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Abstract

Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbi-
ome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative
direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the
interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome
epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize
those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its
functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration
are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
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Introduction profiling of the microbial communities, which facilitates the
integration of microbiome big-data with large-scale epidemio-
logical studies or consortium, such as the American Gut Project
(McDonald et al., 2018), Dutch LifeLines-DEEP study (Tigchelaar et
al.,, 2015), FINRISK study (Borodulin et al., 2018), and Westlake Gut
Project (Gou et al., 2022). Moreover, it is widely recognized about
the profound variation in the host response to the identical diet
or meal (Zeevi et al., 2015; Berry et al., 2020; Ma et al., 2021), which
stimulates numerous research to explore the potential mecha-
nism, with gut microbiome becoming the spotlight of research in
the field recently (Zeevi et al., 2015; Korem et al., 2017; Johnson
et al,, 2019; Mendes-Soares et al., 2019; Berry et al., 2020; Asnicar
et al., 2021; Suez et al., 2022). Therefore, microbiome (especially
gut microbiome)-based precision nutrition research is becoming
one of the frontiers in the field of nutri-microbiome epidemiology.

In this review, we will first summarize the findings of microbi-
ome epidemiological studies that investigate the associations of
microbiome and microbial metabolites with diet, nutrition, and
human diseases. Then, we will review the current progress of the
microbiome-based precision nutrition research. Finally, current
limitations, challenges, and perspectives of the nutri-microbiome
epidemiology field are presented.

Human microbiota inhabit across various anatomical body
sites such as the skin, oral mucosa, saliva, gastrointestinal
tract, respiratory tract, urogenital tract, and the mammary
gland (Sender et al., 2016), with the gastrointestinal tract
being the most heavily studied body site for human micro-
biome research. Trillions of microbiota inhabit in the human
gastrointestinal tract, which are continuously perturbed by
daily dietary intake (Sender et al., 2016; Johnson et al., 2019).
The complex interaction between diet, nutrition, and the gut
microbiota plays an essential role in modulating the host
health (Valdes et al., 2018a; Kolodziejczyk et al., 2019). For
example, gut microbiota could metabolize dietary nutrients
into functional metabolites, such as disease-causing metab-
olite trimethylamine N-oxide (TMAO), which was associated
with higher risk of the cardiovascular diseases (Senthong et al.,
2016; Li et al., 2017; Yu et al., 2019; Lee et al., 2021; Wel et al.,
2022), or disease protective metabolite short-chain fatty acids
(SCFA) that stimulate the secretion of glucagon-like peptide-1
and regulate glucose metabolism (He et al., 2020).

The advent of high-throughput DNA sequencing technolo-
gies (such as 16S, ITS, and metagenomics sequencing) enables
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Role of diet and nutrition in shaping the
gut microbiome

Host diet is key for the symbiotic role of the gut microbiota.
On one hand, the gut microbiota depends on the host intake of
nutrients for their own survival, on the other, many gut microbes
directly participate in the digestive process, producing a variety
of nutrients involved in the host metabolism and biology process
(Valdes et al., 2018b; Kolodziejczyk et al., 2019). Data from human
cohorts and clinical trials are accumulating recently, showing
how specific food types (including food groups and nutrients) and
dietary patterns, influence the gut microbiome and subsequently
host health (Fig. 1 and Table 1).

Food types

Consumptions of vegetables and fruits were associated with
higher abundance of SCFA producers. For example, fruit and veg-
etable intakes were both positively associated with Coprococcus
species, Faecalibacterium prausnitzii, Roseburia hominis, and
Firmicutes bacterium CAG:95 across several studies (Liu et al., 2019;
Jiang et al., 2020; Asnicar et al., 2021; Breuninger et al., 2021).
Higher proportions of SCFA-producing bacteria have beneficial
effects on the human host, including the regulation of energy
balance, immune system, and glucose metabolism (Deleu et al,,
2021). Gut microbe that was favorable for the glycemic traits or

Wy

T2D was associated with higher consumption of vegetables and
fruits (Jiang et al., 2020; Wang et al., 2022a). Moreover, gut micro-
biota has been shown to mediate the effect of vegetables on the
white blood cell profiles (Menni et al., 2021).

The beneficial role of vegetables and fruits may be owing to
the contribution of fiber and flavonoids in diet-microbe cross-
talk. Fiber is a non-digestible carbohydrate found in plants and
provides the natural sources for fecal SCFAs. Therefore, high-fiber
diet was commonly investigated in the context of disease treat-
ment, such as inflammatory bowel disease (Wedlake et al., 2014;
Deleu et al., 2021), cancer (Lam et al.,, 2021), and Type 2 diabetes
(T2D) (Ren et al., 2018). Some randomized controlled trials involv-
ing fiber supplementation successfully altered microbial activity
(i.e., SCFA production) and provided symptomatic relief or disease
remission (Ren et al.,, 2018; Lam et al., 2021), however, some other
trials failed (Wedlake et al., 2014; Deleu et al., 2021). Anthocyanins,
a particular class of flavonoids, are enriched in fruits and veg-
etables, and could be metabolized by the intestinal microbiota
(Faria et al., 2014; Boronat et al., 2021). Moreover, anthocyanins
and their metabolites could enhance the growth of beneficial
bacteria (e.g., Bifidobaterium and Lactobacillus) and reduce a group
of potentially harmful bacteria, such as Clostridium histolyticum
(Sanchez-Patan et al., 2012; Faria et al., 2014). Similar results in
the Bifidobaterium have also been described in human volunteers
after 6-week consumption of a blueberry drink (Vendrame et al.,
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Figure 1. Associations of microbiome and microbial metabolites with diet, and human diseases. Nutri-microbiome epidemiology studies identify the
associations of microbiome and microbial metabolites with diet, and human diseases. Box colors indicate the direction of association of microbiome
with diet (pink, positive; blue, negative). The number of stars indicates the level of evidence for the results. Specifically, one star indicates that the results
were from cross-sectional studies. Two stars indicates that the results were from prospective cohort studies, and three stars indicates that the results
were from clinical trials or could be replicated in different studies. This figure was created with BioRender.com.
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2011). In addition, a recent study examined the microbial associa-
tions of circulating equol, a metabolite of dietary soy isoflavones,
and found higher Alistipes senegalensis and Coprococcus catus but
lower abundances of Ruminococcus gnavus were associated with
equols (Wu et al., 2022Db).

Polyphenol-rich foods, such as coffee and tea, could also affect
the gut microbiome and influence host health. For example,
coffee and tea were positively associated with Bifidobacterium,
Lactobacillus, and Oscillibacter (Singh et al., 2017), and were
inversely associated with proinflammatory pathways (Bolte et
al., 2021). Tea consumption was inversely associated with unfa-
vorable gut microbial profiles for T2D (Gou et al., 2021). Red wine
polyphenols have been shown to modulate the gut microbiota
(e.g., could increase F. prausnitzii and Roseburia; decrease E. coli and
Bifidobacterium) and improve the metabolic profiles in healthy and
obese participants (Queipo-Ortuno et al., 2012; Moreno-Indias et
al., 2016; Bolte et al., 2021).

Refined grains showed different gut microbial associations
from above healthy plant-based foods, and were associated
with higher abundance of opportunistic bacterial genera such
as F0332 and Terrisporobacter (Miao et al., 2022). In a 6-week ran-
domized controlled trial, substituting whole grains for refined
grains decreased levels of proinflammatory Enterobacteriaceae
and increased SCFA-producing bacteria Lachnospira (Vanegas et
al.,, 2017). It might be due to fewer fiber contained in the refined
grains as they usually have seed coat removed. Previous studies
also demonstrated that barely whole grains were more ferment-
able that refined wheat, and thus had a more effective SCFA pro-
duction pattern (Nordlund et al., 2012; Vetrani et al., 2016).

Nuts and seeds also had a strong association with composi-
tion of gut microbiome. Roseburia hominis was positively associ-
ated with nuts intake, and showed beneficial effects on glucose
metabolism by increasing butyrate production (Bolte et al., 2021).
Enterococcaceae spp and Mollicutes RF39 spp had inverse associa-
tions with nuts intake and were potentially correlated to a unfa-
vorable glycemic profile (Wang et al., 2022a; Miao et al., 2022). n-6
polyunsaturated fatty acids (PUFAs) is mainly enriched in nuts, a
prospective cohort study shown that n-6 PUFAs was associated
with lower microbial diversity and a higher risk of T2D, accord-
ingly (Miao et al., 2020). It indicated that the beneficial association
between nuts intake and glucose metabolism might be mediated
by gut microbiota.

Consumption of total dairy and fermented dairy (e.g., yogurt)
showed strong associations with high microbial alpha-diversity,
lactic bacteria (Leuconostoc mesenteroides and Lactococcus lactis),
and fermentation to butanediol pathway (Zhernakova et al.,
2016; Bolte et al., 2021; Shuai et al., 2021; Yu et al., 2021). The con-
sumption of milk was reported to be positively associated with
the abundance of Streptococcus, Bifidobacterium, and Clostridium
(Shuai et al., 2021). Of note, the dairy-Bifidobacterium association
was consistently reported in several studies (Y. Zhernakova et
al., 2016; Liu et al., 2019; Shuai et al., 2021). Dairy-favorable gut
microbial features were inversely associated with blood triglyc-
erides, while positively associated with high-density lipoprotein
cholesterol (Shuai et al., 2021).

Several microbial associations have been identified for fish,
including positive associations with R. hominis, Roseburia faecis,
and F prausnitzii (Bolte et al., 2021; Yu et al., 2021). Available evi-
dence also highlights the potential importance of the dietary n-3
PUFAs, enriched in fish, to modulate the gut microbial composi-
tion. For example, after n-3 PUFA supplementation, a decrease
in Faecalibacterium, and an increase in the Bacteroidetes and the
production of SCFA have been observed (Costantini et al., 2017).

Another cohort of 876 middle-aged and elderly women showed
that n-3 PUFAs were correlated with microbial features belonging
to Lachnospiraceae family, Ruminococcaceae family, and Bacteroidetes
phylum (Menni et al., 2017). Nevertheless, a randomized cross-
over trial including 22 middle-aged, healthy volunteers found
that 8-week n-3 PUFA supplementation did not significantly
change the gut microbial alpha-diversity, overall structure, or
phyla abundance (Watson et al., 2017). On the other hand, n-3
PUFAs may interact with host genetics to affect gut microbiome
and further link to diseases. A recent study found that higher n-3
PUFAs were prospectively associated with gut microbial features
(diversity and genera) only among rs1527483-GG carriers, n-3
PUFAs-related gut microbial features were associated with blood
lipids (Miao et al., 2022).

Red meat showed opposite taxonomic associations with above
healthy plant-based foods. For example, Coprococcus, Bacteroides,
Faecalibacterium, and Ruminococcus were inversely associated with
processed red meat, and positively associated with fruit, whole
grains, and fiber intake (Breuninger et al., 2021). Diet high in red
meat may lead to the production of harmful bacterial metabo-
lites such as TMAO leading to a disruption of the gut microbiota
and increased risk of various diseases such as cardiovascular dis-
eases and colon cancer (Koeth et al., 2013; Zaramela et al., 2019;
Lietal, 2022).

Of note, other processed foods such as soft drinks and fast food
had shown similar microbial associations with processed meat
and were consistently linked to a higher abundance of Clostridium
bolteae, Ruminococcus obeum, R. gnavus, and Blautia hydrogenotroph-
ica (Breuninger et al., 2021). It indicated an impact of processed/
ultra-processed foods on the human gut microbiome. Recent
observational studies found that ultra-processed food intake was
positively associated with Acidaminococcus, Butyrivibrio, Gemmiger,
Shigella, Anaerofilum, Parabacteroides, Bifidobacterium in women, and
with Granulicatella and Blautia in men (Cuevas-Sierra et al., 2021).
Food additives, such as emulsifiers, which are commonly used
in the processed foods, had a potential negative impact on the
gut microbiota using mice and in vivo models (Chassaing et al,,
2015; Naimi et al., 2021). Another kind of commonly used food
additive artificial sweeteners may impact gut microbiota and
human health as well. A randomized controlled trial performed
among 120 healthy participants showed that oral supplementa-
tion with the sweeteners sucralose, saccharin, stevia, and aspar-
tame induced perturbations of glucose tolerance, which might
be mediated by compositional and functional changes in the
gut microbiota (Suez et al., 2022). Currently, this field is severely
under-researched in human epidemiology studies and further
researches are needed to address the underlying mechanism of
how food processing could influence gut microbiota and human
health.

Collectively, these findings demonstrate that specific food
types are closely correlated with gut microbial profiles and
human health. Shared and distinct microbial assoclations have
been reported for different food types.

Dietary patterns

Plant-based dietary pattern is growing in popularity due to its
beneficial effects for human health, including reduced risk of
T2D (Qian et al., 2019), cancer (Molina-Montes et al., 2020), and
cardiovascular diseases (Kim et al., 2019). Early studies examined
the impact of plant-based dietary pattern on the gut microbiome
by characterizing the gut microbial composition of vegans or veg-
etarians compared with omnivores (De Filippis et al., 2016; Wu
et al., 2016; Losasso et al., 2018). The vegetarian diets including



vegan diets were reported to be associated with higher richness of
gut microbiome and were associated with increased abundance
of Bacteroidetes and decreased abundance of Firmicutes (Losasso et
al., 2018). Vegetarian and vegan diets were also associated with
higher abundance of Lachnospira and Prevotella in the gut, whereas
omnivorous diets were associated with much lower levels (De
Filippis et al., 2016). However, another US study found negligible
differences in gut microbial community composition between
vegans and omnivores in an urban environment (Wu et al., 2016).

Recent large-scale studies based on free-living individuals
found that plant-based dietary pattern, as assessed using mul-
tiple 24-hour food recalls or food frequency questionnaires,
were consistently associated with gut microbial alpha-diversity
and overall composition (Asnicar et al., 2021; Bolte et al., 2021;
Miao et al., 2022). These findings motivated the detailed explo-
ration of plant-based diet-related microbial taxa and functional
pathways. For example, habitual plant-based dietary pattern
was associated with several commensals capable of SCFA pro-
duction, including genus (Blautia, Ruminococcaceae UCG-009, and
Polynucleobacter) and species (Agathobaculum butyriciproducens, F.
prausnitzii, and Anaerostipes hadrus) (Asnicar et al., 2021; Miao et
al., 2022). Consistently, Bolte et al. found the associations between
plant-based foods and several carbohydrate fermentation path-
ways (Bolte et al., 2021).

Mediterranean diet (MedDiet) is characterized by high intakes
of vegetables, fruits, nuts, and fish, and was associated with gut
microbiome (De Filippis et al., 2016; Mitsou et al., 2017; Garcia-
Mantrana et al.,, 2018; Merra et al., 2021; Wang et al., 2021a; Rinott
et al.,, 2022). Using a longitudinal microbiome data, Wang et al.
identified several gut microbial functional and taxonomic sig-
natures for the MedDiet adherence (Wang et al., 2021a). At the
taxonomic level, they found that F prausnitzii, Eubacterium eli-
gens, and Bacteroides cellulosilyticus were positively associated with
MedDiet adherence. At the functional level, MedDiet adherence
was associated with plant polysaccharide degradation, SCFA pro-
duction, and pectin metabolism (Wang et al., 2021a). Moreover,
in a 12-month randomized controlled trial including 612 partici-
pants, MedDiet could induce the enrichments of genus Prevotella
and enzymatic functions involved in branched-chain amino acid
degradation, and reduce the abundance of genus Bifidobacterium
and enzymatic functions responsible for branched-chain amino
acid biosynthesis (Ghosh et al., 2020). Those microbial features
were also thought to mediate the effects of MedDiet on cardio-
metabolic health (Shankar Ghosh et al., 2020; Rinott et al., 2022).

A low-carb high-fat ketogenic diet is a diet that restricts car-
bohydrates intakes, primarily derived from sugary foods and
refined grains, which could alter human gut microbiota. A short-
term intervention with an isocaloric low-carb diet with increased
protein content shifted the gut microbiota in obese participants
with nonalcoholic fatty liver disease, including an increase in
folate-producing Streptococcus and decreased fecal concentrations
of SCFAs (Mardinoglu et al., 2018). Low-carb diet-associated gut
microbiota could inhibit bifidobacterial growth, reduce the lev-
els of intestinal inflammation and thus benefit metabolic health
(Ang et al., 2020). Similar as the low-carb diet, low-fat diet was
also demonstrated to be highly associated with gut microbiome.
For example, a 6-month randomized controlled-feeding trial
including 217 healthy young adults found that low-fat diet could
increase gut microbial alpha-diversity, Blautia and Faecalibacterium,
and reduce the blood proinflammatory markers (Wan et al., 2019).

Recently, dietary diversity has been linked to gut microbial
profiles in the human cohort studies (Huang et al., 2022; Xiao et
al., 2022). A diverse diet was consistently associated with a high
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microbial alpha-diversity, and a high abundance of Bacteroides
ovatus, Turicibacter, Alistipes, and Barnesiella (Huang et al., 2022;
Xiao et al., 2022). Nevertheless, data about the dietary diversity
and gut microbiome is still sparse and more research in this field
is warranted to further demonstrate the interplay between diver-
sity of diet and gut microbiome profiles for host health.

Diet, nutrition, and microbiome across body
sites beyond gut

Diet and nutrients could also affect the microbiota from other
body sites, such as oral microbiota, vaginal microbiota, and
human milk microbiota (Table 2). Oral microbiota also attracts
attention given their close connection with diet and health
(Lamont et al., 2018). Oral microbial alpha-diversity was positively
associated with tea intake and inversely associated with total car-
bohydrates, glycemic load (GL), starch, lactose, and sucrose intake
in US elderly populations (Peters et al., 2018; Millen et al., 2022).
One study among Thailand children showed that frequently con-
sumed snacks were associated with higher alpha-diversity of oral
gut microbiota, which could predict early childhood caries (Wu
et al,, 2022a). Oral microbial beta-diversity was associated with
tea intake, sweet treat consumption, total carbohydrates, fiber,
GL, sucrose, and galactose (Peters et al., 2018; Lommi et al., 2022;
Millen et al.,, 2022). Diet and nutrients were also associated with
specific oral bacterial patterns (Esberg et al., 2021; Shaalan et
al., 2022). For example, one study found that sucrose intake was
associated with one oral bacterial pattern defined by the high-
est predicted sugar-related metabolic pathways and lowest spe-
cles diversity, and caries status in Swedish adults (Esberg et al.,
2021). Another study showed that consumptions of sugary snacks
combined with reduced consumption of fish/shellfish and nuts
were associated with one subtype of oral microbiome that was
more represented in participants with T2D (Shaalan et al., 2022).
For specific oral microbes, Peters et al. found that higher tea
intake was associated with higher abundance of Fusobacteriales,
Clostridiales, and Shuttleworthia satelles, and lower abundance of
Bifidobacteriaceae, Bergeyella, Lactobacillales, and Kingella oralis. They
also reported that higher coffee intake was associated with higher
abundance of Granulicatella and Synergistetes, although it was not
associated with alpha- or beta-diversity among the US elderly
population (Peters et al., 2018). Higher sweet treat consumption
was associated with higher abundance of Streptococcus, Prevotella,
Veillonella, and Selenomonas, and associated with activated nitrate
reduction IV and gondoate biosynthesis pathways among Finland
children (Lommi et al., 2022). Thus, current evidence supports the
associations of the intakes of tea, coffee, sugary foods, and carbo-
hydrates with oral microbiota.

Human breast milk benefits infants’ immune system matu-
ration and gastrointestinal development by providing nutrients,
probiotics, and other bioactive molecules. Liu et al. showed that
maternal diets were associated with the breast milk micro-
bial composition in a Chinese population (Liu et al., 2022). For
example, tuber was positively associated with the abundance of
Neisseria and Cutibacterium in the breast milk; carbohydrate intake
was inversely associated with the abundance of Aquabacterium;
and vitamin B12 was positively associated with Coprococcus (Liu
et al.,, 2022). Maternal consumption of fiber and fat, and mother’s
infant feeding practice (frequency of direct breastfeeding) were
associated with human milk microbiota (LeMay-Nedjelski et al.,
2021). These studies suggest that the breast milk microbiota are
influenced by maternal intake of tuber, fiber, and fat, as well as
mother’s infant feeding practice.
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Table 2. Continued

Method

Health

Diet and nutrition

Sequencing Duration of

Country

Sample
size

Study

Body
site

Study design

outcome

follow-up

PERMANOVA test, DESeq2 negative binomial
tests, Dirichlet multinomial mixtures

T2D, body mass

index

Elements of the MedDiet

N/A

16S rRNA

Spain

121

Shaalan et al.

(2022)

Oral

Prospective
study

cavity

Consumption of sugary snacks combined with reduced consumption of fish/shellfish and nuts was associated with one subtype of oral gut microbiota

pattern that was more represented in participants with T2D.

Maternal diet such as tuber, nutrients N/A Spearman correlations

First 6 months

16S TRNA
postpartum

53 China

Liu et al. (2022)

Milk

such as carbohydrates and vitamin B12

Tuber intake was positively associated with the abundance of Neisseria and Cutibacterium in the breast milk. Carbohydrate was inversely associated with the

abundance of Aquabacterium, and vitamin B12 was positively correlated with Coprococcus.

*The studies listed in the table were published within past 5 years.
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The balance of vaginal microbiota was crucial for maintaining
maternal-fetal health (France et al., 2022). Through investigating
the effects of pre-pregnancy diet on vaginal microbiota compo-
sition, Dall’'Asta et al. found that higher pre-pregnancy intakes
of animal-sourced protein were inversely (harmfully) associated
with a lactobacilli-dominated vaginal microbiota, while intakes
of total carbohydrates and sugars were beneficial for healthy
vaginal microbiota (Dall'Asta et al., 2021). Rosen et al. explored
the associations between prenatal diet and vaginal microbiota
composition and showed that the assumption of low-fat dairy
was associated with a beneficial vagitype with predominance of
Lactobacillus species (Rosen et al., 2022). These studies demon-
strate the importance of pre-pregnancy (total carbohydrates
and sugars) and prenatal diet (low-fat dairy) for healthy vaginal
microbiota.

Microbigl metabolites provic}e fupctional
connection between diet, microbiome, and
human health

Microbial metabolites act as important intermediates in the
crosstalk between gut microbiota and host health (Fan and
Pedersen, 2021; Krautkramer et al., 2021; Wang et al., 2022c).
Microbial metabolites play essential roles in host metabolic
homeostasis, immune functions, and neuromodulation (Fan and
Pedersen, 2021; Krautkramer et al., 2021). Through producing a
diverse array of metabolites, gut microbiota could even exert its
functions in distant organs of human body, such as liver, lung,
and brain (Van de Wouw et al., 2017; Tripathi et al., 2018; Dang
and Marsland, 2019; Fan and Pedersen, 2021). The production of
microbial metabolites depends, at least partially, on the availabil-
ity of dietary substrate, in which bacteria ferment dietary macro-
nutrients and micronutrients into functional metabolites. In this
section, we summarize current epidemiological studies linking
the associations between diet, microbial metabolites, and human
health (Table 3).

TMAO is one of the most studied microbial metabolites,
which is produced by the gut microbiota from foods rich in car-
nitine, phosphatidylcholine, and choline, such as red meat and
eggs (Brown and Hazen, 2018; Dehghan et al., 2020). Leveraging
longitudinal cohort from healthy US men, Li et al. showed that
habitual intakes of red meat, egg, dairy, and fish were associated
with increased plasma TMAO levels (Li et al., 2021). They further
found that the positive association of red meat and choline with
TMAO concentrations were only among participants with abun-
dant TMAO-predicting species, suggesting the essential role of
gut microbiota in TMAO production (Li et al., 2021). Consistently,
a study based on the German population also showed that eggs
and choline were positively associated with plasma TMAO lev-
els (Rath et al,, 2021). Furthermore, the detrimental relationships
between TMAO levels and cardiovascular diseases have been
manifested in many studies (Senthong et al., 2016; Li et al., 2017;
Yu et al., 2019; Lee et al., 2021; Wei et al., 2022). The associations
of diet and nutrient with cardiovascular diseases may depend
on the TMAO levels. For example, a previous study showed that
TMAO-related metabolites (TMAO, y-butyrobetaine, and croton-
obetaine) together mediated the associations of unprocessed red
meat (mediated proportion: 10.6%), total meat (mediated propor-
tion: 7.8%), and total animal-source foods (mediated proportion:
9.2%) with risk of atherosclerotic cardiovascular disease (Wang
et al.,, 2022b). Another study demonstrated that the associations
of high levels of plasma choline and betaine with major adverse
cardiac events (MACE) were significant only among those with
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concomitant elevated TMAO levels, while neither choline nor
betaine was associated with risk of MACE when adjusting for
TMAQO levels (Wang et al., 2014).

Tryptophan, an essential amino acid, is beneficial for human
health, which can be converted to a variety of indole deriva-
tives (e.g., indoleacetate, indolelactate, and indolepropionate)
by gut microbiota (Roager and Licht, 2018). Qi et al. showed that
indolelactate was positively while indolepropionate was inversely
associated with risk of T2D (Qi et al., 2022). They also found that
higher fiber intake was associated with higher levels of indolepro-
pionate, and lower levels of indolelactate and indoxyl sulfate. As
a support, one recent intervention study found that a prebiotic
fiber supplement could significantly increase plasma indolepro-
pionate concentrations compared to the placebo among healthy
young participants consuming a diet low in fiber (Kang et al,,
2022). Higher intakes of vegetables, fruits, whole grains, nuts, and
legumes, and lower intakes of refined grains and red meat were
associated with higher serum indolepropionate levels (Qi et al.,
2022). Fruit and vegetable intakes were also inversely associated
with urinary 3-indoxylsulfate concentrations (Szabo de Edelenyi
etal, 2021).

Imidazole propionate (ImP) is a microbial metabolite from his-
tidine. Serum ImP levels were higher in participants with predi-
abetes or T2D, and this metabolite was also associated with gut
microbial enterotype and gene richness (Molinaro et al., 2020). In
addition, ImP levels were positively associated with saturated fat
intake (driven by high cheese intake), and negatively associated
with fiber and unsaturated fat intake (driven by reduced intake
of vegetables and nuts) (Molinaro et al., 2020). One intervention
study conducted by Nishimoto et al. demonstrated that the intake
of resistant maltodextrin (one of the dietary fibers) could reduce
fecal ImP levels among Japanese participants (Nishimoto et al.,
2022). For the dietary pattern, serum ImP levels were inversely
associated with the alternate Healthy Eating Index, dietary diver-
sity score, and MedDiet score (Molinaro et al., 2020). Overall, die-
tary fiber, unsaturated fat intake, and healthy dietary patterns
may be inversely associated with T2D and glucose metabolism
disorder through reducing the levels of ImP.

SCFAs, including acetic acid, propionic acid, and butyric acid
are produced by microbial fermentation of dietary fiber. The evi-
dence for the associations of SCFAs with diet and health primarily
comes from rodent studies (Krautkramer et al.,, 2021). In human
studies, Cuesta-Zuluaga et al. showed that higher fecal SCFA con-
centrations were associated with gut permeability, markers of
metabolic dysregulation, obesity, and hypertension (de la Cuesta-
Zuluaga et al., 2018). Utilizing the bidirectional Mendelian ran-
domization analysis, Sanna et al. demonstrated that high levels
of fecal butyrate was causally associated with improved insulin
sensitivity, while higher levels of fecal propionate were causally
associated with higher risk of T2D (Sanna et al., 2019). In addi-
tion, higher serum propionic acid levels were associated with
increased risk of cognitive decline and were positively correlated
with intakes of meat and cheese (Neuffer et al., 2022).

Bile acids (BAs), which are synthesized from cholesterol in
the liver, act as important intermediates in gut microbiota-host
crosstalk. A cross-sectional study showed that serum primary
and glycine-conjugated BAs in vegans were higher but all fecal
BAs were lower than omnivores (Trefflich et al., 2019). Through
deriving dietary patterns, this study also showed that fat intake
was positively, while fiber intake was inversely associated with
BAs levels (Trefflich et al., 2019). In addition, Jiang et al. found that
fruit-related gut microbiota index was inversely associated with
fecal cholic acid and 3-dehydrocholic acid, which were positively
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associated with T2D risk (Jiang et al., 2020). Another study dis-
covered that habitual tea consumption was inversely associated
with chronic insomnia-disrupted BA norcholic acid (iang et al.,
2022), suggesting the potential role of habitual tea consumption
in treating chronic insomnia through targeting BAs. Meanwhile,
Wang et al. systematically explored the associations between
diet, microbial genetics, and plasma BA composition, providing a
valuable resource for future studies (Wang et al., 2021b).

Except for the TMAQ, there are other microbial metabolites
that belong to gut-derived uremic toxins (GDUT), including p-cre-
syl sulfate, hippuric acid, p-cresyl glucuronide, pheny acetyl
glutamine, and phenyl sulfate. Plasma levels of GDUT were all sig-
nificantly higher even with moderate reduction of renal function
(Pignanelli et al., 2019). Intake of meat/amino acids contributed
to plasma abundances of all GDUT. Plasma levels of hippuric acid
and p-cresyl gluronide were significantly explained by intakes of
TMA, largely from egg yolk (Pignanelli et al., 2019). Thus, partici-
pants with impaired renal function should limit the intake of red
meat, animal protein, and egg yolk. In addition, intestinal micro-
bial metabolites of dietary lignans such as enterolactone and
enterodiol were associated with modestly slower weight gain (Hu
etal., 2015).

Apart from above studies, several recent studies have system-
atically explored the associations of diet and gut microbiome
with more than 1000 metabolites (Bar et al., 2020; Chen et al,,
2022), providing important resources for potential diet-related
microbial metabolite investigations in future.

Role of gut microbiome in the precision
nutrition research

Precision nutrition is a broad concept to answer “What to Eat
to Stay Healthy,” covering multidisciplinary integration, among
which, gut microbiome is becoming an essential component
(Rodgers and Collins, 2020). In the above sections, we have sum-
marized how dietary pattern, food groups, or nutrients affect
the gut microbiota diversity, taxa, and functions across different
cohorts or clinical studies. Here we review another important
area of gut microbiome-based precision nutrition for the iden-
tification of key microbiota features that predict the host phe-
notypic response to diet, which can then inform the design of
microbiome-guided personalized nutrition guidelines for diverse
individuals (Fig. 2 and Table 4).

Similar as the application of nutrigenetics in the precision
nutrition, a number of studies have consistently found that strat-
ifying individuals according to gut microbial enterotypes (domi-
nance of either Prevotella or Bacteroides) is applicable, which is the
initial application of gut microbiome-based precision nutrition
research (Hjorth et al., 2018; Hjorth et al., 2019). For example, a
26-week randomized controlled trial showed that participants
with Prevotella-dominated microbial enterotype lost more body
weight on a high-fiber diet intervention than a western diet
intervention, whereas no difference in body weight change
was observed for the participants with Bacteroides-dominated
microbial enterotype (Hjorth et al., 2018). Consistently, another
24-week dietary intervention study found that participants with
high Prevotella-to-Bacteroides ratio lost more body weight and body
fat compared to participants with low Prevotella-to-Bacteroides
ratio (Hjorth et al,, 2019). Participants with a high Prevotella-
to-Bacteroides ratio might result in improvement of enzymatic
capacity for fiber digestion and glucose metabolism (Hjorth et
al., 2019). Microbial gene richness is another important micro-
bial index for the subgroup-based precision nutrition. A 12-week
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Figure 2. Gut microbiome-based precision nutrition. (A) Host responses to the diet and nutrition are highly variable across individuals. (B) Machine
learning integrating the gut microbiome and other host factors could predict the personalized nutritional and dietary response. This figure was created

with BioRender.com.

weight-maintenance diet intervention study included 38 obese
and 11 overweight participants, and found that the effect of
weight-maintenance dietary intervention on the clinical pheno-
types was less pronounced among participants with lower gut
microbial gene richness (Cotillard et al., 2013).

Gut microbiome is a major factor determining the variation of
individual's metabolic response to diet, which provides a ration-
ale to combine the gut microbial features and other host pheno-
types to predict the host response for similar or different dietary
challenges. A landmark study within this field was the Israeli per-
sonalized nutrition study (n = 800) (Zeevi et al., 2015). They found
that the combination of gut microbiome, dietary factors, anthro-
pometrics, and clinical parameters could accurately predict
personalized postprandial glycemic response to real-life meals.
Furthermore, 1-week personalized dietary interventions based on
the prediction showed improvement in glucose metabolism. As a
validation of this study, Ben-Yacov et al. randomly assigned 225
adults with prediabetes to follow a MedDiet or a machine learn-
ing-predicted personalized postprandial-targeting (PPT) diet for
a 6-month intervention and additional 6-month follow-up (Ben-
Yacov et al., 2021). They found that a PPT diet improved glycemic
control more effectively than a MedDiet (Ben-Yacov et al., 2021).
With the same study design and predictive model as the Israeli
study, Mendes-Soares et al. enrolled 327 participants without dia-
betes from the USA. They found that the postprandial response
to the same foods varied across participants, and the modeling
framework developed by the Israeli study could be applicable to
a Midwestern population (Mendes-Soares et al., 2019). Inspired by
the Israeli personalized nutrition study, a large-scale twin study
recruited more than 1000 healthy adults from the UK to USA and
undertook a 2-week interventional trial. They observed that even
genetically similar twins had differently postprandial responses
of blood triglycerides and glucose to identical meals. They high-
lighted that environmental factors, mainly gut microbiome could
predict the triglycerides and glycemic responses to diet (Berry et
al., 2020).

For a specific disease population, like inflammatory bowel
syndrome (IBS) patients, a 4 weeks intervention study included
67 participants who were randomized to traditional IBS (n = 34)
or low fermentable oligosaccharides, disaccharides, monosac-
charides, and polyols (FODMAPs) (n = 33) diets (Bennet et al.,
2018). They found that low FODMAPs, but not traditional IBS diet
responders could be discriminated from non-responders based
on gut microbiome before the intervention (Bennet et al., 2018).

Indeed, even for the specific food groups or nutrients, their
different subtypes may have personalized effects on the human
metabolism, which could be predicted by gut microbiome. Korem
et al. performed a crossover clinical trial for the consumption of
industrially made white bread or artisanal sourdough-leavened
whole-grain bread (Korem et al., 2017), and found that glycemic
response to different bread types varies greatly across individuals,
and the type of bread that induces the lower glycemic response in
each person can be predicted based on the gut microbial features
(Korem et al., 2017). Deehan et al. showed that small differences
in dietary fiber structure could have distinct effects on the gut
microbiome composition, leading to directed shifts in the output
of either propionate or butyrate (Deehan et al., 2020). Suez et al.
found that different type of non-nutritive sweeteners personal-
ized altered stool and oral microbiome. Only saccharin and sucra-
lose were causally linked to impaired glycemic responses (Suez
etal., 2022).

Conclusions and future perspectives

In this review, we have discussed the latest advances in under-
standing the role of the microbiome in nutrition and human
health. Microbiome-based nutritional (i.e., nutri-microbiome)
epidemiological studies have uncovered many microbes and
microbial metabolomic targets for dietary intervention and
disease prevention. Furthermore, the integration of nutrition
with microbiome provides new approach for understanding the
mechanism behind the diet-disease associations. In particular,
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inter-individual differences in postprandial metabolic responses
to diet challenge the logic of “one-size-fits-all” dietary recom-
mendations. Gut microbiome have been demonstrated as one of
the effective predictors of host response to a particular diet. Gut
microbiome-based precision nutrition provides hope for further
advancements in control and treatment of disease at individual
level.

The advances in nutri-microbiome epidemiological studies are
promising, yet, there are several limitations in this field, including
study design, technologies, analysis methods, and results inter-
pretation. First, the nutrition and microbiome associations are
generally studied in cross-sectional or short-term longitudinal
settings, while the human gut hosts a dynamic microbial eco-
system which is continuously perturbed by daily dietary intake
(Johnson et al., 2019; Olsson et al., 2022). Therefore, well-de-
signed longitudinal investigations with repeat measures, ide-
ally randomized controlled trials, are needed to assess diet-gut
microbiota interaction on the human health. Second, geographic
location, customs, and culture, seasonal variations in food avail-
ability could all impact the dietary choices and the gut micro-
biome heterogeneity (Ecklu-Mensah et al., 2022), and therefore
caution should be taken in extrapolating findings from different
geographic location or ethnic groups. Third, mass spectrometry
metabolomic profiling could detect thousands of unique signal
features. However, it is currently difficult to accurately identify
metabolites for many of these signal features, which affects
the discovery of new metabolomic biomarkers. Finally, machine
learning has been widely and effectively applied in the precision
nutrition studies, while its prediction algorithms are usually dif-
ficult to interpret.

Despite several limitations and obstacles, recent advances in
the field bode well for the future. The repeated-crossover design
of an n-of-1 trial is an advantageous approach to compare the
effect of two or more interventions for an individual (Gabler et
al., 2011; Potter et al., 2021). Nutritional n-of-1 clinical trials,
in the context of the human gut microbiota provide a unique
opportunity to characterize the host response and gut microbial
variability of nutritional interventions at the individual level
(Zheng and Ordovas, 2021). Mobile apps and wearable devices
facilitate the real-time assessment of dietary intake, nutritional
biomarker variations, and changes of health-related vital signs
(Sempionatto et al., 2021). Current advances in wearable devices
have proved prerequisite for precision nutrition (Sempionatto
et al, 2021; Merino et al., 2022). Furthermore, interpretable
machine learning has received more and more attentions in
recent years (Murdoch et al., 2019). By integrating cutting-edge
wearable and mobile sensing technologies with interpretable
machine learning, precision nutrition is expected to provide
effective personalized nutrition guidance and interventions.
The applications of metabolomics in the field of nutrition and
microbiome could greatly benefit from the improvement of the
stability and repeatability of metabolomic profiling, the stand-
ardization of analytical methods and strategies, the advances
in metabolic peak identification, the comprehensive utiliza-
tion of different biological samples for metabolomic profiling.
Moreover, research on the interactions of the gut multi-kingdom
ecosystem (including bacteria, virome, and mycobiome commu-
nity, etc.) with diet and nutrition for human health is an emerg-
ing field of great interest.

To conclude, systematic integration of microbiome with the
large-scale nutritional epidemiological cohort studies fosters the
development of nutri-microbiome epidemiology, a rising field to
disentangle the relationship among diet, nutrition, microbiome,
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and human health. These new progresses stimulate the further
development of microbiome-based precision nutrition research.
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