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ABSTRACT
Logratios between pairs of compositional parts (pairwise logratios)
are the easiest to interpret in compositional data analysis, and
include the well-known additive logratios as particular cases. When
the number of parts is large (sometimes even larger than the number
of cases), some form of logratio selection is needed. In this article, we
present three alternative stepwise supervised learning methods to
select the pairwise logratios that best explain a dependent variable
in a generalized linearmodel, each geared for a specific problem. The
first method features unrestricted search, where any pairwise logra-
tio canbe selected. Thismethodhas a complex interpretation if some
pairs of parts in the logratios overlap, but it leads to themost accurate
predictions. The second method restricts parts to occur only once,
which makes the corresponding logratios intuitively interpretable.
The thirdmethod uses additive logratios, so that K−1 selected logra-
tios involve a K-part subcomposition. Our approach allows logratios
or non-compositional covariates to be forced into the models based
on theoretical knowledge, and various stopping criteria are available
based on information measures or statistical significance with the
Bonferroni correction. We present an application on a dataset from
a study predicting Crohn’s disease.
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1. Introduction

Compositional data are data in the form of components, or parts, of a whole, where the
relative values of the parts are of interest, not their absolute values. John Aitchison [1–3]
pioneered the use of the logratio transformation as a valid, (subcompositionally) coherent
way to analyse compositional data. Coherence means that, if the set of parts is extended
or reduced, the relationships between the common parts remain constant, whereas their
relative values do change because of the differing sample totals. Ratios of parts, however,
are invariant with respect to the normalization (closure) of the data and these form the
basis of Aitchison’s approach to compositional data analysis, often referred to as CoDA.

Since ratios are themselves compared on a ratio scale, and are usually highly right-skew,
they are log-transformed to an interval scale. Hence, the basic concept and data transfor-
mation inCoDA is the logratio, with the simplest being the logarithmof a pairwise ratio, for
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example, for two partsA and B: log(A/B) = log(A) − log(B). This study is concerned with
such pairwise logratios, denoted henceforth exclusively by the abbreviation LR – logratios,
in general, will not be abbreviated. The challenge is to choose a set of LRs that effectively
replaces the compositional dataset and are at the same time substantively meaningful to
the practitioner as well as having a clear interpretation. Once the transformation to LRs is
performed, analysis, visualization and inference carry on as before, but always taking into
account the interpretation in terms of ratios.

For a composition consisting of J parts, a set of J−1 LRs contains the whole informa-
tion of the composition, as long as each part participates in at least one LR [23]. When the
number of parts is large (in biological applications often larger than the number of cases),
some form of selection of fewer than J−1 LRs is convenient or even necessary prior to sub-
sequent statistical analysis. Greenacre [22,23] developed an unsupervised learningmethod
based on a stepwise selection of the LRs that explained the maximum percentage of logra-
tio variance in the composition itself, where ‘explained’ is in the linear regression sense.
In this article, we are interested rather in supervised learning, that is, selecting LRs that
best explain or predict a target variable. Two bivariate supervised approaches have been
proposed [15,52] to find the LRs which are most related to a qualitative target variable.
In these approaches, each chosen LR does not take into account the explanatory power of
the remaining chosen LRs. More recently, the authors in Ref. [6] have extended the idea
to the penalized regression approach and to a continuous target variable. In this paper, we
present three alternative stepwise supervised learning methods to select the LRs that make
a net contribution to explaining a dependent variable in a generalized linear model, as an
alternative to the hybrid approach by [29] withmuch the same aim. As opposed to [29], the
dependent variable can be of any kind supported by generalized linear models, including
binary (Bernouilli), continuous, or count (Poisson) variables. The selectionmethod for the
LRs is the standard one in stepwise regression with forward selection, geared to deal with
three distinct compositional problems. The conceptual simplicity of stepwise regression
coupled with that of LRs can be appealing to applied researchers without a sophisticated
statistical background, compared to the approaches in [6,29], and is yet flexible enough to
accommodate three variants which fit different research objectives and to introduce the
researcher’s judgement in LR choice.

In the first variant, any LR is eligible to belong to the model. This approach will gener-
ally lead to the best predictive power but the LRs can be difficult to interpret if they overlap
[30]. It is thus inappropriate when the main or only objective is LR interpretation. In the
second variant, only LRs involving pairs of parts that do not overlap are eligible – thus if
log(A/B) is selected, A and B are excluded from any other ratios. This leads to a simpler
interpretation of the LRs as trade-off effects between pairs of parts on the dependent vari-
able. The third variant aims at identifying a subset of parts (i.e. a subcomposition) with the
highest explanatory power, by selecting a reduced set of additive logratios (ALRs). Several
stopping criteria are possible for these three variants, optimising information measures or
ensuring significance of the logratios with the Bonferroni correction. All variants allow the
researcher to see the explanatory power of several candidate logratios and modify the LR
entered at a given step from his or her expert knowledge, as incorporated into the selection
process in [20,48,55]. This includes the possibility to force the inclusion of certain logratios
or non-compositional variables from the start. All variants are best evaluated by means of
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cross-validation: the model that is finalized at the last step is estimated on a hold-out data
set in order to get unbiased estimates, p-values and prediction accuracy figures.

This article adds to the literature on variable selection in explanatory compositions: first,
the compositional developments using regularized regression, including Lasso and related
methods, for example [5,10,35–37,39,40,50,51]; second, the unsupervised methods that
aim at finding an optimal subcomposition, for example [31]; third, the discriminative bal-
ance approach [46,56] identifies ratios between two or three parts in a supervised problem;
fourth, the selbal approach [49,51] selects two subcompositions, one positively related to
the dependent variable and one negatively related, and computes the logratio of the geo-
metricmean of the first over the second as predictor (this has been generalized tomore than
one logratio by [18]); fifth and finally, additional approaches such as using amalgamations
[25,45], investigator-driven search of LRs [53], kernel-based nonparametric regression and
classification [32], relative-shift regression [34], data augmentation [19], principal balances
derived from partial least squares [42], the nearest-single-balance-shift approach [43], and
Bayesian methods [58].

The article is organized as follows, we first state the problem of stepwise regression in
the context of LRs. We next describe the three variants of the algorithm, each geared to
solve a specific problem. We next present an application to one of the data sets used by
[49]. The last section concludes with a discussion.

2. Compositional stepwise regression

2.1. Compositions and their logratios

A J-part composition can be defined as an array of strictly positive numbers called parts,
for which ratios between them are considered to be relevant [44]: x = (x1, x2, . . . , xJ), with
xj > 0 for j = 1, 2, . . . , J. Notice that an alternative definition of a composition, which is
more realistic in practice, is to define it as consisting of non-negative numbers, thus admit-
ting zeros and using alternativemethods that do not rely on ratios, yet approximate logratio
methods very closely – see, for example, [21,25].

Focusing on strictly positive parts, logarithms of ratios are more statistically tractable
than ratios, and Aitchison [1] presented the first comprehensive treatment of compositions
by means of logratios, using the additive logratio transformation (ALR) in which J−1 LRs
are computedwith the samedenominator or reference part, which is assumedhere, without
loss of generality, to be the last part:

log
(
xj
xJ

)
= log(xj) − log(xJ), j = 1, 2, . . . , J − 1. (1)

This can easily be generalized to any of the possible J(J − 1)/2 LRs between any two parts
[2,22]:

log
(
xj
xj′

)
= log(xj) − log(xj′), j = 1, 2, . . . , j′ − 1, j′ = 2, 3, . . . , J. (2)

The inherent dimensionality of a composition is J−1, which means that J(J − 1)/2 − (J −
1) LRs are redundant and only J−1 LRs can participate in a statistical model. Greenacre
[22,23] showed that taking exactly J−1 LRs in such a way that each part participates in
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at least one LR, always leads to a non-redundant selection. But even J−1 is too large a
number when the composition has many parts, and the aim of this article is to select a
subset of fewer LRs that is optimal in some sense.

The most general form of a logratio is the log-contrast, which can be expressed as:

[
α1 α2 · · · αJ

]
⎡
⎢⎢⎢⎣
log(x1)
log(x2)

...
log(xJ)

⎤
⎥⎥⎥⎦ = αT log(x), where

J∑
j=1

αj = αT1 = 0. (3)

A LR is a special case with one value in the coefficient vector α equal to 1 and another
equal to−1, corresponding to the numerator and denominator parts, respectively, and the
remaining coefficients equal to zero.

Other ways of computing logratios involving more than two parts have been suggested
[12,14,16,41] with the requirement of orthogonality of the α vectors in the log-contrasts,
which has implications for the logratio’s interpretation [30] as shown below. Notice that
two LRs can also have mutually orthogonal α vectors if they do not overlap, that is, if no
part participates in both LRs. For instance, in a four-part composition, the LRs log(x1/x2)
and log(x3/x4) have the orthogonal α vectors [1,−1, 0, 0] and [0, 0, 1,−1] respectively.

The LRs can be used as dependent, predicted by non-compositional variables [13], or as
explanatory, to predict a non-compositional outcome [4], which should be continuous in
a linear regressionmodel. The extension from a linear model to a generalized linear model
is straightforward. For instance, if the dependent variable is a count, a Poisson regression
can be specified, or if the dependent variable is binary, a logit model can be specified [8].
In this article, we are concerned with using LRs as explanatory variables.

2.2. Stepwise regression

Logratio selection in linear or generalized linearmodels belongs to the domain of statistical
learning [33], and, more precisely, supervised statistical learning, because the selection is
madewith the purpose of optimising the explanatory power or the predictive accuracywith
respect to an external response variable. Stepwise regression is one of the earliest forms of
supervised statistical learning and can be adapted both to linear and generalized linear
models. The forward selection method of stepwise regression is especially interesting due
to its ability to handle any number of LRs, even if J−1 is larger than the sample size, and is
described simply as:

• In the first step, the algorithm selects the LR leading to the lowest residual sum of
squares, or its generalization for both linear models and generalized linear models,
−2 × log(likelihood), abbreviated as −2logLik, which is called deviance for some
specific models, such as the logit model that we consider in the application section.

• In the second and subsequent steps, the algorithm adds to the equation the LR leading
to the strongest reduction in the residual sum of squares or in −2logLik, one LR at a
time.
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Since adding an LR always decreases −2logLik, a stopping criterion is needed in order
not to reach the trivial solution with J−1 LRs which would imply that no selection has
been made. This is achieved by means of adding a penalty to −2logLik as a function of
the number of selected LRs. The many possibilities available to introduce such a penalty
makes the stepwise approach very flexible. Let m be the number of parameters estimated
in the model and n the sample size. The most popular penalties are:

• the Akaike information criterion (AIC), which minimizes −2logLik + 2m;
• the Bayesian information criterion (BIC), which minimizes −2logLik + log(n)m.

Notice that log(n) > 2 for n>7, so that the BIC criterion will generally lead to more
parsimonious models with fewer LRs than the AIC criterion. For example, if n = 500, the
penalty is 6.215m.

Another possibility is to set the penalty in such a way that an additional LR is introduced
into the model only if it is statistically significant at a given significance level. At first sight,
this could be achieved if the penalty factor equals the quantile of the χ2 distribution with
1 degree of freedom and tail area equal to the significance level. For example, ensuring that
the added LRs are significant at 5% is equivalent to a penalty equal to 3.841m.

However, this approach is flawed because of multiple testing. Since J−1 non-redundant
LRs are simultaneously being tested for inclusion, the significance level has to be defined
in more strict terms in order to account for the accumulation of risks arising from mul-
tiple testing. A popular criterion is the conservative Bonferroni correction which implies
using the χ2 quantile with a tail area equal to the significance level divided by J−1. For the
commonly encountered J and n values, this criterion usually leads to the strongest penalty
(and thus to the smallest set of selected LRs and the highest model parsimony). For exam-
ple, if J−1 = 10, the relevant tail area is 0.005, the χ2 quantile is 7.879 and the procedure
minimizes −2logLik + 7.879m.

It is well-known that estimates and t-values are biased upwards in absolute value when
using stepwise regression, because the variables included are those with the highest values
for the particular sample [7,28,54]. For the same reason, p-values are too low (risking to
make the Bonferroni correction insufficient) and prediction intervals too narrow. It is also
hardly surprising that goodness of fit measures are overestimated when the data are used
to find the model which optimizes them. The whole issue falls under the umbrella of fail-
ing to take model uncertainty into account [7]. The problem is made more serious when
samples are small, the number of variables is large, and the number of steps in the stepwise
procedure is large.

This requires shrinkage methods or independent testing of the final model with a fresh
cross-validation sample. If the original sample is large enough, it is possible to split it ran-
domly, roughly two-thirds being used to run the stepwise regression (training part) and
one-third to validate the final model (test part). However, gathering fresh data provides a
more convincing argument for themodel, as it extends the range of time and space settings
under which the model is valid [7].

Even after validation, itmust be taken into account thatmanymodelsmay have a similar
fit to the data and the procedure has only found one of them [54]. The problem is com-
pounded when there is strong collinearity [28] and makes stepwise regression appropriate
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for predictive and exploratory purposes, but not for theory testing. The final model cannot
be interpreted as if it were prespecified [28].

Having said this,many learningmethods for compositional data use stepwise algorithms
due to their wide acceptance and conceptual simplicity [22,23,29,31,49,51], and the exis-
tence of several solutions with similar goodness of fit and the need for cross-validation are
shared by even the most sophisticated statistical learning methods.

2.3. Introducing expert knowledge in stepwise regression

Expert knowledge can be a crucial complement to data-driven statistical learning for
compositional data [23,53], serving to overcome the inherent limitations of the stepwise
method, by reducing the number of data-driven steps. In this respect, the user should be
able to:

• force certain theoretically relevant LRs into the regression equation;
• discard LRs with a nonsensible effect sign according to theory [28];
• force certain theoretically relevant non-compositional covariates into the regression

equation;
• choose among LRs with approximately the same significance or AIC/BIC improve-

ments.

With respect to the last of the above-mentioned options, there are already three pub-
lished studies [20,48,55] where the expert with domain knowledge has interacted with the
statistical algorithm to make choices of LRs from a list of those competing to enter. The
idea in the present context is to present the expert with the ‘top 20’ LRs, say, in decreasing
order of importance in themodelling, that is increasing order of−2logLik. Those at the top
often have very little difference between them statistically, and the expert can agree with
the optimal one but could also, at the expense of a slightly worse fit, choose an LR lower
down the list which has a preferred interpretation or a higher theoretical relevance.

The three studies cited above all operate in an unsupervised mode. That is, they are
not concerned with modelling or predicting a response but rather with substituting the
full set of LRs with a smaller set that accounts for most of the logratio variance while
approximating the multivariate structure of the data as closely as possible. Nevertheless,
notice that the second study [48] cited above does have a supervised learning flavour, since
the LRs are chosen not to explain total logratio variance between samples, but logratio
variance between four groups of samples. In other studies focused on choosing sets of
ALRs [27,57], there are often competing choices of the denominator parts that lead to
similar results, where again the expert can make a reasoned choice based on substantive
considerations.

If there are non-compositional continuous or categorical variables that are substantively
relevant and statistically predictive of the response, they can be introduced into the model
first, and then the LRs are introduced as before to explain the residuals. For the ALR vari-
ant of our method, the choice of initial LR can also be made by the expert who wants to
force a particular reference part in the ALRs, based on domain knowledge. Whichever the
intervention of the user, the final model should then be cross-validated in the same way as
described in Section 4.5.
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3. The logratio selection algorithms

In this section, we propose three variants of the forward stepwise selection algorithm for
generalized linear models, each geared towards solving a specific compositional problem.
At the final step, any of them will yield an equation of the form:

g(y) = β00 +
∑
jj′

βjj′ log
(
xj
xj′

)
, (4)

where the summation term contains at most J−1 non-redundant logratios, β00 is the
intercept term and g is the link function of the generalized linear model.

3.1. Unrestricted search

The first algorithm is a straightforward adaption of the unsupervised stepwise selection
algorithm [23] to a supervised setting. Any non-redundant LRs may be selected by the
algorithm. This implies that if log(C/B) and log(C/A) have already been selected, then
log(B/A) is excluded, since log(B/A) = log(C/A) − log(C/B) andwould not contribute to
explain variance or improve predictions. More importantly, redundancy implies that many
models lead to the same predictions and goodness of fit. Selecting log(B/A) and log(C/B)

leads to the same predictions as log(C/B) and log(C/A) and as log(B/A) and log(C/A).
It also leads to the same expression of the regression equation as a single log-contrast of
log(A), log(B) and log(C) (see Section 3.4). Rather than different models, they are three
reformulations of the same and onlymodel [9], the choice amongwhich is absolutely irrele-
vant for all intents and purposes. Faced with this situation, the stepwise algorithm provides
only one solution. This argument can be extended to any set of LRs with parts forming a
cycle in a graph, which indicates redundancy (see [22,23]) – the chosen LRs have to form
an acyclic graph (examples are shown in Figure 2 in the application).

The final solution of this algorithm may be a combination of overlapping and non-
overlapping pairs of parts. For example, supposing there are J = 7 parts, denoted by A,
B, C,D, E, F,G. The stepwise algorithmmight, for instance, select log(B/A), log(C/B) and
log(G/F). The pair G/F does not overlap with any other (i.e. the parts F and G participate
in only one LR) while the pairs B/A and C/B overlap in part B.

The parameter interpretation in models combining overlapping and non-overlapping
LRs is all but intuitive [9,30]. In the above example with the selection log(B/A), log(C/B)

and log(G/F) in themodel, the interpretation would be as follows, taking into account that
the effects of the explanatory variables have to be interpreted keeping all other variables
constant [9]. The coefficient associated with log(G/F) is interpreted as increasing G at the
expense of decreasing F, while keeping the mutual ratios of A, B and C constant. Since
log(G/F) does not overlap with the remaining LRs, its interpretation is not affected and its
coefficient expresses a trade-off between only the numerator and denominator parts.

Of course, it can be the case that both G and F increase in absolute terms at different
rates. However, in relative terms, i.e. compositionally speaking, there will still be a trade-
off. The coefficient associated with log(B/A) is interpreted as increasing B at the expense
of decreasing A, while keeping constant both C relative to B and G relative to F. Keeping
the ratio of C over B constant means that C changes by the same factor as B. Thus, the
coefficient associated to log(B/A) is interpreted as increasing B and C by a common factor
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at the expense of decreasing A, in relative terms. Likewise, the coefficient associated to
log(C/B) is interpreted as increasing C at the expense of decreasing B, while keeping the
ratios of B over A and G over F constant. Keeping the ratio of B over A constant means
that A decreases by the same factor as B. Thus, the coefficient associated with log(C/B) is
interpreted as increasing C while decreasing A and B by a common factor. As a result, the
effects of overlapping LRs do not correspond to the effects of the trade-offs between the
numerator and denominator parts. On the one hand, this requires exercising great care in
the interpretation task, and on the other, it deviates from the objective of choosing LRs that
lead to simple interpretation.

Nevertheless, the present variant of the algorithm selects the LRs that contribute the
most to predictive power, overlapping or not. If the purpose of the researcher is only to
make predictions, then interpretationmay not be essential and this variant may be the best
choice. An interpretational trick that does not involve the LRs is provided in Section 3.4.

This method variant can be related to the approach in Ref. [6] which similarly makes an
unrestricted selection of LRs based on penalized regression. The following two variants of
the method make for simpler interpretations of the effects of each LR.

3.2. Search for non-overlapping pairwise logratios

In this variant of the algorithm, the stepwise search is restricted to at most J/2 (if J is even)
or (J − 1)/2 (if J is odd) LRs with non-overlapping parts. This limitationmay yield a lower
predictive power in some applications but may be very welcome for high-dimensional
compositions where parsimony is a must. Since they are non-overlapping, theK/2 selected
LRs will involve exactly K parts. This approach has some important advantages:

• It is easily interpreted. Non-overlapping LRs have orthogonal α coefficient vectors in
Equation (3) by construction. They are thus an exception to the often-quoted problems
when interpreting LRs as explanatory variables [30]. For this reason, their effects on the
dependent variable can be interpreted in a straightforwardmanner in terms of trade-offs
between only the numerator and the denominator parts [30], as intendedwhen building
the LRs.

• It tends to reduce collinearity among the LRs, which is an important issue in stepwise
methods.

• It is faster, as it continuously removes LRs from the set of feasible choices.

Each non-overlapping LR can also be considered to be a balance up to a multiplica-
tive scalar, which brings this variant of the algorithm close to the discriminative-balance
approach in [46], where ratios between two or three parts are selected in a supervised
problem.

3.3. Search for additive logratios in a subcomposition

This algorithm draws from the fact that a subcomposition with K parts can be fully rep-
resented by K−1 LRs as long as each part participates in at least one LR [23] and that any
logratio selection fulfilling this criterion has identical predictions and goodness of fit [9].
This includes the additive logratios (ALRs) with any part of the subcomposition in the
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denominator and the remaining K−1 parts in the numerator, which makes for a shorter
search of candidate LRs and makes the interpretation easier. Thus, this algorithm searches
for the K-part subcomposition with the highest explanatory power by fixing the denomi-
nator part of the LR determined in the first step and then bringing in additional parts as
numerators of the LRs entering subsequently.

The effects of the selected set of ALRs in the model in the final linear model are not
interpretable as trade-offs between pairs of parts [30] but an alternative simple rule for
interpretation is given in [9]: to interpret the ALR effects as those of increasing the part in
the numerator while decreasing all other parts in the subcomposition by a common factor.
The common denominator of the ALRs has an associated effect equal to the sum of all
coefficients with a reversed sign.

In our previous 7-part example, suppose that log(B/G) and log(A/G) are chosen:

g(y) = b00 + bAG log(A/G) + bBG log(B/G). (5)

The estimated coefficient bAG is the effect of increasing A while decreasing B and G by a
common factor, the coefficient bBG is the effect of increasing B while decreasing A and G
by a common factor, and (−bAG − bBG) shows the effect of increasing G while decreasing
B and A by a common factor.

As stated previously, this algorithm that results in an equation with ALR predictors,
also results in identifying a subcomposition. If the researcher prefers other parameter
interpretations, the resulting subcomposition can be fitted into the regression model in a
subsequent step using the researcher’s favourite type of logratio transformation, including
those with orthogonal α vectors in Equation (3).

This algorithm has similar objectives as the approaches of the regularized-regression
family [35,37,50], which also aim at selecting a subcomposition to explain the non-
compositional dependent variable. It is also related to the selbal approach [49], which
selects two subcompositions, one positively related to the dependent variable and one neg-
atively related, and computes the logratio of the geometricmean of the first over the second
as predictor. The selbal algorithm constrains the effects of all parts to be equal within the
numerator and denominator sets.

Our approach can also be understood as a supervised equivalent of the algorithm pre-
sented by [31], which is a backward stepwise procedure searching for the subcomposition
containing the highest possible percentage of total logratio variance of the original com-
position. Notice the difference between ‘containing’ and ‘explaining’ variance – contained
variance is the contribution to the total logratio variance, where the contributions of each
part in the composition are summed to get the total, whereas explained variance is in the
regression sense, where a part can not only explain its own contribution to the variance but
also contributions due to intercorrelations with other parts.

3.4. Reexpression as a single log-contrast

The final model in any of the three approaches can be expressed as a log-contrast of the
logarithms of all involved parts, whose coefficients add up to zero.

For instance, the equivalent log-contrast to in Equation (5) has the αj coefficients in:

bAG log(A) + bBG log(B) + (−bAG − bBG) log(G). (6)
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This log-contrast can be interpreted as a whole: increasing the parts with positive αj log-
contrast coefficients at the expense of decreasing the parts with negative αj log-contrast
coefficients leads to an increase in the dependent variable, parts with higher coefficients in
absolute value being more important.

All three methods are available in the new release of the package easyCODA [22] in R
[47], using function STEPR, with options method=1 (unrestricted search) method=2
(non-overlapping search) and method=3 (search for a subcomposition by selecting
ALRs). The user can specify how many steps the algorithm will proceed, or select a stop-
ping criterion, either BIC or Bonferroni. Theoretically relevant LRs or covariates can be
forced into the regression equation at step 0. The selection can also be made one single
step at a time, where the researcher is presented with a list of LRs that are competing to
enter the model, from which either the statistically optimal one is chosen or a slightly less
optimal one with a more interesting and justified substantive meaning and interpretation.

4. Application

4.1. Data

The three approaches to logratio selection are applied to a data set relating Crohn’s
disease to the microbiome of a group of patients in a pediatric cohort study [17,49].
The 662 patients with Crohn’s disease (coded as 1) and the 313 without any symptoms
(coded as 0) are analysed. The operational taxonomic unit (OTU) table was agglomer-
ated to the genus level, resulting in a matrix with J = 48 genera and a total sample size
n = 662+ 313 = 975. All the genera but one had some zeros, varying from 0.41% to
79.38% and overall the zeros accounted for 28.8% of the values in the 975 × 48 table
of OTU counts. Among the available zero-replacement methods, for comparability pur-
poses with [49], the zeros were substituted with the geometric Bayesian multiplicative
replacement method [38].

Since the dependent variable is binary, the appropriatemember of the generalized linear
model family is the logit model, with the probability p of Crohn’s disease expressed as the
logit (log-odds) log( p

1−p ). Positive regression coefficients would indicate associations with
a higher incidence of Crohn’s disease. For the particular case of logit models, the deviance
equals−2logLik. As recommended by Ref. [28], prior to any stepwise procedure, we tested
an intercept-only model against a model with J−1 LRs, rejecting the intercept-only model
(χ2 = 407.1 with 47 degrees of freedom).

The same data set has been analysed using the selbal approach [49], which contrasts two
subcompositions of genera S1 and S2 in a single variable equal to the log-transformed ratio
of the respective geometric means. Thus the coefficients of the parts for each subcompo-
sition are the same, resulting in the following log-contrast as a predictor of the incidence
of Crohn’s disease, where the positive and negative coefficients apply respectively to the 8
parts of S1 in the numerator and the 4 parts of S2 in the denominator (abbreviations of the
genera are used – see the Appendix for the list of full names):

0.2041 log(Dial) + 0.2041 log(Dore) + 0.2041 log(Lact) + 0.2041 log(Egge)

+ 0.2041 log(Aggr) + 0.2041 log(Adle) + 0.2041 log(Stre) + 0.2041 log(Osci)

− 0.4082 log(Rose) − 0.4082 log(Clos) − 0.4082 log(Bact) − 0.4082 log(Pept)
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Table 1. Estimates of the final model with the first approach (unrestricted stepwise search). Ratios have
been inverted, where necessary, to make all coefficients positive.

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Stre/Rose 0.3059 0.0320 < 0.0001 0.3022 0.0315 < 0.0001
Dial/Pept 0.1378 0.0235 < 0.0001 0.1618 0.0218 < 0.0001
Dore/Bact 0.2436 0.0376 < 0.0001 0.2393 0.0372 < 0.0001
Aggr/Prev 0.1025 0.0221 < 0.0001 0.1008 0.0220 < 0.0001
Adle/Lach 0.1107 0.0275 < 0.0001 0.1158 0.0273 < 0.0001
Lact/Stre 0.1489 0.0371 < 0.0001 0.1482 0.0364 < 0.0001
Osci/Clos 0.1645 0.0429 0.0001 0.1688 0.0426 < 0.0001
Sutt/Bilo 0.0889 0.0247 0.0003 0.0873 0.0246 0.0004
Clot/Pept 0.0712 0.0264 0.0070
BIC 932.03 932.55

Table 2. Estimates of thefinalmodelwith the secondapproach (non-overlapping LRs). Ratios havebeen
inverted, where necessary, to make all coefficients positive.

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Stre/Rose 0.2377 0.0294 < 0.0001 0.2444 0.0291 < 0.0001
Dial/Pept 0.1570 0.0221 < 0.0001 0.1702 0.0217 < 0.0001
Dore/Bact 0.2322 0.0379 < 0.0001 0.2272 0.0371 < 0.0001
Aggr/Prev 0.1026 0.0223 < 0.0001 0.1087 0.0222 < 0.0001
Adle/Lach 0.1077 0.0279 0.0001 0.1139 0.0276 < 0.0001
Rumi/Clos 0.2511 0.0660 0.0001 0.2553 0.0642 < 0.0001
Sutt/Bilo 0.0728 0.0248 0.0033 0.0844 0.0245 0.0006
Osci/Faec 0.1220 0.0346 0.0004 0.1088 0.0333 0.0011
Lact/Turi 0.0864 0.0295 0.0034
Egge/Euba 0.0792 0.0303 0.0091
BIC 937.92 939.64

4.2. Results with the complete data set

For comparability with [49] we first run the analysis on the complete dataset, leaving the
crucial cross-validation step for Section 4.5. The results for our three approaches, with the
stopping criterion set to optimise BIC are in the left panel of Tables 1 to 3. The function
which is being optimised is deviance +6.8824m. Table 1 shows the unrestricted solution.
Variables are ordered according to entry in the stepwise algorithm.

There is an overlap of the genus Stre in steps 1 and 6, which will cause complications
in the interpretation. In the second version of the algorithm, then, the selected LRs differ
from the sixth step onward, with very small increases in the BIC, shown in Table 2.

Since non-overlapping LRs have orthogonal α vectors, their interpretation is according
to the logratio formulation [30]. That is, the incidence of Crohn’s disease is significantly
associated with an increase in the relative abundance of each numerator genus at the
expense of a decrease in the relative abundance of the respective denominator genus.

The third approach identifies the set of ALRs, shown in Table 3, where there is a much
bigger increase in the BIC. The first LR selected, identical to the first ones in the previous
results, determines the denominator part of them all. The algorithm selects 11 ALRs as a
12-part subcomposition. This subcomposition of 12 genera may be transformed into the
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Table 3. Estimates of the final model with the third approach (subcomposition search with ALR). Ratios
have been left with the fixed denominator part, hence positive and negative coefficients.

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Stre/Rose 0.1488 0.0444 0.0008 0.1415 0.0438 0.0012
Dial/Rose 0.1354 0.0267 < 0.0001 0.1407 0.0262 < 0.0001
Pept/Rose −0.1909 0.0331 < 0.0001 −0.2065 0.0324 < 0.0001
Lact/Rose 0.1547 0.0404 < 0.0001 0.1420 0.0397 0.0003
Bact/Rose −0.2859 0.0521 < 0.0001 −0.2792 0.0481 < 0.0001
Dore/Rose 0.2252 0.0483 < 0.0001 0.2021 0.0439 < 0.0001
Adle/Rose 0.1477 0.0375 < 0.0001 0.1511 0.0360 < 0.0001
Aggr/Rose 0.1381 0.0332 < 0.0001 0.1378 0.0328 < 0.0001
Prev/Rose −0.0905 0.0260 0.0005 −0.0920 0.0258 0.0004
Osci/Rose 0.1551 0.0439 0.0004
Clos/Rose −0.2140 0.0723 0.0031
BIC 964.44 967.42

Table 4. Estimates of the final model with the third approach and an alternative denominator (subcom-
position search with ALR).

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Rose/Stre −0.3237 0.0425 < 0.0001 −0.3375 0.0383 < 0.0001
Dial/Stre 0.1354 0.0267 < 0.0001 0.1407 0.0262 < 0.0001
Pept/Stre −0.1909 0.0331 < 0.0001 −0.2065 0.0324 < 0.0001
Lact/Stre 0.1547 0.0404 < 0.0001 0.1420 0.0397 0.0003
...

...
...

...
...

...
...

Prev/Stre −0.0905 0.0260 0.0005 −0.0920 0.0258 0.0004
Osci/Stre 0.1551 0.0439 0.0004
Clos/Stre −0.2140 0.0723 0.0031
BIC 964.44 967.42

practitioner’s favourite logratio representation without changing the predictions or good-
ness of fit of the model as long as 11 logratios are used [9]. A convenient example of the
former is to rerun the finalmodel with a different part in theALRdenominator. Thismakes
it possible to obtain themissing standard error and p-value in the log-contrast correspond-
ing to the denominator part in the original run (Rose in the first row of Table 4). The
remaining estimates and standard errors in Table 4 do not change. Each coefficient can
be interpreted as the effect on the dependent variable (i.e. the log-odds of having Crohn’s
disease) of increasing the part in the numerator while decreasing all other parts in the sub-
composition by a common factor. For instance, according to the coefficient of Stre/Rose in
Table 3, the likelihood of Crohn’s disease increases with increases in the genus Stre, at the
expense of joint decreases in Dial, Pept, Lact, Bact, Dore, Adle, Aggr, Prev, Osci, Clos and
Rose.

If the model is not used merely for prediction, significance of the logratios becomes
important. The right panel of Tables 1 to 4 presents the results using a penalty equivalent
to forcing the selected LRs to be significant at 0.05 with the Bonferroni inequality: deviance
+10.7130m. This has led to selecting one fewer LR for the first approach and two fewer LRs
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Figure 1. Scree-type plots showing incremental amounts (black bars) at each step and cumulative
amounts (gray bars) at each step of the three respective algorithms. The values are percentages of the
maximum achievable deviance that can be accounted for by using a complete set of J−1 = 47 LRs in
the logistic regression.

for the second and third approaches. Given the large sample size, BIC also employs a sub-
stantial penalty to the deviance and this is why results are barely affected in this particular
application.

Figure 1 shows three plots of the sequence of certain diagnostics for the three algorithms.
The null deviance of this application is equal to 1223.9, and if a complete set of J−1 logra-
tios is used as predictors, which can be LRs, ALRs or other logratio transformations, the
residual (or ‘unexplained’) deviance is 816.8. This means that 1223.9−816.8 = 407.1 units
of deviance is the best that can be accounted for by the LRs. Using thismaximumof 407.1 as
100%, each LR entering at each step is accounting for a part of that maximum, expressed as
a percentage. In Figure 1, the grey bars show the increasing percentages at each step, which
would eventually reach 100%. The black bars show the incremental amounts, in a type of
scree plot.

4.3. Interpretational tools

A convenient way of summarizing the selected LRs of the three algorithms in each of the
Tables 1–3 is in the form of a directed acyclic graph (DAG), where the parts are vertices
and the LRs are defined by the edges [22,23], with each arrow pointing to the numerator
part (Figure 2, showing the solutions for the Bonferroni penalty). The ALRs in Figure 2(c)
define a connected DAG, which is why they are equivalent to the complete explanatory
power of a subcomposition [23].

All models can be interpreted when converted into the corresponding log-contrast [9]
as a function of the log abundances constrained to a zero sum of the αj coefficients. Log-
contrasts can easily be obtained, for instance, from the right panel in Tables 1–3. This is
essential for the unrestricted approach for which the LRs have no easy interpretation on
their own. Coefficients can be arranged in descending order for convenience.

In the unrestricted approach the log-contrast is:

0.2393 log(Dore) + 0.1688 log(Osci) + 0.1618 log(Dial) + 1540 log(Stre)

+ 0.1482 log(Lact) + 0.1158 log(Adle) + 0.1008 log(Aggr) + 0.0873 log(Sutt)
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Figure 2. Directed acyclic graphs (DAGs) visualizing the ratios selected in the three stepwise approaches
(according to the Bonferroni penalty, the right-handpanels in Tables 1–3). Arrowspoint from thedenom-
inator to the numerator in every case. In each graph, the LR at the top (Stre/Rose) is the first one selected
and the ratios introduced in the following steps are shown in a clockwise direction. (a) Unrestricted
search, showing an overlap of Stre; 15 parts included. (b) Restricted to non-overlap; 16 parts included.
(c) ALR selection; 10 parts included, which define a subcomposition, and the only graph out of the three
that is connected.

− 0.0873 log(Bilo) − 0.1008 log(Prev) − 0.1158 log(Lach) − 0.1618 log(Pept)

− 0.1688 log(Clos) − 0.2393 log(Bact) − 0.3022 log(Rose)

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dore,
Osci, Dial, Stre, Lact, Adle, Aggr and Sutt at the expense of decreases in Rose, Bact, Clos,
Pept, Lach, Prev and Bilo.

In the non-overlapping LR approach, the numerator and denominator parts have αj
coefficients of equal value and reversed sign in the log-contrast:

0.2553 log(Rumi) + 0.2444 log(Stre) + 0.2272 log(Dore) + 0.1702 log(Dial)

+ 0.1139 log(Adle) + 0.1088 log(Osci) + 0.1087 log(Aggr) + 0.0844 log(Sutt)

− 0.0844 log(Bilo) − 0.1087 log(Prev) − 0.1088 log(Faec) − 0.1139 log(Lach)

− 0.1702 log(Pept) − 0.2272 log(Bact) − 0.2444 log(Rose) − 0.2553 log(Clos)

Thus, the likelihood of Crohn’s disease increases with increases in the genera Rumi,
Stre, Dore, Dial, Adle, Osci, Aggr and Sutt at the expense of decreases in Clos, Rose, Bact,
Pept, Lach, Faec, Prev and Bilo.

In the ALR approach in Table 3, coefficients of the numerator parts can be taken directly
from the estimates, and the coefficient of the denominator part is the sum of all coefficients
with a reversed sign and can also be taken from Table 4:

−(0.1415 + 0.1407 − 0.2065 · · · − 0.0920) = −0.3375

The log-contrast is:

0.2021 log(Dore) + 0.1511 log(Adle) + 0.1420 log(Lact) + 0.1415 log(Stre)

+ 0.1407 log(Dial) + 0.1378 log(Aggr) − 0.0920 log(Prev) − 0.2065 log(Pept)
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− 0.2792 log(Bact) − 0.3375 log(Rose)

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dore,
Adle, Lact, Stre, Dial and Aggr, at the expense of decreases in Rose, Bact, Pept,
and Prev.

Figure 3 plots the above coefficients for the ALR approach with the Bonferroni penalty
as well as the multiplicative effects after exponentiating the coefficients and expressed as
percentage effects. The 95% bootstrap confidence intervals of these multiplicative effects
are shown graphically, based on 1000 bootstrap samples, and the 2.5% and 97.5% per-
centiles of the bootstrapped estimates of the log-contrast coefficients. It can be seen that
none cross the threshold of 1, which represents the hypothesis of no effect for each term of
the log-contrast.

4.4. Introduction of expert knowledge

Because of space considerations, from this section on, we focus on the ALR subcomposi-
tion search approach. Under this approach, in the 9th step, the algorithm reports the Egge
genus as the second best choice additional part in the subcomposition after Prev. Since Egge
is present in the subcomposition by Ref. [49], while Prev is not, a researcher might want
to force the logratio with Egge in the numerator instead of Prev as in Table 3 (Table 5). We
see that the subcomposition under the BIC penalty (left panel) has changed and the Osci
and Clos genera have dropped out and the Egge and Sutt genera have been substituted, at
the expense of only a slight increase in the BIC value as compared to Table 3. In this way,
more than one solution can be presented to the user to choose from.

4.5. Results with separate training and test subsamples

The previous sections presented the results on the full sample for the sake of comparability
with [49]. However, a much better way to proceed, which we recommend to all users of
the approaches proposed in this article, is to hold a part of the sample out for testing and
validation. In this section, a Bernouilli random variable was generated with probability 0.4
indicating units belonging to the test part, while the remaining units were assigned to the
training part on which the stepwise procedure was run. Table 6 shows the unbiased coef-
ficients of the model of the last step in the training sample estimated from the test sample
(ALR subcomposition approach). It must be noted that BIC does no longer have to be bet-
ter when applying the BIC penalty. In this particular case, the Bonferroni approach leads
to a better BIC value on the test sample. BIC values in Tables 3 and 6 are not comparable
because they are computed from different samples.

Under the Bonferroni approach (right panel of Table 6), all parts except Bilo were also
present in the full-sample analysis (Table 3) and all ALRs are statistically significant at 5%.
The estimation on a separate test samplemakes it possible to get not only unbiased p-values
but also unbiased predictive accuracy figures. The model predicts 88.5% of cases with
Crohn’s disease correctly as such, and 50.4% of cases without Crohn’s disease correctly
as such. Overall predictive accuracy is 76.8%. An unbiased log-contrast can be obtained
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Figure 3. Estimated log-contrast coefficients (left) and their conversion to multiplicative effects and 95
% bootstrap confidence intervals (right).

Table 5. Estimates of the final model with subcomposition search where the ALR Egge/Rose was forced
into the equation at the 9th step.

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Stre/Rose 0.1362 0.0451 0.0025 0.1055 0.0438 0.0161
Dial/Rose 0.1283 0.0267 < 0.0001 0.1270 0.0263 < 0.0001
Pept/Rose −0.2087 0.0326 < 0.0001 −0.2045 0.0321 < 0.0001
Lact/Rose 0.1363 0.0399 0.0006 0.1265 0.0390 0.0012
Bact/Rose −0.3659 0.0554 < 0.0001 −0.3165 0.0486 < 0.0001
Dore/Rose 0.1847 0.0450 < 0.0001 0.1685 0.0445 0.0002
Adle/Rose 0.1341 0.0367 0.0003 0.1329 0.0364 0.0003
Aggr/Rose 0.1249 0.0333 0.0002 0.1246 0.0322 0.0001
Egge/Rose 0.0823 0.0329 0.0125 0.0905 0.0320 0.0046
Prev/Rose −0.0923 0.0268 0.0006
Sutt/Rose 0.0964 0.0329 0.0034
BIC 967.50 972.18

from the estimates on the test sample in the right panel of Table 6:

0.2098 log(Dial) + 0.1887 log(Lact) + 0.1345 log(Adle)

− 0.0758 log(Bilo) − 0.1110 log(Pept) − 0.3462 log(Rose)

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dial, Lact,
and Adle, at the expense of decreases in Rose, Pept and Bilo. The differences between this
log-contrast and that presented in Section 4.3 stress the importance of cross-validation.

Under the BIC approach (left panel of Table 6), four different parts appear compared
to the full-sample analysis (Bilo, Coll, Egge and Faec), and some ALRs are not statistically
significant, although they had been significant in the training sample due to the downward
bias of p-values in that part of the data. The model predicts 87.8% of cases with Crohn’s
disease correctly, and 58.1%of caseswithoutCrohn’s disease.Overall predictive accuracy is
78.6%. In this case the BIC penalty leads to a better predictive accuracy as compared to the
Bonferroni penalty, at the expense of including some ALRs whose relevance is uncertain.
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Table 6. Estimates of the final model with the third approach (subcomposition search with ALR). Test
sample.

BIC penalty Bonferroni penalty

Ratio Estimate s.e. p-value Estimate s.e. p-value

Lact/Rose 0.1533 0.0581 0.0083 0.1887 0.0572 0.0010
Dial/Rose 0.1930 0.0423 < 0.0001 0.2098 0.0406 < 0.0001
Pept/Rose −0.1268 0.0511 0.0131 −0.1110 0.0480 0.0208
Adle/Rose 0.1200 0.0602 0.0464 0.1345 0.0528 0.0108
Bilo/Rose −0.0751 0.0438 0.0862 −0.0758 0.0378 0.0451
Dore/Rose 0.2305 0.0799 0.0039
Faec/Rose −0.0466 0.0666 0.4848
Osci/Rose 0.0406 0.0752 0.5894
Clos/Rose −0.1978 0.1165 0.0895
Egge/Rose 0.0813 0.0549 0.1387
Coll/Rose −0.0031 0.0455 0.9463
BIC 417.05 397.16
Accuracy (+ cases) 87.8% 88.5%
Accuracy (− cases) 58.1% 50.4%
Overall accuracy 78.6% 76.8%

Table 6 thus presents an example in which the significance of LRs in the training sample
is confirmed in the test sample (right panel) and an example of the opposite (left panel).
The actual strength of cross-validation is the chance given to the researcher to identify
parameter estimates which behave differently in the test sample compared to the training
sample, particularly those that perform less well.

4.6. Exploringmodel stability using the bootstrap

The bootstrap performed in Figure 3 only takes into account the estimation uncertainty
[28]. In order to take into account the uncertainty associated to model selection, the whole
stepwise procedure can be submitted to the bootstrap procedure. The following simulation
exercise was performed, reported here for Method 3 (that is, choosing a subcomposition
via the selection of ALRs). The complete data set was bootstrapped 100 times and for each
bootstrap sample, Method 3 with the Bonferroni penalty was applied and the chosen sub-
composition recorded. In doing so, the researcher becomes aware that subcompositions
vary in size and some of the genera in the right-hand panel in Table 3 are not consistently
selected as parts in the subcomposition, while some absent parts in Table 3 are selected in
a sizeable proportion of bootstrap samples.

The 20most often selected genera in the 100 bootstrap samples are, in descending order:
Rose (100%), Dial (96%), Pept (95%), Bact (76%), Dore (75%), Lact (69%), Aggr (59%),
Adle (58%), Stre (54%), Bilo (37%), Acti (36%), Prev (35%), Osci (30%), Clos (30%), Egge
(29%), Sutt (27%), Clot (18%), Lach (15%), Coll (13%), and Rumi (12%). The numbers of
ALRs selected in the bootstrap samples vary from 5 to 15, with 90% of them between 6 and
12. This shows that there is indeed a potentially wide variability in the number of ALRs
selected by this method, which translates to a corresponding variability in the size of the
selected subcompositions. The right hand panel in Table 3 and the bootstrap results show
that, with the exception of Prev (35%, see above), all the selected genera in Section 4.2 are
in more than 50% of the bootstrap samples.
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5. Conclusion and discussion

The main strength of this article is its conceptual and practical simplicity. Compared to
many competing supervised statistical learning methods for compositional data, it yields
an actual equation whose predictors the user can actually see, which makes it ultimately
possible to introducemodifications based on expert knowledge. Themethod is very flexible
in allowing several types of dependent variables (for the time being, continuous, Poisson
and binary), several stopping criteria, and three approaches each geared towards a particu-
lar objective, namely prediction, interpretation and subcomposition analysis. The selected
LRs are readily interpretable for the latter two modalities, while a log-contrast is inter-
pretable for all. Last but not least, the method will likely appear familiar to many applied
researchers without a sophisticated statistical background, who may gather courage to use
and understand it.

The possibility to take advantage of the user’s judgement in order to select meaningful
albeit statistically suboptimal LRs has already been developed for unsupervised learning
[22,23]. In supervised learning, this can also include forcing non-compositional controls
into the model and can be a way out of the limitations of purely data-driven approaches
[20,48,55]. The possibility has been shown in the application section by forcing in a part
that had been found to be relevant in the previous study by [49]. This has led to two
alternative subcompositions for the user to choose from, in Tables 3 and 5.

Daunis-i Estadella et al. [11] compare our approach with the selbal approach [49], prin-
cipal balances derived from partial least squares [42] and penalized regression from LRs
[6]. Our approach and especially the third variant of the algorithm, leads to identifying
similar predictive parts as selbal and penalized regression fromLRs, while balances derived
from partial least squares tend to identify a much larger number of parts.

The results of stepwise regression are indeed sample-dependent and biased. The way
out is to perform cross-validation and apply the model that is finalized at the last step to
a hold-out data set, if one is available. As a second option, the sample can be split in two
subsamples for training and testing purposes, respectively. Estimates, tests and predictions
obtained with the cross-validation sample are unbiased. The user is encouraged to per-
form cross-validation whenever applying stepwise methods and has to be reminded that
even after cross-validation, the approach is exploratory by nature and the final model can-
not be assumed to be correct, but at most one out of many models fitting the data about as
well and with about the same predictive accuracy. This drawback is common to all statis-
tical learning methods. An extension of our approach is then possible to other supervised
learning techniques such as classification and regression trees and random forests, where
cross-validation is routinely applied. At each step, an LR can be selected to maximize the
success of the prediction of the response variable, based on cross-validation. As we have
done in the context of generalized linearmodels, the stepwise selection can again take place
using any of the three selection methods. Introducing other cross-validation methods into
our approach is the subject of ongoing research. Another future development is to include
logratios that involve amalgamated (summed) parts as in [24,26].

The particular example used in this article has a medium-sized number of parts com-
pared to many compositional datasets used in the past in different fields. However, the
method needs to be trialled in more diverse scenarios, especially in the case of very
high-dimensional “omics” and microbial datasets, where CoDA is being regularly used
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nowadays. The stepwise selection of logratios is not a particularly fast algorithm for large
numbers of variables, although the third version with ALRs is more scalable than the rest.
All three variants start with a search through J(J − 1)/2 LRs, which is problematic if J is
very large, in the hundreds or even the thousands. For the ALR approach in Method 3, it
could be that the approach presented in [27] can be used as an alternative to isolate a suit-
able ALR transformation, by choosing the reference part to give an ALR transformation
that is the most isometric, that is, as close to the exact logratio geometry as possible. This
greatly facilitates the algorithm, since the stepwise searches are only of order J, whereas for
Methods 1 and 2, they are of order J2/2. This is the subject of ongoing research.
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Appendix. List of genera abbreviations and full names

• Acti: Actinomyces
• Adle: Adlercreutzia
• Aggr: Aggregatibacter
• Bact: Bacteroides
• Bilo: Bilophila
• Clos: Clostridiales
• Clot: Clostridium
• Coll: Collinsella
• Dial: Dialister
• Dore: Dorea
• Egge: Eggerthella
• Euba: Eubacterium
• Faec: Faecalibacterium
• Lach: Lachnospira
• Lact: Lactobacillales
• Osci: Oscillospira
• Pept: Peptostreptococcaceae
• Prev: Prevotella
• Rose: Roseburia
• Rumi: Ruminococcaceae
• Stre: Streptococcus
• Sutt: Sutterella
• Turi: Turicibacter
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