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INTRODUCTION
According to the energy balance concept, obesity is the accumulation 

of excess body fat as a result of an imbalance between calorie intake and 
calorie expenditure1. Obesity is an important public health issue because 
it can cause various health problems such as diabetes2, high blood pres-
sure3,4, heart disease5,6, stroke7,8, and some cancers9-11 as well as also be 
associated with physical limitations12, poor quality of life (QOL)13, and 
increased mortality risk14,15. World Health Organization (WHO) has rec-
ognized obesity as a global health crisis that affects people of all ages, 
sexes, and socioeconomic statuses16. The worldwide prevalence of obesi-
ty continues to rise and more than half of the global population is expect-
ed to become obese by 203017.

Obesity rate has increased in South Korea as well, owing to changes in 
lifestyle and dietary habits. According to the 2018 Korea National Health 
and Nutrition Examination Survey, obesity and diabetes rates in South 
Korea were 35.7% and 14.4%, respectively18. In 2020, approximately 
40% adults were classified as overweight or obese19. Current lifestyle, 
characterized by decreased physical activity, increased evening activity, 
and poor dietary habits, causes serious problems by promoting energy 
imbalance, which increases obesity and diabetes risk20.

Insulin, a hormone produced by beta cells in the pancreas, plays a piv-
otal role in regulating blood glucose levels21. Insulin regulates blood sug-
ar levels by stimulating glucose uptake from the bloodstream into cells, 
where it is utilized as energy or stored as glycogen. Insulin also prevents 
the liver from releasing excess glucose into blood22. The normal fasting 
blood glucose level range (measured after at least 8 h without food) is 
typically 70–100 mg/dL or 3.9–5.6 mmol/L23. Blood glucose levels mea-
sured 2 h after eating (postprandial) should not exceed 140 mg/dL (7.8 
mmol/L). Individuals with obesity often experience type 1 or 2 diabetes, 
which are characterized by insufficient insulin production or decreased 
insulin sensitivity, respectively24. Thus, glucose control and improved 
insulin sensitivity are crucial in individuals with obesity, diabetes, and 
metabolic disorders25,26. Consistent high (hyperglycemia) or low (hypo-
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[Purpose] Continuous glucose monitoring (CGM) is on 
the rise as the prevalence of obesity and diabetes in-
creases. This review aimed to explore the use of CGM 
and its potential novel applications in physical activity 
and nutrition management.

[Methods] We searched PubMed, Web of Science, 
and Wiley Online Library databases using the key-
words ‘continuous glucose monitor,’ ‘nutrition,’ ‘physical 
activity,’ and ‘numerical modeling.’

[Results] Continuous blood glucose measurement 
is useful for individuals with obesity and diabetes. 
Long-term blood glucose data allow for personalized 
planning of nutritional composition, meal timing, and 
physical activity type and intensity, as well as help 
prevent hypoglycemia and hyperglycemia. Thus, un-
derstanding the limitations of CGM is important for its 
effective use.

[Conclusion] CGM systems are being increasingly 
used to monitor and identify appropriate blood glucose 
controlling interventions. Blood glucose level is influ-
enced by various factors such as nutrient composition, 
meal timing, physical activity, circadian rhythm, and 
cortisol levels. Numerical modeling can be used to an-
alyze the complex relationship between stress, sleep, 
nutrition, and physical activity, which affect blood glu-
cose levels. In future, blood glucose, sleep, and stress 
data will be integrated to predict appropriate lifestyle 
levels for blood glucose management. This integrated 
approach improves glucose control and overall wellbe-
ing, potentially reducing societal costs.

[Keywords] blood glucose, continuous glucose moni-
toring, data, diabetes, numerical modeling, obesity
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glycemia) sustained blood glucose levels have serious health 
consequences. Hyperglycemia causes diabetes, cardiovas-
cular disease, and kidney disease27,28. Moreover, severe 
hypoglycemia causes consciousness loss, seizures, and even 
death if not treated immediately29,30. Frequent hypoglycemia 
also reduces an individual’s quality of life, as it can cause 
anxiety, fear of hypoglycemia, and avoidance of physical 
activity or social circumstances31. Both hyperglycemia and 
hypoglycemia causes cognitive impairment, which can 
affect concentration, memory, and decision making32,33, as 
well as contribute to mood disorders, such as mood swings, 
irritability, and depression34. As the prevalence of obesi-
ty-related diseases increases, it becomes more important to 
find effective ways to manage blood glucose levels before 
they become diseased.

Continuous glucose monitoring (CGM) has resulted in 
a new era of blood glucose measurements and provides re-
al-time insights into blood glucose levels35. It involves using 
small sensors under the skin to continuously measure glu-
cose levels in the interstitial fluid surrounding cells36,37. The 
measurements are then transmitted to a receiver or smart-
phone application, which allows the individual to monitor 
glucose levels in real time. CGM has become increasingly 
important in blood glucose management as the prevalence 
of diabetes increases38,39. The technical and clinical use of 
CGM has been widely reviewed40-45. However, no reviews 
have focused on how their use in physical activity and nutri-
tion management and their possible future applications. This 
review aimed to analyze how CGM has been used in physi-
cal activity and nutrition management and suggest possible 
future applications based on numerical modeling.

EXPLORING THE ROLE OF CGM IN 
PHYSICAL ACTIVITY AND NUTRITION 
MANAGEMENT
Unveiling the Vital Role: Importance of CGM Data

CGM data play an important role in diabetes manage-
ment by providing valuable insights into blood glucose lev-
els46. This continuous real-time information, collected every 
1–15 min, is critical for individuals with diabetes47.

CGM allows an understanding of blood glucose trends 
over long time periods such as hours, days, and even 
weeks48,49. CGM data can be used to understand how dif-
ferent factors, such as nutritional choices, physical activity, 
stress, and medication use, affect blood glucose levels50-52. 
Alerts to low or high blood glucose levels allow individuals 
to take immediate action to prevent rapid fluctuations in 
blood sugar53. It also evaluates the ratio of time spent within 
a pre-defined target blood glucose range, giving an excellent 
picture of blood glucose level maintenance within the rec-
ommended range (time-in-range; TIR)54-57. These findings 
provide a foundation for personalized therapeutic interven-
tions. The impact of different foods on blood glucose levels 
can be observed using CGM58. By measuring the postpran-
dial blood glucose changes in detail, individuals can make 
data-driven decisions regarding meal composition and 

timing, leading to balanced and manageable blood glucose 
control.

Physical activity should be performed with care, par-
ticularly for people with diabetes because of the response 
of blood glucose levels to physical activity59. The effect 
of physical activity on blood glucose levels can be tracked 
using CGM. With CGM data, exercise routines and in-
sulin doses can be fine-tuned to reduce exercise-induced 
blood glucose fluctuations and achieve consistent glucose 
management. CGM can help identify overnight blood glu-
cose trends and help users determine the need for insulin 
adjustments60. This proactive approach can minimize the 
risk of nighttime hypoglycemia or hyperglycemia, thereby 
ensuring restful and safe sleep. CGM data can also be used 
to promote discussions with medical professionals at the 
point-of-care about appropriate treatment strategies and ad-
justments61. This will help to effectively improve overall di-
abetes management and personalize treatment plans to meet 
individual needs.

CGM Use for Enhancing Nutrition Insights
CGM is useful for understanding the complex relation-

ship between nutrition, obesity, and diabetes.
This reveals how different foods and dietary patterns 

affect people with obesity. It is not the only solution for 
obesity management, but CGM can help analyze metabolic 
response to different foods and inform nutritional choices62. 
The effects on blood glucose differ for each individual and 
are influenced by several factors, such as genetics, metabo-
lism, metagenomics, and diet. Therefore, personalized guid-
ance may be more appropriate than one-size-fits-all impact 
guidelines63. A study comparing the effects of brown rice 
(BR) and white rice (WR) on 24 h glycemic and insulinemic 
responses of overweight Asian Indians found that BR con-
sumption reduces the risk of diabetes and related complica-
tions by reducing 24 h glucose and fasting insulin respons-
es64. This study suggests that BR is a healthier alternative 
to WR. CGM data can show how a particular meal affects 
blood glucose levels over time, allowing the design of a diet 
to promote blood glucose stability and prevent rapid blood 
glucose changes. Carbohydrate intake should be adjusted 
to manage blood glucose fluctuations owing to the complex 
relationship between the carbohydrates in different foods 
and blood glucose levels64. The pilot study explored the fea-
sibility and safety of time-limited eating (TLE) combined 
with CGM in adolescents with obesity65. This study found 
high adherence to TLE and CGM with no significant differ-
ences in weight loss, energy intake, quality of life, or eating 
behavior65. This study found that intra-individual variability 
in nutrition-related lifestyle behaviors, such as meal timing, 
eating windows, food intake, movement behaviors, sleep 
conditions, and body weight, was significantly correlated 
with mean blood glucose levels66. Long sedentary period 
and total sleep duration are associated with glucose vari-
ability. Earlier dinners and shorter eating windows improve 
glucose control66. An effective weight management strategy 
can be developed by optimizing nutrient intake and meal 
timings based on glucose response.
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CGM is also useful in assessing the relationship between 
glucose control and nutrition in individuals with diabetes67. 
This can help fine-tune insulin doses to match carbohydrate 
intake68-70. CGM data can help guide the timing of meal-
time insulin doses, helping timely insulin administration to 
prevent postprandial blood glucose spikes71-73. This study 
investigated the effects of carbohydrate distribution on post-
prandial glucose peaks in individuals with type 2 diabetes74. 
Twenty-three participants were randomly assigned to four 
interventions, each with varying carbohydrate content. The 
results showed that even carbohydrate distribution did not 
enhance blood glucose control, although a carbohydrate 
lunch offered an optimal postprandial profile. This study 
examined for how high glycemic index (HGI) and low gly-
cemic index (LGI) meals affected blood glucose levels in 
youths with type 1 diabetes75. The results showed low day-
time mean blood glucose, blood glucose area (>180 mg/dL), 
and high blood glucose index when consuming LGI meals, 
but no differences in daytime blood glucose area (<70 mg/
dL) between HGI and LGI75. Similar to obesity, people with 
diabetes can use CGM data to analyze the impact of meals 
on blood glucose levels, which can be used to guide nutri-
tional composition.

CGM Use for Optimizing Physical Activity
CGM helps us understand the impact of physical activity 

on obesity and diabetes management.
The CGM provides data on how physical activity type 

and intensity affect blood glucose levels in people with 
obesity. This study compared the effects of high-intensity 
interval training (HIIT) and continuous moderate-intensity 
exercise on postprandial hyperglycemia in overweight or 
obese adults76. The results showed that HIIT significantly 
reduced the incremental area under the curve after dinner 
and postprandial glucose spikes after breakfast, suggesting 
that HIIT has a prolonged effect on postprandial hypergly-
cemia. CGM data can reveal the relationship between differ-
ent forms of physical activity and glucose levels76-78. Thus, 
one can choose a physical activity that helps maintain stable 
glucose levels and avoid rapid glucose fluctuations, particu-
larly in people with insulin resistance due to obesity79. This 
study investigated hypoglycemia during moderate-intensity 
exercise in non-obese and obese individuals with and with-
out type 2 diabetes80. The results showed elevated glucose 
responses and high decrease in glucose concentration during 
the evening exercise. Obese males had high insulin drops. 
Moderate-intensity exercise decrease glucose concentra-
tions; however, many remain asymptomatic80. Proper phys-
ical activity and meal timing around physical activity can 
also be planned based on CGM data. Pre-workout meals or 
snacks should be adjusted based on blood glucose levels to 
optimize energy levels and avoid glucose imbalance during 
physical activity. The insights gained from CGM can help 
plan physical activities to improve overall well-being.

CGM is also useful in people with diabetes. This study 
examined the effects of structured exercise on glucose lev-
els in adults with type 2 diabetes81. The results showed that 
both acute and chronic exercise can improve 24 h glucose 

profiles, and the timing of exercise and participant sex influ-
ence the heterogeneity of acute glycemic improvements81. 
This can help make informed decisions about physical activ-
ity and timing based on CGM data. This systematic review 
examined the effects of exercise on glycemic control in 
type 2 diabetes82. According to a meta-analysis of 11 stud-
ies focusing on postprandial glucose, exercise significantly 
decreased average glucose concentrations and time spent 
in hyperglycemia, but did not affect the daily time spent in 
hypoglycemia or fasting glucose82. Physical exercise is cru-
cial for managing type 1 diabetes; however, acute exercise 
increases the risk of dysglycemia83. The fear of hypoglyce-
mia is a barrier to exercise. CGM and intermittently scanned 
CGM (isCGM) systems can help manage glycemic during 
exercise83 and determine when to adjust the insulin dose 
before exercise, based on the glucose levels and expected 
effects of exercise. Since muscles become insulin-sensitive, 
this period is critical for optimizing glycemic control84-87.

Recognizing Constraints: Limitations
CGM has made great progress in diabetes management; 

however, its limitations are similar to those of other tech-
nologies. Thus, its limitations should be understood for ef-
fective data utilization and analysis. The accuracy of CGM 
has improved over time compared to that of traditional 
fingerstick method for blood glucose measurement, but it 
still exists88-90. As CGM sensors measure glucose levels in 
the interstitial fluid, they may not accurately match blood 
glucose levels, particularly when glucose level changes rap-
idly, such as after a meal or during exercise89. There might 
be a slight latency between blood glucose level changes 
and blood glucose readings with CGM, which affects the 
timing of appropriate interventions during rapid blood glu-
cose fluctuations; therefore, it is important to be aware of 
this91. Most CGM systems should be calibrated periodically 
using fingerstick measurements as inaccurate or infrequent 
calibration can affect data reliability92-95. Attaching a sensor 
to the CGM can be inconvenient96. Some individuals may 
experience difficulty in applying the sensor or irritation at 
the sensor site43,97. Skin reactions such as rash, itching, or 
inflammation may occur at the sensor attachment site with 
prolonged CGM sensor use. CGM use requires active user 
participation in sensor attachment, calibration, and data 
analysis. There may be inaccurate results owing to user er-
rors or inappropriate procedures. Constant data stream from 
CGM devices can be stressful for some people. Constant 
monitoring and analysis causes “data fatigue”98,99. Technical 
issues with CGM devices, such as sensor failure or syn-
chronization, can disrupt data collection and affect usabili-
ty100,101.

PERSPECTIVE ON THE FUTURE
Many institutions use CGM systems to monitor and 

identify appropriate interventions and possible applications. 
Researchers are also working to develop a noninvasive 
CGM102. The CGM era is dawning and substantial changes 
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are expected in the future. CGM should be used to monitor 
feedback changes in blood glucose levels over time. How-
ever, very little work has been done to analyze and apply 
numerical modeling to CGM-generated data. The CGM data 
should be analyzed to develop possible numerical modeling 

techniques and prediction techniques to prepare for the fu-
ture.

Blood glucose is not simply the conversion of food 
into sugar; it is influenced by many factors, such as nutri-
ent composition, meal timing, the presence or absence of 

Figure 1. Illustration of perspectives on the current and potential use of continuous glucose monitoring.
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physical activity, circadian rhythms, and cortisol levels, and 
therefore requires a systematic approach103-106. Wearable 
devices are ubiquitous, can track sleep patterns, and provide 
data on stress levels, such as heart rate variability. Stress dis-
rupts sleep patterns, reduces sleep quality, and alters sleep 
duration. Sleep disruption can eventually affect glucose 
metabolism and regulate blood glucose levels. Numerical 
modeling, also known as computational or mathematical 
modeling, uses mathematical equations and computer 
simulations to represent and analyze complex real-world 
systems, phenomena, or processes. Numerical modeling can 
be used to analyze the complex relationships among stress, 
sleep, nutrition, and physical activity, which affect blood 
glucose levels. Currently, CGM data are used independent-
ly; however, in the future, blood glucose, sleep, and stress 
data will be integrated. Numerical models can be used to 
predict how stress-induced sleep disruption leads to specif-
ic blood glucose fluctuations. One study found that sleep 
deprivation was associated with nighttime blood glucose 
spikes. Machine learning algorithms can help identify spe-
cific sleep-related factors (such as bedtime routine and sleep 
duration) that have the greatest impact on blood glucose lev-
els. Physical activity can reduce sleep deprivation-mediated 
blood glucose spikes107. Using the CGM, physical activity 
type and intensity can be determined and applied optimally. 
Some people experience an immediate blood glucose spike 
when stressed, whereas others may experience a delayed 
effect, indicating chronic stress. Chronic stress increases 
cortisol levels over time, which are likely to negatively af-
fect cognitive function. Physical activity can reduce stress, 
contribute to cognitive function, and help manage blood 
glucose levels108,109. Armed with insights from CGM data, 
individuals can develop stress-management strategies that fit 
their unique patterns. For patients with diabetes, healthcare 
professionals can adjust medication dosages or insulin regi-
mens based on stress-related blood glucose patterns. This in-
tegrated approach identifies the interconnectedness of stress, 
sleep, nutrition, and physical activity, which affect glucose 
control, allowing individuals to take a holistic approach to 
their health by improving not only glucose control, but also 
overall well-being. Based on these insights, appropriate life-
style levels can be predicted for a growing number of indi-
viduals with obesity and diabetes, which could help reduce 
societal costs.
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