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Abstract 

Background  The increase in DNA copy number in Down syndrome (DS; caused by trisomy 21) has led to the DNA 
dosage hypothesis, which posits that the level of gene expression is proportional to the gene’s DNA copy num-
ber. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back 
towards typical expression levels (1.0×). In contrast, other reports suggest that dosage compensation is not a com-
mon mechanism of gene regulation in trisomy 21, providing support to the DNA dosage hypothesis.

Results  In our work, we use both simulated and real data to dissect the elements of differential expression analysis 
that can lead to the appearance of dosage compensation, even when compensation is demonstrably absent. Using 
lymphoblastoid cell lines derived from a family with an individual with Down syndrome, we demonstrate that dos-
age compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. 
Furthermore, we link the limited apparent dosage compensation to expected allelic variation in transcription levels.

Conclusions  Transcription dosage compensation does not occur in Down syndrome. Simulated data containing 
no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, 
some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
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Background
Trisomy 21 (T21, the major cause of Down syndrome) is 
the most prevalent aneuploidy in the human population 
[1]. Individuals with Down syndrome have stereotypi-
cal physical features and some degree of intellectual dis-
ability. In addition, they have an increased risk for some 

health problems, such as congenital heart disease, and a 
decreased risk of others, including solid tumor formation 
(see review [2]). This altered risk profile arises primarily 
from the effect of higher levels of transcription of genes 
encoded on chromosome 21 [3–5]. The increase in both 
DNA copy number and transcription has led to the DNA 
dosage hypothesis: gene transcription levels are propor-
tional to DNA dosage [6, 7].

Dosage compensation is any mechanism that modu-
lates gene expression to compensate for increased DNA 
dosage [8]. The most famous and well-studied dosage 
compensation mechanism involves X inactivation to bal-
ance sex chromosome expression levels [9]. In contrast, 
no dosage compensation mechanism is known to exist 
for an entire mammalian autosomal chromosome [8]. 
In Down syndrome, an autosomal chromosome is trip-
licated, thus, there is tremendous interest in whether 
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dosage compensation exists for any genes on chromo-
some 21.

Numerous studies of gene expression in Down syn-
drome cells have reported gene expression levels that do 
not strictly follow DNA dosage [10–15]. Others have con-
tradicted these findings, arguing instead that most genes 
follow the expected 1.5-fold increase, with only a few 
genes showing lower-than-expected expression levels [3, 
5]. In part, the differences in opinion arise from how each 
study defines dosage compensation. For example, a per-
missive definition regards every gene below the expected 
DNA dosage (1.5 median fold change) as dosage compen-
sated [15], but this ignores normal, inherent statistical 
variation. A more principled approach looks for devia-
tions from the 1.5 median fold change that exceed statis-
tical expectation [5]. Regardless of the methodology used 
for identifying dosage compensation, all studies identify 
at least a small number of genes expressed below expec-
tation, suggesting they may be dosage compensated.

Here we sought to identify the sources of apparent dos-
age compensation, both technical and molecular. Thus 
we first focus on short read sequencing data and the 
statistical methods of assessing differential expression. 
Differential expression tools, such as DESeq2, provide a 
systematic, reproducible method of identifying true dif-
ferences while minimizing false positives, typically by 
accounting for the underlying noise inherent to these 
data [16]. These tools are exceptionally well designed to 
discover differential gene expressions when the data fit 
the expectation of the tool (see review [17]).

Typically when employed to analyze trisomy data, it is 
assumed the tools will work well without modification. 
Yet to date, no study has examined how the presence of 
an extra copy of chromosome 21 impacts the typical dif-
ferential expression analysis pipeline. Therefore, we first 
dissect the typical analysis pipeline to identify issues that 
could lead to erroneous identification of dosage com-
pensation. To this end, we simulated transcription data 
sets for both a disomic (D21) and trisomic individual 
where no dosage compensation is present by design (i.e., 
all chromosome 21 genes measure at the expected 1.5× 
change). Using the simulated data, we adjust the analysis 
pipeline to accurately account for the trisomy nature of 
the data. We then apply our trisomy-aware analysis pipe-
line to both steady-state RNA-seq and nascent transcrip-
tion data, generated from a family where one child has 
Down syndrome. Our study finds that only a few chro-
mosome 21 genes are expressed or transcribed at lower 
than the 1.5× expectation.

We hypothesize that the few genes with lower than 
expected levels may reflect individual allele effects. 
Research suggests inter-individual variation is a more 
substantial contributor to differential expression in T21 

studies than sex or aneuploidy status [3, 5]. Consistent 
with this, tremendous variability in expression levels 
exists within the population of typical, diploid humans 
[18]. For example, large-scale studies of gene expression 
among typical humans find that 83% of genes are differ-
entially expressed between subsets of individuals [19]. 
Expression quantitative trait loci (eQTL) studies seek to 
identify loci genome-wide that contribute to observed 
variation in gene expression levels [20, 21]. Thus we DNA 
sequence the family to trace allelic inheritance and find 
that most of the genes with lower-than-expected tran-
scription arise from genetic variations that lead to lower 
expression levels (known eQTLs).

Our findings show no dosage compensation at either 
transcription or steady-state RNA levels. RNA-seq anal-
ysis pipelines, when not trisomy aware, can lead to the 
appearance of dosage compensation when there is none. 
Furthermore, our work shows that natural genetic vari-
ation can explain lowly expressed genes that appear to 
be dosage compensated. Finally, based on our simulated 
data sets, we create guidelines for accurate differential 
expression analysis in trisomy cells, which we call tri-
somy-aware transcription analysis.

Results
A naive analysis suggests technical issues in dosage 
compensation detection
We sought to identify the sources of apparent dosage 
compensation, both technical and molecular. To this 
end, we focus on lymphoblastoid cell lines derived from 
a family of individuals where one child has Down syn-
drome (Fig.  1A). We reasoned that if dosage compen-
sation did occur, it would either occur via inhibition of 
transcription or via an increase in the RNA degradation 
of that transcript. Thus, we examined both steady-state 
RNA levels via RNA-seq and nascent transcription with 
global run-on sequencing (GRO-seq), in triplicate (see 
the  “Methods” section, Additional File 2: Supplemental 
Table  1 for sequencing information, Additional File 1: 
Figs. S1 and S2).

As an initial baseline, we first examined the typi-
cal differential analysis pipeline that leverages DESeq2 
[22]. In this naive analysis, we make no adjustments 
to the defaults inherent to programs within the pipe-
line. Using the naive approach, we find the median fold 
change (MFC) of all genes on chromosome 21 in RNA-
seq is 1.41, with 57.6% of these genes having a fold 
change below the expected 1.5-fold change. The trends 
in GRO-seq are similar, with an overall chromosome 21 
median fold change of 1.38 and 48.8% of genes below 
the expected 1.5-fold change (Additional File 1: Fig. S3). 
Consistent with previous reports, we also observed many 
genes which were significantly above gene-dosage levels 
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(e.g., interferon-related genes MX1 and MX2; see also 
Additional File 1: Figs. S4, S5, S6, S7).

To identify genes as dosage compensated, we must 
specify specific criteria —  i.e., how much below the 
expected 1.5×  levels is unusual? First, we considered a 
fold change cutoff. In this idealized case, if two popula-
tions of genes exist (i.e., dosage compensated and not 
compensated) one would expect to see two distinct but 
overlapping distributions of fold change in the data. To 
examine this, we generated a cumulative distribution 
function of fold change for all chromosome 21 genes 
in both RNA-seq and GRO-seq (Additional File 1: Fig. 
S3, red line). We noted that the majority of genes were 
distributed around 1.5; however, no apparent second-
ary population was immediately clear — instead, we 
observed a smooth distribution of fold changes below 
1.5, suggesting fold change is distributed on a contin-
uum. While this distribution does not in and of itself 
disprove the existence of transcription dosage compen-
sation, these results argue that there is no obvious cutoff 
for identifying dosage-compensated genes. Indeed, these 
results are in agreement with Hwang et al. findings that 
dosage-compensated genes (defined in their approach as 
FDR q-value< 0.01) are rare in trisomy RNA-seq data-
sets [5]. This led to the question of how trisomy data 

influences differential expression and the assessment of 
dosage compensation. To address this question, we turn 
our attention to dissecting the typical analysis pipeline, 
using DESeq2 as a representative technique, in order to 
identify how T21 influenced these results.

Simulations reveal the technical basis of reduced fold 
change calculations in trisomic datasets
To carefully assess the impact of trisomy data on the 
standard differential expression analysis, we need to 
know a priori the correct answer. To achieve this, we 
simulated T21 and D21 data sets, using the child with 
D21 data as a reference. Briefly, we used the D21 data 
along with parameters (such as variance) utilized by 
DESeq2 to create an artificial gene counts table (Fig. 1B, 
see the “Methods” section for full details). The simulated 
T21 individual was generated in the same way, but now 
all genes on chromosome 21 are at a 1.5× increase from 
the simulated D21 individual.

We then run the standard analysis pipeline (Fig.  2A) 
on the simulated data, calculating the fold change and 
its significance for all genes from each simulation. First, 
we run the simulation using the parameters from the 
naive analysis pipeline (Fig.  2B) and even though the 
chromosome 21 genes in the simulated data are at 1.5×, 

Fig. 1  Summary of cell line generation and dataset simulation. A Pedigree depicting the relationship of our samples. Lymphoblastoid cell lines 
(LCLs) were derived from each of the individuals. Libraries for GRO-seq, RNA-seq, and DNA-seq were generated from these cell lines for downstream 
analysis. B Simulations generated from the D21 child. The RNA-seq datasets from this individual were averaged together to inform the mean 
counts (mu) for each gene i. The hyperparameters a (termed asymptotic dispersion) and b (termed extra-Poisson noise) are used to inform 
the gene-wise dispersion of each negative binomial (NB) distribution. New read datasets for each gene were then generated by random variate 
sampling from these distributions. For trisomic genes, the mean of the negative binomial distribution (represented as mu) is first multiplied by 1.5, 
ensuring that calculated fold change estimates between trisomic and disomic genes should yield an expected distribution around 1.5, modulated 
by dispersion. Varying hyperparameters were used to generate multiple simulated datasets
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Fig. 2  Fold change distributions of RNA-seq and GRO-seq datasets. A Pipeline of differential analysis. Variations at any step have the potential 
to increase or decrease fold change calculations for chromosome 21 genes (see also Additional File 1: Figs. S11, S15, S16). B Naive differential 
analysis of simulated T21 and D21 datasets using the similar dispersion parameters found in real data (asymptotic dispersion = 0.03, extra-Poisson 
noise = 3.5, see Additional File 1: Fig. S11). For chromosome 21 genes (which were simulated at 1.5×), the median fold change is 1.40. C Effects 
of shifting parameters of simulated datasets. Simulated datasets with varying numbers of replicates (asymptotic dispersion = .01, extra-Poisson 
noise = 1). D Simulated datasets with varying levels of depth (asymptotic dispersion = .01, extra-Poisson noise = 1). E Violin plots showing fold 
changes of simulated datasets when dispersion parameters are low (asymptotic dispersion = .01, extra-Poisson noise = 1). The orange line 
is the Median Fold Change (MFC). F Violin plots showing fold changes of simulated datasets when dispersion parameters are high (asymptotic 
dispersion = .05, extra-Poisson noise = 30). The orange line is the Mean Fold Change (MFC). G Simulated data violin plots showing fold changes 
after applying adjustments for each step in the pipeline. Results are consistent with no dosage compensation in T21 datasets in the simulated data
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we observe distributions and median fold change simi-
lar to the biological data (MFC = 1.4). Next, we seek to 
isolate individual components of the differential expres-
sion pipeline (Fig. 2A) by running the simulation several 
times, modifying the count table’s read depth, replicate 
number, or variance to test each variable’s effect on both 
differential expression and fold change estimation. For 
simplicity, we present only the distributions for chromo-
some 21 (expected to be at 1.5×) and chromosome 22 
(expected to be at 1×; all other disomic chromosomes 
showed the same results as chromosome 22).

Sequencing depth and read counting methodologies
Tools such as DESeq2 seek to quantify within-condition 
variability using principled models of read-count data 
to determine changes between conditions that exceed 
expected variability [16]. As such, the key first charac-
teristics of sequencing data is the number of replicates 
available per condition. Therefore, we first examined the 
impact of replication, assuming initially that all repli-
cates are of relatively high quality (low variance). To this 
end, we simulated data with varying replication, between 
2 and 25 replicates per condition. We found that the 
median fold change estimation generally increased with 
additional replicates (Fig. 2C), consistent with the notion 
that additional replication is always a good strategy.

The parallel concern to replication is sequencing depth. 
It is important to note that nascent transcription typi-
cally has lower overall counts per gene than RNA-seq 
when the two protocols are sequenced to roughly equiva-
lent depths. This arises because a much larger fraction of 
the genome is transcribed than is stable. Consistent with 
this, we noticed that low fold change estimates correlated 
with low expression levels (Additional File 1: Fig. S8) in 
actual data. Therefore, we next simulated datasets with 
varying depths, ranging from 0.1 times to 10 times the 
depth of the original data. We found that decreasing the 
depth of the simulated datasets resulted in a decreased 
fold change estimation for many genes, with concomitant 
reduced median fold change estimates (Fig.  2D). Thus, 
it is important to have adequate depth for accurate gene 
fold change estimates. However, additional sequencing 
is not an option when reanalyzing public data sets and 
in some cases, increased sequencing depth can be cost-
prohibitive. Importantly, increased depth is not expected 
to fully alleviate the fold change estimation issue; as with 
increased depth, unexpressed genes are more likely to 
have reads assigned to them due to noise. Thus we sug-
gest users employ a minimum coverage filter to remove 
low signal genes as potential false positives when deter-
mining which genes are potentially dosage compensated.

In these initial simulations, we noticed that genes with 
the most dramatic apparent dosage compensation in 

our naive analysis disappeared in the simulations. Spe-
cifically, highly expressed chromosome 21 genes with 
many genomic repeats, such as ribosomal genes, often 
appeared at typical expression levels in our real datasets 
(Additional File 1: Fig. S9), but not in our simulated data. 
This suggests that repeat regions shared between chro-
mosome 21 and other chromosomes are sensitive to the 
mapping strategy. During mapping, these reads can be 
sponged away from chromosome 21 genes, resulting in a 
lower fold change estimation. This is, of course, depend-
ent on the employed mapping strategy and how multiple 
mapped reads are handled. Combining a minimum read 
cutoff and masking repeat regions or removing multi-
mapping reads effectively removed many of these genes 
as false positive dosage compensations. We suggest that 
users filter these genes from their list before dosage com-
pensation analysis, either by masking repeat regions 
before counting reads or manually removing genes with 
a high number of genomic repeats before subsequent 
analysis [23].

Size factor calculation for sample normalization
After counting reads, the next step is to normalize the 
data between libraries (step II in Fig. 2A). Normalization 
accounts for differences in sequencing depth between 
samples and is crucial to proper differential analysis. 
DESeq2 utilizes a median-of-ratios method to find a 
normalizing “size factor” for each library [22]. In short, 
DESeq2 assumes that the majority of genes are similarly 
expressed from sample to sample. By calculating the ratio 
between the counts for a gene in one sample versus the 
mean count in all samples and then finding the median 
of these ratios, samples can be effectively normalized to 
the genes most likely to remain unchanged in all samples. 
We thus wondered if this normalization method was 
being influenced by the trisomic condition of one of our 
samples, where we expect a priori for a set of genes to be 
changed between the two samples simply because they 
reside on the aneuploid chromosome.

To investigate the impact of trisomy on size factor 
estimation, we removed chromosome 21 from both the 
actual and simulated data sets. In both cases, chromo-
some 21 genes had only a minimal effect on size factor 
calculation (Additional File 1: Fig. S10), consistent with 
the relatively small proportion of genes on chromo-
some 21 (approximately 1%) compared to the rest of the 
genome. Importantly, this result was robust to overall 
sequencing depth, which we showed by modulating the 
sequencing depth of our simulations. While the empirical 
result suggests including chromosome 21 genes in size 
factor estimation has little effect on the results, we never-
theless recommend removing chromosome 21 genes for 
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the size factor calculation, as this is more consistent with 
the theory behind the median-of-ratios method.

Dispersion estimation and sample replication
We next investigated the effects of the model fitting pro-
cess of DESeq2 on fold change estimation in T21 cells. In 
general, gene expression is estimated by fitting a nega-
tive binomial distribution with two parameters: the mean 
and the dispersion (both of which inform the variance 
of the distribution). Both values can be inferred directly 
by maximum likelihood estimation, which calculates 
the mean expression level for each group of replicates, 
and then determines the dispersion value. However, this 
method is susceptible to error at lowly expressed genes or 
when a low number of replicates are available, as systemic 
noise begins to dominate [22]. More optimal methods 
employ a Bayesian process allowing information shar-
ing across multiple genes and replicates. In particular, 
DESeq2 assumes that genes with similar expression levels 
exhibit similar dispersion values. Information can thus be 
shared across genes and samples to more accurately esti-
mate gene-wise dispersion, which increases the fidelity of 
fold change estimation and dispersion calls even within 
noisier data. However, if this assumption fails —  i.e., if 
a cluster of similarly expressed genes has higher disper-
sion than expected – the resulting fits will not accurately 
reflect the underlying biology. We thus endeavored to 
answer this question: does the presence of a T21 sample 
affect the model estimation steps of differential analysis?

The default method used in DESeq2 for calculating 
gene-wise dispersion (step III in Fig.  2A) involves start-
ing with the maximum likelihood estimate of dispersion, 
plotting these values against expression levels, and then 
fitting an asymptotic curve in the form of y = a+ b/x 
[22]. Here, a and b are the fitting parameters, y is the dis-
persion estimate, and x is the gene expression level. The 
parameters a and b control the two ends of the curve; 
for low-expression genes, the parameter b will be more 
meaningful, leading to higher dispersion estimates for 
the fitted curve at these genes, a phenomenon we refer 
to as extra-Poisson noise. For high-expression genes, 
the b/x term trends toward 0, and thus the fitted curve 
will asymptotically approach the value of parameter a, 
a trend we refer to as asymptotic dispersion. The result-
ing fitted curve is then used to inform one more round 
of dispersion estimation, effectively shrinking gene-wise 
dispersion towards the fitted curve. An increase in either 
parameter increases the value of the initial dispersion 
estimate. Still, the effects are felt asymmetrically depend-
ing on the expression level and the amount of informa-
tion available to each gene (i.e., replicates and sequencing 
depth).

To determine the effects of T21 on dispersion estima-
tion, we extracted the fitting parameters used in disper-
sion estimation from our biological data sets, with and 
without chromosome 21 genes. As a control, we also 
compared removing an equivalent number of random 
genes from the other chromosomes (see the “Methods” 
section). We observed an increase in both fitting parame-
ters relating to gene-wise dispersion when trisomic genes 
were included (Additional File 1: Fig. S11), leading to the 
question: how does this increase in the initial dispersion 
fit affect differential calls and fold change estimates?

To address this question, we generated data sets sam-
pled from a negative binomial distribution with the same 
means but varying dispersion values for chromosome 21 
genes in the T21 simulations. When we compared across 
a wide range of dispersion estimates, we noted higher 
dispersion parameters resulted in decreased fold change 
estimations for chromosome 21 genes (Fig. 2E, F; Addi-
tional File 1: Fig. S12). Specifically, the distribution of 
fold change drastically shifted towards 1.0, albeit with a 
broader spread (MFC = 1.28). The effects of higher dis-
persion on fold change estimation could be partially off-
set in simulated data by adding more replicates and depth 
(Additional File 1: Fig. S13), consistent with the fact that 
more replication and read depth are critical to overcom-
ing the effects of systemic noise. Notably, the fact that 
a high number of replicates creates a MFC closer to 
1.5× may also contribute to the disparate results regard-
ing dosage compensation reported in previous studies; 
large-scale studies that integrate several available data 
sets result in more confident fold change estimation indi-
cating no dosage compensation (i.e., most genes are at 
the expected 1.5× fold change) [5].

Fold change shrinkage and hypothesis testing
The final steps of differential expression analysis are fold 
change estimation and hypothesis testing. Here, DESeq2 
provides the option to utilize a Bayesian method for fold 
change estimation, using a prior distribution centered 
around a fold change of 1.0, which effectively shrinks fold 
change estimates towards 1.0. As with dispersion esti-
mation, the resulting shrinkage effect is more substan-
tial for low-expression genes. These estimates (known 
as maximum a posteriori or MAP estimates) are gener-
ally considered more reliable than MLE calculations of 
fold change for low expression genes [22]. However, this 
assumption can fail if the prior distribution does not 
represent the underlying biology, as is true for trisomic 
genes (Additional File 1: Fig. S15). Researchers who uti-
lize MAP estimates will thus note more genes that appear 
dosage compensated, although this apparent “compensa-
tion” is mainly due to the shrinkage effects of the prior 
distribution. In general, we recommend users exercise 
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caution when interpreting MAP estimates as evidence for 
dosage compensation; genes that experience strong fold-
change shrinkage should be filtered out from analysis, or 
MLE calculations should be used instead.

Hypothesis testing in the standard differential analy-
sis pipeline uses the default null hypothesis that each 
gene’s expression levels are equal in both groups. Given 
that chromosome 21 genes exist in three copies and 
DESeq2 seeks to identify deviations from typical, one 
might expect most of chromosome 21 to be differen-
tially expressed, e.g., statistically significant. However, 
when we ran our simulation using parameters similar to 
the real data (Fig. 2B, padj < .01 ), no genes on chromo-
some 21 are called as statistically significant. This arises 
because while the median fold change of chromosome 
21 encoded genes is elevated (MFC = 1.4), the disper-
sion genome wide is high enough that this change is not 
deemed significant. In our simulations, we altered disper-
sion over a broad range (Additional File 1: Fig. S12) and 
while the median fold change varied (Fig. 2E, F), no genes 
on chromosome 21 were deemed statistically significant. 
In contrast, increasing replicates and read depth, even 
with higher dispersion values, did yield 126/262 differen-
tially expressed chromosome 21 genes in RNA-seq simu-
lations (MFC = 1.43) (Additional File 1: Figs. S13, S14). 
In all cases, significant genes showed fold change esti-
mates near or greater than the expected 1.5-fold. Thus, 
with high replication DESeq2 detects the typical 1.5× 
transcription levels of chromosome 21 as statistically 
significant, but finds no genes with lower-than-expected 
expression levels.

Arguably, this arises because differential expression 
analysis is a distinct question from identifying dos-
age compensation. The default null hypothesis used in 
hypothesis testing is incorrect for identifying dosage-
compensated genes, as all of chromosome 21 is expected 
to be elevated. Consequently, to identify dosage compen-
sation using the standard differential expression pipeline 
it is necessary to either adjust the null hypothesis or the 
input data.

The first method is to change the fold-change threshold 
for the hypothesis tests of chromosome 21 genes from 
the default value of 1 to the dosage-informed value of 
1.5, such that significant gene calls deviate from the DNA 
dosage-informed expectation. Under these tests, signifi-
cant gene calls below a fold change of 1.5 are potential 
candidates for dosage compensation. In both our actual 
and simulated data, most chromosome 21 genes are not 
considered below levels expected by gene dosage when 
using this method (Additional File 1: Fig. S16). However, 
we note that this method cannot reliably utilize the MAP 
estimates of fold change, as the prior distribution does 
not reflect the new alternative hypothesis.

The second method, which we prefer, is to perform an 
additional normalization step before the differential anal-
ysis. In DESeq2, the ploidy number of each gene in each 
sample can be loaded into a normalizing matrix. The 
resulting read counts are normalized both by the library’s 
size factor and the gene’s ploidy number. Subsequent 
fold change shrinkage and hypothesis testing can thus 
utilize the default parameters, as even trisomic genes 
are expected to exhibit a fold change of 1.0 under these 
conditions (Fig. 2G, Additional File 1: Fig. S17). Thus, sig-
nificant genes with a fold change of less than 1.0 are can-
didate dosage-compensated genes. Given we simulated 
data with a 1.5-fold change, this approach correctly finds 
no significant chromosome 21 genes in our simulated 
data, regardless of the dispersion parameters used (Addi-
tional File 1: Fig. S18).

In biological data, ploidy normalization brings the dis-
tribution of chromosome 21 fold change estimates in line 
with other chromosomes (Fig.  3A–C, Additional File 1: 
Fig. S19). Thus chromosome 21 genes exhibited an MFC 
of 0.96 with dosage normalization in RNA-seq (Fig. 3C). 
Furthermore, 1009 genes were considered differentially 
expressed between the two brothers, of which only five 
were on chromosome 21 (out of 143 total chromosomes 
21 genes, after read count filtering). In GRO-seq analy-
sis, chromosome 21 genes had an MFC of 0.97 and 3820 
genes were differentially expressed, of which 20 genes 
fell on chromosome 21 (out of 144 total chromosome 
21 genes, after filtering) (Additional File 1: Fig. S20). We 
note that the proportion of significant genes on chromo-
some 21 is similar to those obtained when we compare 
two disomic individuals; the distribution of fold changes 
and the number of differential genes are consistent so 
long as the reads are normalized by the ploidy number 
(Additional File 1: Fig. S21). Normalizing by ploidy is 
additionally advantageous, as MAP estimates of fold 
change can be utilized for visualization and downstream 
analysis. Furthermore, subsequent power analyses are 
more relevant to trisomic data once the counts have been 
adjusted [24].

In all, our simulations led us to the construction of a 
differential analysis pipeline more suited to trisomic 
samples. First, we find that multi-mapped reads can 
cause a handful of genes to appear dosage-compensated; 
we thus suggest removing these reads prior to analysis. 
Next, we note that low expression genes are especially 
prone to appearing dosage compensated; we thus sug-
gest employing a minimum coverage filter to avoid these 
false positives. Finally, our trisomic samples appeared 
to be noisier relative to their disomic counterparts; this 
variance resulted in lower fold change estimations for 
many chromosome 21 genes. As such, we suggest either 
employing a normalization matrix to adjust all gene 
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Fig. 3  Alternative explanations to disparate fold change estimates. A Cumulative distribution plot of fold changes found in real RNA-seq data, 
after accounting for trisomy. The solid red line indicates all chromosome 21 genes. Each solid blue line is a randomly selected set of genes from all 
other chromosomes. B Violin plots indicating Log2 fold change between T21 and D21 samples. Significant gene calls are colored red (padj < .01 ). 
C Same as B, but using a trisomy-aware pipeline for analysis. D Sankey diagram depicted the filtering process of our RNA-seq analysis. The initial 
151/262 genes identified as potentially dosage compensated can alternatively be explained by genomic repeats, high variance from low expression 
genes, or technical artifacts related to failing to normalize the data to the ploidy number. The remaining genes can be explained by the presence 
of eQTLs (see also Additional File 1: Fig. S22)). E Example boxplot indicating relative expression of the gene CLIC6 with one eQTL. F Genome viewer 
tracks for the gene CLIC6 for all four family members, in GRO-seq (top) and RNA-seq (bottom). The T21 track is indicated in red. The allelic makeup 
of the eQTL in E is indicated by the green text above each track
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counts by their ploidy number or using the appropriate 
null hypothesis to determine potential dosage compen-
sation in trisomy. Rather than relying on cutoffs, our tri-
somy-aware pipeline uses DESeq2’s significance calls to 
determine which gene expression levels are significantly 
different than their expected values based on gene dosage 
(Fig. 3C, D, Additional File 1: Fig. S22). Furthermore, by 
accounting for the genes which contribute the most vari-
ance in fold-change calculations, we remove likely false 
positives from the analysis. We thus contend that our 
pipeline is a more rigorous determinant for dosage-com-
pensated genes which properly accounts for the underly-
ing variance of the data.

Reduced fold change on chromosome 21 are consistent 
with identified eQTLs
After adjusting the data analysis pipeline to be tri-
somy-aware, we conclude that nearly all chromosome 
21 encoded gene transcription levels (GRO-seq) and 
expression levels (RNA-seq) are proportional to DNA 
dosage(Additional File 1: Fig. S18). However, a small 
number of genes on chromosome 21 remain potentially 
dosage compensated, as precisely five genes in RNA-seq 
and 20 genes in nascent transcription (Fig. 3D, Additional 
File 1: Fig. S20) have lower-than-expected levels.

Given the small number of genes remaining and the 
lack of known dosage compensation mechanisms in 
humans, we reasoned that there might be a genetic 
basis for the reduced expression of these genes. More 
concretely, we hypothesize that apparent dosage com-
pensation could arise from allele-specific sequence vari-
ation. To explore this possibility, we sought to compare 
the genome sequence of these individuals to known 
expression quantitative trait loci (eQTL) where a spe-
cific sequence variant is associated with lower expression 
within the population [25]. Thus we performed whole 
genome DNA sequencing on the cell lines of all four fam-
ily members (see the “Methods” section for full details; 
Additional File 2: Supplemental Table  1 for sequencing 
information).

We used the GATK package to call single-nucleotide 
polymorphisms (SNPs) in each member of the quartet 
[21]. Briefly, reads were mapped and realigned before 
variants were called using Haplotype caller (see the 
“Methods” section for full description). Because chro-
mosome 21 is triploid in the individual with Down syn-
drome, Haplotype caller was used twice — once with the 
default ploidy of two and once with ploidy set to three. 
Variants called using the ploidy of three versions were 
kept only for chromosome 21 in the individual with 
Down syndrome; otherwise, the default calls were used.

We reasoned that any genetic variation that reduces 
chromosome 21 gene expression in the general 

population could be present in our T21 sample, leading 
to reduced expression levels in the individual. To test 
this hypothesis, we compared genome variations identi-
fied in each individual to previously identified eQTLs 
[21, 26]. We limited our search to eQTLs identified in 
either lymphoblastoid cell lines or their nearest related 
tissue (whole blood). For this analysis, we required the 
variant to be identifiable in at least one of the parent sam-
ples as well as the child with trisomy 21. In RNA-seq, we 
found that the reduced expression of three of the five 
apparently dosage-compensated genes (CLIC6, ITSN1, 
C2CD2) could potentially be explained by known expres-
sion controlling polymorphisms (Fig. 3D, Additional File 
3: Supplemental Table  2). For example, the rs1075704 
eQTL exists in the human population as a GG, GT, or TT 
(Fig. 3E), and the T allele correlates with lower expression 
of CLIC6 in lymphoblastoid cells. This SNP, rs1075704, 
shows variable CLIC6 gene expression across the disomic 
samples in both our RNA-seq and GRO-seq (Fig. 3F). In 
our trisomic sample, CLIC6 has an expression level less 
than 1.5× the average of all disomics, with the genotype 
TTT. So the lower-than-expected expression observed 
at CLIC6 can be explained by the genotype, which is not 
considered by the typical differential expression pipeline. 
Consistent with the allele identity, these three genes also 
have lower-than-expected transcription in GRO-seq.

We also reasoned that the eQTL data in GTEx may be 
incomplete, that there may exist other alleles that lead to 
reductions in expression data. To explore this possibility, 
we next compared the two parents to each other, reason-
ing that differences observed between the parents could 
be subsequently inherited by either of the two children. 
Using this technique, we found that 9 of the remaining 
17 genes in GRO-seq were also differentially transcribed 
between the parental samples, suggesting the lower than 
expected levels in the trisomy sample may be modulated 
by an inherited parental haplotype (Additional File 1: Fig. 
S22). Altogether, we found reasonable explanations for 
most genes (60%) which fell below expected levels in T21 
(Fig. 3). These results were consistent in both RNA- and 
GRO-seq (Additional File 1: Fig. S22).

Discussion
We sought to add clarity to the conflicting reports in the 
literature concerning whether molecular dosage compen-
sation occurs within individuals with Down syndrome 
[5, 10–15]. Our results uniformly suggest that dosage 
compensation in T21 is rare, if not completely absent, 
in transcriptomics data, both nascent and steady-state 
RNA. Using simulated data, we found that computational 
pipelines developed for disomic samples could lead to 
erroneous conclusions on trisomy data, and this likely 
contributes to confusion in the literature. We were able 
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to use our simulated data to create a trisomy-adjusted 
differential expression analysis pipeline that correctly 
estimates the simulated fold change of chromosome 21 
genes (see the “Methods” section for a summary of pipe-
line adjustments). When we applied this modified pipe-
line to our actual samples, most of the apparent dosage 
compensation was lost. Importantly, the remaining genes 
with lower-than-expected expression were predomi-
nantly attributable to alleles with reduced expression 
levels. Thus our work agrees with other recent studies 
suggesting no reduction in RNA expression levels via 
dosage compensation in T21 [5] and provides expla-
nations regarding previous reports to the contrary. In 
addition, we have extended the conclusion of no dosage 
compensation to nascent RNA transcription.

While we focused here on dosage compensation, our 
findings have implications for using trisomic samples in 
differential expression analysis. We have shown that the 
inclusion of trisomic samples in a differential expression 
analysis pipeline can inflate the dispersion of the data if 
not adequately accounted for. The presence of trisomic 
samples in a data collection can affect parameter estima-
tion within the differential analysis pipeline, even when 
the trisomic sample is not part of the final comparison. 
For example, comparing the son with D21 to his father 
results in two sets of significant gene calls, depending on 
whether the trisomic sample is included in the upstream 
processes (Additional File 1: Fig. S21).

We also note that, by design our study did not com-
pare large groups of individuals with and without T21. In 
any study, genes below expected expression levels could 
arise from trisomy 21-altered pathways, molecular dos-
age compensation or genetic allele frequency differences. 
We used a family of related individuals to minimize allele 
variation and focus specifically on molecular dosage 
compensation. We found no molecular dosage compen-
sation but we did find allele variation that could be driv-
ing lower-than-expected expression levels. In a larger 
cohort of unrelated individuals with Down syndrome, 
some alleles may have lower-than-expected expression 
levels. Consistent with this, a recent study of large groups 
of unrelated disomic and trisomic individuals found 
many genes are expressed below a 1.5-fold change expec-
tation [27].

As there are many genes with sequence variations that 
lead to higher or lower expression [21, 26], our work 
leads to speculation about whether highly expressed 
alleles could be selected against in a Down syndrome 
background. More than 75% of trisomy 21 embryos 
are lost due to spontaneous abortion and it is currently 
unclear why [27]. If genes on chromosome 21 exist that 
are deleterious pre-birth when expressed at high levels, 
individuals with T21 harboring three copies of these 

alleles would be more likely to be lost. This would result 
in allele bias within the population of live individuals 
with T21, favoring the lower expressed allele. It stands 
to reason that this selection would lead to an over-repre-
sentation of low expression alleles in the Down syndrome 
population. Considering the allele-specific expression 
levels of genes will be a useful avenue for understanding 
any unique selection pressures existing within a Down 
syndrome population.

Assessing whether particular alleles have a skewed fre-
quency in the T21 population relative to typical individu-
als requires large numbers of genomes from both typicals 
and individuals with Down syndrome. As an alternative, 
an extensive collection of T21 RNA-seq could be lever-
aged toward identifying allele bias. In recent years, the 
allelic fold change method has been implemented for 
quantifying eQTL effects [28]. While this model is cur-
rently constrained to disomic samples only (i.e., it only 
allows for three different allelic combinations), the model 
could be extended (allow for a fourth allelic state) and 
applied to trisomic samples. As such, population eQTL 
data could be used to identify lower-than-expected fold 
change at some alleles in Down syndrome. It remains to 
be seen whether any chromosome 21 allele bias exists in 
individuals with T21 [12].

Finally, we note our work was limited to only the explo-
ration of dosage compensation at the transcription level 
and does not account for potential changes at the protein 
level due to aneuploidy. Indeed, recent studies identify 
several protein complexes which are potentially dosage 
compensated in Down syndrome, likely due to a change 
in stoichiometric ratios of their respective subunits [29]. 
Furthermore, new research contends that a majority of 
proteins undergo dosage compensation in other aneu-
ploidies, such as those found in common cancers [30]. In 
any case, mRNA abundance is not fully predictive of pro-
tein abundance, and conclusions regarding transcription 
dosage compensation cannot necessarily be extended 
to the protein level, or absolute quantification methods 
used to assess protein abundance.

Methods
Cell culture of LCLs
The lymphoblastoid cell lines of 4 individuals were 
obtained from the Translational Nexus Biobank 
(COMIRB 08-1276), University of Colorado School 
of Medicine, JFK Partners. The Translational Nexus 
Biobank acts as the honest broker for the samples used 
for this study and samples were provided to the study 
team in a deidentified manner. As such, this study is con-
sidered non-human subjects research, and additional 
IRB approval was not required. Lymphoblastoid cell lines 
(LCLs) were seeded in upright T-25 suspension flasks 
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with 10 ml RPMI (10% FBS, 1X L-glutamine, 1X penicil-
lin/streptomycin). These were passaged approximately 
every 2 to 3 days by pelleting the cells via centrifugation 
(300 × g, 5 min) and resuspension. Cells were grown to 
an approximate density of 1 million cells per ml, before 
being harvested for subsequent experiments. The three 
RNA-seq replicates per sample were based on three sep-
arate growths of cells and the three GRO-seq replicates 
per sample were based on three separate growths. The 
correlation between replicates can be seen in Additional 
File 1: Fig. S2.

Nuclei isolation
Cell cultures were collected in 50 ml Falcon tubes and 
centrifuged in a fixed-angle rotor centrifuge at 300 × g, 
4 °C, for 5 min. The supernatant was poured off, and 10 
ml ice-cold PBS was added to resuspend the cell pellet. 
The previous spin and PBS wash were repeated 2 more 
times. Cells were then resuspended in 10 ml ice-cold 
Lysis Buffer (10 mM Tris-HCl pH 7.5, 2 mM MgCl2 , 3 
mM CaCl2 , 0.5% IGEPAL, 10% glycerol, 2 U/mL SUPER-
ase-IN, brought to 10 ml with 0.1% DEPC DI-water). 
The resuspended cells were incubated for 10 min on ice. 
Nuclei were then centrifuged in a fixed-angle rotor cen-
trifuge at 1000 × g for 10 min at 4 °C. The resulting super-
natant was poured off, and the pellet was resuspended 
with 1 ml lysis buffer, using a wide-mouth P1000 pipette 
tip. The volume of was brought to 10 ml with lysis buffer, 
and centrifuged for 1000 × g, 4 °C, 5 min, in a fixed-angle 
rotor centrifuge. The lysis buffer wash was repeated as 
above. Nuclei were then resuspended in 1 ml freezing 
buffer (50 mM Tris-HCl pH 8.3, 5 mM MgCl2 , 40% glyc-
erol, 0.1 mM EDTA pH 8.0, brought to volume with 0.1% 
DEPC DI-water), and transferred to a 1.7-ml Eppendorf 
tube. Nuclei were pelleted at 1000 × g, 4 °C, 5 min. The 
resulting supernatant was removed by pipetting, and the 
pellet resuspended with 500 μl freezing buffer. The nuclei 
were again pelleted at 1000 × g, 4 °C, 5 min. The super-
natant was removed, and the nuclei were resuspended in 
110 μl freezing buffer and stored at − 80◦ C until library 
preparation.

GRO‑seq and library preparation methods
Wash solutions for anti-BrdU-beads were prepared 
ahead of time: binding buffer (0.25X SSPE, 37.5 mM 
NaCl, 0.05% Tween, 1mM EDTA pH 8, 0.2% SuperRNA-
seIN), low salt wash buffer (0.25X SSPE, 0.05% Tween, 
1mM EDTA pH 8, 0.2% SuperRNAseIN), high salt wash 
buffer (0.25X SSPE, 137.5mM NaCl, 0.05% Tween, 1 mM 
EDTA pH 8, 0.2% SuperRNAseIN), TET buffer (10 mM 
Tris-Cl pH 8.0, 0.05% Tween, 1 mM EDTA pH 8.0, 0.2% 
SuperRNAseIN), elution buffer (150 mM NaCl, 50 mM 

Tris-Cl pH 7.5, 20 mM DTT, 0.1% SDS, 1 mM EDTA, 
0.2% SuperRNAseIN).

Anti-BrdU beads (Santa Cruz, sc-32323-ac) were 
prepared by washing and blocking. Per sample, 60 μl 
were washed twice in 500 μl binding buffer. beads were 
blocked in 500 μl blocking buffer (1X binding buffer, 0.1% 
PVP, 1 μg/mL BSA UltraPure, 0.002 more superRNA-
seIN). Beads were then resuspended in 450 μl binding 
buffer.

Run-on reactions were performed as in [31]. In brief, 
ice-cold isolated nuclei (100 μL) were added to 37 °C 
100  μL reaction buffer (final concentration: 5 mM Tris-
Cl pH 8.0, 2.5 mM MgCl2 , 0.5 mM DTT, 150 mM KCl, 
10 units of SUPERase In, 0.5% sarkosyl, 500 μM rATP, 
rGTP, and Bromo-UTP, 2 μM rCTP). The reaction was 
allowed to proceed for 10 min at 37 °C, followed by the 
addition of 500 μL of TRIzol LS. RNA was extracted once 
with phenol-chloroform, washed once with chloroform, 
and precipitated with 3 volumes of ice-cold ethanol and 
1–2 μL GlycoBlue. The pellet was washed in 75% ethanol 
before resuspending in 18 μL of DEPC-treated water.

Libraries were prepared similar to [32]. In brief, RNA 
was treated with 2 μl NEB fragmentation buffer at 94° for 
5 min. The RNA was then buffer exchanged via BioRad 
P-30 (or a G-25) column per the manufacturer’s protocol. 
Next, 2 μl DNaseI and 5 μl of 10X RQ1 DNase buffer and 
water were added to create a 1X final concentration of the 
buffer. After incubation at 37 °C for 10min, 5 μl DNAse 
stop solution was added, and the reaction was placed at 
65 °C for 5 min. As prepared above, the beads in 450 μl 
binding buffer were immediately added to this mixture.

Fragmented nascent RNA was purified using Anti-
BrdU beads via washing with 500 μl for 1 min with each 
solution (binding buffer, low salt buffer, high salt buffer, 
TET buffer). Between washes, beads were spun down 
per manufacturer instructions. RNA was eluted from 
the bead via soaking the beads in 125 μl elution buffer 
at 42 °C, 10 min 2 times. The beads were then added to 
acid phenol-chloroform, as was the elute. The RNA was 
washed with chloroform and precipitated with 5M NaCl 
and 3×  the ethanol column. The second round of anti-
BrdU bead binding and extraction enriched BrdU-labeled 
products was completed as above. NEBNext Ultra II 
RNA was used to transform the nascent RNA into an 
RNA-seq library. The product was amplified 15 ± three 
cycles and products > 150 bp (insert > 70 bp) were size 
selected with 1X AMPure XP beads (Beckman) before 
being sequenced.

RNA‑seq
RNA was isolated from the cells via TRIzol extraction. 
NEBNext rRNA Depletion kit was used to remove rRNA. 
NEBNext Ultra II RNA was used to transform the RNA 



Page 12 of 15Hunter et al. BMC Biology          (2023) 21:228 

into an RNA-seq library. The product was amplified 15 
± three cycles and products > 150 bp (insert > 70 bp) 
were size selected with 1X AMPure XP beads (Beckman) 
before being sequenced.

Mapping and visualization of RNA datasets
The fastq files for GRO-seq and RNA-seq were trimmed 
and mapped to the GRCh38/hg38 reference genome and 
prepared for analysis and visualization through our in-
house pipelines. In short, resulting fastq read files were 
first trimmed using bbduk (version 38.05) to remove 
adapter sequences, as well as short or low quality reads. 
Reads were mapped with HISAT2 (version 2.1.0), and 
resulting SAM files converted to BAM files with Sam-
tools (version 1.8). Multimapped reads were filtered from 
these files. BedGraph files were generated using Bedtools 
(version 2.25.0), and converted to TDF files for visualiza-
tion in IGV using IGVtools (version 2.3.75). Quality met-
rics were generated with FastQC (version 0.11.8), Preseq 
(version 2.0.3), RSeQC (version 3.0.0). Figures were gen-
erated through MultiQC (version 1.6).

Differential expression analysis
Differential transcription was performed using the 
DESeq2 (version 1.26.0) R package (R version 3.6.3). 
Gene counts were generated using featureCounts (ver-
sion 1.6.2) from the R Subread package (version 1.6.0), 
counting over the gene body region (+150 from tran-
scription start site to annotated transcription end site) to 
avoid the 5′ peak. In both RNA-seq and GRO-seq analy-
ses, reads were counted over the gene (including intronic 
regions), to ensure that results between these two pro-
tocols should be comparable. Annotations were down-
loaded from RefSeq (release number 109, downloaded 
August 14, 2019, from UCSC genome browser). Only 
annotations with both RNA-seq and GRO-seq signals 
were considered, again to keep both analyses comparable. 
For featureCounts, BED6 region files were converted to 
SAF format with the following command: awk -F “\t” -v 
OFS=“\t” ‘print{$4, $1, $2, $3, $6}’ region.bed > region.
saf. Only the highest transcribed isoform of each gene 
was considered.

For our corrected analysis, we made use of DESeq2’s 
normMatrix parameter. The normalization matrix was 
generated by assigning each gene in the analysis its ploidy 
number divided by 2. For all genes not on chromosome 
21, this number was thus 1. For genes on chromosome 
21 samples in trisomy, this number was 1.5. We also 
removed reads within regions of genomic repeats, set 
the betaPrior parameter to false, and set an expression 
level cutoff at the second quintile of the baseMean counts 
for all genes. River plots were generated using the web 

interface of the program Sankeymatic (https://​github.​
com/​nowth​is/​sanke​ymatic.​git).

The script and full table of results are available at the 
github repository listed below.

Simulation of trisomy and disomy datasets
Reads were simulated using the negative binomial model 
as part of the scipy (version 1.8.0) Python package (ver-
sion 3.6.3). The negative binomial means for each gene 
were estimated by averaging the counts across replicates 
for the D21 child samples in RNA-seq. For the disomic 
simulations, these means were used to directly inform 
the negative binomial parameters. For the trisomic sim-
ulations, the means for chromosome 21 genes were first 
multiplied by 1.5, to simulate the expected increase in 
dosage. The negative binomial instance is parameterized 
as follows:

where a and b are controllable hyperparameters. For the 
disomic genes, we used values of .01 and 1 for a and b, 
respectively. For trisomic genes, we varied these values 
from .001 to 1.2 (for a) and 1 to 100 (for b). The nega-
tive binomials were also scaled based on the depth of the 
original biological samples, from 0.1 times the depth to 
3 times the depth. Each simulated counts file was gen-
erated with a minimum of three replicates for both the 
disomy 21 and trisomy 21 samples. For details, see the 
github repository for these scripts.

Whole genome sequencing
DNA was prepared using a variety of methods then 
sequenced on a Highseq 2000 to an approximate depth 
of 40×  (see table fastq for full details). The father, 
mother, and individual with Down syndrome were first 
sequenced at Illumina and received as one bam file per 
person, then split by read group (RG) into individual lane 
bam files using samtools (version 0.1.19) view. Those 
files were then converted to fastq using bedtools (version 
2.16.2) bamtofastq. All other sample files were received 
as fastq files. Each fastq file was mapped to hg38 using 
bowtie(version 2.0.2) with the setting — very-sensitive 
and using options to retain both library preparation 
and sequencing reaction information. Tracking sample-
level information is essential for detecting and removing 

(1)NB(n, p) : p = µ/σ 2

(2)n = µ2/σ 2
− µ

(3)σ 2
= µ+ α ∗ µ2

(4)α ∼ a+ b/µ

https://github.com/nowthis/sankeymatic.git
https://github.com/nowthis/sankeymatic.git
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individual sequencing reaction error rates. SAM files 
were converted to sorted BAM files using samtools (ver-
sion 1.2) view and sort. All files for one individual were 
merged using Picard tools (version 1.72) MergeSamFiles. 
BAM files were sorted and duplicates were marked using 
Picard tools (version 1.72) SortSam and MarkDuplicates.

Whole genome variant calling
GATK (version 3.3-0) was used for variant calling. BAM 
files were realigned using IndelRealigner with optional 
flags -known Mills_and_1000G_gold_standard.indels.
hg38.vcf -known 1000G_phase1.indels.hg38.vcf [Note: 
the realignment table was created using all the merged 
files with RealignerTargetCreator optional flags -known 
Mills_and_1000G_gold_standard.indels.hg38.vcf -known 
1000G_phase1.indels.hg38.vcf ]. Then, BaseRecalibra-
tor and PrintReads was used to recalibrate the bases 
(optional arguments -knownSites Mills_and_1000G_
gold_standard.indels.hg38.vcf -knownSites 1000G_
phase1.indels.hg38.vcf -knownSites dbsnp_138.hg38.vcf ). 
Haplotypes where called two times, via HaplotypeCaller; 
once with the optional flags -nct 4 –emitRefConfidence 
GVCF –dbsnp dbsnp_138.hg38.vcf –variant_index_type 
LINEAR –variant_index_parameter 128000 and another 
time with those flags and the flag -ploidy 3. Then vcf files 
were created for each trio (mother, father, child) using 
GenotypeGVCFs. To create a vcf that contained chr21 
as triploid in only the individual with Down syndrome 
we created our own code in Python to combine the two 
types of family vcf files. This program combined the fam-
ily vcf files by taking any lines that started with “chr21_” 
or “chr21” from the vcf files with the triploid child vari-
ants, and all lines that did not start with “chr21_” or 
“chr21” from the family diploid vcf files. The vcf file is 
provided at the Zenodo link listed below.

GTEx datasets/SNP analysis
We downloaded the GTEx (version 8) database of 
eQTLs and their associated genes for all available tis-
sues [26]. We merged these databases and filtered out all 
SNPs identified in our DNA-seq experiments that were 
not present in the merged GTEx database. We com-
pared the expected effects of each SNP from GTEx with 
the allelic ratios of each of our datasets. We then asked 
whether there was at least one SNP that could explain the 
expression/transcription levels we observed in the real 
data when each parent was compared to the child with 
T21. The scripts and full results table are available at the 
github repository listed below.

Summary of differential analysis pipeline adjustments
Many analysis pipelines (including the popular DESeq2 
algorithm) use a null hypothesis that the fold change 

between two samples is 1, and are thus the default analy-
sis is ill-equipped for fold change estimation and differ-
ential analysis when DNA dosage suggests an alternative 
fold change is expected. These native settings can be 
easily adjusted, leading to a more reliable analysis. In 
summary: 

1	 Apply a minimum read coverage filter, depending on 
read depth (30 used in this study)

2	 Mask repeat regions or remove multi-mapping reads 
for read counting

3	 Remove chromosome 21 genes for size factor calcu-
lation

4	 For noisy samples, increase sequencing depth or rep-
lication

5	 Adjust the null hypothesis or normalize read count 
by ploidy number
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