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Abstract

Herein we disclose a strategy to promote the hydrocarboxylation of unactivated alkenes 

using photochemical activation of formate salts. We illustrate that an alternative initiation 

mechanism circumvents the limitations of prior approaches and enables hydrocarboxylation of 

this challenging substrate class. Specifically, we found that accessing the requisite thiyl radical 

initiator without an exogenous chromophore eliminates major byproducts that have plagued 

attempts to exploit similar reactivity for unactivated alkene substrates. This redox-neutral method 

is technically simple to execute and effective across a broad range of alkene substrates. Feedstocks 

alkenes, such as ethylene, are hydrocarboxylated at ambient temperature and pressure. A series of 

radical cyclization experiments indicate how the reactivity described in this report can be diverted 

by more complex radical processes.

Alkene hydrofunctionalization methods that exploit radical intermediates are a 

fundamental class of synthetic reactions. Radical reactivity offers a complementary 

regio- and chemoselectivity profile relative to polar pathways.1,2 Despite anti-

Markovnikov hydrobromination dating back a century,3,4 the development of radical 

hydrofunctionalization reactions remains a contemporary area of investigation.5-17 Our 

group has a particular interest in alkene hydrocarboxylation using radical intermediates.18,19 

Carboxylic acids are a readily diversifiable functional handle20-24 and are themselves a 

common motif found in natural products, pharmaceuticals, and commodity chemicals.25-28 

We envision that a broad and general radical hydrocarboxylation reaction would offer 

a powerful complement to transition-metal-catalyzed methods, such as the numerous 

established CO-based approaches29-32 and the emerging alternative technologies that 

proceed through migratory insertion into CO2.33-39 However, established approaches to 
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radical hydrocarboxylation have remained largely limited to activated alkenes (Figure 

1A).18,19,40-46 Unactivated aliphatic alkenes are an abundant and important substrate class 

but remain more challenging to engage due to their attenuated reactivity. Indeed, in the 

past year, Yu and coworkers reported the first and only synthetic methodology that engages 

unactivated alkenes with CO2
•−.47 While this pioneering report was a substantial step for 

unactivated alkene hydrocarboxylation, this strategy nonetheless relies on highly reducing 

and basic conditions alongside stoichiometric reductants. More broadly, unactivated alkenes 

remain a challenging substrate class to engage not only for radical strategies but also across 

a broader sampling of hydrocarboxylation methods.

We questioned whether the limitations encountered with radical hydrocarboxylation of 

unactivated alkene substrates are tied to the reliance on single-electron reduction of 

CO2. In principle, CO2
•− should be sufficiently reactive to undergo radical addition with 

unactivated aliphatic alkene substrates.48-50 However, despite numerous successful examples 

with activated alkene substrates,42-46 the comparatively slower rates of CO2
•− addition to 

unconjugated π-systems expose numerous liabilities for these net-reductive transformations. 

For example, oxalate formation becomes a competitive pathway that parasitically consumes 

stoichiometric reducing equivalents. Furthermore, many strategies rely on highly reducing 

photocatalytic or electrochemical systems that become more susceptible to deactivation for 

slower reactions. We envisioned that an approach to generate the key CO2
•− intermediate 

without relying on CO2 reduction might circumvent each of these challenges.

Our group51 and others52,53 have recently reported a strategy that generates CO2
•− from 

inexpensive formate salts via hydrogen atom abstraction (formate C(sp2)─H BDE = 

86 kcal/mol).54 This approach has been applied to activated alkene hydrocarboxylation; 

however, attempts to expand the scope of this process to unactivated alkenes have been 

categorically unsuccessful.18,19,40,41 Nonetheless, we recognized that, in principle, this 

formate-based mechanistic manifold should be uniquely well matched to address the specific 

challenges encountered by other approaches to unactivated alkene hydrocarboxylation. 

Based on our working mechanistic model, CO2
•− generation is coupled to its consumption, 

which maintains a low steady-state concentration of the reactive radical intermediate 

(Figure 1B). This should minimize the deleterious pathways available to CO2
•−, such as 

dimerization. This redox-neutral process also bypasses the potent reductants demanded 

by the thermodynamically challenging reduction of CO2 (Ered (CO2/CO2
•−) = −2.2 V vs. 

SCE).55 This presents an opportunity to generate CO2
•− under exceptionally mild conditions 

with perfect atom56 and redox57 economy. We envisioned that a deeper investigation into the 

reactivity of unactivated alkene substrates using this formate-based approach could reveal 

the origin of its previously encountered limitations. These findings would then guide the 

development of a new catalytic system capable of engaging this challenging substrate class. 

Herein, we report the outcome of these studies, which produced a new approach to initiation 

that enables the hydrocarboxylation of unactivated alkenes (Figure 1C). The high atom 

economy, operational simplicity, and mild reaction conditions of this process render it an 

appealing complement to all alternative hydrocarboxylation approaches.

We initiated our investigations with model unactivated alkene 1. Under our previously 

developed alkene hydrocarboxylation conditions, acid product 2 was formed in 18% yield 
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alongside 10% of a solvent-derived thioether side product (3).58 Further interrogation of 

the reaction parameters modestly improved the yield relative to this initial lead result; 

however, the process remained unselective for the desired product (Scheme 1A, entry 1). 

These observations suggested that fine-tuning of reaction parameters was unlikely to lead 

to a synthetically useful protocol. With this in mind, we aimed to diagnose the factors 

stymying our attempts at reaction optimization. To this end, we monitored the reaction 

progress as a function of time. These experiments revealed that the conversion of the 

alkene substrate is preceded by a brief induction period. Parallel monitoring of the reaction 

by UV-Vis spectroscopy indicated that the photocatalyst, 4DPAIPN, is consumed during 

this induction period. Overlaying these two datasets illustrated that product formation 

begins after the majority of the catalyst absorption features have been lost. These data 

suggest that 4DPAIPN is not responsible for hydrocarboxylation reactivity under these 

modified conditions. We next ran the reaction in the absence of 4DPAIPN and found 

that product 2 is formed despite omission of the exogeneous dye although an induction 

period was still observed. While the yield of the desired acid product, 2, under these 

conditions was attenuated, the previously problematic byproduct, 3, was not observed 

(entry 2). Additional control experiments revealed that both thiol and light remained 

necessary reaction components (see SI for details). Taken together, these data suggest that 

CO2
•− addition into unactivated alkenes is slower than photocatalyst decomposition, which 

potentially occurs via radical attack on the isophthalonitrile core.59-64 In contrast, we suspect 

that CO2
•− addition into activated alkenes (e.g. vinylarenes) outcompetes this pathway given 

that the dye was necessary under those conditions and that no catalyst bleaching was 

observed.65

These mechanistic investigations provided a new foundation from which to continue our 

reaction development efforts. In the absence of an exogeneous chromophore, we envisioned 

that thiol identity and irradiation wavelength would have a significant impact on reaction 

efficiency. A collection of thiols with varying steric and electronic profiles were evaluated 

as potential catalysts for this transformation (Scheme 1B, see Table S5 for details regarding 

the thiols and wavelengths examined). Varying the ortho-substituent from an ester (S1) to 

other electron-withdrawing groups, such as nitrile (S2), had minimal impact. In contrast, 

trace product was formed with electronically neutral (S3) and electron-rich (S4) analogs. 

We next questioned whether reducing the steric encumbrance proximal to the thiyl radical 

would improve the reaction efficiency. Minimal change in reactivity was observed for the 

nitrile (S6) and methoxy (S7) substituted thiols. However, the para-ester thiol S5 increased 

reactivity and furnished the desired product in 75% yield.

We next investigated the origin of reactivity with unactivated alkenes in the absence of 

an exogeneous photocatalyst. In our previous studies the proposed role of 4DPAIPN 
was to initiate the reaction by generating a thiyl radical intermediate. We suspected that 

an alternative mechanism still generated an analogous thiyl radical species under these 

modified conditions. To evaluate if S5 was oxidized under the reaction conditions, we 

monitored disulfide formation in the absence of other reactants (Scheme 1C).66 Indeed, 

disulfide was formed over the course of a few hours. Next, we examined whether 

the disulfide is a competent pre-catalyst for formate activation via S─S homolysis.67 
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Replacement of thiol (S5) with the corresponding disulfide (S8), under otherwise identical 

conditions, resulted in similar yield of the desired product (Table S8). These data provide 

a plausible rationale for the observed induction period for the purely thiol-catalyzed 

hydrocarboxylation process.

We next examined the scope of alkene substrates that undergo the hydrocarboxylation 

reaction (Table 1). An array of linear aliphatic alkenes bearing a variety of functional groups 

were smoothly converted to the desired carboxylic acid in moderate to high yields (2–8). 

Of note, reductively sensitive aryl chlorides (8) were tolerated without any measurable 

dehalogenation despite the established examples of their reduction with CO2
•−.51-53 Indeed, 

similar yield of the hydrocarboxylation product was observed from an analogous deschloro 

alkene substrate (9). The reaction tolerates diverse protic functional groups, including ureas 

(10), unprotected alcohols (11, 12), carboxylic acids (13), carbamates (13), and amides 

(4, 7). Of particular note, an α-amino acid derivative was found to be compatible under 

the reaction conditions and could be transformed into the linear diacid product in high 

yield (13). Substrates bearing a variety of pendant heterocycles, including oxetanes (12), 

γ-lactones (14), piperidines (15, 16), pyrans (17), andimidazoles (18), each underwent the 

desired transformation. Hydrocarboxylation proceeds smoothly across a series of sterically 

hindered substrates (11, 12, 14–17, 19), which included fully substituted carbon centers in 

both cyclic (12) and acyclic systems (19). Moderate to high yields of the linear carboxylic 

acid products were obtained across a series of exocyclic and acyclic 1,1-disubstituted 

alkene substrates upon gentle heating (20–22). Under these conditions, internal alkenes still 

produce the corresponding carboxylic acid albeit in diminished yield (21% yield, see SI for 

details).

We next evaluated this new hydrocarboxylation methodology on a preparative scale (Scheme 

2). With modified conditions that reduced the thiol catalyst loading (5 mol%) and employed 

a less expensive formate salt (potassium formate), carboxylic acid 4 was prepared on 

decagram scale in 95% yield (10.6 g, 48 mmol). While photochemical reactions often 

require specialized equipment to be scaled,68,69 we found that this preparative reaction could 

be conducted in a simple batch setup despite relying on a poorly absorbing chromophore.70 

Furthermore, no precautions to exclude air were required and the product could be purified 

by aqueous extraction without the need for chromatography. Overall, these results illustrate 

the operational simplicity and immediate utility of this formate-based hydrocarboxylation 

approach in fine chemical synthesis.

We next evaluated whether this hydrocarboxylation reaction is amenable to the 

functionalization of commodity feedstock alkenes derived from steam cracking (Scheme 

3).71 Previous work by du Pont engaged formic acid and feedstock alkenes to generate 

carboxylic acid products; however, energy-intensive pyrolysis conditions at elevated 

pressures (e.g. 325 °C at 700 atm) were required to circumvent the high kinetic barrier 

associated with this thermal process.72 In stark contrast, room temperature irradiation of a 

mixture of potassium formate and catalytic thiol under an atmosphere (1 atm) of ethylene 

resulted in high yield of the desired acid product relative to formate (Scheme 4). These 

results underscore the exquisite selectivity these conditions provide for hydrocarboxylation 

over CO2
•− dimerization to form oxalate salts. We suspect dimerization is avoided because 
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a low steady state concentration of CO2
•− is maintained throughout the reaction by coupling 

CO2
•− generation to product formation through the putative chain mechanism. Additionally, 

the thiol catalyst remains intact after the reaction and could, in principle, be recovered and 

recycled. These data outline that this catalytic system may ultimately unlock an attractive 

new approach for the conversion of feedstock alkenes to value-added commodity acid 

products with an inexpensive thiol organophotocatalyst.

We next questioned whether this methodology could provide a new route to synthesize 

saturated rings via carboxylation-induced radical cyclization. Specifically, we envisioned 

that unconjugated diene substrates might undergo cyclization to forge a new C(sp3)─C(sp3) 

bond. Subsequently, the nascent C(sp3) radical intermediate could be intercepted by a 

hydrogen atom to propagate the chain mechanism. Successful implementation of this idea 

would require that radical cyclization is substantially faster than hydrogen atom transfer 

(HAT) to the alkyl radical formed following CO2
•− addition.73 We found that a collection 

of model unconjugated dienes underwent the desired carboxylation-cyclization reaction, 

forming tetrahydrofurans, pyrrolidines, and cyclopentanes with modest cis-selectivity 

(Scheme 4).74 These results illustrate the potential utility of this catalytic engine beyond 

hydrocarboxylation processes, given that these simple carboxylic acid building blocks either 

required multistep sequences using previous approaches or had not been previously reported.

Overall, we have identified a new photocatalytic system that enables the direct synthesis 

of linear carboxylic acids from unactivated alkenes and formate salts. We identified a 

more efficient thiol catalyst that undergoes spontaneous oxidation to the requisite thiyl 

radical in situ. This new approach to initiation circumvented the fundamental challenges 

that have stymied previous attempts to engage unactivated alkenes in such reactions. 

These studies have introduced a practical alkene hydrocarboxylation protocol that proceeds 

under mild conditions, tolerates a wide array of functional groups, and is readily scaled 

in batch. Proof-of-concept experiments further illustrated that this new technology is 

amenable to the preparation of commodity chemicals as well as saturated rings. This study 

fundamentally expands the scope of formate-based radical hydrocarboxylation and, more 

broadly, introduces a new catalytic system for HAT-based formate activation with diverse 

potential applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Project overview

Alektiar et al. Page 11

J Am Chem Soc. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
Optimization of formate-based conditions for unactivated alkenesa

aReactions were conducted under air on a 0.05 mmol scale with 2 equiv CsCHO2 at 24 °C 

unless otherwise noted. The yield of 2, 3, and S8 were determined via 1H NMR. See the 

SI for further details. bReactions were run for 24 h and yields are an average of 4 runs. 
cReactions were run for 5 h. dReactions were run on 0.03 mmol scale.
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Scheme 2. 
Multigram-scale hydrocarboxylation for fine chemical synthesisa

aThe reaction was conducted under air on a 50 mmol scale with 2 equiv KCHO2 and 5 mol% 

S5 for 24 h at 24 °C. See the SI for further details.
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Scheme 3. 
Hydrocarboxylation for bulk chemical synthesisa

aReaction was conducted under air at 1 atm on a 1 mmol scale with 5 mol% S5 and limiting 

KCHO2 for 6 h at 24 °C. Yields were determined via 1H NMR. See the SI for further 

details.

Alektiar et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Carboxylation–induced radical cyclizationa

aReaction were conducted under air on a 1 mmol scale with 2 equiv CsCHO2 for 24 h at 24 

°C, and yields are of purified product unless otherwise noted. See the SI for further details.

Alektiar et al. Page 15

J Am Chem Soc. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alektiar et al. Page 16

Table 1.

Scope of Unactivated Alkene Substratesa

aReactions were conducted under air on a 1 mmol scale with 2 equiv of CsCHO2 for 24 h at 24 °C, and yields are of the purified product unless 

otherwise noted. See the SI for further details. bYield was determined via 1H NMR analysis. c10 equiv CsCHO2 was used. dThe reaction was run 

on 0.05 mmol scale in DMSO-d6 and measured as the yield of the trifluoroacetate salt. eThe reaction was heated to 50 °C. fThe substrate was used 

as a THF solution.
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