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Microfluidics-free single-cellgenomics with
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Current single-cell RNA-sequencing approaches have limitations that
stem from the microfluidic devices or fluid handling steps required for
sample processing. We develop a method that does not require specialized
microfluidic devices, expertise or hardware. Our approachis based on
particle-templated emulsification, which allows single-cell encapsulation
and barcoding of cDNA in uniform droplet emulsions with only a vortexer.
Particle-templated instant partition sequencing (PIP-seq) accommodates
awide range of emulsification formats, including microwell plates and
large-volume conical tubes, enabling thousands of samples or millions of
cellsto be processed in minutes. We demonstrate that PIP-seq produces
high-purity transcriptomes in mouse-human mixing studies, is compatible
with multiomics measurements and can accurately characterize cell
typesin human breast tissue compared to acommercial microfluidic
platform. Single-cell transcriptional profiling of mixed phenotype acute
leukemia using PIP-seq reveals the emergence of heterogeneity within
chemotherapy-resistant cell subsets that were hidden by standard imm-
unophenotyping. PIP-seqis a simple, flexible and scalable next-generation
workflow that extends single-cell sequencing to new applications.

Single-cellRNA sequencing (scRNA-seq) isanessential technologyinthe classification, the discovery of unique cell states during development
biological sciences becauseit reveals how the properties of tissuesarise  and disease and the prediction of regulatory mechanisms that control
from the transcriptional states of numerous interacting cells. Defin-  these states. As a result, bulk sequencing is being rapidly replaced by
ing the gene expression signatures of individual cells allows cell-type  single-cellmethods. Thefirst single-cell approachesisolated cells and
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prepared them individually for sequencing'™*. Whileimprovementsin
molecular biology increased data quality*, the requisite isolation and
processing of separate cells ultimately limited throughput. Implemen-
tation of valve-based microfluidics reduced hands-on time’ but failed
to substantially increase cell number and thus could not capture the
heterogeneity intrinsic to most tissues. Advances in high-throughput
droplet microfluidic barcoding have expanded single-cell sequenc-
ing to tens of thousands of cells®’ and fueled biological discovery but
require expensive instruments located in core facilities and therefore
remain inaccessible to many labs. Methods for direct combinatorial
indexing of cells'®", the use of nanowell arrays' or sample multiplex-
ing™'* have overcome some limitations of microfluidics, but no current
method simultaneously accommodates both low (10) and high (>10°)
cellnumbers, canbe applied to hundreds of independent samples and
can be rapidly implemented without custom equipment.

The scalability of single-cellmethods isimportant for many appli-
cations, including tissue atlas projects” ™%, million-cell perturbation
experiments'’, drug development pipelines® and developmental stud-
ies?’. Droplet microfluidics has an intrinsic disadvantage at high cell
numbers due to the upper limiton drop generation speed. At high fluid
velocities, droplet generation becomes uncontrolled, resultingin poly-
dispersed emulsions and poor bead loading that reduces single-cell
data quality*>?, Therefore, to sequence millions of cells requires long
run times, parallel droplet generators with complex designs that are
prone to clogging or implementation of additional barcoding steps
before encapsulation®. More generally, droplet microfluidics relies
on an expensive instrument usually located in a core facility, which
necessitates sample transport or fixation that can alter RNA profiles.
Centralized processing also reduces access to many labs and does not
fit experiments that need rapid or point-of-collection sample handling,
suchas remote fieldwork or studies using infectious samples requiring
biosafety precautions'>?,

Much effort has thus gone into developing microfluidics-free
single-cell methods. Split-pool ligation'" and tagmentation®** per-
form direct combinatorial barcoding of bulk suspensions and sub-
stantially increase cell number; however, these laborious workflows
require enormous numbers of pipetting operations and are poorly
suited for low cell inputs. Moreover, while scalable, these methods
require substantial expertise?®, and broad adoption of split-pool bar-
coding will likely require robotic automation in a centralized facil-
ity. Alternatively, methods based on nanowells prioritize simplicity
and cost-effectiveness'>*. No microfluidics are required, and wells
are loaded by sedimentation, providing an instrument-free and
point-of-use solution. However, nanowell array chips do not efficiently
scale in cell or sample number; the planar arrays capture cells on a
two-dimensional surface and, thus, cannot compete withemulsions or
combinatorialindexing using a three-dimensional volume that easily
scales to millions of cells. Moreover, unless combined with multiplex-
ing™", nanowell chips are poorly suited for processing many separate
samples because they require one array per sample and thus hundreds
of arrays for hundreds of samples. To advance the field of single-cell
genomics, next-generation technologies must simultaneously innovate
onspeed, scale and ease of use. An ideal system would be compatible
with the barcoding of separate samples in well plates, accommodate
orders-of-magnitude differencesin cellnumber, be completed in min-
utesand be easy torunatthebenchorinthe field without specialized
instrumentation.

Here, we describe a flexible, scalable and instrument-free
scRNA-seq method based on rapid templated emulsification of cells
and barcoded hydrogel templates without microfluidics®. In contrast
to microfluidic emulsification, in which droplets are created sequen-
tially and thus their number scales with instrument run time, templated
emulsification generates monodispersed droplets in parallel by bulk
self-assembly, and, thus, the number of droplets (and cells that can be
barcoded) scales only with container volume. The result is a scalable,

user-friendly scRNA-seqmethod that we call particle-templated instant
partition sequencing (PIP-seq). Templated emulsification produces
drops that are equivalent to those generated with microfluidics and
compatible with the latest innovations in multiomic measurements.
Here, we show that PIP-seq generates accurate single-cell gene expres-
sion profiles from human tissues and is compatible with multimodal
measurements of RNA and single guide RNA (sgRNA; CRISPR droplet
sequencing (CROP-seq)) or RNA and protein (cellularindexing of tran-
scriptomes and epitopes sequencing (CITE-seq)). Finally, we demon-
strate the use of PIP-seq to monitor the response of individuals with
mixed phenotype acute leukemia (MPAL) to chemotherapy, revealing
heterogeneity within cells with similar immunophenotypes. In sum-
mary, PIP-seq fills an unmet technical need by improving the speed,
scalability and ease of use of single-cell sequencing.

Results
Overview of the technology
PIP-sequses particle templating to compartmentalize cells, barcoded
hydrogel templates and lysis reagents in monodispersed water-in-oil
droplets (Fig.1a). Rapid emulsification with astandard vortexer allows
cellstobeencapsulated at the bench or point of collectionin minutes.
The cells are lysed by increasing the temperature to 65 °C, which acti-
vates proteinase K (PK), releasing cellular mRNA that is captured on
polyacrylamide beads decorated with barcoded poly(T) sequences
(Fig. 1b). PIP-seq emulsions can be stored for days at 0 °C without
change in data quality (Extended Data Fig. 1), allowing samples to be
banked for future processing. After resuming, oilisremoved, beads are
transferredinto areverse transcription buffer, and full-length cDNA is
synthesized, amplified and prepared for sequencing (Fig. 1c,d).
Aunique andvaluable feature of PIP-seqis that cell encapsulation
indropletsis performed in parallel using bead size to control droplet
volume. In contrast to microfluidics, the number of droplets scales
with total container volume, not emulsification time. For example,
ata 6% collision rate that includes cell doublets and barcode reuse,
we estimate that 3,500 cells can be barcoded with 35 pl of barcoded
hydrogel templatesina500-pltube, 225,000 cells canbe barcoded with
2 mlof barcoded hydrogel templates ina15-ml conical tube, and 1 mil-
lion cells canbe barcoded with 10 ml of barcoded hydrogel templates
ina50-mlconical tube (Fig. 1e). Regardless of the tube size, only 2 min
of vortexing is required for cell capture. PIP-seq is equally scalable to
large sample numbers. Encapsulation can be performed directly in
96-,384-0r1,536-well plates (Fig. 1fand Extended Data Fig. 2), greatly
simplifying experiments testing hundreds of different conditions
and streamlining integration with robotic handling systems. Thus,
compared to current sScCRNA-seq technologies, PIP-seq has the greatest
flexibility to cover combinations of cell and sample numbers (Fig.1g).

scRNA-seq with particle-templated emulsification
High-throughput single-cell sequencing requires efficient cell lysis
and reverse transcription of mRNA using barcoded primers. In the
absence of microfluidics, barcoded hydrogel templates, cells and
lysis reagents must be combined before emulsification. To prevent
celllysis before compartmentalization, we use PK, a protease that has
minimal activity at 4 °C but can be activated at higher temperatures.
After emulsification, the sample is heated to efficiently lyse cells. To
illustrate this process, we stained cells with calcein, performed tem-
plated emulsification at 4 °C with PK and imaged the droplets before
and after thermal activation. Intact cells appeared as compact puncta
before lysis but rapidly released calcein into the bulk of the drop-
lets after the temperature was increased (Fig. 2a and Extended Data
Fig.2a,b). Thus, cells can be mixed with PK in bulk before emulsifica-
tion, and thermal activation triggers the release of mRNA for barcoding
after emulsification.

To ensure that temperature-activated lysis and bulk agitation
do not prelyse cells and result in mRNA cross-contamination, we

Nature Biotechnology | Volume 41| November 2023 | 1557-1566

1558


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01685-z

a b

Particle-templated emulsification

Triggered lysis, mMRNA capture

c d

Reverse transcription Library preparation

Add oil  Vortex (~1 min)

Barcoded

templates \

Heat-activated
lysis reagents

Oil

P
200 Single cells
0°

Barcoded
templates

Lysed cell

Lysis reagents

Whole-transcriptome amplification

poly(A)-mRNA

4
%
o

@ » Q \g O
q;\oob \SQ 0\‘\\ C)Qé 5\% Tagmentation
& s

Library PCR

P5 Nextera Barcode UMI

cDNA  Nextera P7

Cell number scalability

50-ml Falcon (10 ml PIPs ~1 million cells cell input)

scRNA-seq scalability

PIP-seq

1,000 —

Combinatorial

indexing

100 —H (

0 Microfluidics
B Plates

Number of samples processed

96-well plate

384-well plate

1,536-well plate

Microwells

QOO
QOO0
QOO0
QOO0
QOO
QOO
QOO
QOOOC)
QOO0
QOO0
QOO0
QOO0
00000
0/0/0/0/0
QOO
OO000

0/0/0/0/0/0/0/0/0/60/60/0/600/06

©0/0/00/000600060000

Q)
Q)
@]
@]
Q)
@]
Q)
@]
@]
Q)
Q)
@]
Q)
@)
@]
O

000000

10 100 1,000 10,000 100,000

Fig.1|Rapid and scalable templated emulsification for single-cell genomics.
a-d, PIP-seq enables the encapsulation, lysis and barcoding of single cells.

a, Schematic of the emulsification process. Barcoded particle templates,

cells and lysis reagents are combined with oil and vortexed to generate
monodispersed droplets. b, Heat activation of PK results in lysis and release of
mRNA that is captured on bead-bound barcoded poly(T) oligonucleotides.

¢, Oil removalis followed by bulk reverse transcription of mRNA into cDNA.
cTSO is the complement of the template switch oligonucleotide. d, Barcoded

Number of cells processed per sample

whole-transcriptome-amplified cDNA is prepared for Illumina sequencing.
e-g, Efficient single-bead, single-drop encapsulation at scale. e, Particle-
templated emulsification in different-sized tubes (1.5 ml, 15 ml and 50 ml)
produces monodispersed emulsions capable of barcoding orders of magnitude
different cell numbers. f, PIP-seq is compatible with plate-based emulsification,
including 96-,384- and 1,536-well plate formats. Representative images are
shown from experiments completed three times. g, The estimated ability of
different technologies to easily scale with respect to cell and sample number.

performed mouse-human cell line mixing studies. We synthesized
barcoded polyacrylamide beads with poly(T) sequences by using
split-pool ligation of four 6-base pair (bp) randomers*. Beads con-
tained -108 (96*) unique barcodes, providing ample sequence space
to label 1 million cells. PIP-seq barcode rank plots for mixed mouse-
human cell suspensions allowed cell identification by unique molecular
identifier (UMI) abundance (Fig. 2b). The fraction of mouse reads in
human transcriptomes was below 3%, and transcriptomes contain-
ing multiple cells were rare and consistent with Poisson encapsula-
tion of two cells (Fig. 2¢,d). These results illustrate that PIP-seq yields
high-purity scRNA-seq datawith minimal transcriptome mixing and low
doublet formation.

Accurate and scalable reconstruction of single-cell
phenotypesin complex tissue

Animportant application of single-cell sequencingis atlasing cell types
inheterogeneous tissue. Toinvestigate the feasibility of atlasing stud-
ies, we applied PIP-seq to samples derived from healthy breast tissue. In
tandem, we performed scRNA-seq on tissues from the same individuals
using acommercially available scRNA-seq technology (10x Genomics,
Chromium v3). We integrated PIP-seq data across participants and
recovered expected cell types by dimensionality reduction, including
the two lineages of luminal epithelial cells (LEP1 and LEP2), myoepi-
thelial cells, fibroblasts, vascular cells and immune cells (Fig. 3a and
Extended DataFig.3a,b)*". To compare transcriptome capture between
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Fig.2|Heat-activated enzymatic lysis yields high-purity single-cell
transcriptomes. a, Fluorescence microscopy (brightfield and green fluorescent
protein) of calcein-stained cells emulsified with barcoded bead templates before
and after heat-activated lysis. Inset images show cell puncta (left) and release of
calcein (right) after lysis. Representative images are shown from experiments
completed at least three times. b-d, Cell purity assessed with mouse-human

Human total expression
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mixing studies. b, Distribution of total UMIs as a function of cell barcode rank.
The gray line represents all barcode groups, with called cells colored by species.
c,d, Purity analysis of cell transcriptomes assessed using barnyard plots. Cells are
colored by cell type (red, mouse reads; blue, human reads; green, mixed reads).
Representative data are shown from species-mixing experiments completed
over ten times.

platforms, we downsampled the 10x Chromium and PIP-seq datasets to
anequivalent number of cellsand reads (2,400 cellsand 36,500 reads
per cell). Chromium detected more unique genes (2,298 versus 1,757,
median) and transcripts (7,491 versus 3,394) per cell, with similar per-
centages of reads assigned to mitochondrial transcripts (2.34% versus
1.32%; Extended DataFig. 3c). To compare the transcriptome accuracy
of PIP-seq, we downsampled each dataset to an equivalent number of
UMIs per cell (2,400 cells and 1,500 UMIs), integrated the data, per-
formed dimensionality reduction and identified clusters (Fig.3b,c). We
compared marker genes and the correlation between gene expression
profiles by cluster. Predicted marker genes were concordant between
methods (Fig. 3d), gene expression was highly correlated (Fig. 3e and
Extended DataFig. 4a), and breast tissue markers from previous reports
were segregated identically withinintegrated clusters (Extended Data
Fig.4b). Comparison of PIP-seq to publicly available data from 10x (v3
and v2) and previously published scRNA-seq workflows demonstrated
that PIP-seq produced high-quality transcriptomes across a range of
sequencing depths (Extended Data Fig. 5). Next, we validated the scal-
ability of PIP-seq, capturing and performing scRNA-seq on 138,146
breast tissue cells in a single-tube reaction and on 65,000 peripheral
blood mononuclear cells (PBMCs; Extended Data Fig. 6a-c). At high
cellnumbers, weidentified apopulation of CD34" hematopoietic stem/
progenitor cells in the PBMC sample, highlighting the importance
of scalability in detecting rare cell types (Extended Data Fig. 6b,c).
Last, we validated that PIP-seq is compatible with antibody-based
cell hashing (Extended Data Fig. 6d,e). Hashing can be used to fur-
ther increase the number of cells and conditions processed. Thus,
PIP-seq is an easy-to-use, accurate and scalable method to profile
complex tissues.

PIP-seq for single-cell pooled CRISPR screens

CRISPR perturbations combined with single-cell sequencing allow
unbiased discovery of genotype—-phenotype relationships® >, Expand-
ingthis approach to genome-wide sgRNA libraries can elucidate gene
function on an unprecedented scale. However, such studies require
sequencing millions of cells to characterize all perturbationsin libraries
with tens or hundreds of thousands of individual sgRNAs". To demon-
strate how the throughput of PIP-seq enables perturbation studies at
scale, we profiled the transcriptional changes associated witha CRISPR
interference (CRISPRI) allelic series CROP-seq library™®. This library
expressed sgRNA and a polyadenylated copy of the guide sequence
from separate promoters. gRNAs were captured and barcoded with
the cell’s polyadenylated mRNA, making this approach immediately
compatible with PIP-seq. The library is designed to quantitatively titrate
gene expression using sgRNAs with target site mismatches®, allowing
us to compare measured gene expression to expected knockdown
efficiency across each gene’s allelic series (Fig. 4a). We transduced
K562 cells containing a stable dCas9-KRAB with the CRISPRi lentiviral
library and performed PIP-seq to capture the transcriptional profiles
and sgRNA identity of individual cells (Fig. 4b,c). For cells with single
gRNA assignments, previously reported knockdown efficiencies cor-
related with the normalized counts of targeted genes (Fig. 4d) and were
most significant for highly expressed genes (Extended Data Fig. 7a,b).
Inaddition, the knockdown of genes produced known transcriptional
changes. For example, gRNA targeting HSPAS resulted inendoplasmic
reticulumstress and increased the unfolded proteinresponse (Fig. 4e).
These results validate the use of PIP-seq for CROP-seq experiments,
paving the way for routine million-cell experiments that map geno-
type-phenotype relationships at the genome scale.
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Fig.3 | Accurate single-cell transcriptional profiling of healthy breast tissue
using PIP-seq. a, Clustering and identification of cell types from PIP-seq data
(54,825 cells from two individuals). b-e, Comparison of PIP-seq data to 10x
Genomics data collected from the same tissue. b, Integration of PIP-seq and

10x data. ¢,d, Cell clustering and comparison of marker genes between
platforms. d, Heat maps of marker gene expression show similar patternsin
PIP-seq and 10x data. e, Correlations in normalized gene expression, by cluster,
between platforms (see also Extended Data Fig. 4a).

Transcriptomic signatures of MPAL relapse

Monitoring of cancer inresponse to therapy is an emerging application
of single-cell sequencing that benefits from rapid sample processing
at the point of collection and the ability to delay cDNA synthesis and
library preparation until multiple samples have been collected. We
investigated the utility of PIP-seq for understanding cancer dynam-
ics by first validating the single-cell transcriptional responses of two
cancer cell lines (H1975 and PC9) to gefitinib, an epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitor. We treated H1975 and
PC9 cells with DMSO (vehicle control) or 1 pM gefitinib overnight and
performed PIP-seq (Fig. 5a). A transcriptional response in H1975, which
isresistant to gefitinib due to EGFR mutations L858R and T790M, was
not observed, while gefitinib-sensitive PC9 cells showed a substantial
shiftingene expression (Fig. 5b). Differential gene expression analysis
revealedincreased levels of tumor-associated calcium signal transducer
2 (TACSTD2)in PC9 cells, consistent with its known modulation during

lung adenocarcinoma tumor growth* (Fig. 5¢), and decreased expres-
sion of cyclin dependent kinase 4 (CDK4), which is known to enhance
sensitivity to EGFR inhibitors® (Extended Data Fig. 8). In addition,
drug-resistant H1975 cells spiked into a background of sensitive cells
(1:9H1975:PC9) could be detected solely by their single-cell phenotypes
and at roughly the expected frequency (4.7%; Fig. 5d). Thus, PIP-seq
recovered genes with reported roles in lung cancer drug resistance
and could identify resistance phenotypes within a background of
drug-sensitive cells.

Next, we applied PIP-seq to study MPAL, a high-risk disease
characterized by multiple hematopoietic lineages®**. Recurrence
and changes in immunophenotype with chemotherapy are typically
monitored using flow cytometry of surface markers during diagnosis,
treatment and relapse, but this provides limited insight into the driv-
ers of relapse after drug treatment. Like other scRNA-seq methods,
PIP-seq can be multiplexed to simultaneously characterize single-cell
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Fig. 4| Transcriptome and gRNA sequencing using PIP-seq. a, Schematic of
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K562 cells. ¢, Schematic of the capture and barcoding of polyadenylated mRNA
and sgRNA using PIP-seq. RNA and sgRNA libraries are prepared separately and
pooled for sequencing. d, Quantification of gene expression of sgRNAs within
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median, with the lower and upper hinges corresponding to the 25th and 75th
percentiles, respectively, and raw data points are displayed (with slight jitter).

e, Preranked gene set enrichment analysis (GSEA) of scRNA-seq data comparing
sgHSPAS5-transduced cells to non-sgHSPAS5-transduced cells shows enrichment
ingenes related to endoplasmic reticulum stress and unfolded protein response;
GO CC, Gene Ontology cellular component; NES, normalized enrichment score;
FDR, false discovery rate.

gene expression and surface immunophenotype*’. Using PIP-seq,
we performed antibody-derived tag (ADT) sequencing (CITE-seq) on
longitudinal samples collected from individuals with MPAL treated
with chemotherapy. PIP-seq confirmed the diagnosis of these samples
as B/myeloid MPAL and identified aberrant expression of immune
and stem cell markers that matched with clinical immunopheno-
types determined by flow cytometry (Supplementary Table 2 and
Extended Data Figs. 9a and 10a). However, PIP-seq revealed an addi-
tional layer of complexity undetectable by traditional immunophe-
notyping. Dimensionality reduction identified cell clusters that
emerged after drug treatment (Fig. Se,f and Extended Data Figs. 9 and
10). These clusters had similar immunophenotypes (Fig. 5g,h) but
contained notable transcriptional heterogeneity (Fig. 5i,k and Sup-
plementary Tables 4 and 5). Cell populations upregulating genes and
pathways (oxidative phosphorylation, G2M checkpoint modulation
and ribosome biogenesis) implicated in a variety of cancers, includ-
ing acute lymphoblastic leukemia*~°, but not previously linked to
MPAL were observed (Fig. 5j,1). Taken together, our results highlight
the value of single-cell methodologies for studying the heterogene-
ous response of cancer subpopulations to chemotherapy and the
potential for the integration of simple and reliable scRNA-seq into
clinical workflows.

Discussion

Genomics has progressed rapidly to high-throughput, multimodal
single-cell analysis*®*'~*, Further improvements in data quality, the
ability to measure additional cellular properties and new compu-
tational approaches for understanding and integrating single-cell
information®™’ will continue to refine our understanding of cell
states. At the same time, there remains an unmet need for simplified
workflows that scale in cell number and sample size and that allow
for breaks in processing after initial sample collection. PIP-seq is a
microfluidics-free scRNA-seq method that produces high-quality data
using asimplified emulsification technique. Like other high-throughput
single-cellapproaches, PIP-seqis fundamentally a strategy to barcode
mRNA from cells so that material can be pooled and sequenced. The
core advantage of PIP-seq is the speed and simplicity of sample pro-
cessing. Particle-templated emulsification forms monodispersed
bead-containing emulsionsin minutes with astandard laboratory vor-
texer, removing the need for instrumentation located in core facilities
or hours of multichannel pipetting to perform split-pool indexing in
plates. Thisexpands accessto single-cell technologies in several ways.
First, PIP-seq reduces the need for sample transport, enabling imme-
diate processing by technicians without prior training and collection
and banking of samples from remote locations, including field sites.
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eliminates the need for fixatives and minimizes transcriptional pertur-
bations and batch artifacts associated with processing many samples

inseries.
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Fig. 5|Molecular signatures of drug-resistant cancer phenotypesin cell
lines and human samples. a, A two-by-two experimental study design using
lung adenocarcinoma cell lines (H1975 and PC9) treated with gefitinib or DMSO.
b, Clustering of scRNA-seq data after drug treatment shows transcriptional
perturbations in gefitinib-sensitive PC9, but not gefitinib-resistant H1975, cells.
¢, Increased expression of TACSTD2in PC9 cells challenged with gefitinib. d,
Identification of drug-resistant H1975 cells spiked into drug-sensitive PC9 cells
based on gefitinib-induced transcriptional perturbation. e-1, PIP-seq RNA and
barcoded antibody (CITE-seq) analysis of MPAL. e, Clustering of single cells

for participant 65 before (left) and after (right) chemotherapy. f, Clustering

of single cells for participant 873 before (left) and after (right) chemotherapy.

g h, ADT abundance, by cluster, before (¢,) and after (t,) chemotherapy. ADTs
change as a function of chemotherapy but are consistent among clusters for both
participant 65 (g) and participant 873 (h), with the exception of T cell subsets.

i-1, Analysis of transcriptional heterogeneity in MPAL samples. i, Heat map of
top differentially expressed marker genes by cluster after relapse in participant
63.j, GSEA preranked analysis comparing transcriptomic differences between
clusters1and 7in participant 65 using the following gene sets: Human Phenotype
acute leukemia (M35856), hallmark G2M checkpoint (M5901), hallmark oxidative
phosphorylation (M5936) and Gene Ontology cellular component (GO CC)
ribosome (M17089). k, Heat map of top differentially expressed marker genes

by cluster after relapse in participant 873.1, GSEA preranked analysis comparing
transcriptomic differences between clusters 3 and 5in participant 873 using
gene sets Human Phenotype acute myeloid leukemia (M36586), Gene Ontology
cellular component ribosome (M17089), Gene Ontology biological process

(GO BP) oxidative phosphorylation (M17089) and abnormal myeloid leukocyte
morphology (M37711).

Inaddition to workflow simplicity, PIP-seq s intrinsically scalable,
handling cell inputs over five orders of magnitude (10 to 10°), making
it well suited for screening genome-wide Perturb-seq experiments
and large cell atlas studies. While methods based on combinatorial
indexing scale efficiently to large cell numbers, PIP-seq has a simpler
workflow and is also compatible with high-throughput processing of
samples in plates, allowing many conditions and replicates to be run
simultaneously. This has implications for data quality and biological
discoveryinsingle-cell experiments because the detection of true posi-
tivesand reduction in false positivesin differential expression analysis
isimproved by incorporating replicates and statistical methods that
account for biological variability*. Increased flexibility in the number
of samples that can be processed also enables difficult experimental
designs, such as dose-response curves, time-course studies, combi-
natorial perturbations, single-cell sequencing of organoids and large
drug screens. In addition, because PIP-seq can directly emulsify in
plates, itintegrates withrobotic fluid handling and therefore comprises
adrop-insolution for single-cell readouts in high-throughput experi-
mentsinacademiaorindustry.

We confirmed the accuracy of PIP-seq as a single-cell genomics tool
by profiling heterogeneous tissue and directly comparing our results
toacommercial scRNA-seq platform (10x Genomics). PIP-seq cell-type
classification, marker identification and gene expression levels were
tightly matched with 10x data but detected fewer genes per cell. We
attribute these differences to the extensive optimization that the com-
mercial platform has undergone and suspect that, like other single-cell
techniques®*'>*% furtherimprovements to PIP-seq molecular biology
will increase sensitivity. In addition, because PIP-seq emulsions are
functionally equivalent to those made with microfluidics, our approach
isimmediately compatible with emerging advances, includingimprove-
ments to the molecular biology of myriad multiomic profiling methods
developed for other droplet microfluidic barcoding systems***7€C,

Finally, we demonstrated the utility of PIP-seqin processing clini-
cal samples. Incombination with barcoded antibodies, we profiled the
relapse of MPAL after chemotherapy. MPAL is a subtype of leukemia
characterized by poor prognosis®, lineage ambiguity, lack of con-
sensus regarding therapy and considerable intratumoral genetic and
immunophenotypic heterogeneity®>*’. The molecular mechanisms
underlying treatment resistance in this complex disease remain unde-
fined. Changes in gene expression have been linked to prognosis and
treatment resistance in multiple cancers. However, tumor heteroge-
neity makes it unlikely that bulk sequencing methods would identify
strong gene signatures associated with resistance in clinical samples.
Using PIP-seq of longitudinal samples from two individuals with MPAL
with disease progression after initial therapy, we identified transcrip-
tional heterogeneity beyond that observed by immunophenotype
and speculate that this heterogeneity may play a role in MPAL treat-
ment resistance. We observed upregulation of genes and pathways
previously associated with acute lymphoblastic leukemia in several
cell subsets that emerged after chemotherapy and modulation of

ribosomal genes in both individuals. Control of translation has been
previously implicated in many cancers***®*, including leukemia, but
has not yet been linked to MPAL progression and drug resistance,
suggesting that therapeutics targeting ribosomal biogenesis and/or
protein translation may also have therapeutic potential in MPAL®. Our
results motivate the use of single-cell technologies for understanding
MPAL tumor heterogeneity and response to chemotherapy and suggest
that the broad adoption of such technologies for monitoring cancer
progression (and tailoring treatment) is within reach. In summary,
scRNA-seq provides unparalleled insight into cell heterogeneity but
remains underutilized in many settings. PIP-seq addresses this with a
simple, rapid and scalable workflow that can be used by any lab contain-
ing standard molecular biology equipment.
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Methods

PK-triggered cellular lysis and mRNA capture

Mammalian cells were stained with Calcein AM (Thermo Fisher, C3099)
in 1 ml of PBS with 0.04% bovine serum albumin (BSA) according to
manufacturer’sinstructions. After 30 min of incubation at room tem-
perature on a rotisserie incubator (Isotemp, Fisher Scientific), cell
suspensions were quantified with a Luna-FL automated cell counter
and diluted in 1x PBS with 0.04% BSA. Calcein-stained cells (1,500) in
5 ulof 1x PBS with 0.04% BSA were added to 35 pl of barcoded hydrogel
templates with 29 U ml™ PK (NEB, P8107S) and 70 mM DTT (Sigma,
D9779) and mixed for 10 pipette strokes. Care was taken to avoid gen-
erating bubbles when mixing cells with barcoded hydrogel templates.
Two hundred and eighty microliters of 0.5% ionic Krytox in HFE 7500
oil®® was added to the cell-bead mixture and vortexed at 3,000 r.p.m.
for 15 s horizontally and then 2 min vertically with a custom vortexer
(Fluent BioSciences, FB0002776). Oil was removed from below the
emulsion such that less than 100 pl remained. The PIP emulsion was
subsampled on a C-Chip disposable hemacytometer (Fisher Scientific,
DHCNO15) before lysis, with each subsample consisting of 3.5 pl of PIP
emulsion per field of view. The C-chip was imaged in brightfield at x2
magnification. The remaining PIP emulsion was subjected to enzymatic
lysisat 65 °Cfor 35 minonaPCRthermocycler (EppendorfMastercycler
Pro) with the lid temperature set to 105 °C. After lysis was complete,
fluorescence images were captured using a Nikon 2000 microscope
with 470-nm excitation (Thorlab, M470L5).

Synthesis of barcoded bead templates

Prototype barcode bead fabrication proceeded according to previous
reports®. Briefly, a simple coflow microfluidic device was used to com-
bine acrylamide premix (6% (wt/vol) acrylamide, 0.1% bis-acrylimide,
0.3% (wt/vol) ammonium persulfate, 0.1x Tris-buffered saline-EDTA
(TBSET:10 mM Tris-HCI (pH 8.0), 137 mM NaCl, 20 mM EDTA, 1.4 mM
KCland 0.1% (vol/vol) Triton X-100), 50 uM acrydited primer (/5Acryd/
TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGACTCCTCTTTCC-
CTACACGACGCTCTTCC) with oil (HFE 7500, 3M Novec) containing
2% (wt/vol) surfactant (008-Fluoro-surfactant, Ran Technologies)
and 0.4% (vol/vol) tetramethylethylenediamine). The emulsion was
solidified at room temperature for 12 h,and beads were removed using
1H,1H,2H,2H-perfluoro-1-octanol (Sigma-Aldrich) and washed three
times with Tris-EDTA-Tween buffer (TET: 10 mM Tris-HCI (pH 8.0),
10 mM EDTA and 0.1% (vol/vol) Tween 20), followed by two washes
with30 mM NaCl, 10 mM Tris-HCI (pH 8.0),1 mM MgCl,and 0.1% Tween
20. The final bead size was 80 pum. Split-pool barcode assembly used
theligation assembly approach as described previously*°. Beads were
resuspended in T4 ligation buffer (NEB, B0202S), heated with a com-
plementary oligonucleotide to 75 °C for 2 minand cooled to room tem-
peratureto anneal. One hundred microliters of beads was distributed
into each well of a 96-well plate containing a unique barcode with 1x T4
ligation buffer and 1.9 U pl ™ T4 DNA ligase (NEB, MO202M). Ligations
wereincubated at 25 °Cfor1hand heatinactivated at 65 °C for 10 min.
Well contents were combined and washed five timesin15 mlof TET. The
process was repeated to add four barcodes and a UMIwith poly(T) (NN
NNNNNNNNNNTTTTTTTTTTTTTTTTTTTV). Quality control steps
were identical to previous reports®’. Bead manufacturing methods
were transferred to Fluent BioSciences for scaled production, valida-
tion and distribution. Commercially produced beads were used for
several experiments, as noted.

Varied format emulsification

PIP emulsification in varied formats was performed in 0.5-ml micro-
centrifuge tubes, 15-ml conical tubes and 50-ml conical tubes. Briefly,
PIP particles were suspended in buffer with 29 U mI™ PK (NEB, P8107S)
and 70 mM DTT (Sigma, D9779) and pelleted through centrifugation.
Barcoded hydrogel templates were then distributed at 35-pl, 0.5-mland
8-mlvolumesin0.5-ml, 15-mland 50-mltubes, respectively. Fluorinated

oilwithsurfactant (Fluent Biosciences, FBO001804) was added to each
tube at 200-pl, 8-ml and 32-ml volumes, respectively. Emulsification
was conducted on a Vortex Genie 2 with a custom adapter (Fluent,
FBS-SCR-8VX) at maximum r.p.m. for 1 min. After emulsification, the
samples were allowed to settle for 30 s, and excess oil was removed via
syringes using 22-gauge blunt needles. The emulsion was subsampled,
loaded on a C-Chip disposable hemacytometer (Fisher Scientific,
DHCNO15) and imaged under brightfield microscopy (DIAPHOT300,
Nikon) at x2 and x4 magpnification.

Emulsification in well plates was tested using two bead buffer
conditions. First, to test emulsification in 96-, 384- and 1,536-well
plates, PIP particles were suspended in2% (vol/vol) Triton X-100 (Sigma,
X100-5ML) in 10 mM Tris-HCI (Teknova, T1075) and centrifuged at
6,000g; the supernatant was then removed (Fig.1and Extended Data
Fig.2c). Depending on the well plate working volume, 38 pl, 8 plor 3 pl
ofthe centrifuged barcoded hydrogel templates was added to 96-,384-
or 1,536-well plates, respectively. For 96- and 384-well plates, 2 pl of
sample was added to each well, and for 1,536-well plates, 1 ptl was added
toeachwell. PIP and sample volumes totaled 25% of the volume of each
well. Eachplate type was then sealed (Applied Biosystems, 4306311) and
shaken for 5 min (IKA, 253614 and 3426400) to ensure complete mix-
ing. Each plate type was centrifuged at 200g for 1 min before removing
the seal. Then, 80 pl, 20 pl or 8 pl of 2% (wt/wt) fluorosurfactant (Ran
BioTechnologies, 008 Fluorosurfactant) in HFE oil (3M, Novec 7500)
was added to each well in 96-well (Applied Biosystems, N8010560),
384-well (Applied Biosystems, A36931) or 1,536-well (Nunc, 253614)
plates, respectively. The addition of oil represented 50% of the volume
of each wellfor a total volume of 75% consisting of PIP, sample and oil.
After resealing, PIP emulsification was performed by vortexing for
30 s at 3,200 r.p.m. (Benchmark Scientific, BV1003). The emulsified
plate was centrifuged at 200g for 1 min before removing the seal and
imaging droplets fromindividual wells on a fluorescence microscope
(EVOS FL Auto).

Second, to test well plate emulsification with cells in 96- and
384-well plates, PIP particles were suspended in buffer with 29 U ml™
PK (NEB, P8107S) and 70 mMDTT (Sigma, D9779) and pelleted through
centrifugation. For 96-well plates (Eppendorf, 0030129300), 25 pl
of barcoded hydrogel templates was then distributed into each well
with 4,000 cells per well (2,000 cells per pl x 2 pl). Fluorinated oil
with surfactant (150 pl; Fluent Biosciences, FBO001804) was added
to each well. Emulsification was conducted on a Vortex Genie 2 with a
flat-head adapter at 3,000 r.p.m. for 2 min. For 384-well plates (Corn-
ing, 3347),15 pl of barcoded hydrogel templates was then distributed
into each well with 3,000 cells per well (2,000 cells per pl x 1.5 pl).
Fluorinated oil with surfactant (105 pl; Fluent Biosciences, FB0001804)
was added to eachwell. Emulsification was conducted ona Vortex Genie
2withaflat-head adapter at 3,000 r.p.m. for 2 min (Fig. 1and Extended
DataFig.2a,b).

PIP-seq protocol

Unless otherwise noted, cells were centrifuged at 300g for 5 min,
washed twice in1x PBS without calcium or magnesium (Thermo Fisher,
70011044) with 0.04% BSA, filtered with a 70-pum cell strainer and
resuspended in 1x PBS with 1% Pluronic F127 (Sigma, P2443). Preali-
quoted barcoded hydrogel templates were thawed onice. Volumes of
barcoded hydrogel templates, cells and oil varied based on the number
of cellsas noted in each experimental subsection below. The following
protocol was used for astandard small-format run: 5 pl of 500 cells per
plwas added to 35 pl of barcoded hydrogel templates with 29 U ml™
PK and 70 mM DTT (Fluent BioSciences, FBO001876) and mixed for
10 strokes. Care was taken to avoid generating bubbles when mixing
cellswithbarcoded hydrogel templates. Oil (280 pl; Fluent Biosciences,
FB0001804) was added to the cell-bead mixture and vortexed (Vortex
Genie 2, Scientific Industries) using a custom adapter (Fluent Bio-
Sciences, FB0002100) at the maximum r.p.m. for 15 s horizontally and
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2 minvertically. Excess oil (230 pl) was removed, and the emulsion and
enzymatic lysis was completed at 65 °C for 35 minwitha4 °Choldona
PCR thermocycler with the lid temperature set to 105 °C. The remain-
ing oil was removed. The emulsion was broken using the following
protocol. Using a multichannel pipette, 180 pl of room temperature
high-salt buffer (250 mM Tris-HCI (pH 8), 375 mM KCl, 15 mM MgCl, and
50 mM DTT) wasadded to the top of the emulsion followed by 40 pl of
100% 1H,1H,2H,2H-perfluoro-1-octanol (Sigma-Aldrich, 370533). The
samples were vortexed for 3 s and briefly centrifuged, and the bottom
oil phase was removed. Barcoded hydrogel templates were transferred
intoal.5-mlEppendorftube and washed three times with 2x RT buffer
(100 mM Tris-HCI (pH 8.3),150 mM KCI, 6 mM MgCl,and 20 mM DTT)
with 1% Pluronic F68 (Gibco, 24040032). After washing, the beads were
pelleted, the aqueous layer was removed, and the remaining bead and
buffer volume was 25 pl. To this bead buffer mixture, 25 pl of reverse
transcription master mix comprising4.8%PEG8000, 4% PM400, 2.5 pM
template switch oligonucleotide (PIPS_TSO),1 mM dNTPs (NEB),1U pl™
RNase inhibitor (NxGen, Lucigen) and 1U pl™ reverse transcriptase
(Thermo Fisher, Maxima H-minus EPO751) was added. The reaction was
thoroughly mixed, and cDNA synthesis was completed for 30 min at
25°Cand 90 minat42 °C, followed by 10 min at 85 °C and a4 °C hold.
Whole-transcriptome amplification (WTA) was performed directly
onreverse transcription product without purificationby adding 50 pl
of 2x KAPA HiFi master mix and 0.25 pM primer (PIPS_WTA_primer)
and thermocycling (95 °C for 3 min, 16 cycles of 98 °C for 15 s, 67 °C
for 20 s and 68 °C for 4 min, followed by 72 °C for 5 min and a hold at
4°C). After WTA, barcoded hydrogel templates were removed using
Corning Spin-Xfilter columns (1 minat13,000g), and amplified cDNA
was purified using 0.6x Ampure XP. Libraries were generated from
WTA amplified material using the Nextera XT DNA library preparation
kit with a custom primer (PIPS_P5library) and standard Nextera P7
indexing primers (N70x). Libraries were pooled and sequenced using
anllluminaNextSeq 2000 instrument with15% PhiX. Oligonucleotides
used in this study are supplied in Supplementary Table 1.

Human-mouse mixing studies

Human HEK 293T cells (ATCC, CRL-3216) were grownin DMEM (Thermo
Fisher, 11995073) supplemented with 10% fetal bovine serum (FBS;
Thermo Fisher, A3840001) and 1% penicillin-streptomycin-glutamine
(Thermo Fisher,10378016). Mouse NIH 3T3 cells (ATCC, CRL-1658) were
grown in DMEM (Thermo Fisher, 11995073) supplemented with 10%
bovine calf serum (ATCC, 30-2030) and 1% penicillin-streptomycin-
glutamine. Cells were grown to a confluence of -70% and treated with
TrypLE Express with Phenol red (Thermo Fisher,12605010) for 3 min,
quenched with an equal volume of growth medium and centrifuged
for 5min at 200g. The supernatant was removed, and the cells were
resuspended in 1x DPBS without calcium or magnesium. Cells were
diluted to their final concentration in 1x DPBS with 0.04% BSA and
mixed evenly to create a 50:50 human:mouse mixture. Cell viability
was evaluated using acridine orange/propidium iodide stain (Logos
Bio, F23001) and quantified with a Luna-FL automated cell counter.
Cells were processed using the PIP-seq protocol as described above.

Seventy-two-hour hold experiments

Five microliters of a50:50 mixture of human HEK 293T cellsand mouse
NIH3T3 cells (800 cells per pul) was added to 35 pl of barcoded hydrogel
templates (Fluent BioSciences, FB0003067) with 29 U ml* PK and
70 mM DTT and mixed for 10 strokes. Oil (280 pl; Fluent Biosciences,
FB0001804) was added to the cell-bead mixture, which was vortexed
on a digital vortexer using a custom adapter (Fluent BioSciences,
FB0002084) at 3,000 r.p.m. for 15 s horizontally and 2 min vertically.
Excess 0il (230 pl) wasremoved, and the emulsion was placed ina pre-
heated digital dry bath at 66 °C for 38 min and 4 °C for 11 min. Control
samples proceeded to emulsion breaking, while 0 °Chold samples were
placedinanicebucketintherefrigerator (4 °C) for 72 hbefore breaking

emulsions. Breaking, mRNA extraction, reverse transcription, WTAand
cDNAisolation, adapter ligation-based library preparation and lllumina
sequencing were performed as previously described.

Healthy breast tissue comparison to 10x data

Fresh reduction mammoplasty tissue was processed as previously
described®“”. Use of breast tissue specimens to conduct the studies
described was approved by the University of California San Francisco
Committee on Human Research under Institutional Review Board
protocols 16-18865 and 10-01532. Tissues were obtained as deidenti-
fied samples, and all participants provided written informed consent.
Bulk mammary tissues were mechanically processed intoaslurryand
digested overnight with collagenase type 3 (200 U ml™, Worthington
Biochem CLS-3) and hyaluronidase (100 U ml%; Sigma-Aldrich, H3506)
in medium containing charcoal:dextran-stripped FBS (GeminiBio,
100-119). The digested fragments were size filtered into a below-40-um
fractionand an above-100-pm fractionand cryopreserved. For PIP-seq,
cells were thawed and resuspended in PBS + 0.04% BSA and passed
througha70-pm FlowMi cell strainer (Sigma, BAH136800070). For 10x
Genomicsdata, the100-um fraction was thawed and further digested
with trypsin, followed by dispase (Stemcell Technologies, 07913) and
DNasel (Stemcell Technologies, 07469) digestion to achieve single-cell
suspensions. For PIP-seq, 20 pl of cells (1,500 cells per plin PBS + 0.04%
BSA) wasadded to200 plof barcoded hydrogel templates (Fluent Bio-
Sciences, FB0002617) and mixed for 10 strokes. Oil (1,000 pl; Fluent
Biosciences, FB0001804) was added to the cell-bead mixture and vor-
texed onadigital vortexer using a customadapter (Fluent BioSciences,
FB0002100) at 3,000 r.p.m. for 15 s horizontally and 2 min vertically.
Excess 0il (800 pl) was removed, and the emulsion was placed onapre-
heated digital dry bath at 66 °C for 38 min and 4 °C for 11 min. Breaking,
mRNA extraction, reverse transcription, WTA and cDNAisolation were
performed under standard conditions. Adapter ligation-based library
preparation was performed according to manufacturer’sinstructions
(Watchmaker Genomics, 7K0019-024). Samples were sequenced on
an Illumina NextSeq 2000, with four participant samples pooled per
P3 cartridge, and sequenced at aread depth of approximately 36,500
reads per cell. For 10x Genomics, cells from each participant were
labeled with MULTIseq barcodes' and were pooled and stained with
DAPItobesorted for DAPI-live cells. Single-cell libraries were prepared
according to the10x Genomics Single Cell V3 protocol (v3.1Rev D) with
the standard MULTIseq sample multiplexing protocol. The libraries
were sequenced onaNovaSeq S4 lane at aread depth of about 70,000
reads per cell. To compare platforms, we downsampled PIP-seq and
10x data, which had different numbers of cells and sequencing depth
per cell. The PIP-seq data had 54,825 cells, sequenced at approximately
36,500 reads per cell, while the 10x data had 2,420 cells sequenced
at approximately 70,000 reads per cell. Data were downsampled to
2,400 cells and 36,500 reads in R (downsampleReads, DropletUtils).
For correlation and marker gene comparisons, data were downsam-
pled to 2,400 cells and 1,500 UMIs in R (SampleUMI, Seurat v4.1.0).
Markers used for breast tissue cluster cell-type calling are available in
Supplementary Table 2.

Single-tube large-format breast tissue study

PIP-seq was performed as previously described, except that cells were
counted and diluted with PBS + 0.04% BSA to a concentration 0of 10,000
cells per pl. Cell suspension (40 pl) was added to 800 pl of barcoded
hydrogel templates (Fluent BioSciences, FB0O003067). Oil (4,000 pl;
Fluent Biosciences, FBO001804) was added to the cell-bead mixture
and vortexed onadigital vortexer using a customadapter (Fluent Bio-
Sciences, FB0002659) at 3,000 r.p.m. for 15 s horizontally and 2 min
vertically. Excess oil was removed using a 3-ml syringe with a22-gauge
blunt-bottom syringe needle. Lysis proceeded using 3,300 pl of alysis
emulsion (Fluent BioSciences, FB0O003039) added to the cell-bead
emulsion. The mixture was placed in a preheated digital dry bath at
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37°Cfor45 minand4 °C for10 min. Breaking, mRNA extraction, reverse
transcription, WTA and cDNAisolation were performed under the same
conditions as described previously. Adapter ligation-based library
preparation was performed according to manufacturer’s instruc-
tions (Watchmaker Genomics, 7K0019-024). cDNA (80 ng) was used
to prepare four replicate library preparations, which were pooled and
sequenced ontwo llluminaNextSeq 2000 P3 cartridges ataread depth
of13,025 reads per cell after concatenation.

CROP-seq

K562 CRISPRi cells were cultured in RPMI-1640 (Gibco, 11875093) with
10% FBS (Thermo Fisher Scientific,10438026) and 1% penicillin-strep-
tomycin (Thermo Fisher Scientific, 15140148) in an incubator at 37 °C
with 5% CO,. K562 CRISPRi cells were transduced with a lentivirus
library containing 138 sgRNAs™ at a multiplicity of infection of 0.1.
Lentivirus-infected cells (BFP*) were sorted to high purity using a BD
FACS Arialll (100-um nozzle) and processed according to the PIP-seq
scRNA-seq workflow. Cells (3 pl; 333 cells per pl) were added to 28 pl
of barcoded hydrogel templates with 29 U mI™ PKand 70 mM DTT and
mixed for 10 strokes. One hundred and fifty microliters of 0.5% ionic
KrytoxinHFE 7500 oil was added to the cell-bead mixture and vortexed
at3,000 r.p.m.for1 minonaVortex Genie 2withacustomtubeadapter.
cDNA was processed according to the standard PIP-seq protocol to
obtain sequence-ready libraries containing transcriptome informa-
tion. To recover sgRNA sequences, we implemented an additional
amplification step. We amplified 1 ng of cDNAina 50-pl reaction using
primers P5-PE1 (0.5 uM) and Weissman_U6 (0.25 uM; Supplementary
Table 1) with 1x Kappa HiFi. Reactions were thermocycled at 95 °C for
3 minfollowed by 10 cycles of 95 °Cfor20s,70 °Cfor30s(-0.2 °C per
cycle) and 72 °C for 20 s, followed by 8 cycles of 95 °C for 20's, 68 °C
for30sand 72 °Cfor20s, followed by 72 °Cfor 4 minand hold at 4 °C.
Library PCR product enriched in sgRNA sequences was purified with
adouble-sided 0.5%/0.8x Ampure XP bead cleanup, and the size was
determined (Agilent Tapestation).

Transcriptome and sgRNA libraries were pooled at 20:1 before
sequencing. Reads were first processed to extract sgRNA sequences.
The bioinformatics pipeline was run using a custom index built from
the full human transcriptome (GENCODE v32) and gRNA sequences
(Salmonv1.2.0.). Thisapproachled to therecovery of >14,000 unique
gRNA counts across all cell-associated barcodes. Cells were assigned
to gRNA groups using a previously reported approach™. Briefly, cells
were classified as uniquely expressing a single gRNA species if the
guide’s expression was at least tenfold higher than the sum of all other
gRNAs. Similarly, cells were classified as containing multiple gRNAs in
cases where the difference was smaller than 1. For the 581 single cells
sequenced, 2 did not have any gRNA, 441 contained a single gRNA,
and 138 contained multiple gRNAs. Cell barcodes were processed
using Seurat v4.1.0. All gRNAs in the list of features were excluded
from the identification of variable transcripts (feature selection) and
in subsequent stages of dimensionality reduction and clustering. To
understand the relationship between gRNAs and mRNA expression,
gRNAs were ranked according to their expected level of knockdown,
asreported previously®, and a generalized additive model was used to
assess groupwise trends for each set of gRNAs.

Lung adenocarcinoma cell line experiments

PC9 cells were obtained from the RIKEN Bio Resource Center
(RCB4455). H1975 cells were obtained from ATCC (CRL-5908). Cells
were cultured in RPMI-1640 (Gibco, 11875093) with 10% FBS, penicil-
lin and streptomycin in an incubator at 37 °C with 5% CO,. Gefitinib
(1 uM; Frontier Scientific, 501411677) or DMSO was added to culture
flasks 24 h before cells were collected for processing. PC9 and H1975
cells were both treated with gefitinib and DMSO. To perform the cell
mixing study, gefitinib-treated H1975 cells and gefitinib-treated PC9
cells were mixed at a ratio of 1:9 H1975:PC9. Five microliters of cells

(400 cells per pl) was added to 28 pl of barcoded hydrogel templates
with 22.8 U ml™ PK and 28 mM DTT and mixed for 10 pipette strokes.
One hundred and fifty microliters of 0.5% ionic Krytox in HFE 7500
oil®®was added to the cell-bead mixture and vortexed at 3,000 r.p.m.
for 1 min on a Vortex Genie 2 with a custom tube adapter. Triplicate
tubes of 400 cells were processed per treatment condition. Datawere
analyzed using Seurat v4.1.0.

Healthy PBMCs

Cryopreserved PBMCs were obtained from a commercial provider
(AllCells). Cells were thawed and prepared for PIP-seq as previously
describedinthe MPAL study, except that the final cell dilution was made
in1x PBS + 0.04% BSA. For the high-cell-count PBMC study, PIP-seq was
performed as previously described in the high-cell-number breast tis-
sue study except that cells were counted and diluted with PBS + 0.04%
BSA to a concentration of 4,300 cells per pl, and 44 pl of cell suspen-
sionwas added to 800 pl of barcoded hydrogel templates (Fluent Bio-
Sciences, FB0O003067). Cryopreserved PBMCs used for cell hashing
were obtained from a commercial provider (AllCells) and prepared for
PIP-seqasdescribed previously. For the cell hashing study, cell staining
and PIP-seqwere performed according to the PIP-seq Single Cell Epitope
Sequencing user guide (FBO002079). Briefly, 1 million PBMCs were
resuspendedin47.5 pl of cell staining buffer (BioLegend, 420201), and
2.5 plof TruStain FcX block (BioLegend, 422301) was added before mix-
ing and incubating for 10 min on ice. Next, 1 pg of TotalSeqA antibody
wasdiluted in cell staining buffer, and 50 pl of this antibody dilution was
addedtotheblocked cells before incubation onice for 30 min. Stained
cells were washed in cell staining buffer three times and resuspended
in1x PBS + 0.04%BSA at 2,000 cells per pl. For PIP-seq, 20 pl of this cell
resuspensionwas added to 200 pl of barcoded hydrogel templates (Flu-
ent BioSciences, FB0002617) and processed through PIP-seq.

MPAL

Participants whose samples were used in this study were treated at
the University of California San Francisco. Samples were collected in
accordance with the Declaration of Helsinki under Institutional Review
Board-approvedtissue banking protocols, and written informed con-
sent was obtained fromall participants. Sample clinical characteristics
are available in Supplementary Table 3. Cryopreserved PBMCs were
thawed by hand until approximately 85% of ice remained. Using a
5-ml serological pipette, 1 ml of 4 °C defrosting medium (DMEM with
20% FBS and 2 mM EDTA) was added dropwise to each sample, and,
without disturbing the remaining ice pellet, the sample was carefully
transferred dropwise to a preprepared 40-mlaliquot of 4 °C defrosting
medium. This was repeated until the contents of the entire cryovial
were transferred into the 50-ml conical of defrosting medium. The
sample wasinverted four to five times and centrifuged at 114g for 15 min
at4 °Cwithnobrake. The supernatant was aspirated, and 10 mlof room
temperature RPMI-1640 with 1% penicillin-streptomycin-glutamine
was used to gently resuspend the cells. Cell clumps were manually
removed, and, if necessary, cells were filtered through a 70-pum cell
strainerintoafresh 50-mlconical. The sample wasinverted two tothree
times and centrifuged at 114g for 10 min with low brake at room tem-
perature. The supernatant was aspirated, and cells were resuspended
in an appropriate volume of 1x PBS + 5% FBS. Cells were quantified
with Acridine Orange (AO)/Propidium lodide (PI), and viability was
evaluated on the Luna-FL. One to 2 million cells were aliquoted into a
new 15-ml conical tube and centrifuged at 350g for 4 min at 4 °C, the
supernatant was aspirated, and the tube was placed on ice. Forty-five
microliters of cold cell staining buffer (BioLegend, 420201) was added
per1millioncellsand resuspended gently. Five microliters of Trustain
FcXblock (BioLegend, 422301) was added per 1 million cellsand gently
mixed 10 times with awide-bore pipette tip. Cells were blocked onice
for15 min. A custom pool of 19 TotalSeqA antibodies was obtained from
BioLegend and diluted according to the manufacturer’s instructions.
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Immediately before use, antibodies were mixed and centrifuged at
10,000g for 4 minat4 °C; 4.6 pl of 0.5 pg pl " antibody pool was added
per1million blocked cells and gently mixed 10 times with a wide-bore
pipette tip. The samples were incubated onice for 60 min. Next, 3.5 ml
of cold cell staining buffer was added, gently mixed with a wide-bore
pipettetip and slowly inverted twice to mix. Cells were centrifuged at
350g for 4 min at 4 °C, and the supernatant was removed. The addi-
tion of cold cell staining buffer was repeated twice for a total of three
washes. After the final supernatant aspiration, stained cells were resus-
pendedin1x PBS with 0.04% BSA and mixed five to ten times until cells
were completely suspended without visible clumps. Cell concentration
was determined with AO/PI, and viability was evaluated on a Luna-FL.
Final dilutions were made in 1x PBS with 0.04% BSA. Twenty microliters
of cells was added to 200 pl of barcoded hydrogel templates (1,000
cells per pl) and processed according to the PIP-seq Single Cell Epitope
Sequencing user guide (FBO002079). Marker genes identified for
participants 65 and 873 are available in Supplementary Tables 4 and
5, respectively. Clinical FACS data from participants 65 and 873 were
analyzed with FlowJo.

PIP-seq bioinformatic analysis

Analysis of sequencing data was performed using custom scripts to
generate gene expression matrices starting from processed FASTQ
sequences. The pipeline is composed of four basic steps: (1) bar-
code identification and error correction, (2) mapping to reference
sequences, (3) cell calling and (4) gene expression matrix generation.
Briefly, after demultiplexing the sequencing data, each read in the
FASTQis matched against a ‘whitelist’ of known barcodes. Reads were
matched with a hamming distance tolerance of 1, meaning that the
barcode portion of aread can differ from a whitelist entry by one base
and canstillbe matched to that barcode. Reads that did not match any
barcode in the whitelist were discarded from further analysis. Match-
ing reads were output to a new intermediate FASTQ file that was then
used for mapping against an appropriate transcriptome reference.
Reference transcriptomes matching the species of each sample were
prepared using the Salmon ‘index’ function with the default k-mer size
of 31 (ref. °%). GENCODE references were used to build the transcriptome
indexes, including GRCh38.p13 for human, GRCm38.p6 for mouse and
the combination thereof for HEK 293T/NIH 3T3 cell mixture studies.
Following barcoding, Salmon ‘alevin’ v1.2.0 (ref. °) was used to map
reads to the full transcriptome. The intermediate FASTQ files gener-
ated during barcoding were provided as input into alevin along with
alist of all whitelisted barcodes contained in raw reads. After map-
ping, data were output as UMI count matrices (sparse matrix, gene
list and barcode list) with dimensions of ‘all barcodes x all genes in
index’. Anin-house Pythonimplementation of emptyDrops’®, astand-
ard scRNA-seq method to separate putative cells from background,
was then applied. A custom threshold for each experiment was set,
beneath which no true cell barcodes were expected to fall. As with
emptyDrops, an estimated ambient profile across allbarcodes beneath
that threshold was created. A Pvalue was computed by comparing the
gene expression profile for each barcode above the threshold against
theambient profile. Barcodes with astatistically significant difference
(Benjamini-Hochberg-adjusted P value of <0.001) from the ambient
background profile were categorized as cell-containing barcodes. The
alevin output matrices were thensubset to only include called cell bar-
codes. Gene expression matrices were normalized before performing
unsupervised clustering and uniform manifold approximation and
projection (UMAP) dimensionality reduction. Gene expression counts
for each cell were first divided by the total counts for that celland mul-
tiplied by a scaling factor of 10,000. The data were then transformed
tonaturallogscale using loglp(). The Seurat package (v4.1.0) was used
to perform downstream clustering, marker gene determination and
visualizationinR.Seurat’s FindClusters() and RunUMAP() commands
were used with default settings.

For saturation curve comparisons, PIP-seq and 10x samples were
downsampled to matching depths of 5,000-80,000 reads per called
cell. Downsampling was performed using seqtk for PIP-seq samples
and using the DropletUtils read10xMolInfo() function with a mol-
ecule_info.h5 file directly downloaded from the 10x website. Inflec-
tion point-based cell calling was used to standardize cell calls across
platforms. Median transcripts per cell and genes per cell values were
calculated from the cell fraction of the resulting count matrices. For
violin plot comparisons, samples were prepared to match the same
processing configuration used by Ding et al.”®. Samples were first down-
sampledto 53,000 reads per called cell and trimmed to 50 bp for read
2 before processing, sampling in the same manner described above.
Each violin plot represents the cell fraction from a single replicate of
an HEK 293T/NIH 3T3 cell mixture, with human and mouse split out
into separate plots.

Analysis of PBMC data for the high-cell-count study was performed
using custom scripts, as described above, until the completion of
mapping. Cell calling, clustering and differential expression were
performed using PIPseeker v1.0.0 (Fluent Biosciences) in ‘reanalyze’
mode using -force-cells 65000. The top differentially expressed
genes from the PIPseeker graph-based clustering result were used
to determine cell types by comparing to a reference gene list (Sup-
plementary Table 7). The log-normalized expression values for key
genes (for example, CD34) were overlaid on the UMAP projection to
highlight markers associated with specific cell types (color barsarein
log,, scale). Analysis of PBMC data for the cell hashing study was per-
formed using PIPseeker v1.0.0in ‘count’mode using STAR (v2.7.10a) and
the PIPseeker human reference (https://www.fluentbio.com/products/
pipseeker-for-data-analysis/). ADT analysis was conducted by perform-
ing barcode error correction with PIPseeker v1.0.0 (count mode) and
custom scripts to trim read two to the first 16 bp. Error-corrected and
trimmed FASTQfiles were input to CITE-seq Count (v1.4.3) using the fol-
lowing settings: -t (hashtag whitelist) -cbf1-cbl16 -umif17 -umil 28-cells
(number of called cells from RNA cell calling). The hashtag whitelist
contained two TotalSegA anti-human antibody hashes (A0253, TTC-
CGCCTCTCTTTG; A0255, AAGTATCGTTTCGCA). The filtered matrix
output by PIPseeker for the RNA data was merged with the UMI count
matrix from CITE-seq Count on cellbarcode to create amerged matrix.
The hashing datawere demultiplexedin Seurat using HTODemux (posi-
tive.quantile=0.99). Downstream analysis was performed in Seurat
using SCTransform() along with RunPCA(), FindNeighbors(dims=1:15)
and RunUMAP(dims=1:15). Cell-type annotation was performed with
singleR (v1.4.1) and used an annotated 10x Genomics vl chemistry data-
setas areference. Cells were classified by their max hash identity and
projected inthe RNA-based UMAP space. The hash tag oligonucleotide
data were subjected to clustering in Seurat using the HTOHeatmap()
function to visualize singlets, doublets and unclassified cells.

For 72-h hold experiments, analysis was performed using custom
scripts, as previously described above. Samples were normalized to the
same depth (45,000 reads per cell). Cell types were then annotated as
human (HEK293T) or mouse (NIH3T3) using a purity threshold of >85%
single-species content per barcode. Barcodes from each species were
subset, and transcript counts were summed for each gene to generate
two pseudobulk count tables per sample. Samples were aggregated
separately for each species and analyzed with DESeq2. A contrast of O
versus 72 hwas performed for each species while controlling for batch
effects associated with different users. For the correlation analysis,
pseudobulk counts derived above were normalized to transcripts
per million and transformed using log(1 + x). Pearson correlations (R)
and slopes (m) were calculated by fitting a linear model to the data.
Data were then plotted in R with ggplot2 v3.3.5 and were aggregated
intoagrid using GGally v2.1.2. Additionally, the distribution of cellsin
UMAP space at 0 and 72 h after lysis was examined. After processing
data in Seurat, as described, harmony batch correction was used to
integrate datasets.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing datawere deposited into Gene Expression Omnibus Super-
Series accession number GSE202919.

Code availability

Code for processing raw FASTQ reads into count tables and
UMAPs is available at https://www.fluentbio.com/products/
pipseeker-software-for-data-analysis/. All other code will be made
available from the corresponding author upon request.
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Extended Data Fig. 3| Quality control analysis of PIP-seq using healthy
breast tissue. (a) Integration and clustering of 54,825 cells from 2 patients with
2replicates per patient. (b) Coloring of UMAP by the number genes (nFeature
RNA) for each cell. (c) The number of unique genes (nFeature RNA), transcripts
(nCount RNA), percent mitochondrial reads, and percent ribosomal reads as a

function of cluster. (d) Comparison between 10X Genomics’ and PIP-seq data
after downsampling 2400 cells to 36,500 reads per cell. Box plots indicate the
median with the lower and upper hinges corresponding to the 25th and 75th
percentiles. (c,d) Each violin represents a combination of 4 individual samples (2
replicates from 2 patients).
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Extended Data Fig. 5| Data quality assessment of PIP-seq. (a) Representative the 85% species thresholding technique, as described in the methods. Box plots
distribution of reads per cell. (b) Correlation between reads and genes per cell. show the median, 25th and 75th percentiles. (e,f) Comparison of PIP-seq to 10X
Spearman’s R and p values were calculated in Rv4.1.0. (c,d) Comparison of UMIs/ Genomics across arange of sequencing depths (0-80,000 reads/cell) (e) UMIs/
celland genes/cell in current single-cell methods. Plots display a violin for a celland (f) genes/cell 80k cells down sampled from one biological replicate.
single representative sample for each platform. Transcripts per cell and genes Points represent the median with the lower and upper error bars corresponding

per cell are separated by cell species (mouse (c) and human (d)), identified using to the 25th and 75th percentiles, respectively.
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seqwith barcoded antibodies.
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Extended Data Fig. 7 | See next page for caption.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01685-z

Extended Data Fig. 7| CROP-seq with PIP-seq. (a) Gene expression for each
sgRNA within an allelic series for all genes in the CRISPRi library. Each sgRNA is
ordered from predicted high to low knockdown efficiency. Non-targeting sgRNA
are denoted as “Null.” Datais from one CROP-seq experiment. Box plots indicate
the median with the lower and upper hinges corresponding to the 25th and 75th
percentiles. Raw data points are displayed with a slightjitter. (b) The relationship
between gene expression and predicted knockdown of each gene. Expected

changesintranscription across the allelic series were prominent in highly
expressed genes. p-value represents the significance of the generalized additive
model relating gRNA identity to knockdown efficiency for each gene. P-values
for each model were directly plotted along with the average expression for each
gene (using loglp of the normalized counts). The horizontal red line shows the
significance level of p = 0.05.
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Extended Data Fig. 8 | Identification of Gefitinib-specific transcriptional responses in cancer cell lines. (a) Violin plots of median expression values for selected
differentially expressed genes. (b) The expression of selected differentially expressed genes superimposed on H1975 and PC9 cell clusters.
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Extended Data Fig. 9 | Analysis of PIP-seq data from MPAL Patient 65. (a)
Clinical flow cytometry and corresponding antibody derived tag (ADT) data
for patient 65 with mixed phenotypical acute leukemia (MPAL). (b) Integration
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Sample size Most experiments related to single cell sequencing. Single cell RNA-seq was performed on 500 to 50,000 cells, consistent with samples sizes
used by others in the field (PMID: 26000488, PMID: 26000487)

Data exclusions  No data were excluded from the study.
Replication The replication number of each experiment is provided in the manuscript. Each replication was successful.

Randomization  Forin vitro drug experiments, samples were randomly allocated into treatment groups. No other samples were allocated into experimental
groups because samples (tissue, blood) were processed directly without treatment.

Blinding Blinding was not performed. In most experiments, experimenters were required to know the conditions of each well.
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Materials & experimental systems Methods
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X Antibodies XI|[] chip-seq

Eukaryotic cell lines |:| g Flow cytometry
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Dual use research of concern

Antibodies

Antibodies used CITE-seq Antibodies: ADT-CD14 (TotalSeq™-A0081 anti-human CD14 Antibody ) #M5E2; ADT-CD64 (TotalSeq™-A0162 anti-human
CD64 Antibody ) #10.1; ADT-CD22 (TotalSeq™-A0393 anti-human CD22 Antibody ) #S-HCL-1; ADT-CD10 (TotalSeq™-A0062 anti-
human CD10 Antibody ) #HI10a; ADT-CD13 (TotalSeq™-A0364 anti-human CD13 Antibody ) #WM15; ADT-CD117 (TotalSeq™-A0061
anti-human CD117 (c-kit) Antibody ) #104D2; ADT-CD5 (TotalSeq™-A0138 anti-human CD5 Antibody ) #UCHT2; ADT-CD7 (TotalSeq™-
A0066 anti-human CD7 Antibody ) #CD7-6B7; ADT-CD56 (TotalSeq™-A0084 anti-human CD56 (NCAM) Recombinant Antibody )
#QA17A16 ; ADT-HLA-DR (TotalSeq™-A0159 anti-human HLA-DR Antibody ) #1243 ; ADT-CD11b (TotalSeq™-A0161 anti-human
CD11b Antibody ) #ICRF44 ; ADT-CD4 (TotalSeq™-A0922 anti-human CD4 Antibody ) #OKT4 ; ADT-IgG1 (TotalSeg™-A0090 Mouse
1gG1, k isotype Ctrl Antibody ) #MOPC-21; ADT-CD3 (TotalSeq™-A0049 anti-human CD3 Antibody) #SK7; ADT-CD19 (TotalSeq™-A0050
anti-human CD19 Antibody) #HIB19; ADT-CD30 (TotalSeq™-A0028 anti-human CD30 Antibody) #BY88; ADT-CD33 (TotalSeq™-A0052
anti-human CD33 Antibody) #P67.6; ADT-CD45 (TotalSeq™-A0391 anti-human CD45 Antibody) #HI30; ADT-CD34 (TotalSeq™-A0054
anti-human CD34 Antibody) #581. Sample HHMTBOO65: CD34 PerCP-Cy5.5 — clone 8G12, BD Biosciences Cat No 347213; CD19 APC-
Cy7 — clone SJ25C1, BD Biosciences Cat No 348804. Sample HMTB00873; CD34 APC — clone 581, Beckman Coulter Cat No IM2472U;
CD19 ECD — clone J3-119, Beckman Coulter Cat No IM2708U. Hash Antibodies: TotalSeq™-A0253 anti-human Hashtag 3, BioLegend
Cat. No. 394605, Lot No. B364258; TotalSeq™-A0255 anti-human Hashtag 5 Cat. No. 394609, Lot No. B366838.

Validation All antibodies were commercial in origin and validated by the company. BioLegend (https://www.biolegend.com/nl-nl/
reproducibility) purifies antibodies from cell line supernatant using affinity chromatography followed by validation using proper
negative and positive controls in functional assays. This is relevant for all antibodies used for flow cytometry and Ab sequencing. BD
(https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/quality-and-reproducibility)
confirms specificity using multiple methodologies that may include a combination of flow cytometry, immunofluorescence,
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Human HEK 293T cells (ATCC # CRL-3216), Murine NIH/3T3 cells (ATCC # CRL-1658) , H1975 (ATCC#HCRL-5908); K562i were a
gift from the Weissman lab; PC9 was obtained from RIKEN Bio Resource Center (RCB4455).

Cell lines are authenticated by the manufacturer with STR profiling. K562i were generated and authenticated by the
Weissman lab (PMID: 31932729)

Cell lines are verified to be free of Mycoplasma contamination by the manufacturer.

No commonly misidentified cell lines were used

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Breast tissue study: Samples were derived from a human breast tissue biobank at Univeristy of California in San Francisco
(UCSF). This biobank was established from patients who underwent elective breast reduction or mastectomy surgeries at
UCSF for cosmetic reasons. These patients are either cis-women or trans-men who are older than 18.

Cancer study: Two human participants were included in this study.Patient 65 is a 65 year old male diagnosed with B/myeloid
mixed-phenotypic acute leukemia. This patient had an MLL rearrangement. Genotypic information (germline or somatic) was
not obtained. The patient was treated with cytotoxic chemotherapy (cytarabine and duanorubicin).Patient 873 is a 76 year
old female diagnosed with B/myeloid mixed-phenotypic acute leukemia. Genotypic information includes somatic mutations
in TP53 (c.743G>A) and SF3B1 (c.1739C>T). The patient was treated with cytotoxic chemotherapy (cyclophosphamide and
dexamethasone) and the antibody-drug conjugate inotuzumab.

Breast tissue study: Patients were selected from those who have already been scheduled for surgery, and those who are not
excluded by being <18yrs of age or currently pregnant. Patients were notified by their physician during a clinical visit and the
research team reached out to them before their surgeries to obtain consent.

Cancer study: Patients consented to have samples prospectively banked in the UCSF tumor bank at time of routine bone
marrow biopsy. The samples were then retrospectively selected from the UCSF tumor bank for this project.

Self selection bias, should it exist, is not expected to impact the results of single cell RNA-seq studies that characterize cell
heterogeneity.

Breast tissue study: This study uses human tissues previously collected in a biobank approved by UCSF IRB.
Cancer study: The prospective banking of patient samples is approved by the UCSF IRB (IRB# 11-06477). Samples were

collected in accordance with the Declaration of Helsinki under institutional review board-approved tissue banking protocols,
and written informed consent was obtained from all patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

X, All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Bone Marrow Aspirates (BMA) and Peripheral Blood Specimens are prepared using the Bulk Lysis Technique. Briefly, using a
3mL syringe with a 22 gauge blunt needle, bone marrow aspirate was drawn up and expelled back into the tube a minimum
of three times to break up the spicules and release cells. Any clots in the sample were removed from the tube. Red blood cell
lysis was performed using ammonium chloride. After tube inversion for 10 minutes, cells were centrifuges at 1400rpm for 5
minutes. Supernatant was removed, and the pellet was resuspended by adding, dropwise, ImL of PBS + 0.1%NaN3 + 0.5%
BSA to the tube while vortexing gently. An additional 13mL of PBS + 0.1%NaN3 + 0.5% BSA was added, clumps were removed
manually with a pipette, and cells were centrifuges at 1400rpm for 5 minutes. Pellets were resuspended in 600uL of PBS-P
solution (10% heat-inactivated (56°C for 30 min) newborn calf serum), with 10% Acid Citrate Dextrose (Sigma C3821-50ML).
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Instrument Sample HMTBOO65: Instrument: BD FacsCanto (6-color)
Sample HMTB00873: Instrument: Beckman-Coulter Navios (10-color)

Software Kaluza (Beckman Coulter)
Cell population abundance Abundance is reported in figures where relevant.
Gating strategy Sample HMTBOO65: Gating strategy: none (all events displayed)

Sample HMTB00873: Gating strategy: none (all events displayed)

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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