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Abstract
Background Body composition during childhood may predispose to negative health outcomes later in life. Automatic seg-
mentation may assist in quantifying pediatric body composition in children.
Objective To evaluate automatic segmentation for body composition on pediatric computed tomography (CT) scans and to 
provide normative data on muscle and fat areas throughout childhood using automatic segmentation.
Materials and methods In this pilot study, 537 children (ages 1–17 years) who underwent abdominal CT after high-energy 
trauma at a Dutch tertiary center (2002–2019) were retrospectively identified. Of these, the CT images of 493 children (66% 
boys) were used to establish normative data. Muscle (psoas, paraspinal and abdominal wall) and fat (subcutaneous and vis-
ceral) areas were measured at the third lumbar vertebral (L3) level by automatic segmentation. A representative subset of 
52 scans was also manually segmented to evaluate the performance of automatic segmentation.
Results For manually-segmented versus automatically-segmented areas (52 scans), mean Dice coefficients were high for 
muscle (0.87–0.90) and subcutaneous fat (0.88), but lower for visceral fat (0.60). In the control group, muscle area was 
comparable for both sexes until the age of 13 years, whereafter, boys developed relatively more muscle. From a young age, 
boys were more prone to visceral fat storage than girls. Overall, boys had significantly higher visceral-to-subcutaneous fat 
ratios (median 1.1 vs. 0.6, P<0.01) and girls higher fat-to-muscle ratios (median 1.0 vs. 0.7, P<0.01).
Conclusion Automatic segmentation of L3-level muscle and fat areas allows for accurate quantification of pediatric body 
composition. Using automatic segmentation, the development in muscle and fat distribution during childhood (in otherwise 
healthy) Dutch children was demonstrated.

Keywords Body composition · Child · Computed tomography · Sarcopenia · Skeletal muscle · Subcutaneous fat · Visceral fat

Introduction

Body composition, in particular the distribution of skeletal 
muscle and fat tissue, can be an important predictor of vari-
ous health outcomes [1]. In adults, for instance, sarcopenia 
has been associated with increased mortality and morbidity 
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[2]; and excess visceral fat deposition has been associated 
with a higher risk of metabolic syndrome and malignancy 
[3, 4]. Nevertheless, studies on pediatric body composition 
and its prognostic significance are limited.

Childhood sarcopenia is a novel concept that needs to be 
defined. Yet, low muscle mass and loss of muscle are highly 
prevalent in clinical settings (20–41% of children) [5–10] and 
are associated with increased morbidity [5, 8–14]. Importantly, 
the presence of sarcopenia is often overlooked when obtaining 
anthropometric measurements, particularly when excess body 
fat is present. In an era of increasing childhood obesity, sarco-
penic obesity may be an underrecognized condition.

Currently, cross-sectional imaging (computed tomography 
[CT] and magnetic resonance imaging [MRI]) is considered 
the gold standard for body composition analysis. It provides 
direct anatomical measurements, allowing for the discrimina-
tion of separate skeletal muscle and fat (subcutaneous, vis-
ceral) distribution [15, 16]. Axial single-slice measurements 
of abdominal muscle and fat area have shown to reliably 
predict whole-body muscle and fat mass, respectively [17]. 
Automatic segmentation tools are increasingly utilized, which 
are less time-consuming than manual segmentation and less 
affected by intra- and interobserver variability [18–20].

From birth to adolescence, pediatric body composition 
changes rapidly due to physiological changes in longitudi-
nal height, endocrine status and energy expenditure. Before 
these changing body composition measures can begin to 
have a meaningful prognostic impact, data on the normal 
variation in cross-sectional body composition are needed. 
There is a lack of data on values for total muscle and fat 
areas on cross-sectional imaging in European children.

This study aimed to evaluate an automatic tool for the 
segmentation of skeletal muscle and fat areas on pediat-
ric CT scans and to provide data on the variation in body 
composition throughout childhood in a cohort of otherwise 
healthy Dutch children using automatic segmentation.

Materials and methods

Study population

All children, ages 1 to 17 years, who underwent an abdomi-
nal CT scan after high-energy trauma (high-impact falls 
and traffic accidents) at the emergency department of a sin-
gle Dutch tertiary center, between August 2002 and April 
2019, were identified as representative of the general pedi-
atric population (n=537). No individual was scanned twice. 
Patients were excluded in case of evident anatomic anoma-
lies or extensive post-traumatic changes that would prevent 
reliable segmentation. Clinical data of the patients were not 
available.

CT image acquisition

All patients received 2 ml/kg contrast medium lopro-
mide (Ultravist 300, Bayer Healthcare, Berlin, Germany) 
according to our trauma protocol. CT examinations were 
obtained with multidetector scanners: Mx8000 IDT 16, 
Brilliance 64, iQon Spectral or Brilliance iCT; (all Philips 
Medical Systems, Cleveland, OH). Exposure settings 
(range: 35–190 mAs and 80–120 kVp) were adjusted to 
patient size. Axial 4 mm slices were reconstructed and 
displayed with a standard abdominal soft tissue setting 
(window level: 30, window width: 400).

Automatic segmentation tool

The Quantib Body Composition tool was used for auto-
matic segmentation [21, 22] (available online for scans of 
adults, https:// resea rch. quant ib. com). As the method was 
developed for adult CTs, for this study, the networks of the 
slice selection and segmentation methods were retrained 
using a set of 49 manually-segmented images in children.

The segmentation method consisted of two steps. First, 
the automatic tool identified the slice at the craniocaudal 
midportion of the third lumbar vertebra (L3) from the CT 
data set using a convolutional neural network. Second, the 
automatic tool segmented the L3 slice into the following 
areas, using a second dilated convolutional neural network 
[23]: psoas, abdominal wall (rectus abdominis; transversus 
abdominis; internal and external obliques) and paraspinal 
(quadratus lumborum, erector spinae, multifidus, latissi-
mus dorsi) muscles and subcutaneous and visceral fat. The 
third lumbar vertebra is the most commonly used level for 
body composition assessment in the literature [16, 24].

To minimize the influence of the exact slice that was 
selected, the automatic tool segmented a total of five slices 
around the detected L3 level, that is, two above and two 
below the center-L3 slice, and, therefore, averaged the area 
measurements over a range of 2 cm.

Manual segmentation

A total of 52 axial CT images (not used during training of 
the segmentation tool), selected from all age groups and 
sexes, were manually segmented by one trained observer 
(A.S., a final-year medical student with 3 months of expe-
rience in radiology) using Medical Imaging Interaction 
Toolkit (MITK) version 2018.04 (www. mitk. org) [25]. In 
case of uncertainty, a radiologist (P.A.d.J.) with 15 years 
of experience was consulted. To compute intra-observer 
agreement, 30 of the 52 scans were segmented twice by 

https://research.quantib.com
http://www.mitk.org
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the same observer, at least 12 months later, in a different 
order and blinded to previous results.

Evaluation of automatic segmentations

Manually-segmented CT images were used as the validation 
subset for automatic segmentation. Measurements of auto-
matic and manual segmented areas were compared using the 
intraclass correlation coefficient (ICC) and Bland-Altman 
plots. To assess correct anatomical decision-making by the 
algorithm, Dice coefficients were computed between manual 
and automatic segmentations at the same slice, as well as 
between the intra-observer segmentations.

Normative data from automatic segmentations

To obtain normative data, CT scans of all 537 patients were 
processed with the automatic segmentation tool. Independ-
ent evaluation of all automatic segmentations was performed 
by another reviewer (S.S., with three years of experience 
in pediatric radiology research). The reviewer excluded all 
visually incorrect automatic segmentations, in terms of level 
and/or segmented areas and accepted only small segmenta-
tion errors, that would not result in important changes in area 
measurements. Descriptive statistics were used to report data 
in the form of median values and interquartile ranges (IQR). 
The analyses were stratified by sex and age. For each patient, 
the following ratios were calculated: visceral-to-subcutane-
ous fat, visceral-to-total fat and total muscle-to-fat area.

Correlations between continuous variables were calcu-
lated using Spearman’s rho correlation coefficients. Stu-
dent’s T-tests were used to test the difference between means 
of continuous variables between the two sexes. Logarithmic 
transformations were applied to non-normally distributed 
variables. The data were analyzed using software (SPSS 
version 25, IBM, Armonk, NY and R Core Team 2017, R 
Foundation for Statistical Computing, Vienna, Austria). The 
quantreg package in R was used for the reconstruction of 
the quantile regression curves (R. Koenker [2020], https://
cran.r-project.org/package=quantreg). P-values <0.05 were 
considered statistically significant.

Results

Automated and manual segmentation

For the 52 CT examinations used to validate the tool, the 
ICC between manually- and automatically-segmented 
areas was 0.98 (95% confidence interval [CI] 0.96–0.99) 
for total muscle area and 0.99 (95% CI 0.98–0.99) for 
total fat area (P<0.001) (Fig. 1). Bland Altman plots 

(Fig. 2) show that automatically-segmented measure-
ments of visceral fat and total fat area are systematically 
higher than the manually-segmented measurements. 
Dice coefficients for manual vs. automatic segmentation 
were similar to the Dice coefficients of manual intra-
observer variation (Table 1), with the highest variation 
for visceral fat.

Normative data

After automatic segmentation of the CT scans of all 537 
patients, we excluded CT examinations of 44 patients for 
the following reasons: 17 because of abnormal anatomy 
(consisting of lumbosacral agenesis and muscular dys-
trophia) and/or extensive posttraumatic changes (con-
sisting of burst fracture of L3, emphysema/hemorrhage 
of intraperitoneal space, visceral organs, muscles and/
or subcutis) and 27 because of incorrect CT segmenta-
tions in terms of selected level or segmented areas. This 
resulted in a study sample of 493 children, ages 1 to 17 
years, including 326 boys (66%) for the establishment 
of normative data. Age distribution was similar for both 
sexes, with a median age of 14 (IQR 9–17) years for boys 
and 14 (IQR 9–16) for girls.

Muscle and fat areas at the level of the third lumbar 
vertebra

Values (median and IQR, Tables 2 and 3) according to age 
and sex are summarized for L3 total muscle areas (Table 2) 
and visceral, subcutaneous and total fat area (Table 3). Cor-
responding quantile regression curves are plotted in Fig. 3 
(curves for psoas, abdominal and long spine muscles in Sup-
plementary Material 1, Fig. 1).

With increasing age, median total muscle area ranged from 
38  cm2 (IQR 31–39) to 174  cm2 (IQR 160–190) in boys and 
from 41  cm2 (IQR 38–43) to 127  cm2 (IQR 123–138) in girls. 
A strong correlation between total muscle area and age was 
found for both sexes (Spearman’s correlation coefficient 0.88 
for boys and 0.85 for girls, both P<0.01). Furthermore, psoas 
muscle area was strongly correlated with total muscle area 
for both sexes (0.94 for boys, 0.88 for girls, both P<0.01).

With increasing age, median total fat area increased from 
37  cm2 (IQR 31–37) to 129  cm2 (IQR 90–183) in boys and 
from 35  cm2 (IQR 32–55) to 227  cm2 (IQR 148–274) in 
girls. Total fat areas increased with age for both sexes (with 
a correlation coefficient of 0.61 for boys and 0.70 for girls, 
P<0.001), especially during adolescence. A proportion 
(10%) of boys and girls begin to accumulate more fat tissue 
even before the average age for onset of puberty.

https://cran.r-project.org/package=quantreg
https://cran.r-project.org/package=quantreg
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Ratios

The ratio between visceral and subcutaneous fat decreased 
with age for both sexes and ranged between 0.1 and 3.5 for 
boys (median 1.1, IQR 0.7–1.5) and between 0.2 and 3.4 for 
girls (median 0.6, IQR 0.4–0.9). When comparing the ratio 
of visceral-to-subcutaneous fat between sexes, a mean differ-
ence of 0.4 (P<0.01) in visceral-to-subcutaneous fat ratio was 
observed, indicating a higher percentage of visceral fat in boys 
than in girls throughout childhood. The total fat-to-muscle 
ratio ranged from 0.2 to 3.8 in boys (median 0.7, IQR 0.5–1.0) 
and from 0.4 to 3.9 in girls (median 1.0, IQR 0.8–1.7). The 
mean difference in total fat-to-muscle ratio between boys and 
girls was 0.4 (P<0.01) with a higher mean ratio in girls. With 
increasing age, a subtle downward trend in total fat-to-muscle 
ratio was seen in boys, but a portion of boys exceeded values 
of 1.0 (Supplementary Material 2, Fig. 2).

Discussion

In this pilot study, an automatic segmentation tool for body 
composition was evaluated and used to provide data for total 
muscle and fat areas at the level of L3 in children undergoing 
CT after high-energy trauma. Mean Dice coefficients between 
manually- and automatically-segmented areas were high for 
muscle (0.87–0.90) and subcutaneous fat (0.88), but lower 
for visceral fat (0.60). As expected, around puberty boys start 
to gain more muscle mass compared to girls and the overall 
fat-to-muscle ratio is higher in girls compared to boys (median 
1.01 vs. 0.65; P<0.01). Approximately 10% of boys and girls 
begin to accumulate more fat tissue before the average age 
for onset of puberty. Our study demonstrates that even from 
a young age, boys appear more prone to visceral fat storage.

The performance of the automatic tool is generally 
good when compared with the intra-observer manual 

Fig. 1  Axial computed tomography images obtained  in a 5-year-
old boy (a–c), a  15-year-old boy (d–f) and a  12-year-old girl (g–i) 
at the level of the third lumbar vertebral body performed following 
high-energy trauma.  Contrast-enhanced images before segmenta-
tion (a, d, g) and after manual (b, e, h) and automatic (c, f, i) seg-

mentation. Automatic segmentation sometimes included parts of the 
intestines as visceral fat and often failed to differentiate the abdomi-
nal wall muscles from the latissimus dorsi muscles. Blue subcutane-
ous fat, green abdominal wall muscles, red visceral fat, orange psoas 
muscles, yellow paraspinal muscles 
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segmentations. The low intra-observer Dice coefficients for 
visceral fat (for both manual and automatic segmentation) 
demonstrate that visceral fat is the most difficult compart-
ment to segment in children who have little visceral fat. The 
Bland-Altman analysis revealed systematically higher values 
of visceral fat area by automatic segmentation compared to 
manual segmentation. This may be for various reasons: (1) 
the automatic tool is more sensitive in segmenting small 
areas and therefore includes more small regions of visceral 
fat (see example in Fig. 1); (2) the automatic tool used the 
average of multi-slice segmentation vs. one-slice manual 

segmentation. Multi-slice assessment may provide a more 
consistent representation of fat area, compared to one-slice 
measurement, especially for visceral fat area; (3) the auto-
matic tool overestimates visceral fat at the cost of visceral 
organs (see example in Fig. 1). All in all, with 5% of the 
studies being excluded due to incorrect automatic segmenta-
tion, automatic segmentation should not be blindly applied 
without expert oversight and review.

Our L3 values were overall similar to age- and sex-
specific measurements of psoas muscle areas at interverte-
bral spaces L3/L4 and L4/L5 [26] and L4 [27] in a cohort 
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Fig. 2  Bland Altman plots comparing measurements by automatic 
and manual segmentation of muscle and fat areas in 52 children. 
The difference (automatic - manual) between the two measurements 

(y-axis) is plotted against their average (x-axis). The broken lines rep-
resent the 95% confidence intervals of the average differences and the 
continuous line represents the mean difference
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representing children in North America (undergoing CT 
after trauma and/or appendicitis). Harbaugh et al. [27] also 
provided data for visceral fat area at L4 in children in the 
USA. Our IQR for visceral fat were higher than their data, 
which may be explained by the difference in level and over-
estimation of visceral fat compared to manual segmenta-
tion in our cohort. Studies on multilevel measurements and 
comparisons between levels in children are limited. Further 
research comparing different levels in pediatric populations 
could be valuable for exploring potential variations and 
establishing standardized protocols.

We have provided insight into the timing of changes in 
body muscle and fat throughout childhood. While boys 
and girls have comparable fat and muscle area during early 

Table 1  Dice coefficients for manual and automatic segmentation at 
the level of the third lumbar vertebral body

Mean Dice coefficients ± standard devia-
tion

Manual vs. manual 
segmentations (intra-
observer)

Manual vs. 
automatic seg-
mentation

Psoas muscles 0.90 ± 0.03 0.87 ± 0.06
Paraspinal muscles 0.91 ± 0.03 0.90 ± 0.04
Abdominal wall muscles 0.89 ± 0.03 0.87 ± 0.05
Subcutaneous fat 0.86 ± 0.10 0.88 ± 0.09
Visceral fat 0.67 ± 0.09 0.60 ± 0.09

Table 2  Muscle areas (psoas, paraspinal, abdominal wall and total) according to age and sex at the level of the third lumbar vertebra IQR inter-
quartile range

Boys (n=326) Girls (n=167)

Age, y n (%) Median (IQR) muscle area,  cm2 n (%) Median (IQR) muscle area,  cm2

Psoas Paraspinal Abdominal wall Total Psoas Paraspinal Abdominal wall Total

1 7
(2%)

5
(5–6)

11
(10–14)

19
(15–21)

38
(31–39)

1
(1%)

2 10 22 34

2 9
(3%)

7
(6–8)

17
(15–20)

20
(20–24)

43
(41–47)

7
(4%)

7
(6–7)

14
(13–17)

19
(19–21)

41
(38-43)

3 11
(3%)

7
(6–8)

20
(19–22)

24
(22–25)

51
(48–53)

5
(3%)

8
(8–11)

18
(17–21)

23
(23–26)

48
(47-58)

4 6
(2%)

8
(8–9)

23
(22–23)

26
(25–27)

57
(56–59)

4
(2%)

8
(8–9)

18
(17–20)

23
(22–25)

51
(47-55)

5 10
(3%)

9
(8–10)

23
(21–24)

31
(26–34)

64
(55–68)

5
(3%)

9
(7–10)

21
(30–21)

28
(26–29)

57
(57-60)

6 9
(3%)

12
(9–13)

32
(27–34)

36
(28–39)

78
(65–85)

7
(4%)

9
(8–12)

25
(24–26)

28
(28–30)

62
(61-67)

7 6
(2%)

12
(11–14)

33
(32–34)

35
(32–37)

81
(77–85)

8
(5%)

10
(9–11)

25
(25–28)

29
(27–31)

63
(61-70)

8 18
(6%)

12
(12–14)

33
(30–35)

36
(34–39)

81
(77–87)

10
(6%)

11
(11–12)

28
(26–35)

34
(32–38)

76
(69-83)

9 17
(5%)

14
(13–15)

36
(35–40)

45
(42–46)

93
(88–101)

3
(2%)

12
(11–12)

34
(34–35)

38
(36–40)

85
(83-86)

10 18
(6%)

14
(13–16)

38
(35–41)

42
(39–45)

95
(87–101)

6
(4%)

13
(11–14)

34
(33–37)

38
(36–43)

87
(83-89)

11 11
(3%)

16
(14–17)

40
(39–43)

44
(41–58)

101
(98–114)

12
(7%)

16
(14–17)

41
(38–47)

45
(41–49)

103
(95-108)

12 25
(8%)

17
(14–19)

45
(40–53)

53
(46–57)

115
(102–125)

6
(4%)

18
(16–21)

47
(43–50)

54
(51–57)

119
(109-128)

13 13
(4%)

21
(19–23)

50
(46–58)

55
(49–62)

122
(116–141)

15
(9%)

19
(16–20)

46
(43–49)

52
(48–56)

114
(109-123)

14 14
(4%)

25
(22–27)

64
(49–71)

69
(62–79)

158
(133–169)

15
(9%)

19
(17–21)

46
(44–51)

48
(47–56)

114
(109-128)

15 26
(8%)

26
(23–30)

67
(58–73)

71
(68–79)

165
(149–185)

20
(12%)

18
(17–21)

51
(46–53)

54
(52–58)

125
(117-129)

16 57
(18%)

28
(22–31)

69
(63–76)

72
(68–81)

172
(156–188)

14
(8%)

18
(17–21)

51
(49–56)

55
(53–59)

123
(120-136)

17 69
(21%)

29
(24–31)

72
(65–79)

74
(68–83)

174
(160–190)

29
(17%)

20
(18–21)

52
(48–57)

56
(52–59)

127
(123-138)
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childhood, a wider variance is observed during adoles-
cence. We quantify that with the start of puberty, triggered 
by the gonadal hormones, boys generally gain more mus-
cle and girls gain more fat. While the amount of visceral 
fat at birth is known to be negligible [28], we found that 
children start to accumulate visceral fat from a young age, 
even before the age of onset of puberty. This increase in 
fat accumulation may be partially explained by the physi-
ological preparation for puberty. It is well-established that 
adult males have higher visceral-to-subcutaneous fat ratios 
and adult females have more subcutaneous fat and total fat 
[29]. In our cohort, these sex differences in fat distribution 
were present from a young age. This has also been described 
by several studies in children of various ages between four 
and eighteen years [30–33]. The timing of fat accumulation 
has important implications for future health, including the 

risk of developing metabolic complications associated with 
excess adiposity [34].

Body composition analysis has broad relevance in pri-
mary and specialty healthcare settings. Normal values are 
important to identify children with abnormal body compo-
sition and to evaluate its prognostic impact. Altered body 
composition can affect the distribution and clearance of 
drugs [35, 36]. Children with aberrant body composition 
may be at risk for under- and overdosing. It should be stud-
ied whether personalized body composition-based dosing 
can minimize treatment toxicity and improve treatment effi-
cacy [37]. In addition, whether improving body composi-
tion with supportive (nutritional and physical) interventions 
can improve outcomes, such as chemotherapy tolerance and 
quality of life, has yet to be studied in children.

Table 3  Fat areas 
(subcutaneous, visceral 
and total) according to age 
and sex at the level of the 
third lumbar vertebra IQR 
interquartile range

Boys (n=326) Girls (n=167)

Age, y n (%) Median (IQR) fat areas,  cm2 n (%) Median (IQR) fat areas,  cm2

Subcutaneous Visceral Total Subcutaneous Visceral Total

1 7
(2%)

18
(15–28)

16
(13–18)

37
(31–37)

1
(1%)

34 19 53

2 9
(3%)

20
(10–22)

22
(20–27)

38
(34–46)

7
(4%)

19
(17–30)

17
(15–24)

35
(32–55)

3 11
(3%)

23
(19–37)

27
(20–33

50
(39–72)

5
(3%)

29
(20–41)

23
(22–27)

51
(41–71)

4 6
(2%)

27
(16–30)

27
(25–29)

54
(38–59)

4
(2%)
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Fig. 3  Quantile regression 
curves at the level of the 
third lumbar vertebra in boys 
(a–d) and girls (e–h) show total 
muscle (a, e) and visceral (b, 
f) subcutaneous (c, g) and total 
fat (d, h) areas according to age 
and sex. Observed 10th, 25th, 
50th, 75th and 90th percentiles
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The evaluation of an automatic segmentation tool pro-
vides a basis for further validation of body composition 
as a predictor of outcomes in many disease settings. It 
is important to establish reference and cut-off values for 
morphometric measures that can predict an increased 
risk of adverse outcomes. Cross-sectional imaging is 
often available in children in the clinical setting and 
holds important body compositional information. Cross-
sectional imaging from, for example, trauma patients can 
serve as a representation of the general pediatric popula-
tion. We should not scan children solely for the purpose 
of pediatric body composition analysis. We advocate for 
opportunistic use of these readily-available cross-sec-
tional images for routine body composition assessment.

Some limitations of our study should be addressed. 
First, when interpreting the Dice coefficients, ICC and 
Bland Altman plots, it should be noted that only 52 scans 
were segmented manually and scans with visual abnor-
malities were not included. Second, for some age groups, 
the sample size per sex was not sufficient to determine 
reliable normative values, as older children (age 15–17 
years) and boys (66%) were overrepresented in our study 
cohort. Third, some important parameters of body com-
position were not available, such as a history of chronic 
disease, pubertal stage or race/ethnicity. It would have 
been very informative to correlate CT measures to body 
mass index, but these data were not available because the 
height/weight of these children is not routinely measured 
in the trauma setting. Fourth, in this study, we included 
trauma patients from one single tertiary center in a rela-
tively urban area as the best available representation of 
the general pediatric population. It could be that children 
that sustain high-energy trauma differ in body composition 
from the average child. The automatic tool was trained on 
a relatively small dataset from a single center, which may 
limit generalizability. Training the automatic tool using 
more manually-segmented scans from a more diverse 
dataset, including a wider range of factors such as age, 
anatomy, and scan acquisition parameters, could result in 
a more robust algorithm.

This pilot study demonstrates the pediatric application 
of an automatic tool for generating data for cross-sectional 
body composition. In a cohort of the Dutch pediatric pop-
ulation, we found important differences in both L3 mus-
cle and fat areas according to sex and age. Knowledge 
of these values adds to our understanding of the physi-
ologic changes in body composition that occur throughout 
childhood. It provides a basis for further studies on (early) 
identification of vulnerable children with aberrant body 
composition and evaluation of its possible health risks 
throughout life.

Conclusion

With the increasing use of cross-sectional imaging and the 
development of automated segmentation methods, it is only 
now that we can harvest the wealth of prognostic power that 
lies in body-compositional analyses. A logical next step is 
to not only analyze tissue volumes but include their make-up 
in terms of CT Hounsfield units, which will further increase 
the relevance and applicability of these measures. 
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