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Previous work indicates that tropical forest can exist as an alternative stable state to
savanna. Therefore, perturbation by climate change or human impact may lead to
crossing of a tipping point beyond which there is rapid forest dieback that is not
easily reversed. A hypothesized mechanism for such bistability is feedback between
fire and vegetation, where fire spreads as a contagion process on grass patches.
Theoretical models have largely implemented this mechanism implicitly, by assuming
a threshold dependence of fire spread on flammable vegetation. Here, we show how the
nonlinear dynamics and bistability emerge spontaneously, without assuming equations
or thresholds for fire spread. We find that the forest geometry causes the nonlinearity
that induces bistability. We demonstrate this in three steps. First, we model forest
and fire as interacting contagion processes on grass patches, showing that spatial
structure emerges due to two counteracting effects on the forest perimeter: forest
expansion by dispersal and forest erosion by fires originating in adjacent grassland.
Then, we derive a landscape-scale balance equation in which these two effects link
forest geometry and dynamics: Forest expands proportionally to its perimeter, while it
shrinks proportionally to its perimeter weighted by adjacent grassland area. Finally, we
show that these perimeter quantities introduce nonlinearity in our balance equation
and lead to bistability. Relying on the link between structure and dynamics, we propose
a forest resilience indicator that could be used for targeted conservation or restoration.
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Satellite (1, 2) and ground observations (3, 4) show that tropical forest (high tree
cover) and tropical savanna (low tree cover) can exist under the same environmental
conditions, making the distribution of tree cover bimodal. On the one hand, fire exclusion
experiments have shown that fire can maintain low tree cover (5). On the other hand, fire
occurs almost exclusively below a tree cover threshold of about 40% (1, 6–9), which is
consistent with fire being a contagion process on grass patches (10, 11), while tree patches
block fire. Such a highly nonlinear response of fire to grass together with an empirically
consistent response of vegetation to fire was shown to be sufficient for inducing bistability
in simple models (12). Taken together, the bimodality, the mutual interaction between
fire and vegetation, and the availability of a plausible underlying mechanism suggests that
tropical forest and savanna are alternative stable states, maintained by feedback between
vegetation and fire (1), and between which transitions would neither be gradual nor easily
reversed (13, 14).

Bistability of forest and savanna has been studied with a variety of modeling approaches,
which can be classified as microscopic versus mean-field models. The underlying processes
concern the spatiotemporal population dynamics of discrete vegetation patches, which
can spread or block fire. These can be most realistically modeled by microscopic models,
such as interacting particle systems (15) or cellular automata (16), which consider
the stochastic dynamics of such discrete constituents interacting in a spatial domain
according to simple rules. However, as microscopic models are hard to analyze, one
usually looks for a coarse-grained approximation that permits analysis. Mean-field
models provide such an approximation, typically in the form of a small number of
differential equations that describe the average properties of the considered populations
through time, such as cover fractions of each species. If the averages are taken over the
whole landscape, the resulting mean-field model is nonspatial and describes macroscopic
dynamics via ordinary differential equations (ODEs) (9, 12, 17). If averages are taken
over a neighborhood, the mean-field model is spatial and describes the dynamics on a
mesoscopic scale, via partial differential (18, 19), spatial difference [(20); spatial mean
field in ref. 21], or partial integro-differential equations (mean field in ref. 15). Mean-
field models owe their simple closed form to an assumption of statistical independence
between species’ occurrences in space (e.g., refs. 22 and 23), which permits writing
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the interaction between any two species as the product of their
occurrences. However, assuming statistical independence in space
implies neglect of spatial structure.

Despite their disregard for spatial structure and resulting biases
(e.g., refs. 22 and 24), mean-field models have been indispensable
tools for gaining theoretical insight into alternative stable tree
cover states in the tropics. The Staver–Levin model of tropical
tree cover bistability (12) is a nonspatial mean-field model in
which the variables represent grass and tree cover fractions in
the landscape, with interaction between species captured as the
product of their cover fractions. Fire spread is not included
explicitly. Instead, the effects of fire on vegetation are implicitly
accounted for by making the relevant conversion rates a threshold
function of grass cover, where the threshold corresponds to the
point where large contiguous grass patches emerge, also known as
the percolation threshold (25, 26). The Staver–Levin model has
provided a first proof of principle for alternative stable tree cover
states in the tropics, and showed additional complex behaviors,
such as cycles and stochastic resonance (12, 17). Spatial mean-
field models of the Staver–Levin model further showed emergent
phenomena due to spatial interaction on mesoscopic scales, such
as traveling and pinning fronts between states [(8, 18, 19, 21);
spatial mean field in ref. 15], front curvature effects (19, 21),
pattern formation (27), and coexistence states (28). Even though
they are spatial, they are still mean-field models, as they do not
consider the fundamental spreading processes of forest and fire
on patches, but use equations, with implicit assumptions on the
spatial structure of the patches at finer scales than those modeled.

The effect of this fine-grained spatial structure can only be
studied via microscopic models. Schertzer et al. (10) proposed a
cellular automaton implementation of the Staver–Levin model in
which the effect of fire is still captured implicitly, as a threshold
function of flammable vegetation. The form of this vegetation-
fire relation was obtained from separate simulations of fire spread
as a standard percolation process. The cellular automaton and
its mean-field approximation were shown to exhibit bistability.
Thereby, Schertzer et al. (10) provided the first mechanistic
explanation of the role of fire as a percolation process in bistability
of tropical tree cover. It also justifies the qualitative form of
the fire-vegetation dependence assumed in mean-field models.
The more recent interacting particle system by Patterson et al.
(15) follows a similar approach, by implementing fire as a
threshold function of neighborhood grass cover, where the
threshold is assumed to match with that of site percolation
(25, 26). However, standard percolation theory assumes that
the occurrences of spreading cells at different points in space
are statistically independent (section 1.1 in ref. 25). Thus, if fire
spread is approximated as a standard percolation process, one
disregards the spatial structure of flammable vegetation. Hence,
although the microscopic Staver–Levin models (10, 15) consider
the fine-grained patch structure, they still rely on a mean-field
assumption in their implicit treatment of fire, making them
prone to biases in regimes with spatial structure. To avoid these
biases, microscopic models require explicit consideration of fire
spread in interaction with the vegetation landscape, such as in the
cellular automaton by Hébert-Dufresne et al. (16) (see also ref.
29). In this cellular automaton, forest bistability emerges only
from simple microscopic rules of vegetation and fire spread, i.e.,
without assuming equations or thresholds for the effects of fire.
Note that larger-scale forest transitions have also been modeled
with a cellular automaton, with the effects of climate and fire as
spatially heterogeneous parameters (30).

In this work, we examine the spontaneous emergence of
nonlinear dynamics and bistability of tropical forest from the

patch-scale rules of forest and fire spread. We first use the
cellular automaton of Hébert-Dufresne et al. (16) to observe the
emergent structure and bistability in simulations. Next, based on
the observations that forest and fire spread occur near the forest
perimeter and on separated timescales, we set up a macroscopic
balance equation of forest area change (Eq. 9). This enables us
to analyze the emergent dynamics as a function of the relevant
structure and will show that the nonlinearity is caused by the
forest geometry. Then, we derive a forest resilience indicator
based on our balance equation, providing a proposed link
between the geometry and resilience of tropical forest. Finally, we
compare our results against mean-field approximations. This will
show that the assumption of the absence of spatial correlations is
strongly violated, particularly near the tipping threshold of forest
dieback, while mean-field models still permit accurate expressions
for the spatially uncorrelated regime.

Results

The FGBA Probabilistic Cellular Automaton. The FGBA proba-
bilistic cellular automaton (adapted from ref. 16—see Fig. 1 and
Materials andMethods) models the stochastic dynamics of tropical
vegetation and fire on a square lattice and in continuous time. The
key empirical facts of tropical forest and fire dynamics captured
by the FGBA automaton are the following: i) fires only naturally
ignite in grasslands but they can spread into forest, ii) fires spread
more easily in grassland than in forest, such that forests suppress
fires, albeit imperfectly, iii) forest dynamics occur on a strongly
separated timescale from fire spread and grass regrowth.

This results in the following reaction rules in the cellular au-
tomaton. At any time, each lattice cell can be in one of four states:
F—forest, G—grass, B—burning, and A—ash. Conversions
between these states can occur spontaneously or due to spread
to neighboring cells (Fig. 1A and Table 1). The spontaneous
conversions are as follows: forest recruitment on grass or ash cells
due to long-distance seed dispersal or from a homogeneous seed
bank (G→ F or A→ F at rate �), forest mortality (F→ G at
rate ), fire ignition on grass cells (G→ B at rate �), and grass
regrowth on ash cells (A→ G at rate �). The conversions due to
spread to neighbors are as follows: forest recruitment due to short-
distance seed dispersal on grass or ash cells (GF→ FF, AF→ FF
at rate �), fire spread on grass (GB→ BB at rate �g) or on tree
cells (FB→ BB at rate �f ). Chosen parameters are in the ranges
empirically justified by ref. 16 for a square domain of 100× 100
cells, with cell size Δx = Δy = 30 m. The timescale separation
between fire and forest dynamics implies that the rates satisfy
�g, �f ,�, �� �, �,  . In particular, we choose

�g,� ∼ 106 > �f ∼ 105
� 1y−1, [1]

�, �,  ∼ 10[−4,−2]
� � ∼ 1y−1. [2]

So, fire spreading and extinction �g, �f , � occur on the scale
of hours, while grass regrows on ash over months (�) and forest
spread, growth, and mortality �, �,  occur over decades. We take
fire ignition rate � ∼ 1/N such that fires spontaneously occur
about once per year in the modeled area. Fig. 1 B–D shows a
time profile for fractions of cells in each state during a simulation
with low fire ignition rate �, starting from an all-grass state. Due
to the low fire ignition rate, the only stable steady state is a nearly
closed canopy (reached after 300 y, Fig. 1H ). Before canopy
closure, brief events of rapidly spreading fire counteract a gradual
spread of forest. After canopy closure, fires are unable to spread.
Timescale separation of forest dynamics (Fig. 1B), grass regrowth
(Fig. 1C ), and fire spread (Fig. 1D) shows clearly.
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Fig. 1. The FGBA stochastic cellular automaton: (A) state transition diagram (colored rates: spread to neighboring cell, black rates: spontaneous conversion
within cell), (B) example time series of a simulation starting at zero tree cover, (C and D) 102

× and 107
× zoom of (B), (E–H) snapshots of a simulation at indicated

times for low fire ignition rate (�N = 0.075). The fire in (F ) spreads throughout grassland in the whole domain whereas that in (G) went extinct locally because
forest splits grassland in clusters (notice the area of ash near the top). Remaining parameters are shown in Table 1. Domain size: 200 × 200 cells.

Fig. 2A shows a bifurcation diagram of steady-state forest area
in the FGBA cellular automaton, denoted by [F] (Eq. 18), versus
fire ignition rate�. Unstable steady states (saddles) were obtained
by applying feedback control to the simulations (Materials and
Methods). Bistability occurs above a critical ignition rate �, with
alternative stable states grassland ([F]≈ 0) and forest ([F]≈ 0.83).
Simulations initiated at the saddle will tip randomly up or down
(Fig. 2B). Near the lower end of the bistability range, the saddle
solution is fairly homogeneous, but for higher � values, a single
hole of grass in forest arises (Insets in Fig. 2 A).

Fast and Slow Subprocesses. The timescale separation (Eqs. 1
and 2) permits treatment of the joint vegetation and fire dynamics
as a fast–slow system. Fire spread occurs on the fast timescale,
where the vegetation landscape is treated as constant. Forest
dynamics occur on the slow timescale, where the effects of fire
are a steady-state function of the vegetation landscape.

Fast Process: Fires Spreading in a Given Landscape. On the
timescale of a single fire event, forest dynamics are negligible
(�, �,  � 1/d) such that we can consider the total landscape of
forest patches as fixed. For each ignition event, this results in the

Table 1. Reaction rules and rates (y−1)
Spontaneous Spread

G,A �
→ F, � = 2× 10−4 GF,AF �

→ FF, � = 3× 10−2

F 
→ G,  = 2× 10−2

G �
→ B, � = [0,2]× 10−4 GB

�g
→ BB, �g = 9× 106

B �
→ A, � = 106 FB �f

→ BB, �f = 1.11× 105

A �
→ G, � = 5

following dynamics. A fire ignites on a grass cell, and then spreads
across its grassland cluster at a rate �g per BG pair, after which it
reaches the interface with adjacent forest, where it starts intruding
the forest at a rate �f per BF pair. At any time, a burning cell can
stop burning spontaneously, converting to ash at a rate �. The
probabilities of fire spreading into a neighboring grass or forest
cell before the originating cell stops burning are given by

pg :=
�g

�g + �
= 0.9, pf :=

�f

�f + �
= 0.1, [3]

A B

Fig. 2. Steady states and bistability of forest area in the FGBA cellular
automaton. (A) Bifurcation diagram of forest area fraction [F] versus fire
ignition rate � (shade: two-standard deviation confidence interval of the
mean). (B) Simulations initiated at two different points on the saddle
(�N = 0.257 and �N = 1.32). Remaining parameters are shown in Table 1.
Domain size: 100 × 100 cells.
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where we have shown the chosen values in our simulations
(adopted from ref. 16). Since regrowth of grass and ignition
of new fires occur at a much slower rate than fire spread
(�N ≲ � � �f ,�, �g) and our domain is relatively small (SI
Appendix, section S2B), we observe repeated fire spreading events
well separated in time (Fig. 1B), each ending with spontaneous
extinction.

When a fire in grassland cluster with index j reaches its interface
with adjacent forest, the resulting forest loss due to this single fire
event can be approximated as (Materials and Methods):

Δloss
F,j := pf [FG]j, [4]

where [FG]j counts the number of forest cells adjacent to
grassland cluster j (with both sides of the equation optionally
normalized by N ). This approximation relies on the assumptions
that the fire reaches the whole interface with forest (i.e., pg → 1)
and only once per fire (i.e., �g � �� �N ), and that pf is small.

Slow Processes: Forest Demography and Fire Damage. Forest
demography and loss due to repeated fires occur on the slow
timescale. Writing the number of forest-grass neighbor pairs as
[FG] (divided by N , equivalently the total perimeter of forest or
grass patches, see Eq. 18), the dynamics for tree recruitment and
mortality result in an expected rate of change for [F]:

Δgain
F := �[G]− [F] + �[FG]. [5]

In Eq. 5, the rates of change are �[G] for spontaneous forest
growth on grass, [F] for spontaneous forest mortality, and �[FG]
for spread of forest into grass at its perimeter.

The rate of forest erosion at its perimeter due to fire damage
over many fire events is the weighted sum over all grass clusters
j = 1, ..., nc, i.e.,

Δloss
F :=

nc∑
j=1

�N [G]jΔloss
F,j = �Npf

nc∑
j=1

[G]j[FG]j, [6]

where [G]j is the fraction of G cells in grass cluster j (so,
[G] =

∑nc
j=1[G]j), �N [G]j is the rate at which fires sponta-

neously ignite in grass cluster j (� is the rate per cell and N [G]j
is the area of the cluster), and Δloss

F,j = pf [FG]j is the conversion
of forest to ash caused by each fire event (Eq. 4) (note also that
[FG] =

∑nc
j=1[FG]j). By defining the grassland-weighted forest

perimeter as 〈
[FG]

〉
cg :=

nc∑
j

[G]j
[G]

[FG]j, [7]

the expression for forest loss becomes

Δloss
F = � pf N [G]

〈
[FG]

〉
cg . [8]

The grassland-weighted forest perimeter
〈
[FG]

〉
cg is the average

perimeter of forest clusters weighted by the relative size of their
adjacent grass cluster.

Emergent Slow Dynamics. We now form the balance between
the slow processes discussed above, assuming fire converts trees

immediately to grass (i.e., �� �N ). The resulting expected rate
of forest area change during a short time interval is〈

d[F]
dt

〉
=Δgain

F − Δloss
F ,

d[F]
dt

=�[G]− [F] + �[FG]− �pfN [G]
〈
[FG]

〉
cg , [9]

where we used Eqs. 5 and 8, and assumed on the left-hand
side that N is sufficiently large, such that, via the law of large
numbers, 〈d[F]/dt〉 ≈ d[F]/dt. Eq. 9 can be understood
intuitively as forest and grass competing for space within clusters
(spontaneous terms) and at their interface (interaction terms). A
larger interface [FG] leads simultaneously to faster forest spread
(proportional to its perimeter [FG]) and to increased exposure to
fires (proportional to its grassland-weighted perimeter

〈
[FG]

〉
cg).

Fires are most damaging to forest when [G] forms a single
cluster, i.e.,

〈
[FG]

〉
cg = [FG], such that each fire reaches the whole

interface. Conversely, when forest patches break [G] into several
clusters

〈
[FG]

〉
cg is smaller than [FG], such that several ignitions

are required to have the same effect, slowing forest erosion down.
Additionally, the total amount of grass N [G] determines the
number of ignitions and hence the rate at which grass spreads
into forest. The parameters determine the relative weight of each
of the discussed effects.

Fig. 3 shows example simulations along trajectories starting
from the saddle equilibria of Fig. 2, showing forest area [F] in
space and time (A–D), the gain/loss terms Δgain

F and Δloss
F defined

A

C

B

D

F

HG

E

Fig. 3. Rate of change according to Eq. 9. (A and B) Spatial snapshots at
indicated times, (C and D) time series of [F], (E and F ) time series of Δgain

F ,
Δloss

F , (G and H) time series of the right-hand side of Eq. 9 (gain minus loss). At
t = 0, the simulation is started on the saddle (on the left, [F](0) ≈ 0.2 and on
the right, [F](0) ≈ 0.7, see blue and red circles in Fig. 2). Toward the left (along
t+), a simulation that tips up and toward the right (along t−) a simulation that
tips down is shown. Parameters are shown in Table 1. Columns correspond
to leftmost and rightmost vertical dashed lines in Fig. 2 (�N = 0.257 and
�N = 1.32). Domain size: 100 × 100 cells.
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in Eqs. 5 and 8 (E and F ), and the right-hand side of Eq. 9
(gain minus loss, G and H ). The left column of Fig. 3 shows
simulations for low fire ignition rate � and low [F](0), and the
right column for high� and high [F](0). Each column shows two
realizations, both starting from the same saddle steady state. One
realization evolves toward high forest cover, shown on axis t+
(increasing to the left from t = 0), the other realization evolves
toward low forest cover, shown on axis t− (increasing to the
right from t = 0). In the stable steady states, gain (green) and
loss (red) terms vary around the same mean. On the saddle (at
t = 0), gain and loss functions cross, indicating that the steady
states and changes are accurately captured by Eq. 9. The largest
changes in forest cover [F] occur when there are large changes in
forest loss due to fire. The snapshots in Fig. 3 A and B show that
the high-cover state changes as an expanding/contracting hole in
the forest, whereas the low-cover state is more homogeneous.

Emergent Nonlinear Relations. Eq. 9 explains how the rate
of change of [F] depends on the perimeter quantities [FG]
and

〈
[FG]

〉
cg. Fig. 4 A–C shows a scatterplot of [FG](t) and〈

[FG]
〉
cg (t) versus [F](t) for three different values of�, and for an

ensemble of simulations starting from the saddle in Fig. 2A, with
each point being a value observed at a discrete observation time.
Remarkably, we observe that [FG] and

〈
[FG]

〉
cg lie on a narrow

band around some steady-state functions [FG]∗ and
〈
[FG]

〉∗
cg of

[F] (and �), which implies that [FG],
〈
[FG]

〉
cg are changing on

a much faster timescale, making them slaved to [F]. Fig. 4 D–F
shows the terms on the right-hand side of Eq. 9 depending
on [F], splitting between gain and loss terms Δgain

F ,Δloss
F , as

A B C

D E F

G H I

Fig. 4. Emergent relations between perimeter quantities and forest area [F]:
(A–C) forest perimeter [FG] and grassland-weighted forest perimeter

〈
[FG]

〉
cg,

(D–F ) forest gain terms and loss terms in Eqs. 5 and 8, (G–I) forest area rate
of change (d/dt)[F] from Eq. 9. Columns correspond to vertical dashed lines
in Fig. 2 (�N = 0.257,�N = 0.38,�N = 1.32). Domain size: 100 × 100 cells.

defined in Eqs. 5 and 8. Steady states occur when gain equals loss
(Δgain

F = Δloss
F ). The resulting plot of d[F]/dt versus [F] in Fig. 4

G–I clearly shows the bistability of [F].
Replacing the quantities [FG] and

〈
[FG]

〉
cg by their steady-state

functions [FG]∗ and
〈
[FG]

〉∗
cg results in the single-variable ODE

for [F],

d[F]
dt

= �[G]− [F] + �[FG]∗ − �pfN [G]
〈
[FG]

〉∗
cg , [10]

where [FG]∗,
〈
[FG]

〉∗
cg are functions of [F] and � (as shown in

Fig. 4 A–C ), and [G] = 1− [F]. With these functions [FG]∗ and〈
[FG]

〉∗
cg, the observed bistability is caused by a classic double-

well potential of the gradient system Eq. 10. In this ODE,
nonlinearities emerge due to the equilibrium dependence of the
interface on forest area (affecting [FG]∗ and

〈
[FG]

〉∗
cg), due to

the segmentation of grass cells near and below the percolation
threshold (affecting

〈
[FG]

〉∗
cg) and due to dependence of the

ignition rate on grass patch size (multiplying
〈
[FG]

〉∗
cg with [G]).

In SI Appendix, Fig. S1, we show the roots of Eq. 10 using a
nonparametric fit of [FG]∗([F];�) and

〈
[FG]

〉∗
cg ([F];�). These

match well with the steady states obtained via control (dot-dashed
red).

If there is only one connected component of grass cells, we
have

〈
[FG]

〉
cg = [FG], such that Eq. 10 simplifies to

d[F]
dt

= �[G]− [F] + (� − �pfN [G])[FG]∗. [11]

For homogeneous initial conditions (i.e., [F] is about the same in
different large subsections of the domain), this approximation
is expected to be valid for small [F], where most grass cells
belong to the giant connected component. SI Appendix, Fig. S1
shows the resulting steady states of Eq. 11 as a function of �
and [F] when only using the fit of [FG]∗([F];�) (dashed blue).
The approximation is good for landscapes with low forest cover
([F] ≲ 0.2). Above [F] ≈ 0.2, it fails because the grassland
breaks up into multiple clusters and fires are smaller than in
case of a single cluster. Fig. 4 A–C already indicated that the
single-cluster approximation is accurate for low forest cover since〈
[FG]

〉
cg ≈ [FG] for low [F] in the scatterplots.

Resilience to Perturbations. One can evaluate the right-hand
side of Eq. 9 for a landscape before and after application of a
small perturbation, to determine whether the perturbation will
be dampened or amplified under the dynamics. More precisely,
we may define the sensitivity as

�F(X, �X ) :=
Δ ˙[F](X, �X )
Δ[F](X, �X )

=
˙[F](X + �X )− ˙[F](X )

[F](X + �X )− [F](X )
, [12]

for a landscape X and a perturbation �X , where ˙[F] is the right-
hand side of Eq. 9. Negative values of �F correspond to damp-
ening (negative feedback) and positive values to amplification
(positive feedback). Given that the dynamics of Eq. 9 are an
approximate function of [F] only, the average of �F(X + �X )
over naturally expected perturbations �X (call this �̄F(X ); see
Materials and Methods and Eq. 26) can be interpreted as the
approximate derivative d ˙[F]([F])/d[F], which fully characterizes
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the local stability of the landscape. Therefore, the sign and
magnitude of �̄F(X ) are indicators for the stability or criticality
of a landscape. The dependence on only [F] also implies that
Eq. 9 is a gradient system, such that �̄F(X ) is the concavity of
the potential energy function at X , corresponding to the classic
potential-well metaphor of local resilience (14, 31).

Fig. 5D shows �̄F(X ) for the traversed landscapes when tipping
up to the forest or down to the grassland state (same landscapes
as in Fig. 3 B, D, F, and G). Comparison of the magnitude of
�̄F(X ) in the alternative stable states reveals that (for parameters
of Fig. 3 D, F, and G) the grassland state is more resilient than
the forest state. Fig. 5 A–C shows the positive feedback for a
forest landscape with a hole of critical size (same landscape as
shown at t = 0 in Fig. 3B). Panel B shows which cells along
the perimeter of the largest grass cluster contribute to the loss
term Δloss

F (red) and the gain term Δgain
F (green). Panel A shows

the effect of the perturbation obtained by converting the green
cells to forest, which causes an increase in ˙[F] (more green in
panel A). Panel C shows the effect of the perturbation converting
the red cells to grass, which causes a decrease in ˙[F] (more red
in panel C ), illustrating the spatial distribution of the positive
feedback.

One could, in principle, also test the effect of large perturba-
tions and whether they will induce a transition to an alternative
stable state, but it is not, in general, clear which perturbations
are to be expected. However, in the special case of � =  = 0,
when the large perturbation is a single hole in contiguous forest,
only the size of the hole matters, and a simple expression for the
critical size required to tip abruptly to a nonforest state can be
derived (Materials and Methods and Eq. 25).

Comparison to Mean-field Approximations. Our analysis of Eq.
9 enabled us to obtain macroscopic steady states and dynamics
without making mean-field assumptions. SI Appendix, section S3

A B C

D

Fig. 5. Resilience of forest-grass landscape to perturbations. (A–C) Spatially
resolved contributions to forest gain (green) and loss (red) rates at the forest
perimeter of the largest grass cluster: (B) for the saddle solution (where
Δgain

F ≈ Δloss
F ), (A) for a perturbation of the saddle with more forest at the

perimeter (resulting in Δgain
F > Δloss

F ), and (C) for a perturbation of the saddle
with less forest at the perimeter (resulting in Δloss

F > Δgain
F ). (D) Sensitivity to

perturbations (Eq. 12) for all the traversed landscapes when tipping from the
saddle: down to the grassland state (t−), or, up to the forest state (t+). The
used landscapes correspond to the red vertical dashed line in Fig. 2 and the
rightmost columns in Figs. 3 and 4.

derives a hierarchy of mean-field models for which we compare
their predictions to our results to examine their validity. The
simple mean field (SI Appendix, section S3) is unable to capture
repeated fire extinction on a fast timescale and nearest-neighbor
spreading of forest and fire, leading to severe bias. When
instead assuming timescale separation between forest and fire
dynamics and treating fire as a site percolation process in
landscapes with uniform random (i.e., spatially uncorrelated)
placement of forest, we obtain the mean-field approximation of
Eq. 9:

d
dt

[F] = �[G] + 4�[F][G]− [F]− �Npf [G]
〈
[FG]

〉u
cg . [13]

In Eq. 13, we substituted the a-priori unknown forest perimeter
[FG] and the grassland-weighted perimeter

〈
[FG]

〉
cg by their

expressions assuming absence of correlations: [FG]≈ 4[F][G] and〈
[FG]

〉
cg ≈

〈
[FG]

〉u
cg for given [F]. The function

〈
[FG]

〉u
cg ([F])

is the quantity given in Eq. 7 for uniformly randomly placed
forest (see orange curve in SI Appendix, Fig. S2 A–C ). Eq. 13 is
bistable with stable high and low forest cover steady states over
a wide range of parameters. It accurately predicts the location
of both stable steady states (blue line in SI Appendix, Fig. S3).
Yet, its prediction of the threshold (unstable) steady state and the
dynamics remains strongly biased. Indeed, away from the stable
steady states, the interplay of forest demography and fire-induced
forest erosion creates landscapes in which forest is spatially
aggregated, strongly violating the assumption of the absence of
correlations. This can be seen in SI Appendix, Fig. S2 A–C .
which shows that for given forest area [F], the forest perimeter
of simulations, [FG], lies below that predicted by the mean-field,
[FG]mf , i.e.,

[FG] < [FG]mf = 4[F](1− [F]), [14]

implying that forest is more spatially aggregated than assumed in
the mean field. Aggregation results from forest spreading close to
existing forest and from lower survival of forest cells that are more
exposed to fire (i.e., less aggregated). Forest gain is smaller when
aggregated (SI Appendix, Fig. S2D–F ) due to the smaller perime-
ter. Aggregation reduces forest loss at low cover while it increases
forest loss at high cover (SI Appendix, Fig. S2 D–F ). This is so
because aggregation makes forest cells individually less exposed
to fire but collectively less effective at blocking fires, where the
individual effect is dominant at low cover and the collective effect
is dominant at cover values near and above the fire percolation
threshold.

For our choice of parameters, the stable steady states and the
lower saddle-node bifurcation contain negligible spatial structure,
such that mean-field predictions are accurate. We derive their
expressions below for � ≈ 0 .

Stable Steady States. By Eq. 13, the low-cover steady state [F]∗−
has to be approximately zero for � ≈ 0. At high forest cover, loss
due to fire is negligible, such that the high-cover steady state [F]∗+
can also be obtained from Eq. 13 (using � ≈ 0):

[F]∗− = 0, [F]∗+ = 1−


4�
. [15]

For the chosen parameters, we have [F]∗+ = 0.83, which is in
excellent agreement with simulations (Fig. 2).
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Onset of Bistability. At low forest cover, grass consists of a single
cluster, such that we can write in Eq. 13

〈
[FG]

〉u
cg = [FG] =

4[F][G]. Hence (when � ≈ 0):

d
dt

[F] = 4�[F][G]− [F]− 4�Npf [G]2[F]. [16]

An expression for the lower bifurcation point can be obtained
by finding the root of the derivative of the right-hand side of
Eq. 16 with respect to [F] at [F] = [F]∗− = 0, giving the relation
4� −  − 4�Npf = 0. Rearranging this relation for �N , we
can obtain the fire ignition rate above which tropical forests are
bistable with grasslands:

(�N )min =
1
pf

(
� −


4

)
. [17]

For the chosen parameters, (�N )min = 0.25, which agrees
well with simulations (Fig. 2) and which corresponds to a
maximum fire return interval of (�N )−1

min = 4 y.

Discussion

In this paper, we showed how nonlinear dynamics and bistability
of tropical forest emerge spontaneously from the patch-scale
rules of forest and fire spread, without assuming equations or
thresholds for the effects of fire as in previous work. Below, we
first summarize our main results on structure and dynamics.
Then, we discuss the importance of the emergent structure
as indicated by comparison with mean-field approximations.
Finally, we highlight the potential practical implications of our
results for resilience assessment and conservation.

Emergent Structure and Dynamics. Our simulations showed
that spatial structure emerges due to forest expansion and fire-
induced damage at the forest perimeter. As a consequence, the
forest perimeter appeared in both the gain and loss side of our
landscape-scale balance equation of forest area, Eq. 9, where
losses require weighting by adjacent grassland area. Remarkably,
when plotting the changes predicted by our balance equation
versus forest area, using landscapes from the simulations, we
found that they lie on an approximate curve (Fig. 4 G and H ).
As this curve shows the change of forest area as a function of
forest area, this means that the emergent macroscopic dynamics
can be described by a simple ODE, Eq. 10. In this emergent
closed form of our balance equation, the perimeter quantities
determine the nonlinearities. Therefore, Eq. 10 elucidates how
forest dynamics and bistability are linked to the forest geometry
that emerges from the patch-scale spreading rules. Note that,
as in previous work, Eq. 10 does not include fire explicitly
because it does not contain equations for fire. This follows
from timescale separation between fire and vegetation dynamics,
an assumption that was already implicit in mean-field models
[(12, 17–19, 21); mean field in refs. 10 and 15] and microscopic
models (microscopic models in refs. 10 and 15) focusing on
alternative stable states. However, previous work derived the
implicit effect of fire in closed form by relying on standard
percolation theory, which assumes that occurrence of flammable
patches is spatially uncorrelated (25). As we did not rely on
percolation theory but observed the closed form emerging in
simulations (Fig. 4), we could avoid the biases that affect previous
work.

Evaluation of Mean-field Models. We compared mean-field
models against the emergent closed form of our balance equation
to assess their validity (SI Appendix, Fig. S2) and to show
where spatial structure is important. This showed that mean-
field models are in qualitative but not quantitative agreement
with simulations: Existence of bistability, but not its parameter
range, is robust to mean-field assumptions. In particular, the
simple mean field (SI Appendix, Eq. S7) is strongly biased due
to its failure to account for two phenomena that are present
in the microscale model: i) spontaneous fire extinction on the
fast timescale, leading to separated rapid fire spreading events, ii)
nearest-neighbor spreading of fire and forest, leading to emergent
aggregation of forest patches away from the steady states. The
former violates the mean-field assumption of large system size
(N→∞) and the latter that of absence of correlations. That
spatial structure affects steady states and dynamics is well known
(e.g., refs. 22 and 24). Even when addressing timescale separation
and using results from percolation theory for the effect of fire (SI
Appendix, Eqs. S18 or S22), a large bias remains except near
the alternative stable states SI Appendix, Fig. S2. This is because
standard percolation theory only considers lattice configurations
with uniform random (i.e., spatially uncorrelated) placement of
flammable sites, while our forest-grass landscapes are shaped by
past fires and vegetation dynamics. As Fig. 3 A and B (at t = 0)
shows, forest aggregation is particularly strong at the tipping
threshold for forest collapse, implying that mean-field models
cannot be used to study abrupt forest dieback. Despite their
severe bias concerning forest dynamics and tipping, mean-field
models are still useful for studying regimes with little structure,
such as near the stable equilibria or for dynamics with uniform
seed dispersal. This enabled us to derive expressions for these
equilibria (Eq. 15) and the point of onset of bistability (Eq. 17).
The latter result was not obtained by previous mean-field models
because they did not include parameters that relate directly
to fire [(10, 12), see SI Appendix, section S7 for a suggested
modification] or they did not account for timescale separation in
finite domains (16).

Implications for Resilience Assessment and Conservation. The
link between geometry and dynamics implies that tropical forest
resilience can be empirically estimated from its spatial structure.
The spatial structure, as captured by the perimeter quantities [FG]
and

〈
[FG]

〉
cg, can hence be treated as a measurable parameter ad-

ditional to the microscopic parameters. Microscopic parameters
(given in Table 1) can be inferred from remote-sensed data (as in
ref. 30) or from experiments (as for fire spread in ref. 11), while the
perimeter quantities can be calculated for any observed landscape.
In regimes with negligible spatial structure, one can assess stability
or resilience from the microscopic parameters alone, based on
mean-field results. For example, if the onset point of bistability
at low tree cover lies in the regime without spatial structure,
as in our simulations, one can directly estimate the minimum
fire ignition rate for onset of bistability from the microscopic
parameters (Eq. 17). This expression then shows which natural
or abandoned degraded areas of low tree cover with fire ignition
rate beyond this point will not spontaneously recover to closed
tropical forest. In regimes with spatial structure, the mean field
is highly inaccurate (SI Appendix, Fig. S2), such that spatial
structure needs to be considered in addition to the parameters.
In particular, in our simulations, the tipping threshold obtains
spatial structure at higher fire ignition rates (Fig. 3 A and B
at t = 0) and approaches the stable forest equilibrium much
more closely than in the mean field (SI Appendix, Fig. S3).
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While this makes the mean field unsuitable for studying forest
resilience and dieback, our balance equation (Eq. 9) does not
have this limitation because it makes no assumption on spatial
structure. We demonstrated how Eq. 9 permits estimation of
the resilience of a landscape to perturbations, via �F (Eq. 12).
In contrast to generic indicators of resilience (31, 32), �F is
an indicator that can be obtained from a single landscape and
for which the contribution of each relevant spatial process can
be examined. Furthermore, landscape perturbations by human
intervention can be evaluated, through sensitivity �F, for how
they will amplify or mitigate fire-vegetation feedback. Forest
conservation/restoration may introduce targeted perturbations
that most efficiently prevent resilience loss of high-cover states or
induce resilience loss of low-cover states. For instance, in Fig. 5A,
forest dieback is averted by a perturbation that divides the largest
grass cluster into smaller ones. It may thus be anticipated that
maintenance or creation of barriers to fire spread will be essential
here.

Future work could explore further realism, such as envi-
ronmental heterogeneity, longer dispersal ranges, nonlattice ge-
ometry (as in ref. 15), inclusion of other tree types (such as in
savanna dynamics: refs. 10, 12, 15, 17, and 33–38), or vegetation-
rainfall feedback (39). This may result in additional relevant
quantities in Eq. 9. Additionally, larger domain sizes may lead
to more gradual transitions on the macroscopic scale [(40) and
SI Appendix, section S6].

Materials and Methods

Details of the FGBA Probabilistic Cellular Automaton. The FGBA proba-
bilistic cellular automaton is a minimal spatial stochastic process that models
the joint dynamics of tropical vegetation and fire. It is an adapted version of the
BGT(A) model of ref. 16. The modifications compared to ref. 16 are the following:
i) it runs in continuous time, ii) it includes a spontaneous forest mortality rate  ,
iii) species T is labeled as F, consistent with other models of tropical vegetation
dynamics (12, 15, 18). Note that according to some definitions, probabilistic
continuous-time cellular automata are considered interacting particle systems.
In general, when studying the stochastic dynamics of a number n of interacting
species on a square lattice with N cells, the state of the system can bebreak
represented as

X := (X1, X2, ..., XN),

where Xi is the label of the species that occupies cell i. Each cell is occupied
by exactly one of four possible species: grass, forest, burning, and ash, with
labels G, F, B, and A, respectively. Transitions between states (species) occur in
continuous time, resulting in a continuous-time Markov chain with a state space
of size nN. The reaction rules for transitions between states are shown in Table 1,
where spontaneous conversions are shown on the left and conversions due to
nearest-neighbor interactions on the right (see also Fig. 1A).

The latter type of interaction occurs over each four nearest neighbor
connections of the indicated type. For example, fire will spread into a given
grass cell with a rate �g for each burning neighbor. For realistic timescales, our
parameters satisfy Eqs. 1 and 2, which were empirically justified in ref. 16. We
borrow our notation from the moment closure literature (e.g., refs. 22–24 and
41), writing the global fraction of species with label x and the interface between
species with label x with label y, respectively, as

[x] :=
1
N

N∑
i

�x(Xi), [xy] :=
1
N

N∑
i,j

Aij�x(Xi)�y(Xj), [18]

where both are normalized by N, � is the Kronecker delta function (�x(y) = 1 if
y = x and 0 otherwise) and A ∈ {0, 1}N×N the adjacency matrix. We simulated
the cellular automaton via a Gillespie algorithm (42) and used a domain of

N= 100 × 100 (N= 200 × 200 in Fig. 1) cells with periodic boundary
conditions.

Noninvasive Feedback Control. To study steady states regardless of their
stability in a simulation, we apply noninvasive feedback control (43–46). To
obtain the dependence of equilibria of [F] on fire ignition rate�, we introduced
an artificial stabilizing feedback loop of the form

�(t) = �0 + g([F](t)− [F]ref). [19]

The factor g is called the feedback control gain and is problem specific. The
property of noninvasiveness means that the controlled simulations have the
same equilibria as regular simulations (47–49). This implies that if one extracts
the equilibrium values of the controlled simulation (�∗, [F]∗), one can use
them to plot a 1-parameter bifurcation diagram of the simulation without
control. Fig. 6 shows the control graphically. The feedback Eq. 19, indicated in
blue in Fig. 6A, stabilizes a steady state that is unstable in a regular simulation.
This can be seen in Fig. 6B, where the unstable steady state is first stabilized
via control, after which the control is removed and a regular simulation is
started with the effective rate and the landscape (Inset) obtained from the
controlledsimulation.Dependingoninitialperturbations, theregularsimulation
gets either attracted to the 100% forest state or to the low tree cover state.
When the controlled simulation is in equilibrium (steady part of the blue curve
in Fig. 6B), the steady state values of [F] are obtained via taking the time
average, i.e.,

[F] =
1
T

∫ t0+T

t0
[F](t)dt, [20]

where t0 is the time after which the dynamics have settled to a steady state and
T the averaging time. If nG→B is the number of ignition events between t = t0
and t = t0 + T , the steady state of � is obtained by calculating the mean
ignition rate as nG→B/T and dividing this by the mean number of grass cells,
such that

�̄ =
nG→B/T

[G]
, [21]

where [G] is obtained as in Eq. 20. When repeating this exercise for many
[F]ref values, one can get multiple points on the unstable branch. Points on the
stable branches can be obtained with regular simulations. On the final selection
of points, we applied Gaussian process regression to obtain smooth curves
and used moving block bootstrapping (50) to obtain confidence intervals. One
of the advantages of applying control is that one can obtain states for which
one would have to wait prohibitively long in a regular simulation due to their
instability.

A B

Fig. 6. Feedback control applied to the cellular automaton without spon-
taneous mortality ( = 0): (A) The unstable steady state of the bifurcation
diagram (dashed) was derived via feedback control by letting � be a function
of [F] (blue line) such that it is stabilized, then obtaining (�, [F]) by averaging
and repeating this for many [F]ref (with appropriate g), (B) a regular simulation
with the same � value [solid gray in (A)] and starting from the final state of the
controlled simulation tips up or down depending on initial perturbations, (B)
snapshot of the domain at the saddle for the control indicated in (A) (black:
forest, white: grass). For other parameters, see Table 1.
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Forest Loss due to a Single Fire. A fire in grassland cluster with index j
that reaches its interface with adjacent forest induces a forest loss that can be
approximated as follows. Consider a single forest cell i located at the interface
with grassland cluster j with [FG]i,j number of neighboring grass cells. When
assuming that spreading events are independent, the probability that the forest
cell gets burnt is the complement of the probability that none of its neighboring
grass cells in cluster j spread the fire to the forest cell:

qi,j := 1− (1− pf)
[FG]i,j ≈ pf[FG]i,j, [22]

where the approximation on the right is valid for small pf . Summing over all
forest cells at the interface of grassland cluster j, we obtain the expected loss of
forest per fire event as shown in Eq. 4:

Δloss
F,j :=

∑
i

qi,j = pf[FG]j. [23]

This approximation also assumes that burning forest cells at the interface do not
spread the fire further, which also relies on pf being small. For an evaluation of
the validity of this approximation in case of landscapes without spatial structure,
see SI Appendix, Fig. S7.

Critical Hole Size for an Abrupt Shift When  = � = 0. When there are no
spontaneous transitions and we perturb a fully closed forest of 100% cover by
creating a hole with grassland, an expression can be obtained for the critical hole
size beyond which fire causes an abrupt shift to grassland. Using that grassland
is a single cluster, Eq. 9 becomes

d[F]
dt

= (� − �Npf[G])[FG], [24]

which has two absorbing steady states [F]∗l = 0 and [F]∗h = 1, and an unstable
steady state at [F]∗c = 1 − �

�Npf
. The critical hole size is then the complement

of the unstable steady state:

[G]c =
�

�Npf
, [25]

which can also be written as [G]c = �1/�, where�1 is the value of� for which
[G]c = 1, or also the lower limit of the bistability range.

Sensitivity to Perturbations. We estimated �̄F in Fig. 5d for a given landscape
by averaging Eq. 12 over realizations of different types of perturbations:

�̄F =

〈∑
i wiΔ ˙[F](X, (�X)i)∑
i wiΔ[F](X, (�X)i)

〉
. [26]

Each of (�X)i are perturbations that one might expect in simulations, such
as removal of a fraction of perimeter forest cells in the largest grass cluster or
spontaneous mortality/growth of forest. The weights wi are determined by the
rates/probabilities of occurrence of the perturbations. The 〈·〉 denote an average
over 64 realizations.

Data, Materials, and Software Availability. Algorithm data have been
deposited in Github (https://github.com/b-wuyts/fgba) (51).
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