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trRosettaRNA: automated prediction of RNA
3D structure with transformer network

Wenkai Wang 1,5, Chenjie Feng2,3,5, Renmin Han2,5, Ziyi Wang2, Lisha Ye1,
Zongyang Du1, Hong Wei1, Fa Zhang 4 , Zhenling Peng 2 &
Jianyi Yang 2

RNA 3D structure prediction is a long-standing challenge. Inspired by the
recent breakthrough in protein structure prediction, we developed trRo-
settaRNA, an automated deep learning-based approach to RNA 3D structure
prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D
geometries prediction by a transformer network; and 3D structure folding by
energy minimization. Benchmark tests suggest that trRosettaRNA outper-
forms traditional automated methods. In the blind tests of the 15th Critical
Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experi-
ments, the automated trRosettaRNA predictions for the natural RNAs are
competitive with the top human predictions. trRosettaRNA also outperforms
other deep learning-based methods in CASP15 when measured by the Z-score
of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to
predict accurate structures for synthetic RNAs with an automated approach.
We hope this work could be a good start toward solving the hard problem of
RNA structure prediction with deep learning.

Ribonucleic acid (RNA) is one of the most important types of func-
tional molecules in living cells. It is involved in many fundamental
biological and cellular processes, for example, as the transcript of
genetic information, serving catalytic, scaffolding, and structural
functions. Interest in the structure and functions of non-coding RNA
(ncRNA), such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs),
has been increasing over the past few decades with the discovery of
new types of ncRNAs every year. Similar to proteins, ncRNAmolecules’
biological function is typically determined by their 3D structures.
However, due to the intrinsic structural heterogeneity caused by the
flexible backbones andweak long-range tertiary interactions, it ismore
challenging to experimentally solve the structure of an RNA than a
protein1. For example, only ~6000 RNA structures are deposited in the
Protein Data Bank (PDB)2, which is much less than the number of
depositedprotein structures (~190,000). Thus, there is a great demand
for developing efficient algorithms to predict RNA 3D structures.

The current RNA 3D structure predictionmethods can be divided
into two groups: template-based methods and de novo methods.
Template-based methods predict the target structure using homo-
logous templates in PDB. For example, representative methods, such
as ModeRNA3 and MMB4, work by reducing the sampling space with
homologous structures. In general, the predicted structure models by
template-based methods are accurate when homologous templates
exist in PDB. However, the progress for template-based methods is
slow, due to the limited number of known RNA structures and the
difficulty of aligning RNA sequences.

On the contrary, de novo methods build 3D conformations by
simulating the folding process from scratch. With molecular dynamic
simulations and/or fragment assembly, methods such as FARNA5,
FARFAR6, FARFAR27, SimRNA8, iFoldRNA9, RNAComposer10, and
3dRNA11,12, work well for certain small RNAs (<100 nucleotides). Never-
theless, it is hard to generate accurate 3D structures for large RNAswith
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complicated topologies, due to the inaccurate force field parameters
and the huge sampling space. To partly address this issue, inter-
nucleotide contacts predicted by direct coupling analysis (DCA) have
been used to guide the structure simulations13–15. In addition, given the
hierarchical nature of RNA structure folding, a few methods derive 3D
structures from secondary structures, such as Vfold16,17 and MC-Fold18.
They are very fast but the modeling accuracy largely depends on the
quality of the input secondary structures. TheRNA-Puzzles experiments
indicate that it remains a grand challenge to accurately predict the
structures for large RNAs with complex architectures19,20.

Deep learning has recently been used to improve de novo RNA 3D
structure prediction. The predicted inter-nucleotide contacts by the
residual convolutional network (ResNet) are about two times more
accurate than DCA, improving 3D structure prediction to some
extent21,22. It was shown that with themodel selection from a geometric
deep learning-based scoring system (ARES), the FARFAR2 protocol
predicted the most accurate models for four targets in the blind test of
the RNA-Puzzles experiments23. Recently, inspired by the success of
AlphaFold224, a few new deep learning-based methods are developed,
such as DeepFoldRNA25, RoseTTAFoldNA26, and RhoFold27.

In this work, we introduce trRosettaRNA, an automated deep
learning-based approach to RNA 3D structure prediction. It is partly
inspired by the successful application of deep learning in protein
structure prediction, especially in AlphaFold224 and our previous
method trRosetta28–30. Benchmark tests and blind tests show that
trRosettaRNA is promising to enhance RNA structure prediction. The
server and source codes are available at: https://yanglab.qd.sdu.edu.
cn/trRosettaRNA.

Results
Overview of trRosettaRNA
The architecture of trRosettaRNA is depicted in Fig. 1a. Starting
from the nucleotide sequence of an RNA of interest, a multiple

sequence alignment (MSA) and a secondary structure are first
generated by the programs rMSA31 and SPOT-RNA32, respectively. They
are then converted into an MSA representation and a pair repre-
sentation, which are fed into a transformer network (named RNA-
former, see Fig. 1b andMethods for more details) to predict 1D and 2D
geometries (see Fig. S1). Similar to trRosetta, these geometries are
converted into restraints to guide the final step of 3D structure folding
based on energy minimization (see Methods). Unless otherwise spe-
cified, the RMSDs mentioned below are calculated by considering all
atoms using the evaluation toolkit provided by the RNA-Puzzles
community33.

Performance of trRosettaRNA on 30 independent RNAs
To evaluate trRosettaRNA, we collected 30 non-redundant RNA
structures based on both release date and similarity with the training
RNAs. These RNAs are released after the training RNAs date (i.e., 2017-
01) and do not share sequence similarity with trRosettaRNA and
SPOT-RNA’s training RNAs (see Methods).

We compare trRosettaRNA with two representative methods,
RNAComposer10 and SimRNA8. The same secondary structures (from
SPOT-RNA) were fed into both methods for fair comparison. For
RNAComposer, we submitted the RNA sequences and the predicted
secondary structures to its web server to generate 3Dmodels. SimRNA
was installed and run locally in our computer cluster. We evaluate the
first predicted model to ensure fairness. As shown in Table 1, on these
30 RNAs, the average RMSD by trRosettaRNA (8.5 Å) is significantly
lower than those by RNAComposer (17.4 Å; P-value = 1.3E-6) and
SimRNA (17.1 Å; P-value = 1.1E-7; the P-values presented in this manu-
script were calculated by two-tailed Student’s t-tests). trRosettaRNA
outperforms RNAComposer and SimRNA for 86.7% and 96.7% of the
30 cases, respectively (Fig. S2a). 20% of the models predicted by
trRosettaRNA are with RMSD<4Å, whereas no models from RNA-
Composer and SimRNA can achieve this accuracy. These data
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Fig. 1 | Overall architecture of trRosettaRNA. a flowchart of trRosettaRNA.b structure of each RNAformer block. n, L, and c are the number of sequences in theMSA, the
length of the query sequence, and the number of channels, respectively.
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demonstrate the superiority of the proposed pipeline over traditional
RNA structure prediction methods.

We further analyze the impact of the input features (i.e., MSA and
secondary structure). The MSA quality is measured by the alignment
depth, i.e., the logarithmof the effective number (denoted by log(Neff))
of homologous sequences with <80% sequence identity. As shown in
Fig. S2b, the RMSD of the trRosettaRNA model is correlated with
log(Neff) (Pearson correlation coefficient, PCC= −0.32). trRosettaRNA
outperforms RNAComposer and SimRNA at all log(Neff) levels, espe-
cially on targets with high log(Neff) values. For the models by RNA-
Composer and SimRNA, the correlations between the RMSDs and the
alignment depth are weak (PCCs are −0.05 and 0.21, respectively),
probably because they do not use MSA during modeling. In contrast,
there is a stronger correlation between the RMSDs of the predicted
models and the accuracy of the predicted secondary structures
(measured by F1-score) for all methods (PCCs are −0.35, −0.31, and
−0.29 for trRosettaRNA, SimRNA, and RNAComposer, respectively,
Fig. S2c). This is consistent with the observations that precise RNA
secondary structure prediction plays a key role in successful 3D
structure modeling19,20.

To provide a more direct demonstration of the contribution of
MSA to the RNA structure prediction, we also evaluate the perfor-
mance of trRosettaRNA when MSAs are excluded. As shown in Fig. S3,
for 21 out of the 30 RNAs, the introduction of MSAs helps improve the
accuracy of the predicted models. Fig. S4 presents the MSAs for two
example RNAs (PDB IDs: 5KH8/7D7V). The coevolutionary information
extracted from these MSAs not only covers the majority of 2D base-
pairing interactions but also encompasses some 3D interactions
(highlighted by green circles in the 2D maps of Fig. S4). With the
assistance of MSAs, trRosettaRNA can generate more accurate models
for these two RNAs (refer to the bottom right of each subfigure
in Fig. S4).

As the secondary structure used in trRosettaRNA is predicted by
SPOT-RNA, it is important to consider the possibility of inaccurate
predictions by SPOT-RNA. Among the 30RNAs in the dataset, there are
8 RNAs for which SPOT-RNA failed to predict accurate secondary
structures (i.e., F1-score <0.5). Table S1 reveals that for 6 of these 8
RNAs, the secondary structures of trRosettaRNA models are more
accurate than those predicted by SPOT-RNA. In Fig. S5a, it is evident
that trRosettaRNA corrects certain false positive base pairs, which are
highlighted by red circles. Furthermore, trRosettaRNA identifies some
interactions that weremissed by SPOT-RNA, as indicated by the green
circles in Fig. S5a. These observations suggest that trRosettaRNA can
correct incomplete or inaccurate secondary structures, although its
accuracy is correlated with the quality of the input secondary
structures.

Nevertheless, when considering the entire set of 30 RNAs, trRo-
settaRNA exhibits a slight drop in the average F1-score of secondary
structures, decreasing it from 0.65 to 0.6 (as shown in Fig. S5b). This
decrease is mainly from the cases where the secondary structures
predicted by SPOT-RNA are accurate (F1-score > 0.6). This may be
caused by the potential conflicts between the predicted distance

restraints and the base pair restraints, which are not trival to resolve,
especially for targets modeled with low confidence.

However, as a data-driven method, the performance of trRo-
settaRNA is influenced by the structural homology existing between
the target RNA and previously solved RNA structures, which is mea-
sured by the maximum TM-scoreRNA. As shown in Fig. S2d, the corre-
lation between the structural homology and the RMSD of
trRosettaRNA models is stronger compared to SimRNA and RNA-
Composer (PCCs are −0.6, −0.0003, and −0.05, respectively). For five
RNAs lacking homologmatch (i.e., maximumTM-scoreRNA with solved
RNAs below0.45), the average RMSDof trRosettaRNAmodels is 15.8Å.
This value significantly drops to 7.0 Å for the remaining 25 RNAs
possessing structural homologs. This discrepancy may be due to the
current limitation in the number of solved RNA structures within the
PDB database, which in turn impacts the performance of data-driven
methods on RNAs with novel structures. Nevertheless, for the 5 RNAs
without structural homologs, the average RMSD of the models by
trRosettaRNA (15.8Å) remains lower than SimRNA (20.6 Å) and RNA-
Composer (24.3 Å), illustrating the superiority of the deep-learning
method over traditional methods for automated prediction.

Performance of trRosettaRNA on RNA-Puzzles targets
We further test trRosettaRNA on 20 targets from the RNA-Puzzles
experiments19,20. The target information and the prediction results are
summarized in Tables S2 and S3, respectively. It turns out that these
targets are harder to predict than the 30 independent RNAs, as
revealed by the increased value of RMSD (from 8.5 Å to 10.5 Å).

We compare the trRosettaRNA predictions with the original sub-
missions from the RNA-Puzzles experiments. According to the official
assessments19,20, the most accurate approach is the Das group, which
submitted models for 17 targets. Table S3 summarizes the results on
these targets for themodels from the Das group (denoted by Das) and
the best of the models from all groups (denoted by PZ_best). On these
17 targets, the average RMSD of the first predicted models by our
method is 10.3 Å, comparedwith 9.3 Å and 7.2 Å fromDas and PZ_best,
respectively. For 9 of the 17 targets, the trRosettaRNAmodels aremore
accurate than the Das models. Similar observations can be obtained
when all the five submitted models are assessed (Table S3). Note that
certain participating groups may utilize human experts and/or litera-
ture data to guide the modeling during the prediction seasons of the
RNA-Puzzles experiments. In contrast, the trRosettaRNA predictions,
which are fully automated, achieve similar accuracy to the top human
groups.

To obtain a more comprehensive understanding of the quality of
trRosettaRNA models, we employ other evaluation measures used in
the RNA-Puzzles assessment, in addition to RMSD (Table S4). These
measures include the deformation index (DI; evaluating the predicted
structures with both RMSDs and base interactions; lower is better)34,
the InteractionNetwork Fidelity (INF; evaluating the interactions in the
predicted structure; higher is better)34, and MolProbity clash scores
(number of serious steric overlaps per 1000atoms in a structure; lower
is better)35. The average clash score of the trRosettaRNAmodels (3.2) is
significantly lower than that of the Das models (10.8), indicating that
trRosettaRNA not only achieves higher accuracy but also produces
higher-quality models. Nevertheless, trRosettaRNA models exhibit
worse INF and DI scores than the Dasmodels. This can be explained by
the inherent features of our methodology. First, the secondary struc-
tures used by trRosettaRNA are predicted rather than from experi-
ments, literature, or human annotation. These predicted secondary
structures may provide inaccurate interaction information to the
transformer network. Second, trRosettaRNA uses predicted geometry
restraints rather than fragment assembly to derive the secondary
structures. Both factors may lead to less accurate local base-base
interactions in the trRosettaRNA models.

Table 1 | Comparison between trRosettaRNA, SimRNA, and
RNAComposer on 30 independent RNAs

Methods Average RMSD
(±std.) (Å)

Ratio of accurate
models (RMSD <4Å)

P-value

SimRNA 17.1 ( ± 5.2) 0% 1.1E-7

RNAComposer 17.4 ( ± 6.8) 0% 1.3E-6

trRosettaRNA 8.5 ( ± 5.7) 20% -

Pleasenote that the evaluation here is on the firstmodel predictedbyeachmethod. TheP-values
presented here were calculated by two-tailed Student’s t-tests. No adjustments were made for
multiple comparisons. Source data are provided as a Source Data file.
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Blind test in CASP15
Based on trRosettaRNA, we participated in the blind test of the CASP15
experiment onRNA structure prediction as an automated server (group
nameYang-Server). The Yang-Servermodels for the 12CASP15 RNAs are
shown in Fig. 2. According to the official ranking, Yang-Server is ranked
the 9th out of 42 RNA structure prediction groups (including 33 human
groups and 9 server groups). Yang-Server is ranked second (after the
UltraFold_Server) when considering automated server groups only.
Note that the official ranking considers both global and local accuracy,
including TM-scoreRNA, GDT-TS score, INF, lDDT, and steric clash; while
the main objective optimized in trRosettaRNA is RMSD. Based on the
cumulative Z-scoreofRMSD ( >0.0), Yang-Server’s ranking is improved:
5th/42 for all groups and 1st/9 for server groups (Fig. S6). Yang-Server
also achieves a higher ranking than other deep learning-based groups
such as AIchemy_RNA (based on RhoFold27), BAKER (based on
RoseTTAFoldNA26), and DF_RNA (based on DeepFoldRNA25) in terms of
the Z-score of RMSD. According to the RNA-Puzzles assessment36, the
Yang-Server predictions (though not perfect) for two protein-binding
targets (R1189 and R1190) are the most accurate among all submitted
models (with RMSDs of 16.3 Å and 16.0Å, respectively). This result
demonstrates thepotential of ourmethod inpredictingprotein-binding
RNAs even in the absence of binding partner information, though the
accuracy is far from satisfactory.

The 12 RNAs in CASP15 can be classified into two categories based
on their sources: eight of them are natural, while the remaining four
are synthetic. On the eight natural RNAs, Yang-Server yields compar-
able results to the top human group, AIchemy_RNA2 (mean RMSDs of
the first/best in five models: 14.8/12.9 Å versus 15.7/11.3 Å; Table 2 and
S5). It is worth noting that trRosettaRNA does not consider structural
templates, which may be crucial in improving the modeling accuracy.
For example, for the targets, R1107, R1108, and R1149, secondary
structure templates can be easily found in the RFAMdatabase (version
14.4, released in December 2020) using an automated process37. With
these secondary structure templates, trRosettaRNA predicts much

more accurate 3D structures than the models submitted during the
CASP15 season (Fig. 3). TheRMSDvalues are reduced from17.9 Å, 9.1 Å,
and 13.9 Å to 4.3Å, 4.8 Å, and 10.6Å, for R1107, R1108, and R1149,
respectively, competitive to the models by AIchemy_RNA2 (i.e., 4.5 Å,
4.5 Å, and 10.5 Å). Thus we believe that the fusion of high-quality sec-
ondary structure templates and deep-learning techniques can improve
the performance further.

Nevertheless, when it comes to the modeling of synthetic RNAs,
there is a notable margin between all the deep learning-based groups
(including ours) and the top human groups such as AIchemy_RNA2
(the bottomhalf of Tables 2 and S5). Note that the top groups for these
targets are all based on human-intervented simulations rather than
automated modeling. For example, the leading group AIchemy_RNA2
model predicted RNA structure based on the assembly of manually-
detected RNA structural motifs followed by full atom optimization
with the BRiQ statistical potential38,39.

The challenge in the automated structure prediction of synthetic
RNAsmay be explained by a few factors. First, the deep learning-based
approach may be biased towards the limited training data, which are
mainly from natural RNAs. The synthetic RNAs lack globally homo-
logous RNA sequences and similar structures to the existing RNAs (the
maximum TM-scoreRNA is around 0.3), which may hinder the neural
networks from inferring meaning predictions. Second, the human
groups were given a three-week deadline for each target, allowing the
elaborate human-expert interventions in the modeling procedure. In
contrast, the Yang-Server predictions for each target were generated
automatically in three days. As a fair comparison, we run the SimRNA
package andRNAComposer serverwith the same secondary structures
used by Yang-Server as inputs. The results show no superiority to the
Yang-Server models (Fig. S7). This highlights the inherent challenge in
automated modeling for these synthetic RNAs, which applies to both
conventional and deep learning-based methods.

For example, R1138 contains a few helix hinges and kissing loops,
whichplay important roles in the folding of the overall structure.While

Natural RNAs Synthetic RNAs

R1107
RMSD=17.9 Å

R1156
RMSD=16.6 Å

R1189
RMSD=16.3 Å

R1190
RMSD=16.0 Å

R1149
RMSD=13.9 Å

R1108
RMSD=9.1 Å

R1116
RMSD=10.9 Å

R1117
RMSD=2.7 Å

R1126
RMSD=32.7 Å

R1128
RMSD=22.3 Å

R1136
RMSD=41.6 Å

R1138
RMSD=40.8 Å

Fig. 2 | Yang-Servermodels (red) versus experimental structures (gray) for 12 CASP15 targets.Consistentwith Table 2, the best-submittedmodels are shownhere. The
3D structures are presented using PyMOL.
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the automated methods successfully establish satisfactory local
interaction networks (with INF value of ~0.7), the predictedmodels still
deviate significantly from the experimental structure when consider-
ing the global 3D topologies (Fig. S8b). Accurately predicting the kis-
sing loops (such as the one highlighted by the black circle) and the
helix hinges in R1138 poses a significant challenge for automated
methods, despite the recurrenceof thesemotifs across numerous RNA
structures. To illustrate, trRosettaRNA correctly predicted the high-
lighted kissing loop (highlighted by the black circle on the predicted
distance map in Fig. S9b). Utilizing this limited set of distance
restraints, trRosettaRNA can successfully generate an accurate struc-
ture of the kissing loop (Fig. S9a). However, this particular kissing loop
was not predicted correctly when modeling the structure globally,
probably due to the complicated interactions between other motifs
(Fig. S9c). This reflects the modeling difficulty of such synthetic RNA
by automated approaches. As mentioned by AIchemy_RNA2, the
accurate modeling of these synthetic RNAs requires extensive human-
expert interventions, involving template detection, secondary struc-
ture determination, motif assignment, and more39.

As the primary focus of our method is to optimize the global
RMSD, it is also worthwhile to investigate other metrics (Table S6). In
addition to the INF and MolProbity clash score mentioned above, we
also evaluate the Local Distance Difference Test (lDDT40) score, which
measures the local inter-residue distance error and has been widely
used to evaluate protein structure models. In terms of the two local
metrics (INF and lDDT), theYang-Servermodels showanotablemargin
with AIchemy_RNA2 for both natural and synthetic RNAs. This dis-
crepancy can be attributed to the reasons mentioned earlier, namely,
the inaccurate input secondary structures and the methodological
differences between the two approaches (deep learning-based versus
fragment assembly-based). The integrationof local fragment segments
and deep-learning techniques is promising for bridging this gap in the
future.

During CASP15, our method did not consider steric clashes in
modeling, resulting in high clash scores (>20) for our submitted
models. This might impact our official ranking which considers both
modeling accuracy and steric clashes. According to the CASP15
assessments36, Yang-Server is ranked 26th out of the 42 groups in terms
of clash score, worse than AIchemy_RNA and BAKER. We addressed
this issue after CASP15 by implementing an additional refining step at

the end of the energy minimization procedure. Consequently, the
average clash score of the 12 CASP15 targets dropped significantly
from 33.84 to 3.05, which is much lower than that of AIchem-
y_RNA2 (16.68).

Blind test on the latest RNA-Puzzles targets
In addition to our participation in CASP15, we also took part in the
blind tests of three RNA-Puzzles targets as an automated server group
named Yang. These targets include PZ37 (PDB ID: 8GXC; a ligand-
binding dimer), PZ38 (PDB ID: 8HB8; a ligand-binding riboswitch), and
PZ39 (PDB ID: 8DP3; a protein-binding cloverleaf RNA). The results are
summarized in Fig. 4a, b.

In the case of PZ37/PZ38, our results (RMSD 10.3 Å/8.7 Å) are
highly competitive, ranking at 3/3 out of 16/15 participating groups,
and only surpassed by the human groups Chen and Szachniuk. It is
worth noting that our predictions were fully automated and did not
consider the ligand or dimer information, making our results
impressive. However, we notice that the firstmodel chosen for PZ38 is
the worst among the five submitted models, with an RMSD of 14.4 Å,
compared to 8.7 Å of the best model. This reflects that while trRo-
settaRNA exhibits the capability to produce models with commend-
able accuracy, there remains potential for model ranking.

For the target PZ39, the RMSD of ourmodels are higher than 15 Å.
PZ39 has no similar sequence (according to BLASTN search at an
e-value cutoff of 10) nor similar structure (according to TM-
scoreRNA > 0.45) from the known RNAs. This may account for the
poor performance of our method on this target. Nonetheless, local
motif templates can be found for this RNA. For example, for the
fragment consisting of residues 20 to 26 which forms the Fab binding
site, it is easy to identify the same fragments in known Fab-binding
RNAs (e.g., in PDB IDs: 6DB9 and 3IVK). Given the limited data of
available RNA 3D structure, a promising approach to improving may
be based on the combination of deep learning with conventional
physics-based and/or fragment assembly-based methods.

Comparison with other deep learning-based methods
During the preparation of this manuscript, another three deep
learning-based approaches (DeepFoldRNA, RoseTTAFoldNA, and
RhoFold) were posted. As mentioned above, trRosettaRNA achieves a
higher summed Z-score of RMSD than these methods in the blind test

Table 2 | Results for 12 RNA targets in CASP15

Target type Target ID RMSD (Å)

Yang-Server AIchemy_RNA2 Chen RNApolis Deep learning besta Overall best

Natural R1107 17.9 (4.3b) 4.5 6.5 8.8 5.9 4.5

R1108 9.1 (4.8b) 4.5 6.0 8.5 4.8 4.5

R1116 10.9 17.3 18.0 12.7 7.9 4.8

R1117 2.7 2.3 2.0 2.7 2.7 2.0

R1149 13.9 (10.6b) 10.5 14.0 18.2 6.9 6.9

R1156 16.6 7.6 11.0 17.1 12.9 5.4

R1189 16.3 22.0 21.2 18.7 22.8 16.3

R1190 16.0 22.0 18.8 22.4 22.2 16.0

Average 12.9 (10.3b) 11.3 12.2 13.6 10.8 7.5

Synthetic R1126 32.7 8.8 12.6 20.0 30.2 8.9

R1128 22.3 4.3 6.7 14.6 14.3 4.3

R1136 41.6 7.3 10.9 11.0 27.3 7.2

R1138 40.8 7.8 12.3 9.6 35.5 7.8

Average 34.4 7.0 10.6 13.8 26.8 7.0

Overall average 20.1 (18.3b) 9.9 11.2 13.7 16.1 7.4
aAccording to the CASP15 abstracts, there are 14 RNA prediction groups utilizing deep learning-based methods to predict RNA structures.
btrRosettaRNA results with secondary structure templates as inputs.
For all compared groups, we evaluate their best-submitted models for each target. The evaluation based on the first predicted model is shown in Table S5.
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of the CASP15 competition. We further conducted head-to-head
comparisons between these methods on RNAs from the blind tests
(CASP15 and RNA-Puzzles). For each target from blind tests, we used
the result of the first submitted models if available; otherwise, we ran
the program locally to predict the structure model.

The results show that trRosettaRNA achieves a 3.3/2.1 Å lower
RMSD than DeepFoldRNA/RoseTTAFoldNA (orange/purple points in
Fig. 4c) on the 15 RNAs from the blind tests. For 11/9 out of these 15
RNAs, the trRosettaRNA predictions are more accurate than those by
DeepFoldRNA/RoseTTAFoldNA. The average RMSD of trRosettaRNA
models (21.3 Å) is marginally higher than RhoFold models (20.6Å; P-
value = 0.9; blue points in Fig. 4c), which is inconsistent with the
comparison based on the Z-score of RMSD (i.e., Fig. S6). This slight
difference is mainly due to the poor performance of trRosettaRNA on
two CASP15 RNAs (17.9 Å for R1107 and 9.1 Å for R1108; compared to
5.9Å and 5.4 Å for RhoFold, respectively; highlighted by red circle in
Fig. 4c). Asmentioned above (see also Fig. 3), this performance gapcan
be effectively bridged by employing more confident secondary
structures as inputs. For the remaining 13 RNAs, the average RMSD of
trRosettaRNA (22.5 Å) is slightly lower than RhoFold (22.9Å).

Moreover, trRosettaRNA outperforms RhoFold for 8 out of the
remaining 13 RNAs.

To summarize, trRosettaRNA outperforms DeepFoldRNA and
RoseTTAFoldNA, and is competitive with RhoFold in blind tests,
highlighting its robustness.

Impact of the predicted 1D and 2D geometries
The geometries predicted by the RNAformer network consist of 1D
orientations and 2D contacts, distances, and orientations (Fig. S1). To
analyze their contributions, we compare the modeling results using
different geometries on the 30 RNA-Puzzles targets (Fig. 5a and
Table S7).Using the 2Ddistance restraints only, trRosettaRNAachieves
a reasonableRMSDof 11.34 Å. This value is reduced to 10.79 Åwhen the
1D and 2D orientations are included. Furthermore, with the help of 2D
contacts, the RMSD drops to 10.51 Å. We use the target PZ11 (PDB ID:
5LYS) to show the impacts of different restraints. As shown in Fig. 5b,
using 2D distance restraints only, trRosettaRNA can generate a struc-
turemodelwith anRMSDof 10.5 Å.However, the helix at the 5’-end and
3’-end (highlighted by the green square in Fig. 5b) is wrongly twisted.
The introduction of 1D and 2Dorientationsfixes thewrong twist of this

Experimental Yang-Server AIchemy-RNA2SPOT-RNA Rfam template

2D structures 3D structures

RMSD=17.9 Å/4.3 Å
(eRMSD=12.4 Å/3.2 Å) 

RMSD=9.1 Å/4.8 Å
(eRMSD=10.3 Å/3.1 Å) 

RMSD=13.9 Å/10.6 Å
(eRMSD=11.5 Å/9.7 Å) 

RMSD=4.5 Å

RMSD=4.5 Å

RMSD=10.5 Å

Fig. 3 | Results for three targets fromCASP15 forwhich the template secondary
structures can be found in the Rfam database. The RNA secondary structure
visualization was employed with forna52. The template search and 2D structure
modelling were employed with R2DT program37. For the 3D modelling results, we
present the bestmodel submitted by Yang-Server (in red), the trRosettaRNAmodel

basedon 2D templates (in blue) and theAIchemy_RNA2bestmodel (in green). Both
predicted 3D structures are superimposed onto the experimental structures (gray).
For Yang-Server models, the RMSD and eRMSD values are shown in SPOT-RNA-
based/R2DT-based format.
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region. The 2D contact restraints further refine the structure, resulting
in a more accurate model with 6.7 Å RMSD.

Confidence score of the predicted structure models
Toguide real-world application, the confidence scoresof thepredicted
protein structuremodels have been estimated reliably in trRosetta28–30.
A similar estimation can be extended to trRosettaRNA. Specifically, we
first calculate a few variables reflecting the confidence of the predicted
distance maps and the convergence of the first structure models (see
Methods for more details). Then a linear regression on these variables
is employed to fit the RMSD values. For the RNAs from the benchmark
datasets, the estimated RMSDs (eRMSDs) correlate well with the real
RMSDs of the predicted models (PCC =0.56, Fig. 5c). Moreover, the
eRMSD metric also roughly reflects the modeling difficulty for the 12
CASP15 targets, with an average value of 17.2 Å.

As a practical application, for the three CASP15 RNAs (R1107,
R1108, and R1149) with reliable secondary structure templates, the
defined eRMSD effectively captures the improvements from the
introduction of these templates (Fig. 3 and Table S5). Additionally, in 6
out of the 8 cases where SPOT-RNA provided inaccurate secondary
structures, the eRMSD successfully helps identify models with more
accurate input of secondary structures (Table S1). These observations
highlight the promising potential of eRMSD in facilitating the optimal
selection between predictions from various inputs.

Analysis of the running time
We decompose the running time of trRosettaRNA into two parts: 2D
geometry prediction and 3D structure generation. The time for MSA
generation is not discussed here as it can be flexible depending on the
searching algorithms and sequence databases. Fig. 5d shows that

trRosettaRNA spends most time in the generation of 3D structure (>
95%).With the increase in sequence length, the running time increases
linearly. In general, it takes <30min to complete the prediction for a
typical RNA with <200 nucleotides.

Application to Rfam families with unknown structures
It remains challenging to solve RNA structures by experiment. For
example, only 123 out of the 3938 families in the Rfam database (ver-
sion 14.4) have experimentally resolved 3D structures41. We sought to
predict the structures for the Rfam families that have no experimental
structures. We collected 1752 unsolved families that are 50–200
nucleotides long and havemore than 30members. For each family, we
use its consensus secondary structure along with the MSA derived
from the consensus sequence as the input features to trRosettaRNA.
Most of these families are not predicted well, with eRMSD > 10Å for
891 out of 1752 families (Fig. 6a). This may reflect the difficulty of
determining the structures for these families.

Nevertheless, trRosettaRNA does predict accurate structures for
263 families with eRMSD <4Å. For 27 of these families, the predicted
structure models do not have any similar structures in PDB according
to the program RNAalign (TM-scoreRNA

42 ≥0.45). In Fig. 6b, we show
the predicted structures for 6 families with distinct topologies. These
high-confidence models are anticipated to provide a structural basis
for understanding their biological functions and guide their experi-
mental determinations. For example, for the family sul1 RNA
(RF01070) which encodes a subunit of an enzyme participating in the
citric acid cycle, trRosettaRNA can generate a confidentmodel with an
estimated RMSD of 1.6 Å. The trRosettaRNA models for the 263
familieswith eRMSD<4Å are available onourwebsite (https://yanglab.
qd.sdu.edu.cn/trRosettaRNA/rfam/).
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Fig. 4 | Blind test results and comparison with other deep learning-based
methods. a, b blind test results on the latest three targets from RNA-Puzzles.
a RMSD comparison of the models submitted by Yang group and models from
other groups. b the best models submitted by Yang group (red) superposed to the
experimental structures (gray). c head-to-head RMSD comparison between trRo-
settaRNA and other deep learning-basedmethods (n = 15 RNAs from the blind tests

of CASP15 and RNA-Puzzles). The dashed horizontal and vertical lines correspond
to an RMSD of 4 Å. The bar plots show the RMSD distributions. The red circles
highlight the twocases (R1107 andR1108) inwhich trRosettaRNAcan achieve better
results with improved secondary structures. Source data are provided as a Source
Data file.
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Discussion
We have developed trRosettaRNA, an automated approach to RNA 3D
structure predictionwith the transformer network.We have rigorously
assessed trRosettaRNA with two independent datasets and two blind
tests. The benchmark tests show that trRosettaRNA predicts more
accurate models than the other automated methods. trRosettaRNA
was assessed blindly in two experiments: RNA-Puzzles (3 targets) and
CASP15 (12 targets). The RNA-Puzzles experiments show that the
automated predictions by trRosettaRNA are competitive with the top
human predictions for 2 out of 3 targets. The CASP15 experiments
show that trRosettaRNA outperforms other deep learning-based
methods in terms of the cumulative Z-score based on RMSD. Our
method achieves comparable accuracy to the top human groups on 8
natural RNAs, though without any human interventions.

However, we notice that the average RMSD on the natural RNAs
from the CASP15 blind test (14.8 Å for the first models) is higher than
that on the RNAs from the two benchmark datasets (8.5 Å for 30
independent RNAs and 10.5Å for 20 previous RNA-Puzzles targets).
The disparity in themodeling accuracymay be explained by the target
difficulty and novelty. (1) target difficulty. Most of the CASP15 RNAs
exhibit high flexibility and can adopt multiple conformations (except
for R1116 and R1117)36. In addition, there are two dimers (R1107, R1108)
and two protein-binding RNAswithmany single-strand regions (R1189,
R1190). These features pose challenges for SPOT-RNA in predicting
confident secondary structures. To illustrate, the average F1-score of
the predicted secondary structure by SPOT-RNA is much lower for the

8 natural RNAs from CASP15 in contrast to the 20 RNA-Puzzles targets
(0.62 and 0.72, respectively). (2) target novelty. A significant propor-
tion of RNAs (two-thirds, 20 out of 30) from the non-redundant
benchmark dataset exhibit high similarities (TM-scoreRNA > 0.6) to
previously known RNAs, making them easy to predict for data-driven
methods like trRosettaRNA. On the contrary, none of the RNAs from
CASP15 show such a level of similarity (Fig. S10).

This reflects the limitations associated with trRosettaRNA and the
benchmark tests employed in this work. First, the performance of
trRosettaRNA is susceptible to the quality of predicted secondary
structures. Secondly, though trRosettaRNA achieves promising accu-
racy in the internal benchmark tests, its performance on novel RNAs
remains limited. Moreover, the automated structure prediction of
synthetic RNAs remains challenging.

The blind tests in CASP15 experiments suggest that the deep
learning approach to RNA structure prediction is still in its infancy.
Nevertheless, with consistent development, deep learning should be
promising to advance RNA structure prediction. Incorporation of
physics-based modeling into deep learning is one of the directions to
improve in the future. One of the most instant alternatives is to com-
bine it with other conventional approaches and optimize the algo-
rithms toward those under-represented RNA structures in the future.
For example, to overcome the bias toward known RNA folds, neural
networks (such as with physics-informed neural networks43) can be
utilized to learn force fields or to recognize/assemble local motifs
instead of directly predicting the global 3D structures.

distance

10

20

0 0

10

10

20

20
distance

+ 2D orientations
distance

+ 2D orientations

+ 1D orientations distance

+ 2D orientations

+ 1D orientations

+ contact

R
M

S
D

 (Å
)

RMSD=10.5 Å RMSD=9.2 Å RMSD=8.5 Å RMSD=6.7 Å

a c

db
estimated RMSD (Å)

re
al

 R
M

S
D

 (Å
)

2D+3D
2D only

sequence length

ru
nn

in
g 

tim
e 

(m
in

.)

Fig. 5 | Summary of the folding results by different restraints. a contribution of
the various restraints to the trRosettaRNAmodeling accuracy in terms of the RMSD
for the 20 RNA-Puzzles targets (n = 20 RNAs). b an example (PZ11) to illustrate the
impact of different restraints. The predicted models (red cartoon) are superposed
to the experimental structures (gray cartoon). The green square highlights the helix
region which is influenced by the introduction of more restraints. c head-to-head

comparison between the estimated and real RMSD for all RNAs in the benchmark
datasets (n = 50 RNAs). d the relationship between the running time and the
sequence length on 1752 Rfam families. The 2Dgeometry predictions (orange dots)
were run on one GPU card. The 3D structure folding was performed on one CPU
core. Source data are provided as a Source Data file.
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Methods
trRosettaRNA algorithm
As shown in Fig. 1a, the full pipeline of trRosettaRNA consists of three
major steps: preparation of input data, prediction of 1D and 2D geo-
metries, and generation of 3D structure.

Step 1. Preparation of input data
For a given query RNA, the first step of trRosettaRNA is to prepare
an MSA and a secondary structure. Two different MSAs are generated
for each query sequence. The first is generated by using the program
rMSA against multiple sequence databases (NCBI’s nt, Rfam, and
RNAcentral44). The second is obtained by running the program
Infernal45 against the smaller database RNAcentral with two iterations,
which is very fast. Then we select the final MSA based on the qualities
of the predicted distance maps (measured by the average of standard
deviations of the probability values of each nucleotide pair, Fig. S11).
The secondary structure is predicted by SPOT-RNA32 from the
query sequence. Here we use the predicted probability matrix as the
input, which contains more information than the dot-bracket
representation.

Step 2. Prediction of 1D and 2D geometries
The second step of trRosettaRNA is to predict the 1D and 2D geome-
tries by deep learning. We design a transformer network (named
RNAformer) similar to the network Evoformer in AlphaFold2. At the
very start, the input MSA and secondary structure are converted into
two representations, i.e., theMSA representation (i.e., MSA embedded
by nucleotide types) and the pair representation (including the direct
couplings derived from MSA and the probability matrix of the pre-
dicted secondary structure). We adopt a transformer-based module
(i.e., RNAformer) to update both representations. More specifically,

each block of RNAformer can be divided into four steps according to
the update direction (Fig. 1b).
1. MSA to MSA. To update the MSA representation by itself, we

perform row- and column-wise gated self-attention operations
and combine the corresponding results. A feed-forward layer is
employed to introduce nonlinearity. Note that the pair informa-
tion participates in the row-wise attention by adding bias to the
attention maps.

2. MSA to pair. We perform an outer product operation on the self-
updated MSA representation to transform it into the pair format.
In detail, theMSA representation is linearly projected to a smaller
dimension. Then for the nucleotide pair (i, j), the outer products
of the vectors from the ith and the jth columns of the MSA
representation are averaged over the homologous sequences to
update the representation for this pair.

3. Pair to pair. After the above step, we perform the triangle
updates, followed by a feed-forward layer. For each triangle
update layer, we use a multi-scale network Res2Net46 to
enhance the ability to model the local details.

4. Pair to MSA. The updated pair representation is then linearly
projected to the pair-wise attention maps, which are then
multiplied on the MSA representation, followed by a feed-
forward layer.

A single-pass RNAformer consists of 48 blocks, which are cycled 4
times in the complete inference (Fig. 1a). The final predicted prob-
ability distributions of the 2Dgeometries arederived from theupdated
pair representation via linear layers and softmax operations. To pre-
dict the 1D geometry, we transform the MSA representation into 1D
representation by row-wise weighted summation, followed by linear
layers and softmax operations to obtain the predicted probabilities.
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Step 3. Generation of full-atom structure models
Similar to trRosetta, trRosettaRNA generates full-atom structure
models by energy minimization with deep learning potentials and
physics-based energy terms in Rosetta.

E =w1Edist +w2Eori +w3Econt +w4Eros ð1Þ

Eori = Eori,2D +
L
2
Eori,1D ð2Þ

where Edist, Eori, and Econt represent the distance-, orientation-, contact-
based restraints and Rosetta’s internal energy terms, respectively;
Eori,2D and Eori,1D represent the restraints from 2D and 1D orientations,
respectively; L is the length of the sequence. A detailed description of
these energy terms is available in the Supporting Information. The
weights (w1 = 1.03, w2 = 1.0, w3 = 1.05, w4 = 0.05) are decided on
hundreds of RNAs randomly selected from the training set tominimize
the average RMSD. Note that we only select a subset of restraints with
probabilities higher than a specified threshold (0.45, 0.65, and 0.6 for
distances, orientations, and contacts, respectively).

The folding procedure is implemented with pyRosetta47. From
eachRNA, 20 full-atom starting structures arefirst generated using the
RNA_HelixAssembler protocol in pyRosetta47. The Quasi-Newton-
based optimization L-BFGS is then applied to refine these structures
by minimizing the total energy, resulting in 20 refined full-atom
structuremodels. Finally, themodelwith the lowest total energy (Eq. 1)
is selected as the final prediction.

Construction of datasets
Test sets. Two benchmark datasets are constructed in this work. The
first one is from the RNA-Puzzles experiments. This set consists of all
RNA-Puzzles targets from PZ1 through PZ33 except PZ2. PZ2 is a
complex that has complicated interactions among eight chains, which
is out of the prediction scope of the current work. The second dataset
comes from PDB. In detail, we first collected 339 RNA structures from
PDB that were released after 2017-01. RNAs withmore than 200 or less
than 30 nucleotides were removed. Then the program cd-hit-est48 was
used to remove redundant sequences at 80% sequence identity. To
avoid over-estimation, RNAs with an e-value lower than 10 by BLASTN
searching against the training sets of trRosettaRNA and SPOT-RNA
were excluded from both test sets. The duplicated RNAs between
these two test setswere also removed. The resulting sets comprised 20
RNA-Puzzles targets and 30 non-redundant RNAs, respectively.

Training sets from PDB. To train our models, we first collected all the
RNA chains released before 2022-01 in PDB. Multi-chain structures
were separated into single-chain structures. Modified nucleotides are
replaced by the standard ones. In addition, if two chains form more
than three base-pairing interactions, they are linked by three Adenines,
resulting in a new sample. In total, we obtained 8849 samples. Thenwe
tried to generate MSA for each query sequence and removed the
sequences without sequence homologs. Finally, 3633 RNA chains were
retained for training the network models of trRosettaRNA.

To avoid data leakage in the benchmark tests while keeping as
many training samples as possible, five training subsets were obtained
by filtering the above 3633 RNA chains. Specifically, for the RNA-
Puzzles set, we split the 20 RNAs into four subsets according to their
release dates in PDB (i.e., 2010-12 ~ 2013-07, 2013-07 ~ 2016-07, 2016-
07 ~ 2019-04, and after 2019-04, see Table S2). Correspondingly, four
smaller training sets (1133, 1528, 2337, and 3001 samples, respectively)
were obtained by removing structures that were released after the
above dates. We trained four network models with these training sets,
respectively. For each group of the RNA-Puzzles targets, the predic-
tions were made by the model trained on the corresponding training

set. For the 30 independent RNAs, the training set consists of 2454
RNAs that were released before 2017-01.

Self-distillation training set from bpRNA. As the number of available
RNA structures is limited, inspired by the success of the self-distillation
method used in AlphaFold2, we constructed a self-distillation dataset
from thebpRNAdatabasewith experimental secondary structures49. In
detail, we collected thebpRNAsequences that are available in theRfam
database41 so that the Rfam MSAs can be used immediately. Then we
removed the orphan families (i.e., with one RNA sequence only) and
ran cd-hit-est to exclude the redundant sequences at a sequence
identity cutoff of 80%. The final self-distillation dataset consists of
13202 RNA chains. The RNAs possessing an e-value lower than 10 (by
BLASTN) or with a sequence identity higher than 80% (by cd-hit-est)
with the two benchmark datasets were excluded from the self-
distillation dataset when training the models for benchmark tests.
Consequently, the self-distillationdataset for benchmark tests consists
of 13175 RNA chains.

We use a single un-distilled RNAformer model, i.e., trained on the
PDB dataset (or the corresponding subsets for benchmark tests), to
generate the predicted labels for the self-distillation set. Using this un-
distilledmodel, we predicted the 1D and 2D geometries (in the formof
probability distributions) for every sequence in the self-distillation set.
These predicted geometries are then assigned as the labels of these
distillation samples. As the predictions may be inaccurate for some
nucleotides,we estimate thepredictionconfidence andfiltered out the
potentially inaccurate nucleotides and nucleotide pairs. In detail, for
each pair of nucleotides (i, j) with sequence separation less than 128
(i.e., |i-j | ≤ 128), we computed the mean P-P distance distribution (i.e.,
the reference distribution, denoted byPref

ji�jj), using the predicted dis-
tance maps for 1000 samples randomly selected from the self-
distillation set. Then for each pair of nucleotides in a self-distillation
sequence, we calculated its confidence score (denoted by ci,j), defined
as the Kullback-Leibler divergence between its predicted distribution
(denoted by Pi,j) and the reference distribution:

ci,j =DKL Pi,jjPref
ji�jj

� �
ð3Þ

The per-nucleotide confidence score ci was calculated as the
average of ci,j over all js within the sequence separation of 128:

ci =
1

128

Xi + 128

j = i + 1

ci,j ð4Þ

During training (see below), the nucleotides/nucleotide pairs with
confidence scores <0.5 are masked out when calculating the 1D/2D
losses, respectively.

Training procedure and loss function
The training of anRNAformermodel can be divided into three steps. In
the first step, we trained an un-distilled model using the PDB set by 15
epochs. This model was then used to generate the labels for RNAs in
the self-distillation set. In the second step, the un-distilled model was
further trained on the combination of the PDB set and the self-
distillation set with another 15 epochs. At each epoch, the training
samples consist of all the N samples from the PDB set and randomly
selected 3N samples from the self-distillation set, whereN is the size of
the PDB set. In the third step, we finetuned the models on the long
sequences (>100 nucleotides) selected from the PDB set. We used the
Adam optimizer to minimize the loss function (see below) with dif-
ferent learning rates (0.0001 for the first two steps, 0.00005 for the
third step).

For all training steps, the loss function is defined as the cross
entropy between the predicted distributions and the real or generated
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labels. In total, the loss function can be written as:

Loss = L2D + L1D + 5Lcont ð5Þ

where L2D, L1D, and Lcont are the loss items for the 2D distances and
orientations, 1D orientations, and 2D contacts, respectively. More
specifically, the three loss items can be written as:

L2D =
1

10N2
nt

XL

i = 1

XL

j = 1

X
g2f2Dgeometriesg

CE Pg
i,j,Y

g
i,j

� �
ð6Þ

L1D =
1

4NL

XL

i = 1

X
g2f1Dgeometriesg

CE Pg
i ,Y

g
i

� �
ð7Þ

Lcont =
1

L2
XL

i = 1

XL

j = 1

CE Pcont
i,j ,Ycont

i,j

� �
ð8Þ

where CE() is the cross entropy function; Pg
i,j is the predicted prob-

ability distribution of the 2D geometry g between nucleotides i and j;
Pg
i is the predicted probability distribution of the 1D geometry g of

nucleotide i; Pcont
i,j is the predicted probability of nucleotides i and j to

be in contact; the Y heads are the one-hot encodings of the true labels
(for PDB samples) or the predicted distributions (for self-distillation
samples); L is the number of nucleotides in sequence; 10 and 4 are the
number of types of 2Dgeometries (5 distances + 5 orientations) and 1D
geometries (4 orientations), respectively.

Estimation of model confidence
To estimate the quality of the predictedmodel, a few variables are first
derived from predicted distance maps and generated decoys.
1. pRMSD: the averagepair-wiseRMSDof the top tendecoyswith the

lowest total energies.
2. mp: the mean probability of the predicted inter-nucleotide

distances for the set (denoted by S) of the top 15 L (L is the
sequence length) nucleotide pairs (as ranked by the probability
P(dP-P < 40Å)). A similar variable has been defined to estimate the
accuracy of predicted inter-residue distances50.

mp =
1

Nbins

XNbins

k = 1

1
jMk j

X
ði,jÞ2Mk

Pmaxði, jÞ ð9Þ

where dP-P denotes the distance between the atoms P; Nbins is the total
number of distancebins (38 here),Mk is a collection of nucleotide pairs
(i, j) (from S), forwhich themaximumprobability ofdP-P, (i.e., Pmax(i, j)),
belongs to the kth distance bin.
3. std, the average standard deviations of the probability values for

all nucleotide pairs.
4. prop, the proportion of nucleotide pairs with P(dP-P < 40Å) > 0.45.

The RMSD is estimated based on linear regression over the above
variables using hundreds of randomly selected RNAs from the training
set.

eRMSD=0:64×pRMSD� 189:43× std � 4:01 ×mp� 1:06×prop+ 15:2

ð10Þ

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training sets, the set of 20 RNA-Puzzles RNAs, and the set of 30
independent RNAs can be downloaded fromZenodo51 and our website
(https://yanglab.qd.sdu.edu.cn/trRosettaRNA/). The RNAs from blind
tests of CASP15 and RNA-Puzzles can be downloaded from https://
predictioncenter.org/casp15/results.cgi?tr_type=rna and https://www.
rnapuzzles.org/results/, respectively. The PDB entries mentioned in
this study (3IVK, 5KH8, 5LYS, 6D89, 7D7V, 8DP3, 8GXC, and 8HB8)
were obtained by four-digit accession codes in the Protein Data Bank
repository (https://www.rcsb.org/). The sequence databases of NCBI’s
nt, Rfam, and RNAcentral used to generate MSA in this study can be
downloaded from https://www.ncbi.nlm.nih.gov/nucleotide, https://
rfam.org/, and https://rnacentral.org/, respectively. The source
data underlying Tables 1, S7 and Figs. 4–6, S2, S3, S5, S6, S10, S11 are
provided in the Source Data file. Source data are provided with
this paper.

Code availability
The trRosettaRNA server and the standalone package are available at
Zenodo51 and our website (https://yanglab.qd.sdu.edu.cn/
trRosettaRNA/).
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