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The role of long‑term power‑law 
memory in controlling large‑scale 
dynamical networks
Emily A. Reed 1*, Guilherme Ramos 2,3, Paul Bogdan 1 & Sérgio Pequito 4

Controlling large‑scale dynamical networks is crucial to understand and, ultimately, craft the 
evolution of complex behavior. While broadly speaking we understand how to control Markov 
dynamical networks, where the current state is only a function of its previous state, we lack a general 
understanding of how to control dynamical networks whose current state depends on states in the 
distant past (i.e. long‑term memory). Therefore, we require a different way to analyze and control 
the more prevalent long‑term memory dynamical networks. Herein, we propose a new approach 
to control dynamical networks exhibiting long‑term power‑law memory dependencies. Our newly 
proposed method enables us to find the minimum number of driven nodes (i.e. the state vertices in 
the network that are connected to one and only one input) and their placement to control a long‑term 
power‑law memory dynamical network given a specific time‑horizon, which we define as the ‘time‑
to‑control’. Remarkably, we provide evidence that long‑term power‑law memory dynamical networks 
require considerably fewer driven nodes to steer the network’s state to a desired goal for any given 
time‑to‑control as compared with Markov dynamical networks. Finally, our method can be used as a 
tool to determine the existence of long‑term memory dynamics in networks.

Dynamical networks, including brain  networks1, quantum  networks2, financial  networks3, gene  networks4, pro-
tein  networks5, cyber-physical system  networks6 (e.g. power  networks2, healthcare  networks7), social  networks8, 
and physiological  networks9, exhibit not only an intricate set of higher-order interactions but also exhibit distinct 
long-term memory dynamics where both the recent and more distant past states influence the state’s evolution. 
Regulating these long-term memory dynamical networks in a timely fashion becomes critical to avoid a full-
blown catastrophe. Examples include treating epilepsy by arresting a seizure in a human brain, mitigating climate-
related power surges in the power grid, anticipating an undesired shock in the financial market, defending against 
cyber-attacks in cyber-physical systems, and even thwarting the spread of misinformation in social networks.

To address the challenge of regulating long-term memory dynamical networks, we need a general math-
ematical method to assess and design controllable large-scale long-term memory dynamical networks within a 
specified time horizon (i.e. time-to-control). More specifically, we need to be able to determine the minimum 
number of nodes in a long-term memory dynamical network that must connected to one and only one input to 
achieve a controllable dynamical network within a specified time horizon. These controlled nodes are known 
as driven nodes. While initial efforts on analyzing the controllability of long-term memory dynamic networks 
 exist10, 11, these methods suffer from three main shortcomings. First, they do not assess the trade-offs between 
the time-to-control and the required number of driven nodes. Second, they require the knowledge of the exact 
parametrization of the system, which makes assessing such trade-offs computationally intractable. Third, these 
methods are limited to a few hundred nodes, which prohibits the analysis of real-world large-scale dynamical 
networks. In contrast, to overcome all the aforementioned limitations, we propose to analyze and design control-
lable large-scale long-term memory dynamical networks by considering the structure of the system that manifests 
when the exact system parameters are not known, which is both robust and scalable.

In particular, we present a strategy for determining the minimum number of driven nodes to control a long-
term memory dynamical network within a specified amount of time, i.e. time-to-control.

Furthermore, our approach investigates the trade-off between the time horizon required to steer the network 
behavior to a desirable state and the required amount of resources necessary to correct the evolution of long-
term dynamical networks. Subsequently, our approach provides answers to the following important questions: 
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How does the nature of the dynamics (Markov versus long-term memory) affect the required number of driven 
nodes in networks having the same spatial topology? In the case of long-term power-law memory systems, how 
do the interactions between the nodes of a network, described as the spatial dynamics, affect the network’s ability 
to manipulate its evolution within a time frame to achieve a desired behavior? How does the size of a long-term 
memory dynamical network affect its ability to properly control itself on a specific time horizon? How does the 
inherent structure (i.e. topology) and its properties of a long-term power-law memory dynamical network affect 
its ability to quickly alter itself to operate correctly within a time horizon?

Figure 1 summarizes a few of the important outcomes of our proposed strategy. In short, given a network 
exhibiting either Markov or long-term memory dynamics, we compare the minimum number of driven nodes 
(in red) needed to steer the network to a desired goal within a given time horizon. Ultimately, our evidence sug-
gests that long-term power-law memory dynamical networks require fewer driven nodes to steer the network 
to a desired behavior regardless of the given time-to-control.

Methods
Fractional-order calculus and fractional-order dynamical networks provide efficient and compact mathematical 
tools for representing long-term memory with power-law memory  dependencies18–29. These dependencies are 
captured by using a fractional-order derivative denoted by �α , which is the so-called Grünwald-Letnikov discre-
tization of the fractional derivative, where α = (α1,α2, . . . ,αN )

T is the vector of fractional-order exponents. We 
represent a complex dynamical network exhibiting long-term memory as a fractional-order dynamical network. 
A fractional-order dynamical network is given as follows:

where time is discrete, so k ∈ {1, 2, . . .} , x[k] = (x1[k], x2[k], . . . , xN [k])
T ∈ R

N is a state vector that assigns a 
single element to each node in the network, u[k] = (u1[k], u2[k], . . . , uN [k])

T ∈ R
N is an input vector such that 

each element may influence a single state in the network, and N is the size of the network (i.e. the total number 
of nodes in the network).

The N × N  matrix A describes the spatial relationship between the nodes in a network (i.e. the network 
topology). It is important to note that a network with nodal dynamics would mean that A has non-zero diagonal 

(1)�α
x[k + 1] = Ax[k] + Bu[k],

Figure 1.  (a) The number of driven nodes is shown across the time-to-control for the rat brain network for 
both Markov and long-term memory dynamics. The rat brain  network12 has 503 regions, which are captured 
by nodes in the network. At 0% of the time-to-control, all nodes in any dynamical network need to be driven 
nodes (shown in red). In just 20% of the time-to-control for the rat brain network, we see a drastic reduction in 
the required number of driven nodes for the long-term memory network as compared to the Markov dynamical 
network. As the time-to-control increases, the number of driven nodes decreases for both network dynamics; 
however, it is much more pronounced for the long-term memory dynamical network. The relationship between 
the percent savings (in green) and the time-to-control is shown at the bottom (highlighted in green). (b) 
shows the percent savings for the power  network13 (60 nodes). (c) shows the percent savings for the C. Elegans 
 network14, 15 (277 nodes). (d) shows the percent savings for the cortical brain structure of a macaque having 71 
 regions16, 17.
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entries. The N × N matrix B describes the relationship between the external input and the nodes of the network, 
where we implicitly assume that one input element actuates only one node. This assumption limits the structure 
of the B matrix to be diagonal and potentially have non-zero diagonal entries.

The vector of fractional-order exponents α can capture the long-term memory of each state element assigned 
to each node in the network. This concept is evidenced by the following relationship for a single state at node i:

where �(αi , j) encodes the weight or importance on each past state, and �(αi , j) =
Ŵ(j−αi)

Ŵ(−αi)Ŵ(j+1) , with Ŵ(·) denot-
ing the Gamma  function30. We plot the behavior of the �(αi , j) function in Fig. 2.

We notice from (2) and Fig. 2b that as time increases (i.e. as j increases), the weights described by the function 
�(αi , j) will always be non-zero and decay according to a power-law as long as αi is indeed a fractional  value18, 31. 
Hence, each previous state xi[k − j] will be weighted with a non-zero power-law dependent value thereby forcing 
the dynamical network to be non-Markovian and possess what is referred to as long-term power-law dependent 
memory. In contrast, if αi is instead an integer value, then the weights of �(αi , j) decrease to zero as j increases 
as seen in Fig. 2a, so the dynamical network will not possess long-term memory.

By combining (1) and (2), we obtain an equivalent formalism of the fractional-order dynamical network 
considered in this paper, which is given as  follows18, 31:

where A0 = A− D(α, 1) and Aj = −D(α, j + 1) , for j ≥ 1 and

A fractional-order dynamical network described by system matrices (α,A,B,T) is controllable in T time steps, 
if there exists a sequence of inputs such that any initial state of the network can be steered to any desired state 
in a finite number of time steps T, where the time-to-control T ∈ {1, 2, . . . ,N} is the minimum time horizon 
necessary for the network to achieve controllability. If we want the network to achieve controllability in one time 
step, then all of the nodes must be driven nodes. On the other hand, if the time horizon equals the size of the 
network, then we obtain the minimum number of nodes needed to attain controllability.

The two most common strategies to assess controllability of complex networks are as follows: (i) quantitative 
and (ii) qualitative. Quantitative methods focus on the exact knowledge of the system parameters and seek to 
either compute the rank of the controllability matrix or the energy to control the network given by the Control-
lability  Grammian32. The qualitative approach seeks to assess the possibility for controllability by assuming that 
the parameters are not known but the structure of the network is known (or, equivalently, which entries in the 
state space representation are nonzero). Such an approach is of practical use as often the network structure is 
the only information available. Qualitative methods often rely on structural systems  theory33, as we also do in 
the current paper.

(2)�αi xi[k] =

k
∑

j=0

�(αi , j)xi[k − j],

(3)x[k + 1] =

k
∑

j=0

Ajx[k − j] + Bu[k],

(4)D(α, j) =











ψ(α1, j) 0 . . . 0
0 ψ(α2, j) . . . 0

0 . . .
. . . 0

0 0 . . . ψ(αn, j)











.

Figure 2.  These figures show the behavior of the function �(α, j) for different values of α . (a) shows the 
function of �(α, j) for integer values of α . (b) shows the function of �(α, j) for non-integer values of α . The 
non-zero values of �(α, j) for non-integer values of α enable the fractional-order system to capture long-term 
memory.
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A structural matrix is defined as M̄ = {M ∈ R
m1×m2 : M̄i,j = 0 ifMi,j = 0} , and M̄ ∈ {0, ⋆}m1×m2 is a struc-

tural matrix with fixed zeros and ⋆ represents an arbitrary scalar parameter. Subsequently, a fractional-order 
dynamical network with structural matrices (ᾱ, Ā, B̄,T) is said to be structurally controllable in T time steps, if 
there exists a set (α,A,B,T) with the same structure as (ᾱ, Ā, B̄,T) that is controllable.

Subsequently, any time-to-control T ∈ {1, 2, . . . ,N} is such that there exists B̄ with

where g-rank is the generic rank of an n×m structural matrix M̄ given as

where [M̄] = {M ∈ R
n×m : M̄i,j = 0 ifMi,j = 0} , and C is the structural controllability matrix given by

Hereafter, we seek to determine the minimum number of driven nodes that ensure that (ᾱ, Ā, B̄,T) is structur-
ally controllable in T time steps. Specifically, we aim to determine B̄ with the minimum number of non-zero 
diagonal entries such that a given fractional-order dynamical network, represented as (ᾱ, Ā, B̄,T) , is structurally 
controllable in T time steps. We achieve this through the following result, which relates the number of driven 
nodes required to control fractional-order dynamical networks to the number of driven nodes required to control 
Markov dynamical networks – see Supplementary Material for details.

Theorem 1 The minimum number of driven nodes required to structurally control a fractional dynamical network 
within a specified time-to-control is generically equal to that of a Markov dynamical network where all nodes pos-
sess self-loops.

The nodal dynamics that emerge from analyzing the fractional-order dynamics are a result of Theorems 2 
and 3 in the Supplementary Material, which relate the structural equivalence of the fractional-order system to a 
linear time-invariant system having nodal dynamics. These results are key in finding the conditions for structural 
controllability of fractional-order dynamical networks and hence fundamental in providing a solution for the 
minimum number of driven nodes for long-term memory dynamical networks.

There are two significant consequences from Theorem 1. First, if a network has self-loops on every node, then 
the dynamical networks with and without long-term power-law memory require the same number of driven 
nodes for the same time-to-control horizon, and subsequently, in some sense, they are equally difficult to control. 
Second, networks with long-term power-law memory dynamics are always, at most, as difficult to control as 
Markov dynamical networks that have the same network topology. Nonetheless, it is surprising that the minimum 
number of driven nodes for a network possessing long-term power-law memory dynamics can be significantly 
lower than the same topological network possessing Markov dynamics without self-loops. Hence, it may be easier 
to control long-term memory networks than the corresponding Markov networks that do not contain self-loops.

In general, the time-to-control can be greater than the size of the network, but because we are interested 
in understanding structural controllability properties, our results establish that generically speaking one can 
design a controllable fractional dynamical network by designing a controllable linear time-invariant dynamical 
network with nodal dynamics. Hence, from the results for linear time-invariant dynamical networks, we know 
that if the system is controllable, then it must be controllable in at most N steps (the size of the network) by 
Cayley–Hamilton’s theorem (Theorem 12.134).

Given a network, we define the difference in the number of driven nodes as follows:

where nMarkov is the number of driven nodes needed to control the network when it possesses Markov dynamics 
and nlong-term memory is the number of driven nodes needed to control the network when it possesses long-term 
memory dynamics.

We define the percent difference (%D) as follows:

where nT is the difference in the number of driven nodes and N is the size of the network. We also define the 
percentage of the time-to-control ( % time-to-control) as follows.

where T ∈ {1, 2, . . . ,N} is defined as the minimum time horizon needed to control a network and N is the size 
of the network. Finally, we define the percent savings as

where nT is the difference in the number of driven nodes and nMarkov is the number of driven nodes needed to 
control the network when it possesses Markov dynamics.

(5)g-rank(C (Ā, B̄;T)) = N ,

(6)g-rank = max
M∈[M̄]

rank(M),

(7)C (Ā, B̄;T) = [B̄ ĀB̄ · · · ĀT−1B̄].

nT = nMarkov − nlong-term memory,

%D =
nT

N
× 100,

% time-to-control =
T

N
× 100,

% savings =
nT

nMarkov
× 100,
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In what follows, we conduct a detailed study to further understand the variations in the number of driven 
nodes for different dynamics, time horizons, and network topologies. We examined real-world and synthetic 
networks, including Erdős–Rényi, Barabási–Albert, and Watts-Strogatz  networks35. To generate the Erdős–Rényi 
network, we selected a network uniformly at random from the collection of all networks having a pre-defined 
number of nodes and edges. The Barabási–Albert network is a scale-free network with two parameters, the 
number of nodes and a parameter k, where a new vertex with k edges is added at each step in generating the 
network. Finally, the Watts-Strogatz network exhibits small-world properties, including high clustering and short 
average path lengths. The two parameters for generating Watts-Strogatz networks include the number of nodes 
and the rewiring probability p. The adjacency matrix associated with the network topology forms the matrix Ā.

Results
We performed experiments on both synthetic and real-world networks. In each experiment, we find the difference 
between the required number of driven nodes ( nT ) for the network having Markov dynamics and for the same 
network having long-term memory dynamics in a given time-to-control. Since the available time-to-control var-
ies with the size of a particular network, we consider the percentage of the time-to-control (% time-to-control).

Long‑term memory dynamical networks require fewer driven nodes than Markov counterparts
Our experimental results confirm our theoretical results that long-term power-law memory dynamical networks 
require equal or fewer driven nodes than Markov dynamical networks having the same structure. In all of the 
experiments, we find that the difference in the required number of driven nodes ( nT ) is non-negative. In fact, the 
experiments for the Erdős–Rényi networks (see Fig. 3a–c) suggest that the average (over 100 random networks) 
difference in the number of driven nodes across the time-to-control partially resembles a power-law. For the 
Barabási–Albert networks (Fig. 3d–f), the average difference in the number of driven nodes initially scales by 
a power-law but then quickly drops very low nearly to zero difference as the time-to-control increases. Finally, 
the average difference in the number of driven nodes for the Watts-Strogatz networks (Fig. 3g–i) scales initially 
by a power-law and then levels out to a linear relationship towards the final time-to-control. The results in Fig. 3 
show that, depending on the network topology, a Markov dynamical network requires up to a power-law times 
more driven nodes to achieve structural controllability than a long-term memory dynamical network having 
the same spatial structure.

For several real-world dynamical networks, we notice similar trade-offs between the difference in the number 
of driven nodes and the time-to-control see Fig. 6a. We find that the rat brain  network12 gives approximately a 
60% difference in the minimum number of driven nodes, which is achieved around 20% of the time-to-control 
(Fig. 6a). These results are significant considering that the rat brain network has 503 total nodes. The Caenorhab-
ditis elegans (C. elegans)  network14, 15, which has 277 nodes, has approximately a 12% difference in the number 
of driven nodes at around 20% of the time-to-control (Fig. 6a). However, the percent difference in the number 
of driven nodes decreases as the time-to-control increases in the C. elegans network. The power  network13, with 
only 60 nodes, has approximately an 8% difference in the number of driven nodes at the final time-to-control 
(Fig. 6a). Lastly, the macaque brain  network16, 17, containing 71 regions (and, subsequently 71 nodes), gives less 
dramatic results with only a peak of 5% difference in the number of driven nodes achieved at the 25% time-
to-control (Fig. 6a). These real-world networks show the capability of saving up to 91% of resources as early as 
20% of the total time-to-control when controlling large-scale networks exhibiting long-term memory dynamics.

Network topologies, not size, determine the control trends
We generated 100 random networks having the same size and synthetic parameters and found the average differ-
ence in the number of driven nodes ( nT ) versus the time-to-control (see Fig. 3). The results in Fig. 3 show that the 
same overall trend occurs for each of the three types of random networks (Erdős–Rényi, Barabási–Albert, and 
Watts-Strogatz) independent of the network size. These results suggest that the network topology significantly 
affects the controllability over other network attributes, such as the size of the network.

We examine the effect of varying the parameters on the average difference in the required number of driven 
nodes across the time-to-control for the three types of random networks. Across the sizes of the networks, 
we notice similar trends for the Erdős–Rényi and Watts-Strogatz networks and drastically different results for 
the Barabási–Albert networks (Fig. 4). The results in Fig. 4 suggest that varying the number of edges for the 
Erdős–Rényi networks and the p parameter for the Watts-Strogatz networks, in general, show similar behavior 
in their difference in the number of driven nodes across the time-to-control. However, for the Barabási–Albert 
network, varying the k parameter greatly impacts the difference in the number of driven nodes across the time-
to-control. For example, on the one hand, a lower k parameter in the Barabási–Albert network gives a higher 
difference in the number of driven nodes at higher time-to-control values. On the other hand, a higher k param-
eter gives a lower difference in the number of driven nodes at higher time-to-control values (Fig. 4). For each of 
the different random networks, as the network sizes increase, the same pattern appears but the difference in the 
required number of driven nodes increases proportionally with the network size. These results provide further 
evidence that the topology of the network has a significant influence on the controllability of the network.

We aim to analyze the impact of varying network size on the average difference in the required number of 
driven nodes over the time-to-control for distinct types of random networks. In Fig. 5, we show the average 
difference (computed across 100 networks) in terms of the required number of driven nodes. The focus is on 
different types of random networks, each having varying sizes and parameter values.

Specifically, for networks with edge counts 20%, 50%, and 100% higher than the number of nodes, we plot 
the average difference in the required number of driven nodes ( nT ) as a function of both the network size and 
the time-to-control (%) in Fig. 5a–c from 100 instances of Erdős–Rényi networks. Similarly, with parameter 
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values k = 2 , k = 5 , and k = 10 , we illustrate the average difference in the required number of driven nodes 
( nT ) against network size and time-to-control (%) in Fig. 5d–f based on 100 realizations of Barabási–Albert 
networks. Furthermore, we show the average difference in the required number of driven nodes ( nT ) against 
the network size and time-to-control (%) for 100 instances of Watts-Strogatz networks, using parameter values 
p = 0.2 , p = 0.5 , and p = 0.8 , in Fig. 5g–i.

Observing the Erdős–Rényi and Watts-Strogatz networks, in Fig. 5, we identify a pattern where the dif-
ference in the required number of driven nodes increases with both network size and time-to-control. These 
trends hold true across different parameter values. In contrast, the variability in the number of driven nodes 
for Barabási–Albert networks is heavily influenced by the parameter k. These results support the claim that the 

Figure 3.  These figures show the relationship between the average difference (over 100 networks) in the 
required number of driven nodes across the time-to-control for different types of synthetic networks with 
different sizes and parameters. For network sizes 250, 500, and 1000, respectively, (a–c) show the log-log plot 
of the average difference in the required number of driven nodes ( nT ) versus the time-to-control (%) for 100 
realizations of Erdős–Rényi networks with various edge parameters. For network sizes 250, 500, and 1000, 
respectively, (d–f) show the log-log plot of the average difference in the required number of driven nodes ( nT ) 
versus the time-to-control (%) for 100 realizations of Barabási–Albert networks with various k parameters. 
For network sizes 250, 500, and 1000, respectively, (g–i) show the log-log plot of the average difference in the 
required number of driven nodes ( nT ) versus the time-to-control (%) for 100 realizations of Watts-Strogatz 
networks with various p parameters.
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network topology plays a relevant role in determining the controllability of the network, whereas the network 
size does not seem to play a relevant role.

Multi‑fractal spectrum dictates savings when controlling long‑term memory dynamical 
networks
From the results in Cowan et al.36, the degree distribution of a network does not determine the required number 
of driven nodes to ensure controllability. Nonetheless, we analyze the relationship between the average degree 
of a network, the difference in the required number of driven nodes, and the time-to-control in Fig. 1 in the 

Figure 4.  These figures plot the average difference (over 100 networks) in the required number of driven nodes 
( nT ) across the time-to-control ( % time-to-control ) for different types of random networks having different 
sizes and parameter values. For network sizes 250, 500, and 1000, respectively, (a–c) show average difference in 
the required number of driven nodes ( nT ) across the number of edges in the network versus the time-to-control 
(%) for 100 realizations of Erdős–Rényi networks. For network sizes 250, 500, and 1000, respectively, (d–f) show 
the average difference in the required number of driven nodes ( nT ) across the k parameter versus the time-to-
control (%) for 100 realizations of Barabási–Albert networks. For network sizes 250, 500, and 1000, respectively, 
(g–i) show the average difference in the required number of driven nodes ( nT ) across the p parameter versus the 
time-to-control (%) for 100 realizations of Watts-Strogatz networks.
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Supplementary Material for differently sized random networks. These results suggest that more than the average 
degree, the topology of the network plays a larger role in determining the difference in the required number of 
driven nodes.

Knowing these results, we focus on studying the relationship between the multi-fractal spectrum and the 
difference in the required number of driven nodes since the multi-fractal spectrum is a measure of the hetero-
geneity in the structure of the  network37, 38. We investigate the relationship between the multi-fractal spectrum 
and the difference in the required number of driven nodes in several real-world networks, namely the rat  brain12, 
C.  elegans14, 15, macaque  brain16, 17, and power  networks13. We pay particular attention to the width of the spec-
trum w = αmax − αmin , where αmax is the maximum Lipschitz–Holder exponent and αmin is the minimum 
Lipschitz–Holder exponent, since the width reflects the degree of structural  heterogeneity39. Thus, the wider the 

Figure 5.  These figures plot the average difference (over 100 networks) of the required number of driven nodes 
across the time-to-control for different types of random networks having different sizes and parameter values. 
For the the edge count being 20%, 50%, and 100% higher than the number of nodes, respectively, (a–c) show the 
average difference in the required number of driven nodes ( nT ) along the size of the network versus the time-to-
control (%) for 100 realizations of Erdős–Rényi networks. For parameter value k = 2, 5, 10 , respectively, (d–f) 
show the average difference in the required number of driven nodes ( nT ) along the size of the network versus 
the time-to-control (%) for 100 realizations of Barabási–Albert networks. For parameter value p = 0.2, 0.5, 0.8 , 
respectively, (g–i) show the average difference in the required number of driven nodes ( nT ) along the size of the 
network versus the time-to-control (%) for 100 realizations of Watts-Strogatz networks.
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spectrum, the more heterogeneous the network structure will be. The results indicate that, in general, the wider 
and higher the multi-fractal spectrum, the larger the percent difference in the number of driven nodes – see 
Fig. 6a and b. From our results in Fig. 6a and b, it seems that the difference in the number of driven nodes is 
proportional to the structural heterogeneity of a network, meaning that, the wider the multi-fractal spectrum, 
the larger the difference in the number of driven nodes. This conclusion is also supported by Fig. 6d, which plots 
the relationship between the multi-fractal spectrum width, time-to-control, and percent difference in the number 
of driven nodes for the four real-world networks.

Figure 6c plots the relationship between the multi-fractal spectrum height, time-to-control, and percent dif-
ference in the number of driven nodes for the four real-world networks. The height of the multi-fractal spectrum 
indicates the frequency of a particular network  structure39. Hence, the higher the multi-fractal spectrum, then 
the more structures that appear in the network. These figures, Fig. 6c and d, support the notion that, in general, 
the greater the width and height of the multi-fractal spectrum, then the greater the difference in the number of 
driven nodes for nearly all time-to-control horizons. Hence, the greater the structural heterogeneity of the net-
work, then the greater the savings in the amount of driven nodes when controlling long-term memory dynamical 
networks. Therefore, the width of the multi-fractal spectrum is an indicator of the total savings of driven nodes 
that can be achieved when controlling long-term memory dynamical networks, and the multi-fractal spectrum 
is more indicative of the difference in the required number of driven as compared with the average degree.

Figure 6.  These figures show the relationship between the percent difference in the number of driven nodes 
across the time-to-control (%) and the multi-fractal spectrum of four real-world networks, including a power 
network (60 nodes), rat brain  network12 (503 nodes), C. elegans  network14, 15 (277 nodes), and a macaque brain 
 network16, 17 (71 nodes). (a) shows the plot of the percent difference of the required number of driven nodes ( nT ) 
versus the percent of time-to-control (%) for several real-world networks. (b) shows the plot of the multi-fractal 
spectrum of several real-world networks. (c) shows the spectrum of the difference in the required number of 
driven nodes ( nT ) compared with the multi-fractal spectrum width and the time-to-control ((%) for the same 
four real-world networks. (d) shows the spectrum of the difference in the required number of driven nodes 
( nT ) compared with the multi-fractal spectrum height and the time-to-control (%) for the same four real-world 
networks.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19502  | https://doi.org/10.1038/s41598-023-46349-9

www.nature.com/scientificreports/

Discussion
Fewer required driven nodes, dictated by network topology and multi‑fractal spectrum
Following from the results of Theorem 1, we proved that a long-term power-law memory requires less than or 
equal to the number of driven nodes as the same network possessing Markov dynamics requires (see Theorem 6 
in the Supplementary Material). In our experimental results, we showed that long-term power-law memory 
dynamical networks can provide a significant advantage in terms of the resources for controlling networks. In 
particular, the results in Fig. 3 showed that, depending on the network topology, a Markov dynamical network 
requires up to a power-law times more driven nodes to achieve structural controllability than a long-term power-
law memory dynamical network having the same spatial structure.

Long-term power-law memory dynamical networks can use 91% fewer driven nodes at 20% of the time-to-
control compared to Markov dynamical networks. More specifically, the rat brain network showed a 60% dif-
ference in the minimum number of driven nodes at approximately 20% of the time-to-control (Fig. 6a). Hence, 
we provided evidence that long-term power-law memory dynamical networks may be easier to control than 
Markov dynamical networks.

Our experimental results showed that the network topology, not the size of the network, determined the 
overall trends of the difference in the minimum resources needed for control over the time-to-control (see Figs. 3, 
4 and 5). The results in Fig. 3 showed that the same overall trend occurs for each of the three types of random 
networks (Erdős–Rényi, Barabási–Albert, and Watts-Strogatz) independent of the network size. The results in 
Fig. 4 suggest that the same pattern appears but the difference in the required number of driven nodes increases 
proportionally with the network size for each of the different random networks. Finally, the results in Fig. 5 
showed that the difference in the minimum number of driven nodes increased as the time-to-control increases 
for both the Erdős–Rényi and Watts-Strogatz networks, whereas the difference in the minimum number of driven 
nodes for the Barabási–Albert network is heavily dependent on the parameter k.

It is difficult to determine which nodes are better to control because it depends on the specific connections 
within the network. To illustrate this fact, we notice that the algorithm that we develop and analyze in this paper 
depends on first partitioning the network and then on identifying the source strongly components within these 
partitions. Therefore, our algorithm requires that one node per source SCC in every partition is selected to be 
controlled. A graph can be partitioned in multiple different ways as outlined in Pequito et al.40 and, identifying 
these partitions and their source strongly connected components are not not correlated with other network 
properties such as network communities and  metrics41. Hence, it becomes difficult to describe which nodes are 
best to be controlled.

Remarkably, in contrast with the work by Liu et al.42, the difference in the minimum number of driven nodes 
to achieve controllability for an arbitrary time-to-control does not correlate with the degree distribution of the 
network. We provide evidence to support this claim in Fig. 2 in the Supplementary Material. Here, we generated 
100 networks having a similar degree distribution to the rat brain network and computed the difference in the 
number of driven nodes over the time-to-control. However, the difference in the number of driven nodes for 
100 generated networks having a similar degree distribution to the rat brain network varies drastically from 
the difference in the number of driven nodes for the original rat brain network. Hence, having a similar degree 
distribution does not necessarily mean that the difference in the number of driven nodes will be similar across 
the time-to-control. A related conclusion demonstrated that the degree distribution of a linear time-invariant 
dynamical network does not dictate the nodes that must be  controlled36.

Finally, we find that the height and width of the multi-fractal spectrum serve as an indication of the total 
savings in the minimum number of driven nodes for a given network, when considering long-term memory 
dynamics over Markov dynamics (see Fig. 6). In particular, Fig. 6c and d, support the notion that, in general, 
the greater the width and height of the multi-fractal spectrum, then the greater the difference in the minimum 
number of driven nodes for nearly all time-to-control horizons.

A scalable and robust method to determine the trade‑offs between the minimum number of 
driven nodes and time‑to‑control for controlling large‑scale long‑term power‑law memory 
dynamical networks
The work by Pequito et al.43 characterized the minimum number of driven nodes for controlling Markov networks 
and used these results to provide algorithms to design controllable Markov networks. Liu et al. showed the rela-
tionship between the required number of driven nodes in Markov networks and the average degree distribution 
for different network  topologies42. The work  in36 showed the importance of nodal dynamics in determining the 
minimum number of inputs (i.e. an input can be connected to multiple nodes) to achieve structural control-
lability in the case of Markov networks.

Recent work by Lin et al. claims to control Markov networks with only two time-varying control inputs with 
the assumption that these sources can be connected to any node at any time; however, this is not a realistic solu-
tion in the case of many physical systems, such as the power grid or the  brain44. Most notably though, none of 
these previously mentioned works take into account the long-term memory dynamics exhibited in many real-
world complex dynamical networks. Furthermore, only the work by Pequito et al.40 has analyzed the trade-offs 
between the time-to-control of a dynamical network and the required number of driven nodes, but this study 
is limited to only considering Markov dynamical networks. Here, we have examined the effect that long-term 
memory dynamics plays on the ability to control the network while considering the time-to-control.

There are only two  works10, 11 that have examined the control of networks exhibiting long-term memory 
dynamics, but they have several shortcomings, including scalability and lack of robustness. For example, the 
work in by Kyriakis et al.10, which uses energy-based methods to control long-term memory dynamics modeled 
as a linear time-invariant fractional-order system in discrete-time, is not tractable as it has computational-time 
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complexity of O (n7.748) . Similarly, the work by Cao et al.11, which uses a greedy algorithm that maximizes the 
rank of the controllability matrix, relies on the computation of the matrix rank, so it quickly becomes intractable 
as a network grows in size and has computational-time complexity of O (n5) . Furthermore, both of these works 
require that the precise dynamics are  known10, 11. Simply speaking, these works do not account for the inherent 
uncertainty in the parametric model for long-term memory dynamics.

Hence, we present the first scalable and robust method to determine the trade-offs between the minimum 
number of driven nodes and time-to-control for controlling large-scale long-term power-law memory dynami-
cal networks with a computational-time complexity of O (n2 log(n)) – See Theorem 11 in the Supplementary 
Material. Our novel method can assess the trade-offs in controlling a large-scale long-term memory dynamical 
network with unknown parameters in a given number of time steps, which leads us to provide answers to fun-
damental questions regarding the relationships between the number of driven nodes, the time-to-control, the 
network topology, and the size of the network.

Determining the existence of long‑term memory in dynamical networks
Our approach, which assesses the trade-offs between the minimum number of driven nodes in a given time-
to-control for controlling long-term power-law dynamical networks, can determine the existence of long-term 
memory in dynamical networks. We can achieve this by considering whether a network can be controlled with 
the minimum number of driven nodes given by the proposed method.

For example, suppose that we want to control a dynamical network in a finite amount of time, where we 
assume that we know the structure of the network including its size (i.e. number of nodes) and the relation-
ship between nodes in the network (i.e. the edges and their placement in the network), but we do not know the 
dynamics of the system. In this case, our approach can be used to determine whether the dynamical network 
possesses long-term memory by first trying to control the network with the minimum number of driven nodes 
for long-term memory dynamics in a specified time frame, which can be computed using our proposed approach. 
If the dynamical network can indeed be steered to a desired behavior with the minimum number of driven 
nodes in a given time-to-control as computed by our proposed method, then the dynamical network indeed 
possesses long-term power-law memory dynamics. On the other hand, if the network cannot be controlled 
with the minimum number of driven nodes in a specified time frame as computed using our proposed method, 
then the network must not possess long-term power-law memory dynamics as it requires more driven nodes 
to control the network.

This is a powerful result that provides a significant advantage over current state-of-the-art methods to deter-
mine the existence of long-term memory dynamics in large-scale networks, which rely on first finding the exact 
parameterization of the known dynamics of the system from  data6, 45–47. In particular, these approaches estimate 
the two parameters of the long-term power-law dynamical networks, namely the fractional-order exponents ( α ) 
and the spatial matrix (A). By investigating whether the estimated values of the fractional-order exponents are 
indeed fractional, this inherently determines the existence of long-term memory in the dynamics (see Fig. 2).

There are several works that have proposed methods to estimate the parameters of long-term power-law 
dynamical networks. The work by Xue et al.6 proposes an approximate approach to estimate the fractional-order 
exponents, then based on this result, the methods finds the spatial matrix using a least-squares approach. The 
work by Flandrin et al.48 leverages wavelets to find the fractional-order exponents. Using this wavelet approach, 
the work by Gupta et al.45 proposes an expectation-maximization approach to estimate the the spatial matrix 
and the unknown inputs of a fractional-order system. In a similar vein, the work in by Gupta et al. 46 proposes 
a method to estimate from data the parameters of a fractional-order system having partially unknown states. 
Finally, the work by Chatterjee et al. 47 considers a finite-sized augmented fractional-order system and proposes 
an iterative algorithm to find the fractional-order exponents and a least-squares approach to find the spatial 
matrix.

While these works rely on computing the parameters of long-term power-law dynamical networks from data, 
the advantage of our proposed approach is that it can determine the existence of long-term memory dynamics 
in large-scale networks without knowing the exact dynamics of the system.

Data availability
The real-world networks, that is the rat  brain12, C.  elegans14, 15, macaque  brain16, 17, and power  networks13, are 
publicly available. The code is available upon request by contacting the corresponding author.
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