifying performance accord-
ing to the recovery of expected spatial enrichments of gene sets in
the TME as described in ‘Spatial enrichment analysis’ (Extended Data
Fig.7). The perturbation analyses were conducted in the same manner
as with simulated data, except for the robustness to cell number per
spot estimation error analysis, for which the tuning parameter p was set
for scRNA-seq/ST dataset pairs as follows: 1.4 (Visium data), 1.9 (legacy
ST data, melanomaslide 2) and 2.3 (legacy ST data, melanomaslide1).

Spatially resolved macrophage states

To evaluate the spatial localization of TREM2" and FOLR2' mac-
rophages® (Extended DataFig. 8), single-cell transcriptomes annotated
as ‘macrophages/monocytes’ were mapped to ST spots as described
above (‘Mapping of single-cell transcriptomes onto tumor ST samples’;
Supplementary Table 1) and ordered based on their spatial distance
(Euclidean) from tumor cells. All cells were processed with Seurat as
described in ‘Spatial enrichment analysis’. To calculate distance, we
used the same metric described for melanomaand CRC datasets (‘Spa-
tial enrichment analysis’). For cells mapped within tumor boundaries
annotated by a pathologist (breast cancer datasets), distances were
set to zero. We then divided cells into ‘near’ (distance = 0) and ‘far’
(distance > 0) groups and calculated the log, fold change of each gene
using FoldChange() in Seurat (Extended Data Fig. 8b).

Integrative single-cell spatial analysis of healthy mouse kidney
For the analyses presented in Fig. 2g-i, Extended Data Fig. 9 and Sup-
plementary Fig. 8, we downloaded (1) a well-annotated scRNA-seq
atlas encompassing immune cells, stromal elements and more than
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30 spatially resolved subtypes of kidney epithelium*® and (2) a10x
Visium sample of normal mouse kidney* (Supplementary Table 1).
Kidney epithelial cell states lacking a numeric identifier (as in Fig. 2g)
were omitted, and states corresponding to the same phenotype were
merged (3 and 4, 5and 6, 7 and 8; Fig. 2g). The datasets were subse-
quently aligned with CytoSPACE as described in‘Mapping of single-cell
transcriptomes onto tumor ST samples’ but with the mean number
of cells per spot set to 10. Using epithelial cells, which have ground
truthlocationsinthe scRNA-seqatlas, we analyzed the following zonal
regions: cortex (outermost region), outer medulla (central region)
andinner medulla (innermost region), with the outer medulla further
subdivided into the outer stripe (proximal to the cortex) and inner
stripe (proximal to the inner medulla) (Fig. 2h, top, and Supplemen-
tary Fig. 8a).

We established a ground truth rank for each epithelial cell state,
reflecting its relative distance to epithelial state 32 (‘deep medullary
epithelium of pelvis’), which corresponds to the base of the ureteric
epithelium (UE) in the inner medulla as previously reported*® (Fig. 2g
and Supplementary Table 8). Then, using single-cell spatial coordinates
determined by CytoSPACE, we calculated the mean Euclidean distance
of eachepithelial cell state to the centroid of epithelial cells mapped to
epithelial state 32. Regardless of whether we examined nephron or UE,
correlations between predicted and ground truth distances were high,
demonstrating CytoSPACE’s potential for granular mapping (Fig. 2i).

For the analysis in Extended Data Fig. 9, we tested whether Cyto-
SPACE canresolve the known structure of the nephron and UE collect-
ing system (Extended Data Fig. 9a), which is not discernible from the
scRNA-seq atlas (Extended Data Fig. 9b) or ST dataset* alone. For this
purpose, we scored spatial spots as 1if at least one cell of a given cell
type was mapped by CytoSPACE and O otherwise. We then converted
theresulting binary square matrix, with celltypes asrows and cell types
as columns, into a Jaccard similarity matrix J that quantifies spatial
overlap among epithelial states (Extended Data Fig. 9¢, left). After fil-
tering allbut the four nearest neighbors of each epithelial statein], we
converted each row to rank space and created an undirected graph
from the data using igraph version 1.2.6 in R. We then visualized the
graph using layout_with_fr(), the Fruchterman and Reingold
force-directed layout algorithmimplemented inigraph (Extended Data
Fig.9d). To determine statistical significance (Extended Data Fig. 9d),
we devised a permutation approach in which we first determined the
nearest neighbor N;of each epithelial state iin ). We then calculated the
minimum number of physically adjacent epithelial states (denoted
by x;) between N, and the ground truth nearest neighbor(s) of i
(Extended Data Fig. 9c, right). After calculating x; for all evaluable
epithelial states, the results were averaged, denoted x. After this, we
randomly permuted each row of J and recalculated the mean distance
X . We repeated this for a total of 100,000 iterations to calculate the
empirical P value of x. To create the UMAP plot in Extended Data
Fig.9b, we sequentially applied the following Seurat version 4.0.1com-
mands to the log-normalized scRNA-seq data of epithelial cell states
from Ransick et al.*’: FindVariableFeatures() with selection.method =
‘vst’ and nfeatures = 2,000, ScaleData(), RunPCA(), FindNeighbors()
with dims =1:10 and RunUMAP() with dims =1:30.

Application to single-cell ST data

Although amajor goal of CytoSPACE is reconstruction of bulk ST data
at the single-cell level, it is also directly applicable to single-cell ST
data. To do this efficiently for extremely large single-cell ST datasets,
weimplemented asampling routine to uniformly partition single-cell
ST datasets without replacement into bins of up to 10,000 cells each
(by default), which balances considerations of cellular diversity and
mapping efficiency. Specifically, the single-cell ST dataset is first ran-
domly partitioned without replacementinto nbins 0of 10,000 ST cells
each.Next, foreachbin(l,...,n),10,000 single-cell transcriptomes are
sampled from the scRNA-seq query dataset (by default) according to

the procedure described in ‘Harmonizing the number of cells per cell
type—Duplication’ above. Although the entire procedureis reproduc-
ible and anchored to a specific seed at initialization, the scRNA-seq
dataset is newly resampled for eachbinl,...,nto promote robustness.
Finally, CytoSPACE is runon each bin, and the results are combined to
produce asingle unified output.

For the analyses in Fig. 2j,k and Extended Data Fig. 10, a pre-
processed MERSCOPE profile of an FFPE human breast cancer sam-
ple (HumanBreastCancerPatientl; Vizgen MERFISH FFPE Human
Immuno-oncology Data Set, May 2022) was downloaded from Vizgen
(https://vizgen.com/data-release-program/) (Supplementary Table1).
Cells with fewer than 100 transcripts and those with fewer than ten
genes detected were excluded from the analysis, yielding 560,655
cells with 149 detected genes per cell, on average. The gene-by-cell
count matrix was normalized by downsampling, which eliminated
potential confounding factors such as cell volume, by normalizing
the total transcripts per cell to be the same (300 transcripts per cell).
Using Seurat version 4.1.1to analyze the normalized data, we identified
thetop 100 variable genes using FindVariableFeatures() and clustered
the cellswith FindClusters() using resolution=0.8. Leveraging canoni-
cal marker genes, clusters were annotated as fibroblasts (COLIAI or
COL5AT high), endothelial cells (PECAMI or VWF high), macrophages
(FCGR3A or C1QChigh), dendritic cells (CDIC or CD207 high), lympho-
cytes (CD3E, TRAC, ZAP70, MS4A1, GNLY or MZBI high) and epithelial
(remaining). Lymphocytes were further clustered using the top 300
variable genes withresolution=1.2and annotated as CD4 T cells (CD3E,
TRAC, ZAP70 or FOXP3 high and no CD8A), CD8 T cells (CD3E, TRAC or
ZAP70 high and CD8A high), natural killer (NK) cells (GNLY high and
no CD3E), B cells (MS4A1 high) and plasma cells (MZBI high); clusters
that did not meet these conditions but showed strong expressions of
non-lymphocyte markers were annotated accordingly using epithelial
and stromal markers above.

Toaccountfor errorsin transcript assignment arising from over-
lapping cells in the z-series, gene expression in the center z-plane
(z=3) was compared with expressionin the peripheral z-plane (z = 0)
for each segmented cell. Transcripts detected in either of the z-planes
were first isolated as individual gene-by-cell count matrices. Then,
all genes whose expression significantly differed between the two
z-planes for one or more cell types were identified using a two-sided
Wilcoxon test (nominal P < 0.05). For each of these genes, if expression
was significantly higher in the center z-plane for one cell type but sig-
nificantly higherinthez = 0 plane for another, the gene was considered
apotential contaminant and set to O in all cells of the latter cell type.

For the analysis presented in Extended Data Fig.10a-e, we began
byrandomly splitting the MERSCOPE dataset (50:50) into ‘scRNA-seq’
query and ST reference datasets (Extended Data Fig. 10a). We then
mapped query cellsto the reference as described above, running Cyto-
SPACE with five CPU cores, the number of cells per spot set toland the
global fractional abundance of each cell type set to its proportion in
the reference dataset (Extended Data Fig. 10b). We observed strong
agreement for cell type labels (Extended Data Fig. 10c), and, for each
cell type, the GEPs of mapped cells were more correlated with their
assigned reference cells than with other reference cells of the same
cell type (Extended Data Fig. 10d). We next asked whether pairwise
transcriptomic distances between single cells were retained (Extended
DataFig.10a). Todo sofor each evaluable cell type, we first calculated
the pairwise correlation matrix Q of single-cell GEPs (in log, space) in
the scRNA-seq query dataset. This was done after assigning query cells
tospatiallocationsin the reference. We then did the same for the refer-
ence dataset, yielding matrix R. Both matrices were ordered identically
according to the same single-cell spatial coordinates, allowing us to
determine whether the spatial correlation structure was recapitulated
among mapped cells. Indeed, by calculating aretention index for each
celltype, defined as the Pearson correlation between the two matrices,
we observed highly significant retention of pairwise distances for each
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celltype (P< 2.2 x107%; Extended Data Fig.10e). To ensure a fair assess-
ment, before creating each matrix we sampled an equivalent number of
cells per celltype (without replacement) based on the lowest common
denominator in the reference dataset (n =150 cells). We found that
the degree of retention was proportional to the variance among GEPs
in the reference dataset—that is, cell types with lower transcriptomic
heterogeneity in the reference (that is, more uniform GEPs) had less
spatial structure and lower retention of pairwise distances, consistent
with expectation (Extended Data Fig. 10e).

As the MERSCOPE dataset lacked ESRI (estrogen receptor) and
PGR (progesterone receptor) among the 500 target genes but showed
elevated expression of ERBB2 (encoding HER2), we selected HER2"
breast tumors profiled by scRNA-seq” as the query dataset in Fig. 2j,k
(Supplementary Tables 1 and 3). To ensure sufficient overlap in
co-detected genes, we removed cells from the scRNA-seq dataset with
fewer than 50 expressed genes (CPM > 0) overlapping the MERSCOPE
panel. Next, we mapped the scRNA-seq atlas tothe MERSCOPE sample,
running CytoSPACE with five CPU cores, the number of cells per spot
set toland the global fractional abundance of each cell type set to its
proportion as determined above.

To evaluate the spatial enrichment of cell states in Fig. 2j,k and
Extended Data Fig. 10f-i, individual cells were first partitioned into
two regions based on their Euclidean distance to epithelial cells. An
epithelial cellwas assigned to the tumor regioniflocated within100 pm
of more than50 epithelial cells. This threshold was selected based on a
density-based analysis, where two major distributions of epithelial cell
densities were observed, with ~50 epithelial cells per radius of 100 pm
representing alocal minimum between the two distributions. Then, of
the remaining cells, a cell was assigned to the tumor region if located
within 100 pm of a tumor epithelial cell; otherwise, it was assigned to
the adjacent normal region (that is, stromal; Extended Data Fig. 10h).
For the analyses presented in Fig. 2k and Extended Data Fig. 10i, the
log, fold change of each gene in tumor versus stromal regions was
determined for CD4 and CD8 T cells with the raw MERSCOPE data
(500 genes) or scRNA-seq data (whole transcriptome) mapped to MER-
SCOPE. Pre-ranked GSEA was applied as described in ‘Spatial enrich-
mentanalysis’ for the top 200 signature genes of each pan-cancer T cell
state defined by Zheng et al.” except for ‘CD4T_IL7R-Tn’, which lacked
signature genes in the MERSCOPE dataset. For this analysis, fgsea
package version1.20.0 was used. Ground truth was determined as the
rank of the log, fold change between the tumor odds ratio and normal
oddsratio of eachevaluated T cell state, asreported in Supplementary
Table3 of Zhengetal.

Statistics

All statistical tests were two-sided unless stated otherwise. The Wil-
coxon test was used to assess statistical differences between two
groups. Adjustment for multiple hypothesis testing was done via Benja-
mini-Hochberg where applicable. Linear concordance was determined
by Pearson (r) correlation or Spearman (p) correlation, and atwo-sided
t-test was used to assess whether the result was significantly non-zero.
Allstatistical analyses were performed using R versions 3.5.1and 4.0.2+,
Python 3.8, MATLAB_R2019a and Prism 9+ (GraphPad Software).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The publicly available expression datasets analyzed in this work (Sup-
plementary Table 1) are available from the Gene Expression Omni-
bus with accession numbers GSE171406, GSE72056, GSE176078 and
GSE132465; from Zenodo at https://zenodo.org/record/47397394#.
YIL1IA9NBzxg; from the Broad Institute Single Cell Portal at https://
portals.broadinstitute.org/single_cell/study/slide-seq-study;

from the Spatial Research Lab at https://www.spatialresearch.org/
resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/;
from Vizgen at https://vizgen.com/data-release-program/;
from 10x Genomics at https://support.10xgenomics.com/
spatial-gene-expression/datasets/; and from GitHub at https://github.
com/qinzhu/kidneycellexplorer/tree/master/data. Additional data
supporting the findings in this work are available in the main text,
figures, extended data and supplementary files.

Code availability

CytoSPACE version 1.0 was coded in Python and used to generate the
resultsinthiswork. Itisavailable, along with documentation, vignettes
and helper scripts for creating CytoSPACE inputs and for estimating
celltypefractions, at https://github.com/digitalcytometry/cytospace.
Auser-friendly web portal for running CytoSPACE is available at https://
cytospace.stanford.edu.
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respectively, assigned to the featured spot.

Extended Data Fig.1| CytoSPACE versus conventional methods for decoding
the cellular composition of bulk ST data. Most methods for deconvolving bulk
ST data estimate cell type fractions using single-cell reference profiles (top). In
contrast, CytoSPACE efficiently assigns individual single-cell transcriptomes to
ST coordinates (that is, spots) using global optimization to minimize a

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01697-9

a
Cerebellum
50 s 501
451 451
401 rerr | 40
5355 4 M :555‘
30 o s 301
55 1 o 25
50 1 #arw tet e T 20

KRKK kkkk
| B e B

Significance of correlation (-log,, Q)

Hippocampus

KAKK Kkkok
[ R |

Hokkk
—

*kkk

Hkkok

Gene-level correlation matrix of scRNA-seq mapped to Slide-seq beads vs. original Slide-seq beads

Matrix 3 Yes
diagonal EF No

kkk
—

Significance of correlation (-log,, Q)

RGP YOI Y N SN N e S RN
& Ko 5 & @ % OQ\\Q\@OQ’%\ = o$406x &
7 TR o0 S P T ¢ LN
3 R 2 S U SISO
v S e T AN
o ) © I &
Q (\Q, O\\Q QO N {Q\
9 SN
N PN Q?/
(-o\)
b Correlation between single-cell (o] Correlation between cell and ST spot gene
transcriptomes across noise levels expression profiles across noise levels
Mouse cerebellum Mouse hippocampus Mouse cerebellum Mouse hippocampus
1.00 1.00
5 5 5 5
8 o] 8 o7 ® 5 Mean cells
2 $ 2 2 £ per spot
It o o Q
Eg 0.50 EEiiEE; O 0.50 (] :; Ea 5
c g c c
o] o] o 9 E3 15
@ 025 $ 2 025 a Y B 30
[ ] ] [
Y g g &
o 0.00 § § § 0.00 i §
5 10 25 5 10 25 5 10 25
% of transcriptome perturbed % of transcriptome perturbed % of transcriptome perturbed % of transcriptome perturbed
d UMAPSs of mouse cerebellum scRNA-seq with noise
Perturbation of Perturbation of Perturbation of
5% of transcriptome 10% of transcriptome 25% of transcriptome
£ " N
° .o 10 avr 3 ® Astrocyte ® Microglia
P . ® Bergmann @ Interneuron (Nnat®)
N %,o j o N £ ® Choroid ©® Oligodendrocyte
% 0 L S QN - A @ Endothelial ® Purkinje
= 3 = = y "
s & S 5 B - ) * ® Fibroblast @ Interneuron (Pvalb*)
10 : — Yy ® Granule
b - Fo" -10 1
-15 -10 -5 0 5 10 -15 -10 -5 0 5 10
UMAP 1 UMAP 1
e UMAPs of mouse hippocampus scRNA-seq with noise
Perturbation of Perturbation of Perturbation of
5% of transcriptome 10% of transcriptome 25% of transcriptome
1 ” = ® Astrocyte ® Ependymal
o - - > ® cAl ® Fibroblast
- 0 ’ v h ® CA2/CA3 @ Interneuron (Gad2*)
o ‘S " v v 4 o w4 ,‘ R o ® Cajal-Retzius ® Microglia
LA N TR WY 3, ® Choroid ® Mural
5 o 3 P A 3 ® Dentate gyrus ©® Neurogenesis
INE v - Raa @ Endothelial ® Oligodendrocyte
of ¥ & Rﬁn ‘ 1 o * 1o @ Subiculum ® Polydendrocyte
" ~ ™ > Entorhinal (Nxph3*) @ Subiculum (Sic17a6")
- -15 -10 -5 0 5 10 -10 0 10 -10 0 10
UMAP 1 UMAP 1 UMAP 1

Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Maintenance of gene-level spatial dependencies in
simulated ST data and impact of controlled noise on scRNA-seq query data.
a, Pearson correlation analysis of log, expression levels in (i) sScRNA-seq mapped
to Slide-seq beads (as part of simulated ST dataset construction, Methods) vs.
(ii) the original Slide-seq beads. For each cell type, correlations were divided
into two groups comparing: (i) correlations of the same gene across cells (matrix
diagonal) with (ii) correlations of non-matching genes across cells (off-diagonal
entries of the correlation matrix). Correlation p-values were corrected using

the Benjamini-Hochberg method within each cell type and plotted as -log,,
q-values, which were multiplied by -1for negative correlations. Given practical
considerations, we randomly selected 1,000 genes and amaximum of 1,000 cells
per cell type. Group comparisons were evaluated using a one-sided Wilcoxon
test relative to matching genes (matrix diagonal). The resulting p-values were
Benjamini-Hochberg adjusted separately for each brain region and shown
asg-values. *Q < 0.05; ***Q < 0.001; ***Q < 0.0001; ns, not significant. Sub.,
Subiculum. b, Box plots showing the effect of adding noise to the scRNA-seq
query datasets used in simulation experiments. In brief, single-cell expression

profiles of mouse cerebellum and hippocampus were perturbed by adding noise
sampled from an exponentiated normal distribution to randomly selected genes,
comprising 5% to 25% of each cell’s original transcriptome (x-axis, Methods).
Concordance between the original and perturbed transcriptome in log, space
for1,000 randomly sampled cells per scRNA-seq dataset (mouse cerebellum,
left; mouse hippocampus, right), expressed as Pearson correlation coefficient
(y-axis). ¢, Same as b but showing Pearson correlation (y-axis) between 1,000
randomly selected single-cell transcriptomes after the addition of noise (x-axis)
and their corresponding ground truth ST spot transcriptomes, for different
mean spot resolutions. Pearson correlation was determined in log, space.

d-e, UMAPs of scRNA-seq after the addition of noise for mouse cerebellum

(d) and mouse hippocampus (e) datasets. Importantly, cell type clusters are
maintained across the range of considered perturbations. The box center lines,
box bounds, and whiskers in panels a-cindicate the medians, first and third
quartiles and minimum and maximum values within 1.5x the interquartile range
ofthe box limits, respectively.
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Extended Data Fig. 3| See next page for caption.
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Extended DataFig. 3| Estimation of cell type fractions and the number

of cells per spot in bulk ST data. a, Application of Spatial Seurat to infer
celltype fractions in simulated ST datasets (Methods). Scatter plots show
ground truth cell type fractions (x-axis) versus estimated fractions (y-axis)

for simulated ST data of mouse cerebellum (top) and hippocampus (bottom)
sections with different spot resolutions. Single-cell RNA sequencing data

were first perturbed with the addition of noise to 5% of the transcriptome, as
described in Methods. b, Scatter plot showing the number of cells per spot
estimated by CytoSPACE in simulated ST datasets (y-axis; Methods) versus
ground truth (x-axis) at amean of 5 cells per spot for mouse cerebellum and
hippocampus sections. Relative density is depicted by point size. Concordance
and significance were assessed by Pearson ror Spearman p and a two-sided ¢
test, respectively. ¢, Same as b but showing correlation coefficients (Pearson
and Spearman) for all analyzed spot resolutions. All correlations are significant
(P<107).d, Paired analysis showing the difference in performance between
log, adjustment and the non-log linear scale for predicting the number of cells

per spot for all six combinations of spot resolutions in simulated ST datasets
(mean of 5,15, and 30) for Pearson and Spearman correlation coefficients.
Statistical significance was calculated with a two-sided paired Wilcoxon

test. e, Concordance between the number of cells per spot imputed by the
default RNA-based approach implemented in CytoSPACE (y-axis) and a cell
segmentation algorithm (VistoSeg) respectively applied to paired gene
expression data and a histological image of an adult mouse brain coronal
sample profiled by 10x Visium. The box center lines, box bounds, and whiskers
indicate the medians, first and third quartiles and minimum and maximum
values within 1.5x the interquartile range of the box limits, respectively. Linear
regression, shown with a 95% confidence interval, was applied to the box plot
medians. In panels aand b, concordance was assessed by Pearson correlation
(r), Spearman correlation (p), and/or linear regression (dashed lines). A two-
sided t-test was used to assess whether each correlation result was significantly
nonzero. No adjustments for multiple comparisons were made.
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Benchmarking single-cell spatial assignment across

spot resolutions and noise levels
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Extended Data Fig. 4 | Extended benchmarking analysis on simulated ST
data (related to Fig. 1d). Box plots depicting the fraction of all single-cell
transcriptomes assigned to the correct ST spot, shown for different spot
resolutions (mean of 5,15, and 30 cells per spot) and scRNA-seq noise levels
(perturbations added to 5%, 10%, and 25% of the transcriptome) for an extended
array of 13 methods. Raw data are provided in Supplementary Table 2. Statistical
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significance was determined using a two-sided paired Wilcoxon test relative to
CytoSPACE. P-values were corrected using the Benjamini-Hochberg method
and are expressed as g-values (**Q < 0.01). The box center lines, box bounds,
and whiskers indicate the medians, first and third quartiles and minimum

and maximum values within 1.5x the interquartile range of the box limits,
respectively.
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Extended Data Fig. 5| Association between CytoSPACE performance and
inferred global cell type abundance in simulated ST datasets. a, Scatter plots
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comparing single-cell mapping accuracy in simulated ST datasets (with amean

of 5 cells per spot) with mean cell type fractional abundances inferred by Spatial
Seurat for all cell types and noise levels (Methods). Linearity was determined

by Pearson correlation. b, Same as the left panel but summarizing Pearson
correlation significance values across all evaluated simulated ST datasets, spot

resolutions, and noise levels. The box center lines, box bounds, and whiskers
indicate the medians, first and third quartiles and minimum and maximum values
within 1.5 the interquartile range of the box limits, respectively. In both panels,
atwo-sided t-test was used to assess whether each correlation coefficient was
significantly nonzero. P-values were corrected using the Benjamini-Hochberg
method and expressed as g-values.
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a Cell type fraction perturbation analysis in simulated datasets b Robustness of CytoSPACE to perturbed
cell type fractions in simulated datasets
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Extended Data Fig. 6 | Impact of perturbing estimates of cell type fractional
abundance and the number of cells per spot. a-b, Effect of perturbing
fractional abundance estimates in simulated ST datasets. a, Box plots showing
the effect of perturbation on cell type fractional abundance estimates over five
separate trials, expressed relative to the original estimates (left) and in absolute
units (right) for mouse cerebellum (top) and hippocampus (bottom) datasets

withamean of 5 cells per spot and 5% noise a

(Methods). b, Box plots showing CytoSPACE performance on simulated ST
datasets before and after perturbing cell type fractions for all spot resolutions
and scRNA-seq noise levels (Methods). c-e, Effect of perturbing estimates of

the number of cells per spot in simulated ST

the effect of controlled perturbation on the estimated number of cells per spot
for arepresentative simulated ST dataset (mouse hippocampus with a mean of

dded to scRNA-seq query datasets

datasets. ¢, Scatter plot showing

Scells per spot; Methods). d, Box plots showing Pearson correlations between

perturbed and original estimates of the number of cells per spot for all evaluated
simulated ST datasets across five trials. e, Box plots showing CytoSPACE
performance onall simulated ST datasets before and after perturbing estimates
of the number of cells per spot (related to panel d). Point shapes and colorsind
and e are defined inb. Group comparisons in panels b and e were performed using
atwo-sided paired Wilcoxon test for each CytoSPACE result versus each method
in Extended Data Fig. 4, with ‘Tangram (all genes)’ shown as arepresentative
example. P-values were corrected using the Benjamini-Hochberg method and
are expressed as g-values (*Q < 0.05; **Q < 0.01). Q-values shown are inclusive

of comparisons between CytoSPACE results and all benchmarked methodsin
Extended Data Fig. 4. The box center lines, box bounds, and whiskersina, b, d,
and eindicate the medians, first and third quartiles and minimum and maximum
values within 1.5x the interquartile range of the box limits, respectively.
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Gene set enrichment score vs. estimated cell type
abundance across gene sets and tumor ST datasets

b cael type fraction perturbations applied to CRC
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Robustness of CytoSPACE applied to tumor ST
datasets. a, Same as Extended Data Fig. 5a but analyzing inferred cell type
abundances vs. mean CytoSPACE performance across six tumor ST datasets
(related to Fig. 2d and f), where performance is defined as cell state enrichments
measured by normalized enrichment score (NES). Of note, to unify the expected
enrichment directions, NES values for CE10 were multiplied by -1. b, Same

as Extended Data Fig. 6a but showing cell type fraction perturbations fora
representative CRC ST dataset (same as in Fig. 2a). ¢, Same as Fig. 2d and fbut

showing theimpact of perturbing cell type fractions on CytoSPACE performance.

d, Box plots showing Pearson correlations between perturbed and original
estimates of the number of cells per spot for all six tumor ST datasets across five
trials. e, CytoSPACE performance on all six tumor scRNA-seq/ST dataset pairs
before and after perturbing estimates of the number of cells per spot across five

trials (related to d) along with ‘flattening’ the number of cells per spot, in which
spots were assigned the same number of cells. Group comparisons in panels ¢
and e were performed using a two-sided paired Wilcoxon test for each CytoSPACE
result versus each method in Fig. 2f, with Tangram and CellTrek shown as
representative examples. P-values were corrected using the Benjamini-Hochberg
method and expressed as g-values. *Q < 0.05; **Q < 0.01. Of note, the g-value in
panels cand eisinclusive of all comparisons between CytoSPACE results and
comparator methods in Fig. 2f. The box center lines, box bounds, and whiskers in
b - eindicate the medians, first and third quartiles and minimum and maximum
values within1.5x the interquartile range of the box limits, respectively. f, Same
as Fig. 2d and fbut comparing NES values for cell state enrichment between the
default seed and 9 additional random samplings of the scRNA-seq query dataset.
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a Expected b Analysis of macrophage states across datasets and methods
localization (n =6 scRNA-seq/ST pairs)
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Extended Data Fig. 8| Single-cell spatial analysis of TREM2" and FOLR2"
macrophage states across datasets and methods. a, Expected spatial
localization of TREM2" and FOLR2" macrophages in human tumors (Nalio
Ramosetal.). b, Box plots comparing the log, fold change of TREM2 and FOLR2
expression in single macrophage/monocyte transcriptomes grouped into
‘near’ (Euclidean distance to tumor = 0) and ‘far’ (Euclidean distance to tumor
>0) categories, as described in Methods. Each point represents an scRNA-seq/

&

¢
/\?@\?OV g
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ST pair analyzed in Fig. 2e. Single-cell mappings for each of the three methods
areidentical to Fig. 2. The box center lines, box bounds, and whiskers denote
the medians, first and third quartiles and minimum and maximum values,
respectively. Two-group comparisons were performed using a two-sided paired
Wilcoxon test (indicated by the horizontal line above each pair of TREM2* and
FOLR2' boxes). ns, not significant.
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Spatial positions of epithelial cell states in the
nephron and collecting duct system
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | CytoSPACE-guided reconstruction of the nephron
and collecting duct system. a, Similar to Fig. 2g but showing epithelial cell
states colored by physically adjacent phenotypes. The corresponding cell state
ontology is provided in Supplementary Table 8. b, UMAP embedding of a normal
mouse kidney scRNA-seq atlas (mapped by CytoSPACE) and colored as in panel
a(Methods). ¢, Left: Heat map showing the pairwise spatial overlap betweenall
kidney epithelial cell states mapped by CytoSPACE to a10x Visium sample of
normal mouse kidney (related to Fig. 2h bottom). Overlap was determined by
theJaccard index and normalized to the maximum value per row (Methods).

Of note, states 12 and 14 were imputed with zero abundance and not mapped

by CytoSPACE. Self-comparisons are denoted by NA. Right: Heat map showing
known adjacent states (as in panel a). d, Spring layout of the datain panel c,
where each cell state is plotted along with its closest 4 neighbors (in rank space)

inferred by CytoSPACE. Selected kidney structures are indicated. Edge thickness
is proportional to the degree of overlap in rank space. Statistical significance was
calculated by aone-sided permutation test, as described in Methods. e, Scatter
plot comparing (i) the distance between each state i and the nth nearest neighbor
(statej) predicted by CytoSPACE (median rank across all evaluable states, y-axis)
with (ii) the distance between state i and its ground truth nth nearest neighbor
(x-axis). Distances between states were calculated as the number of known
consecutive states between i and,. Nearest neighbors from 1to 10 were evaluated.
Agreement was assessed by Pearson correlation and Lin’s concordance
correlation coefficient (CCC). Atwo-sided t-test was applied to determine if the
correlation coefficient was significantly non-zero. f, Same analysis as in panel
ebut for all evaluated methods, comparing performance using CCC. DEEPsc
assigned all cells to the same spot and was omitted (Methods).
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Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | Technical assessment of CytoSPACE applied to single-
cell ST data. a, Workflow for analyses in panels b-e. b, Left: MERSCOPE reference
profile of a breast cancer specimen, with major cell types distinguished by color.
Right:MERSCOPE query dataset mapped to the reference profile by CytoSPACE,
with query cell types distinguished by color. ¢, Concordance of phenotypes
between reference and query cells following alignment. d, Analysis of mapping
accuracy, showing the significance of the Pearson correlation between the log,
GEPs of (i) the reference cells and (ii) query cells mapped to the reference cells,
stratified by cell type. The matrix diagonal captures comparisons between query
cell GEPs and their corresponding reference cell assignments. Non-matching
pairwise combinations (off-diagonal entries) represent cell-type-specific
controls. e, Analysis of the retention of pairwise distances between cells after
mapping with CytoSPACE. For each cell type, the scatter plot shows a Retention
index, defined as the Pearson correlation between matrices Q and R, versus

the variance in matrix R (panel a). The significance of the linear regression line
was assessed by a two-sided t-test. f-i, Extended analysis related to Fig. 2j,

k.f, Analysis of gene-level concordance, showing the significance of the Pearson
correlation between the log, expression levels of (i) the scRNA-seq data (Wu et al.)

mapped to MERSCOPE and (ii) the original MERSCOPE data, analyzed separately
for each gene (n =497 in common) and cell type. As a control, non-matching
pairwise combinations of the same 497 genes were also assessed (off-diagonal
entries in the correlation matrix). g, Concordance of cell type labels between
MERSCOPE and scRNA-seq following alignment. h, Left: Tumor and adjacent
normal regions determined as described in Methods. Right: FOLR2 expression
insingle-cell transcriptomes (Wu et al.) annotated as ‘Macrophages/Monocytes’
and mapped by CytoSPACE, showing elevated levels in adjacent normal regions,
consistent with expectation. i, Same as Fig. 2k but for CD8 T cells.Ind andf, a
maximum of 1,000 cells and 1,000 off-diagonal correlations per cell type were
randomly sampled for analysis. For each cell type, p-values were Benjamini-
Hochberg adjusted and expressed as -log,, g-values, which were multiplied by
-1for negative correlations. Group comparisons in d and f were evaluated using
aone-sided Wilcoxon test relative to the matrix diagonal and p-values were
Benjamini-Hochberg adjusted. ****Q < 0.0001. Ind and f, the center lines, bounds,
and whiskers indicate the medians, first and third quartiles and minimum

and maximum values within 1.5x the interquartile range of the box limits,
respectively. GEP, gene expression profile.
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vignettes, and helper R scripts for creating CytoSPACE inputs and for estimating cell type fractions with Seurat, at https://github.com/
digitalcytometry/cytospace. CytoSPACE package dependencies include numpy, lap, scipy, pandas, matplotlib, ortools, and lapjv. The specific
versions used for this study are v1.22.2, v0.4.0, v1.8.0, v1.4.1, v3.5.1, v9.2.9972, and v1.3.14, respectively. Additional software packages used
for analyses in this study are detailed in Methods and include Python v3.8, Rv3.5.1 and 4.0.2+, MATLAB_R2019a, Prism 9+ (Graphpad
Software, La Jolla, CA), Seurat (v3.2.3, v4.0.0, v4.0.1, v4.1.0, v4.1.1), fgsea v1.14.0 and v1.20.0, RCTD (v2.0.0, R package spacexr), igraph
v1.2.6, and 1071 v1.7.8. Comparative analyses against other methods were performed with the following versions: Tangram v1.0.2, CellTrek
v0.0.0.9000, DistMap v0.1.1, SpaOTsc v0.2, DEEPsc (version number not available; last GitHub commit when cloned: June 5, 2022), SpaGE
(version number not available; last GitHub commit when cloned: July 20, 2021), Spatial Seurat v3.2.3, Harmony v0.1, and LIGER v1.0.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All scRNA-seq/ST datasets of real tissue specimens are publicly available, with details provided in the data availability statement and Supplementary Table 1.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size estimates were performed to ensure adequate power to detect a pre-specified effect size. Suitable group minimums for single
cell partitioning into groups for gene set enrichment analysis were imposed as described in Methods. All results were analyzed and
interpreted using statistically appropriate techniques as described in Methods.

Data exclusions  Some single cells were excluded using quality control metrics described fully in Methods. From scRNA-seq atlases, exclusions comprised all
normal melanocytes; T cells which could not be confidently classified as CD8 or CD4 T cells based on author annotations; and myeloid cells
that could not be confidently classified as monocytes/macrophages or dendritic cells based on author annotations. From MERSCOPE data,
cells with fewer than 100 transcripts or fewer than 10 genes were excluded from analysis. For gene set enrichment analysis within cell types,
cell types which resulted in fewer than 10 cells assigned to a spatial group were excluded from analysis for the corresponding method.

Replication All attempts at replication were successful, including replication of CytoSPACE performance on both simulated and real datasets across ten
independent random seeds as described in Methods.

Randomization No randomization was applied. Single cells mapped by CytoSPACE or other methods were partitioned deterministically into classes according
to the experimental question as described in Methods. Samples were otherwise not divided into groups.

Blinding No experimental groups were involved in data collection. For data analysis, instances of group allocation consisted of single cells grouped by
cell type labels and by spatial regions of interest including tumor/normal boundaries. In all cases, the mapping procedure within CytoSPACE
was blinded to cell type labels and spatial regions of interest.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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