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Block polymers are an attractive platform for uncovering the factors that give rise to self-
assembly in soft matter owing to their relatively simple thermodynamic description,
as captured in self-consistent field theory (SCFT). SCFT historically has found great
success explaining experimental data, allowing one to construct phase diagrams from
a set of candidate phases, and there is now strong interest in deploying SCFT as a
screening tool to guide experimental design. However, using SCFT for phase discovery
leads to a conundrum: How does one discover a new morphology if the set of candidate
phases needs to be specified in advance? This long-standing challenge was surmounted
by training a deep convolutional generative adversarial network (GAN) with trajectories
from converged SCFT solutions, and then deploying the GAN to generate input fields
for subsequent SCFT calculations. The power of this approach is demonstrated for
network phase formation in neat diblock copolymer melts via SCFT. A training set
of only five networks produced 349 candidate phases spanning known and previously
unexplored morphologies, including a chiral network. This computational pipeline,
constructed here entirely from open-source codes, should find widespread application
in block polymer phase discovery and other forms of soft matter.
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Soft matter possesses a remarkable ability to spontaneously self-assemble into nanos-
tructured morphologies through a delicate balance between enthalpic and entropic
effects, making a priori prediction challenging. Discovering new ordered states can
benefit tremendously from using theory and computation as a screening tool to identify
promising materials for experimental investigation. If the target phase is known in
advance, the challenge is identifying the molecular building blocks that favor formation
of that state, which is known as the “inverse problem” (1). Developing robust solutions
to the inverse problem in soft matter remains an outstanding issue and area of intense
interest. An equally daunting challenge is using theory and computation for de novo
phase discovery, i.e., to uncover previously unanticipated ordered states in a manner
similar to a serendipitous experiment. The difficulty in computational phase discovery in
soft matter lies in the need for robust initial conditions that drive the solution toward a
phase of interest. Without any advance knowledge of the structure of that phase, it is not
obvious how to design appropriate initial conditions. This conundrum poses a substantial
obstacle for computational phase discovery across a broad range of soft matter.

The present contribution addresses the computational phase discovery question in
the context of a model system for understanding self-assembly in soft matter, namely
block polymers. Block polymers are the most tractable platform for exposing the
general principles of ordered state selection in soft matter, owing to their relatively
simple thermodynamics (2), the principle of universality (3), and access to virtually
unlimited molecular designs through a plethora of synthetic approaches (4). A block
copolymer melt cooled below the order–disorder temperature selects a morphology that
balances the interfacial tension created by contact between unlike blocks against the
entropic penalty of chain stretching, under the constraint of filling space at constant
density (5, 6). Universality in this process emerges at high molecular weights, where
the detailed chemical interactions at the monomer scale are subsumed into Gaussian
statistics governing the chain configurations, embodied by the statistical segment length
and degree of polymerization of the blocks, and Flory–Huggins parameters quantifying
the free energy of mixing (3). The resulting thermodynamic model is thus relatively
simple compared to other forms of soft matter.

Despite this simplicity, predicting block polymer phase behavior remains challenging
due to the rapid expansion of the parameter space as the number of blocks increases (7).
As such, identifying new ordered states requires computational methods to guide exper-
iments. Polymer field theory is the most powerful approach here owing to its efficiency
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for simulating dense systems (5). Within polymer field the-
ory, a mean-field implementation—self-consistent field theory
(SCFT)—is widely deployed because it enables facile com-
putation of both the free energy and morphology of block
copolymer melts and blends (8–10) by obtaining the self-
consistent configurations of a test chain in chemical potential
fields created by the other polymers.

Fig. 1 brings to the fore the challenge in using SCFT for
phase discovery, illustrated here in the context of AB copolymers.
A given SCFT calculation requires solving modified diffusion
equations (MDEs) in the spatially-inhomogeneous chemical
potential fields !A(r) and !B(r) for the forward and reverse
propagators, q(r, s) and q†(r, s), where s is the position on the
chain contour, which is done via a pseudospectral method (11).
Those solutions permit calculation of the density fields �A(r)
and�B(r), which, in conjunction with a Lagrange multiplier field
that imposes the incompressibility constraint�A(r)+�B(r) = 1,
allows computation of!A(r) and!B(r). The resulting system of
nonlinear equations, described in detail in refs. 5 and 8–10, thus
must be solved self-consistently (12, 13) from an initial guess for
the chemical potential fields while also relaxing the unit-cell stress
(14). Once the system has converged, the Helmholtz free energy
per chain is computed from the SCFT free energy functional.
The nonlinear nature of the SCFT equations can give rise to
multiple solutions, with many of these corresponding to local
minima, i.e., metastable states. Therefore, the initial guess used
to initialize an SCFT calculation is a key step in the calculation, as
it can significantly affect the solution. In practice, different initial
guesses can lead to different solutions, and a poor initial guess
can even prevent the algorithm from converging to a physically
meaningful solution.

SCFT, much like other physics-based simulation methods in
soft matter, suffers from a fundamental challenge for materials
discovery: How can one initialize a reasonable guess to produce a
new candidate phase without advance knowledge of the structure?
For example, the most efficient way to initialize an SCFT
solution is to use a previously computed result and continue
the solution in the parameter space. When no previous solution
is available, one can provide an initial guess for the chemical
potential fields by using a form-factor approach for particle-
forming phases or a level-set method for network phases (9, 15).
While these initialization methods are very powerful approaches
for investigating the free energy and morphologies of known
phases, they are ill-suited for materials discovery because they
require a priori knowledge of the structure of the candidate
phases, and converging from random initial conditions tends
not to be robust.

This longstanding problem for phase discovery can be resolved
by leveraging the power of deep generative models to propose
new morphologies. Deep generative models, often referred to
as generative artificial intelligence, use deep neural networks to
identify the hidden patterns within existing data and leverage
that information to generate new examples (16). Among these
models, generative adversarial networks (GANs) (17), and deep
convolutional GANs in particular (18), have emerged as highly
effective approaches in image generation that we can deploy here
for block polymer phase discovery. A deep convolutional GAN
consists of two convolutional neural networks: a generator and a
discriminator. The discriminator functions as a binary classifier,
trained to distinguish generated fake images from the real images
that make up the training set. Meanwhile, the generator is trained
to transform a latent space vector into a synthetic image in the
data space. This transformation is guided by a designated loss
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Fig. 1. Conventional approach to using SCFT to compute block polymer
phase behavior. The iterative solution requires initialization using either a
previously computed solution or a guess for the structure, e.g., a level set for
network phases or form factor for particle phases, to initialize the chemical
potential fields. The SCFT iterator refines the chemical potential fields through
solutions of the MDEs for the forward and reverse propagators, which are
then integrated to compute the density fields for the given blocks. The density
fields are then used to compute the error in the self-consistent field (SCF)
equations. If the SCF error is below a set tolerance, the solution has converged
and the calculation outputs the density field, the optimal unit cell geometry,
and the Helmholtz free energy.

function that rewards the generator’s success in deceiving the
discriminator. The training of these two neural networks involves
an adversarial interplay, resulting in iterative improvements for
both networks throughout the training process.

Here, we leverage the ability of deep convolutional GANs to
propose new initial conditions for SCFT calculations in a flexible
unit cell (14), by learning from the monomer density field of a
few known phases. The density fields, represented on a regular
grid with values ranging from 0 to 1, can be treated as 3D gray-
scale images for training. The synergy between GANs and SCFT
brings out the best in both approaches; SCFT has a remarkable
ability to adjust the system morphology during convergence,
which puts minimal demands on the generator to propose a
precise guess. The power of this approach is demonstrated using
network phase formation in a neat, diblock copolymer melt,
where the generative polymer field theory not only produced all
known network phases in block copolymers using the knowledge
of five known network phases, but uncovered hundreds of
possible candidate phases including an intriguing chiral network
phase with a relatively low free energy.

Integrating Polymer Field Theory with GANs
The generative polymer field theory method, illustrated in Fig. 2A
in the context of SCFT, consists of three steps. The first step
computes unit-cell SCFT solutions for a few known phases,
following the standard initialization approach of Fig. 1. Simply
using the converged SCFT solutions does not provide enough
training data, so the SCFT density fields are output every five
iterations during the calculation. The second step trains the GAN
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Fig. 2. Generative polymer field theory for block polymer phase discovery.
(A) In generative polymer field theory, a small set of m classical field
theory calculations are performed first. A set of intermediate states during
that calculation are output, randomly transformed, and then used to train
the GAN. Following training, the GAN generates thousands of new initial
conditions for subsequent field theory calculations. The pipeline illustrates
this generative approach in the context of SCFT. (B) Example of data
augmentation strategy involving duplication of the unit cell during an SCFT
trajectory, random translation and rotation, and then extraction of a new
unit cell applied on the training data. In the images in B(ii) and B(iii), the box
illustrates the unit cell used for duplication or the unit cell that is extracted
from the transformed data.

from those density fields (SI Appendix, Figs. S1 and S2 and Movie
S1). The third step uses guesses produced from the trained GAN
to seed a second round of SCFT calculations in a flexible box that,
in principle, generates converged morphologies that are distinct
from those in the original training set.

It is not immediately obvious that this approach will work
because GAN training typically requires a diverse data set to
enhance generalizability, but there are very few known network
phases in block polymers. As a result, the key is to produce
sufficiently diverse data to avoid producing a GAN that simply
recapitulates the known phases. As part of our data augmentation
strategy, we thus applied random translations and rotations to the
3D image, as illustrated in Fig. 2B. We first duplicated and tiled
the 3D image containing the monomer density data along three
directions. Next, a new cubic box was obtained by randomly

translating, rotating the original box that represents the unit cell.
The new coordinates of a 32×32×32 grid were then calculated
based on the coordinates of the new box. Since the original
data are also on a grid, the values on the new grid points were
obtained by interpolation of the density data from the original
grid points. This process breaks the periodic boundary condition
of the density fields. The training data are nonetheless periodic
because the format for specifying the density fields only uses
three of the six faces of the unit cell and enforces periodicity at
the other faces. As a result, however, there may be large density
gradients near the other three faces of the unit cell. Even if
the GAN-generated initial guesses preserve this feature, SCFT
is able to smear them out during convergence for the relatively
low segregation strengths investigated here (19). Ultimately, data
augmentation was essential for the purpose of diversifying the
training data and improving the breadth of the domain space
available to the GAN. As shown in SI Appendix, Fig. S3, if
we did not apply these random transformations, the density
fields generated by the GAN generator closely resembled the
training inputs and were unlikely to converge to any solutions
not represented in the training data during SCFT calculations.

Model Problem: Network Phase Discovery in
Diblock Copolymer Melts
The power of this approach is demonstrated using network phase
formation in a neat, diblock copolymer melt. Network phases are
bicontinuous (or multicontinuous), three-dimensional, periodic
systems with a range of possible symmetries and topologies.
Historically, SCFT has played a vital role in understanding the
emergence of network phases in block polymers, explaining the
stability of the double-gyroid phase (20, 21), predicting the O70

phase in diblock melts (22), and rationalizing the stability of
different networks (23). Network phases are also important in
technological applications; their bicontinuous nature makes them
attractive as membranes (24) and optically active materials (25).

To focus the study, we analyzed a conformationally symmetric
diblock copolymer melt with a minority block volume fraction
fA = 0.38 and a segregation strength �N = 17.5, where
� is the Flory–Huggins parameter and N is the total degree
of polymerization. The SCFT phase diagram at this state
point predicts double gyroid is the stable morphology (26).
The training data were generated from SCFT trajectories for
single and double gyroid (threefold connectors), single diamond
(fourfold connectors), and single and double primitive (sixfold
connectors). To provide sufficient diversity of the density fields
for our GAN training data, we obtained SCFT solutions near the
double-gyroid window of the linear diblock copolymer melt for
state points that uniformly sample from the range�N ∈ [15, 20],
fA ∈ [0.35, 0.45], � ∈ [0.75, 1.33]. For four of the five training
phases, except for double primitive, we used the level-set method
to construct initial guesses for fA = 0.35, 0.40 and 0.45. For a
given sampled state point (�N, fA, �), we then randomly selected
one of those three initial guesses as the initialization of the fields
for the SCFT calculation. For the double-primitive phase, it is
difficult to obtain converged solutions for random state points
from a level set due to the geometrical packing frustration in the
six-connected node (23). Therefore, instead of using the level-set
method to initialize the calculation, we randomly selected from
three converged solutions with fA = 0.37, 0.40 and 0.42 as the
initial guess for the double-primitive density field. Following data
augmentation (Fig. 2B), the number of images generated from
each phase are as follows: double gyroid (3,604), single gyroid
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(3,130), single diamond (2,793), single primitive (4,142), and
double primitive (4,604), for a total of 18,273 3D images after
data augmentation. We then used the GAN to generate 5,000
initial conditions for the final step of Fig. 2B and attempted to
converge each of them using SCFT.

De Novo Generation of Known Block Polymer Phases. The
training data specifically excluded double diamond to determine
whether it could be produced from a training set that has
knowledge of i) fourfold connectors and ii) the principle of single
and double networks. Fig. 3 illustrates this was indeed the case.
Moreover, the GAN produced initial guesses that subsequently
converged to three other classical block copolymer network
phases: the orthorhombic networks O52 (Pnna) (27, 28) and O70

(Fddd ) (22, 29), and hexagonal perforated lamellae with ABC
stacking (HPL,R3̄m), the latter of which appears as an intermedi-
ate state between double gyroid and the disordered melt (30, 31).
The SCFT trajectories for these three phases from the GAN-
generated guesses are provided as SI Appendix, Figs. S5–S7. The
GAN also produced field configurations that converged to the
M15 phase (threefold connectors), which can be envisioned as a
sheared O70, and T131 (fourfold connectors), both of which were
reported recently in self-assembled bottlebrush terpolymers (32).

The solution trajectory in Fig. 3 emphasizes the well-known
ability of SCFT to substantially modify the morphology while
converging toward the saddle point solution (9), in particular by
adjusting the unit cell dimensions to minimize stress (14). Using
SCFT as the last step in Fig. 2A thus greatly reduces the demands
on the GAN when compared to conventional applications of
generative neural networks, such as image generation; so long as
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Fig. 3. Illustration of the convergence of a GAN-generated initial guess to
double-diamond phase in a flexible unit cell via SCFT. Minority block density
distributions �A(r) in a unit cell (A) for the GAN-generated initial guess; (B)
after 11 SCFT iterations; (C) after 19 SCFT iterations; and (D) for the converged
solution (205 SCFT iterations). In (D), the unit cell, indicated by the solid lines,
is copied into a 2 × 2 × 2 system for easier visualization. The lengths of the
orthogonal lattice vectors [a, b, c], defined by the coordinate system in (A), are
expressed in terms of the unperturbed end-to-end distance of the polymer.
The unit-cell lattice vectors and the maximum value of the minority block
density �A are (A) [3, 3, 3] and 0.990; (B) [2.73, 2.59, 2.66] and 1.034; (C) [2.62,
2.30, 2.49] and 0.981; and (D) [2.41, 2.17, 2.41] and 0.974. The connection
between solutions produced by the generative method and the conventional
unit cells is illustrated in SI Appendix, Fig. S4. Movie S2 shows the complete
SCFT trajectory for double diamond.

a subset of the GAN outputs are situated in the SCFT basin of
attraction for a new phase, the SCFT iterator often can resolve
shortcomings in the generated image. In this sense, this method
is also markedly different from a proposed all-machine-learning
methodology that uses a GAN for input (33). To circumvent the
computational cost of SCFT, the latter method learns the field-
theoretic Hamiltonian to estimate free energies from the density
field (34), rather than generating an SCFT trajectory. It remains
to be seen whether the latter method will have SCFT’s ability
to drive the GAN output to a new morphology or the ability to
analyze three-dimensional systems, both of which are critical to
the success of the present approach.

Emergence of New Candidate Phases. The GAN generated 545
initial guesses that led to converged SCFT solutions. Degeneracy
in the converged solutions was assessed by first grouping
converged solutions with free energies that differ by less than
10−5 kBT per chain, where kB is Boltzmann’s constant and T
is temperature, and then comparing their density profiles. After
accounting for degeneracy, a total of 349 candidate states were
produced, which includes the five known block polymer phases
previously discussed. The histograms in Fig. 4A and SI Appendix,
Fig. S8 reveal, as anticipated, the candidate states are metastable
in diblock copolymer melts with free energies that range from
2.5× 10−3 to 5.3× 10−2 kBT per chain above the equilibrium
double-gyroid phase.

The generative approach provides a wealth of morphologies
exhibiting different connector valences, network topologies, and
symmetries. Several are highlighted in Fig. 4B and SI Appendix,
Fig. S9 including the recently discovered M15 and T131 phases
(32). In some cases, the candidate phases are related. For
example, O66 is a low-symmetry variant of T131 with a non-
90◦ angle (55.9◦) between neighboring connectors along the
<001> directions. Morphologies with mixed connectors were
also produced, which should prove promising to probe defect
formation in block polymer self-assembly. The lowest free energy
phase with mixed connectors is the tetragonal network T118,
which has one four-fold node and four three-fold nodes in
each unit cell. While most of the candidate phases were single
networks, some double networks emerged. The most notable is
T111, a (10,3) double network obtained by replacing the four-fold
connectors in double diamond with pairs of T-shaped threefold
connectors; there is a close analogy between this double-network
morphology and its single-network analogue (35).

Importantly, this approach generated previously unanticipated
candidate phases with potentially useful material properties. The
most intriguing phase is H181 (see SI Appendix, Fig. S10 and
Movie S3 for the SCFT trajectory), which has neither been
proposed nor realized in soft matter. H181 is a hexagonal network
with space group symmetry P6422, with lattice parameters a/c
= 2.65 at fA = 0.38 and �N = 17.5. The centers of the threefold
connectors are located at [x, y, z] = [0.5, 0, 0.094 ± 0.002] in
fractional coordinates and the corresponding symmetry equiva-
lent positions (SI Appendix, Fig. S11), which were determined
by the grid points with the highest minority monomer density
�A(r) in a refined converged solution using a grid resolution of
96 × 96 × 512. The A/B interface (Fig. 5A) of H181 encloses
a three-connected chiral network that is topologically identical
to the bto net (36), which can be obtained by splitting the four-
connected nodes of a quartz network with the same space group
symmetry into two three-connected nodes along the c-axis (SI
Appendix, Fig. S11). Such structure modifications transform the
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M15 (C2/c) T118 (P4n2)

T131 (P42/mmc)

H181 (P6422)

O66 (Cccm)

A B

Fig. 4. Candidate phase produced by generative polymer field theory with SCFT. (A) Histogram of the free energy per chain of converged SCFT solutions with
the lowest free energies, measured relative to the equilibrium double-gyroid (DG) state. The full histogram is reported as SI Appendix, Fig. S8. The classical block
polymer network phases produced here using generative polymer field theory, HPL, O52, O70, and double diamond (DD), are labeled. Previously identified
network phases in block polymers, including the latter quartet, are indicated by the dashed lines. Solid lines indicate previously unexplored block polymer
candidate phases. (B) Representative block polymer candidate phases indicated by the colored data lines in panel (A). The skeletons indicate regions where
the minority block density satisfies �A > 0.93. Analysis of the resulting structures identified the conventional unit cells (monoclinic, orthorhombic, tetragonal,
or hexagonal) and symmetries, which are indicated in the labels. The unit cells of H181, T131, and T111 are duplicated for easier visualization. Similar density
profiles for �A > 0.50 and the equilibrated unit cell parameters can be found in SI Appendix, Fig. S9.

(6,4) rings and (8,4) rings of the quartz network into (10,3) rings
and (12,3) rings, respectively. The struts of the H181 network can
be envisioned as layer stackings of in-plane, threefold connectors
with a 60◦ twist angle between layers, as illustrated by the
colored nodes in Fig. 5 B and C. This arrangement produces

a local configuration of the threefold connectors in H181 that
closely resembles that of the O70 phase. Each H181 connector
is connected to two in-plane connectors and one out-of-plane
connector with a 60◦ twist angle, while O70 has a local twist
angle of 52.6◦ in this specific model of diblock copolymer. The
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b
a

c
b

c
a

b

Fig. 5. Structure of H181. (A) Interface corresponding to �A = 0.5. (B) Projection along the [100] direction. (C) Projection along the [001̄] direction. For (B) and
(C), the skeletons indicate regions where the minority block density satisfies �A = 0.90, and the boxes are the unit cell. The coloring in the projections in (B)
and (C) indicates the threefold connectors with different orientations within the 3D unit cell of Fig. 4B. (D) Histograms and (E) color maps of the mean curvature
of A/B interface of H181, O70, and double gyroid. H181 and O70 have similar average mean curvature (0.498 and 0.506) and curvature distributions in the
histogram, while double gyroid has a higher interfacial curvature of 0.621.

PNAS 2023 Vol. 120 No. 45 e2308698120 https://doi.org/10.1073/pnas.2308698120 5 of 8

https://www.pnas.org/lookup/doi/10.1073/pnas.2308698120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2308698120#supplementary-materials


60◦ twist angle for H181 is constrained by symmetry, while the
twist angle for O70 depends on the exact structure (22).

The structure of H181 is promising for materials applications.
The 64 screw axis implies that H181 is chiral and thus could
prove useful as a metamaterial for optical applications; inverting
the structure should lead to its chiral counterpart with P6222
symmetry. Fig. 5B shows that the [100] direction of H181

provides well-organized channels with two different sizes that
could find utility in membrane applications, and Fig. 5C suggests
that the [001̄] (top–down) projection of the network has a
trihexagonal tiling pattern (Kagome lattice).

H181 also is a feasible target for materials discovery because it
has a lower free energy than HPL; inasmuch as HPL has been
accessed as a metastable state in diblock copolymer melts (30, 31),
it is plausible that H181 may be accessed there as well, perhaps
leveraging shear processing (37), self-assembly of chiral block
polymers (38), or multiblock polymers (7). Moreover, Fig. 5
D and E reveal that H181 has a narrow distribution of mean
curvature, which is generally associated with higher stability (23),
and (ii) additional SCFT calculations in SI Appendix, Fig. S12
reveal that the free energy of H181 is lower than that of double
gyroid and O52 in certain regions of the O70 window of the
diblock copolymer phase diagram. Indeed, due to the structural
relationship between the quartz and the bto networks, the A/B
domain interface of H181 shares some similarities with a chiral
minimal surface deducted based on a quartz network and its dual
(39). According to the mean curvature map of the H181 interface
in Fig. 5E, at the region where the quartz node is split into two
triangular nodes, the local mean curvature is higher, which can
be regarded as the result of locally stretching the minimal surface
related to the quartz network along the c-direction. The rest of the
interface remains relatively low in mean curvature, and the overall
mean curvature distribution of H181 resembles that of the O70

phase, as seen in the histogram in Fig. 5D. This is also related to
the similarity in local configurations of the three-connected nodes
of H181 and O70; the highest curvature region of both structures
is near the 60◦ (or 52.6◦) twist. Double gyroid, on the other hand,
has a higher preferred mean curvature and a broader distribution
of curvatures. As a result, when the composition of the diblock
copolymer becomes more symmetric, the relative stability of H181

and O70 increases compared to double gyroid, which is illustrated
by the free energy calculations in the network forming region at
�N = 12 in SI Appendix, Fig. S12. The difference in preferred
curvature eventually leads to a stability region of O70 and a region
with lower H181 free energy compared to double gyroid.

Generative Polymer Field Theory Offers
Potential for Phase Discovery
The major outstanding problem in the discovery of new block
polymer materials lies in not only navigating the high dimensional
state space (7), but also uncovering unanticipated morphologies.
The number of new phases identified here compares very
favorably with previous methods for generating new SCFT
candidate phases. The pioneering computational approaches to
phase discovery in block polymers used random initial conditions
and no preset information about the symmetry using either real-
space SCFT (40) or an approximate free energy functional (41)
to search for new ordered states. Generative polymer field theory
can be viewed as an augmentation of these early studies (40, 41)
that leverages advances in machine learning in the ensuing years
to improve on the initial conditions, while maintaining their
agnostic approach toward symmetry.

More recently, genetic algorithms (42) and particle-swarm
optimization (PSO) (43) have been used for similar purposes.
While the genetic algorithm was not robust, PSO in reciprocal
space uncovered both the double-gyroid phase and several Frank–
Kasper phases (43). The PSO approach is appealing because
it does not require any training data, since PSO is used as
a global optimizer to adjust random SCFT initial guesses for
peak locations on a spherical surface in reciprocal space, and
it incorporates information about the free energy as well. Our
generative approach, on the other hand, entails a significant
amount of overhead to generate the training data and then
train the GAN. However, the cost of that overhead should
be viewed in light of the success of the resulting calculations,
which recapitulated almost all known network phases in block
copolymers and identified a promising new candidate phase.

The GAN used here is a relatively naïve implementation.
There is significant room for advancement by tuning the
hyperparameters and architectures of the neural networks, as
well as using the latent space to combine information about
different types of morphologies in a more systematic manner
(18). Moreover, we have demonstrated the power of the approach
by intentionally using a small training set (five phases), in part
to prove that other known phases could be generated. Increasing
the size of the training set should increase the diversity of the
output. Indeed, we envision that this approach could be applied
recursively, using random transformations of the SCFT solutions
produced here to retrain the network. It may also be of interest
to include data from SCFT trajectories that did not converge,
although one must balance the resulting increased diversity of
the training set against the potential that these additional data
will hinder convergence of the initial guesses produced from the
resultant GAN.

The pipeline of Fig. 2A should be an enabling tool for discovery
of new structures, providing candidate phases that can seed either
a standard forward search or, more likely, an inverse search
that uses an automated method (44–47) to identify a region
of the state space that favors formation of the candidate phase.
Extending the proof-of-principle example here to other systems
(e.g., cylinders, particle packings, and mixed phases) should be
straightforward. A particularly fruitful avenue to begin would be
triblock terpolymers, where over 30 phases are already known
(15, 48) and there are surely more waiting to be uncovered.
The fields produced from the present calculations could also
be used to seed SCFT calculations for block copolymers with
multiple blocks or nonlinear topologies. Indeed, prior SCFT
calculations (49) suggest that multiblock copolymers can have
a profound impact on network phase selection by relieving
packing frustration, and it would be interesting to pursue similar
approaches toward stabilizing H181.

SCFT is but one case in soft matter simulation where
information about the desired structure is needed in advance, and
thus, one encounters challenges searching for novel phases. For
example, a GAN can generate similar initial conditions for poly-
mer field-theoretic simulations that sample the field fluctuations
(26, 50). Likewise, guiding fields can be used in particle-based
simulations to initialize a system in a desired morphology and
determine whether it is a stable basin of attraction; this proved
especially useful for network phase assembly in oligomers (51).
The challenge here is analogous to that in SCFT: How does one
select guiding fields without a priori knowledge of the structure?
Candidate phases identified for block polymers are a natural
answer. Indeed, even if candidate phases produced by generative
polymer field theory prove to be metastable for block polymers,
the chemical complexity in ligand-grafted colloids (52) or ionic
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surfactant solutions (53) could provide the additional interactions
needed to stabilize them. Thus, this generative approach should
find broad utility in the study of self-assembly in soft matter.

Materials and Methods
SCFT Calculations. Our implementation of SCFT follows that described in ref. 9.
The incompressible AB diblock melt is modeled as a system of nGaussian chains
with total degree of polymerization N, block degrees of polymerization NA and
NB, and statistical segment lengths bA and bB. The minority block volume
fraction is fA = NA/N. For GAN training purposes, we consider a range of
fA and conformational asymmetry parameters � = bA/bB. All data then use
GAN-generated guesses to seed SCFT solutions corresponding to fA = 0.38
and � = 1 (conformationally symmetric systems). Additional data obtained
elsewhere in the diblock phase diagram are reported for H181 in SI Appendix,
Fig. S12. The unfavorable mixing between blocks is quantified by the product
�N, where � is the Flory–Huggins parameter.

We performed all SCFT calculations using the open-source Polymer Self-
Consistent Field (PSCF) software package developed by Morse and coworkers
(9), using an integration step sizeΔs = 0.01N and a convergence tolerance of
10−6 (unless otherwise specified). This code uses Anderson mixing (12) while
relaxing the unit-cell stress (14) to a desired tolerance as defined in ref. 13.
The grids are either 32 × 32 × 32 or 64 × 64 × 64, as indicated in the
relevant sections. We initialized the SCFT calculations for known phases using
the level-set method of Wohlgemuth et al. (54); the implementation and codes
are available in ref. 9. In this method, the A/B domain interface of a network
phase is approximated by a level surface using a linear combination of the first
few symmetry-adapted basis functions of the corresponding space group and a
predetermined minority block volume fraction fA. The corresponding coefficients
for the basis functions are available in ref. 54. The generated initial field from
the level-set method is a binary density field in a regular real-space grid, with
�A = 1 inside the infinitesimally thin interface and �A = 0 outside. The
chemical potential fields are then initialized by setting the Lagrange multiplier
field to zero (9). Fig. 1 shows an example of this initialization approach.

Generationof TrainingData. To produce the training data, the density fields of
the minority block,�A(r), were saved every 5 iterations for all SCFT calculations
that converged within 500 iterations. However, in the early stages of the SCFT
trajectory, the incompressibility constraint is often very far from satisfied, leading
to grid points with densities �A(r) > 1 or �A(r) < 0. We excluded these
density fields from our training set. The grid sizes used for these calculations
were 32 × 32 × 32, and thus the density field of monomer A from each SCFT
iteration step can be considered as a gray-scale 3D image with a size equal to 323.
For each of the five training phases, we performed 150 SCFT calculations with
constraints on space group symmetry and an additional 150 SCFT calculations
without the constraints. The resulting trajectories generated a total of 18,273
images after removing those images with unphysical densities.

GANArchitecture and Training. Our implementation is a deep convolutional
GAN, which comprises two competing convolutional neural networks, the
generator and the discriminator (18). SI Appendix, Table S1 summarizes the
architectures of the neural networks. The generator maps a latent vector of
size 100 to a 3D gray-scale image of size 1 × 32 × 32 × 32. The generator
consists of four 3D transposed convolutional layers, each of which is followed by
batch normalization and rectified linear unit (ReLu) as the activation function,
except for the last layer, which uses a sigmoid activation function without batch
normalization. The sigmoid activation forces the generated data to lie in the
range of [0, 1], which can be considered as density fields without any further
transformation. The discriminator functions as a binary classifier that processes
a 3D gray-scale image of size 1× 32× 32× 32 from the generator or from the
training set. The discriminator consists of four 3D convolutional layers, each of

which is followed by batch normalization and a Leaky ReLu activation function,
except for the last layer. The last layer again uses a sigmoid activation, now to
produce a score ranging from 0 to 1. The scores represent the prediction of the
discriminator on whether the input data is fake to real.

The training process of a GAN involves a minmax game between the generator
and the discriminator, where the generator tries to minimize the probability that
the discriminator predicts the generated data as fake while the discriminator
tries to maximize the probability of correct classification on both the real and
fake data (17). To achieve this optimization, the binary cross-entropy (BCE) loss
function is used to measure the difference between the ground-truth labels
and the predictions of the discriminator. The training of GAN was conducted
using the open-source software package PyTorch (55). During each training
epoch, the model was trained using batches of real images and fake images
mapped from randomly generated latent vectors. The batch size was set as 128.
The optimization of both the generator and discriminator was performed using
an Adam optimizer with a learning rate of 0.0002 and hyperparameters (�1, �2)
of (0.5, 0.999). The training was performed iteratively for up to 80 epochs.

Unlike other machine learning methods, determining the stopping criterion
for GAN training by tracking the losses is not obvious because it involves
two competing neural networks. Instead, it is more straightforward to directly
evaluate the quality of the generated data. In our case, tracking the evolution
of an isosurface of the generated fields by direct visualizations proved to be an
effective strategy. A visualization of the isosurface evolution for a few generated
fields is provided in Movie S1. The model used for generating initial guesses
for SCFT calculations was chosen by comparing the isosurface plots during the
training progress. As shown in SI Appendix, Figs. S1 and S2, the isosurfaces at
�A = 0.5 change little after 30 epochs, but the isosurfaces at 0.9 keep evolving
until reaching 45 epochs.

SCFT Calculations with GAN-generated Initial Guesses. After the training
of the GAN, 5,000 initial guesses were created by the passing 5,000 random
noise vectors sampled from a normal distribution with a mean of 0 and a SD
of 1 through the generator, and then using the resulting density fields with a
Lagrange multiplier field of zero to initialize the chemical potential fields (9)
for flexible unit cell SCFT calculations without constraints on the space group
symmetry (P1 space group). Since initializing the SCFT calculations in a unit
cell with flexible edge lengths and angles can be unstable, we performed the
calculations in two steps. In the first step, outputs from the trained GAN were
used to seed new SCFT calculations in a unit cell with flexible edge lengths and
fixed angles at 90◦, i.e., an orthorhombic box. The initial edge lengths were set
to be equal to 3.0 times of the unperturbed end-to-end distance of the polymer,
Re =

√
Nb. This initial part of the solution was converged to a tolerance of 10−4

using a grid resolution of 32×32×32. In the second step, converged chemical
potential fields from the first step were used as inputs for SCFT calculations in a
unit cell with both flexible edge lengths and angles. Here, a tolerance of 10−6

and a higher grid resolution of 64×64×64 were used to increase the accuracy
of the calculated free energies.

Data, Materials, and Software Availability. The GAN training uses PyTorch,
which is available at https://pytorch.org/ (56). Self-consistent field theory
calculations use the open-source Polymer Self-Consistent Field software
package, which is available at https://github.com/dmorse/pscfpp (57). The
scripts used for the calculations described here are available on Github at
https://github.com/kdorfmanUMN/GANs_SCFT (58). The data supporting this
manuscript is available at https://hdl.handle.net/11299/257550 (59).
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