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Abstract

Background: To date, deep learning–based detection of optic disc abnormalities in color fundus 

photographs has mostly been limited to the field of glaucoma. However, many life-threatening 

systemic and neurological conditions can manifest as optic disc abnormalities. In this study, we 

aimed to extend the application of deep learning (DL) in optic disc analyses to detect a spectrum 

of nonglaucomatous optic neuropathies.

Methods: Using transfer learning, we trained a ResNet-152 deep convolutional neural network 

(DCNN) to distinguish between normal and abnormal optic discs in color fundus photographs 

(CFPs). Our training data set included 944 deidentified CFPs (abnormal 364; normal 580). Our 

testing data set included 151 deidentified CFPs (abnormal 71; normal 80). Both the training and 

testing data sets contained a wide range of optic disc abnormalities, including but not limited to 

ischemic optic neuropathy, atrophy, compressive optic neuropathy, hereditary optic neuropathy, 

hypoplasia, papilledema, and toxic optic neuropathy. The standard measures of performance 

(sensitivity, specificity, and area under the curve of the receiver operating characteristic curve 

(AUC-ROC)) were used for evaluation.

Results: During the 10-fold cross-validation test, our DCNN for distinguishing between normal 

and abnormal optic discs achieved the following mean performance: AUC-ROC 0.99 (95 

CI: 0.98–0.99), sensitivity 94% (95 CI: 91%–97%), and specificity 96% (95 CI: 93%–99%). 

When evaluated against the external testing data set, our model achieved the following mean 

performance: AUC-ROC 0.87, sensitivity 90%, and specificity 69%.

Conclusion: In summary, we have developed a deep learning algorithm that is capable of 

detecting a spectrum of optic disc abnormalities in color fundus photographs, with a focus 

on neuro-ophthalmological etiologies. As the next step, we plan to validate our algorithm 

prospectively as a focused screening tool in the emergency department, which if successful 

could be beneficial because current practice pattern and training predict a shortage of 

neuroophthalmologists and ophthalmologists in general in the near future.

In recent years, artificial intelligence (AI) in the form of deep learning (DL) has been 

used to classify medical images in a wide variety of medical disciplines, particularly in 

specialties where large, well-annotated data sets are readily available, such as dermatology 

(1), pathology (2–4), radiology (5–8), oncology (8–14), and ophthalmology. Within 

ophthalmology, deep learning systems (DLSs) have been developed to analyze various 

retinal conditions, such as age-related macular degeneration (15–17), diabetic retinopathy 

(18–20), and retinopathy of prematurity (21,22). DL techniques also have been used to 

detect optic nerve abnormalities in color fundus photographs. Most publications to date 

in this area have largely been limited to the field of glaucoma (20,23–25), enabled by 

the availability of a large number of color fundus photographs (CFPs) containing optic 

disc changes that are suspicious for or confirmed to be due to glaucomatous damage. 

However, other than glaucoma, numerous other processes can lead to pathologic optic disc 

changes. For example, many life-threatening neurological and systemic conditions, such as 

increased intra-cranial pressure, intracranial tumors, and malignant hypertension, may first 

manifest as optic disc swelling. As an extension of our previous work in applying DL 

to neuro-ophthalmology (26), in this study, we aimed to extend the application of DL in 
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optic disc analyses and to test the hypothesis that small databases, when enhanced with 

machine learning techniques such as transfer learning and data augmentation, can be used 

to develop a robust DLS to detect a spectrum of nonglaucomatous optic neuropathies from 

two-dimensional color fundus photographs.

METHODS

Our training data set included 944 deidentified CFPs (abnormal 364; normal 580). Our 

testing data set included 151 deidentified CFPs (abnormal 71; normal 80). CFPs that 

were blurry, grossly out of focus, or did not display the optic disc in its entirety were 

excluded. A detailed breakdown of the data sets, including image specifications and patient 

demographics, is presented in Table 1. This research study adhered to the Declaration 

of Helsinki, was reviewed by our institutional review board (IRB), and deemed to be 

IRB-exempt.

Color Fundus Photographs with Abnormal Optic Discs

All of the CFPs with abnormal optic discs in the training data set were obtained from 

the neuro-ophthalmological practice of author Neil R. Miller (N.R.M.), captured by a 

30° camera centered on the disc and deidentified over several decades. Various optic 

disc abnormalities were represented, including but not limited to papilledema, hypoplasia, 

hereditary optic neuropathy, arteritic and non-arteritic anterior ischemic optic neuropathy, 

and toxic optic neuropathy. The spectrum of optic disc abnormalities in the training data 

set is summarized in Table 2. Eighty-six percent of the CFPs with abnormal optic discs 

in the testing data set were obtained from the neuro-ophthalmological practice of author 

Prem S. Subramanian (P.S.S.) (~2056 ×·2048 pixels; 24 bit/pixel), captured by a 30° camera 

centered on the disc and deidentified between years 2012 and 2018. These photographs were 

selected to represent a wide range of optic disc abnormalities, such as, but not limited 

to hereditary optic neuropathy, atrophy, papilledema, optic neuritis, compressive optic 

neuropathy, ischemic optic neuropathy, hypoplasia, and optic nerve sheath meningioma. 

The spectrum of optic disc abnormalities in the testing data set is summarized in Table 

3. Although the images were chosen randomly to include a wide range of abnormalities, 

each image represented a unique eye. The diagnosis of each optic disc abnormality was 

established by a combination of detailed clinical history, clinical examination, ophthalmic 

imaging, and/or neurological imaging.

Other Databases

CFPs with normal optic discs were obtained from the publicly available database DRIONS 

(27). The DRIONS database contained images taken with a color analog fundus camera 

(roughly 45° field of view) and digitized at a resolution of 600 · 400 and 8 bits/pixel. This 

cohort contained 46.2% males and 100% Caucasians, with a mean age of 53.0 years. CFPs 

with normal optic discs were obtained from the publicly available database ACRIMA (28), 

which included 35-degree images from a Spanish cohort. Finally, CFPs with both normal 

and abnormal optic discs were captured separately from a different cohort of patients with a 

mobile, smartphone-based, ophthalmic imaging adapter (Paxos) (29).
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Deep Learning System Development

Using transfer learning, we adopted a readily available ResNet-152 (30) deep convolutional 

neural network (DCNN) that was pretrained on ImageNet (31) (a database of 1.2 million 

color images of everyday objects sorted into 1,000 categories). We started with the 

ResNet-152 and redefined the last fully connected layer to have 2 outputs instead of 

the default 1,000 for our underlying binary classification problem. Additional details 

for the DCNN are available in Supplemental Digital Content 1 (see Appendix, http://

links.lww.com/WNO/A495).

Statistical Analysis

We performed a 10-fold cross-validation test (training 75%; validation 15%; and testing 

10%) using images from our training data set for internal validation and model development. 

After the 10-fold cross-validation was completed, we then tested the cross-validation 

model with the best performance against the testing data set. Using the prefixed operating 

threshold value determined on the training data set (F-1 score), we calculated the diagnostic 

performance on the testing data set using receiver operating characteristic (ROC) curve, 

sensitivity, and specificity.

Heat Map Generation

We created heatmaps through class activation mapping (CAM) (29) to identify regions in 

the CFPs used by the DCNN to detect optic disc abnormalities. This technique visually 

highlights areas of activation during decision making within an image (the “warmer” the 

color, e.g., red, the more highly activated a particular region is). We performed CAM 

analyses on all 151 photographs in the testing data set, and these CAM images were 

reviewed and interpreted by one of the authors (T.Y.A.L.).

RESULTS

During the 10-fold cross-validation test, our DCNN for distinguishing between a normal 

and an abnormal optic disc achieved the following mean performance: area under the curve 

(AUC) of ROCs 0.99 (95 CI: 0.98–0.99, range 0.96–1), sensitivity 94% (95 CI: 91%–97%, 

range 86%–100%), and specificity 96% (95 CI: 93%–99%, range 83%–100%) (Figs. 1A–

J). When evaluated against the external testing data set, our most robust (by AUC) cross-

validation model achieved the following overall performance: AUC 0.87, sensitivity 90%, 

specificity 69%, positive predictive value (positive defined as abnormal) 72%, and negative 

predictive value 89%. Specifically, when tested against images taken with a smartphone-

based, ophthalmic imaging adapter (a small subset within the testing data set), our model 

showed a sensitivity of 100% and a specificity of 50%. Of the 151 images in the testing data 

set, there were 7 false negatives, which included the following diagnoses: dominant optic 

atrophy (n = 1), Leber hereditary optic neuropathy (n = 3), optic disc drusen (n = 1), optic 

neuritis (n = 1), and nonglaucomatous cupping (n = 1).

We performed CAM analyses for all 151 images to gain insights into the decision-making 

process of our DCNN. Sample CAM analyses for incorrectly classified images are shown 

in Figure 2. Among images that were incorrectly classified, strong activation outside of the 

Alvin Liu et al. Page 4

J Neuroophthalmol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://links.lww.com/WNO/A495
http://links.lww.com/WNO/A495


disc was seen in 32% of the eyes. Sample CAM analyses for correctly classified images are 

shown in Figure 3. By contrast, among the correctly classified images, strong activation at 

the disc was seen in 90% of the eyes.

DISCUSSION

Previously, classical machine learning techniques, such as random forest classification and 

support vector machine, have been applied to optic disc analyses, including papilledema 

severity grading (32,33), distinguishing between papilledema and normal discs (34), and 

detection of optic disc pallor (35). DL is currently the cutting-edge machine learning 

technique for medical image analysis and is superior to classical machine learning 

techniques in that DL does not require labor-intensive feature engineering and can be 

directly trained with raw data such as CFPs. However, DL requires a large amount of data 

for training, which limit its applicability in fields, such as neuro-ophthalmology, where 

large image databases are typically not available. Previously, our group demonstrated the 

feasibility of applying DL techniques to a small neuro-ophthalmological data set for the 

basic task of determining disc laterality, using transfer learning and data augmentation (26). 

The current study sought to build on our previous work and to develop a DLS that can detect 

a spectrum of nonglaucomatous optic neuropathies in CFPs.

Our DLS showed robust performance during the 10-fold cross-validation test, with a mean 

performance of AUC 0.99, sensitivity 94%, and specificity 96%. As expected, when our 

model was tested against an independent external testing data set, there was a drop in 

performance; as by definition, the external testing data set contained a different data 

distribution (for image field of view, image quality, range of pathologies, and artifacts, etc.) 

that our algorithm did not encounter during training. During external validation, our DLS 

achieved the following performance: AUC 0.87, sensitivity 90%, and specificity 69%. The 

drop in performance was driven mainly by the decrease in specificity or the increase in false 

positives. CAM analyses of the false-positive images suggested that strong activation outside 

of the disc was likely contributory. For example, our algorithm likely erroneously identified 

image artifacts, such as those seen in Figure 2B, as “abnormal.”

The strength of our study lies in the wide range of neuro-ophthalmological optic disc 

abnormalities that were included in both our training and testing data sets. These 

abnormalities included arteritic and nonarteritic anterior ischemic optic neuropathy, 

primary optic atrophy, compressive optic neuropathy, congenital anomalies (including 

hypoplasia, morning glory disc, and papillorenal syndrome disc), hereditary optic 

neuropathy, infiltration, optic disc swelling from malignant hypertension, optic nerve sheath 

meningioma, papilledema, and toxic optic neuropathy. Most of the images in the external 

testing data set were obtained as part of routine, standard care from the clinical practice of 

author PSS, a neuro-ophthalmologist. Thus, we believe our experimental results reflected 

real-world outcomes. Our testing data set was also diverse, including images taken by 

traditional desktop fundus cameras and mobile smartphone-based cameras. Specifically, 

although our algorithm was developed exclusively with images taken by traditional desktop 

fundus cameras, it achieved a reasonable performance when tested against images taken 

by smartphone cameras, with an accuracy of 83%, sensitivity of 100%, specificity of 
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50%, and negative predictive value of 100%. This suggests that an updated version of our 

algorithm, further trained and fine-tuned with smartphone-based photographs, could be used 

as a focused screening tool in the emergency department setting if validated prospectively. 

Many life-threatening neurological and systemic conditions, such as increased intracranial 

pressure, present with changes in the appearance of the optic disc and are a frequent reason 

for ophthalmology consults in the emergency department. A DLS that can reliably detect 

these changes in photographs taken by smartphones could be a beneficial screening tool in 

the emergency department setting.

Our study also supports a small but growing body of literature that DL techniques can be 

applied to useful neuro-ophthalmological tasks. For example, Ahn et al (36) constructed 

their own DL model, which achieved an AUC of 0.992 in distinguishing between normal 

discs, pseudopapilledema, and optic neuropathies. However, in contrast to our study, Ahn 

et al did not evaluate their DLS against an external testing data set obtained from a 

different source. Using data from 19 sites in 11 countries, Milea et al (37) trained and 

tested a DLS that was able to detect papilledema with a sensitivity of 96.4% and specificity 

of 84.7%. Their DLS was subsequently compared in a new data set with 2 expert neuro-

ophthalmologists and was found to have comparable performances (38).

Our study has several weaknesses. First, it is unclear whether our algorithm could identify 

a normal-appearing optic disc with an active retrobulbar process, such as idiopathic or 

multiple sclerosis-related optic neuritis. Second, most images in both our training and testing 

data sets are derived from Caucasian patients. In the future, we plan to test our algorithm 

against a data set with a more diverse or different ethnic makeup. Third, our training data set 

is not large enough for us to train our DLS to differentiate among specific pathologies, for 

example, differentiating optic disc swelling due to anterior ischemic optic neuropathy from 

papilledema due to increased intracranial pressure.

In summary, we have developed a DLS that is capable of detecting a spectrum of optic disc 

abnormalities in CFPs with robust performance. Although our algorithm demonstrated high 

sensitivity in detecting optic disc abnormalities in photographs taken by smartphone-based 

cameras, its specificity for this type of photograph was low, highlighting the need for 

additional training and refinement of our algorithm with smartphone-based photographs. As 

the next step, we plan to validate our algorithm prospectively as a focused screening tool in 

the emergency department, which if successful could be beneficial because current practice 

pattern and training predict a shortage of neuro-ophthalmologists (39) and ophthalmologists 

in general (40) in the near future.
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FIG. 1. 
Receiver operating characteristic (ROC) curves for our 10-fold cross-validation (CV) 

models. A. CV1, (B) CV2, (C) CV3, (D) CV4, (E) CV5, (F) CV6, (G) CV7, (H) CV8, 

(I) CV9, and (J) CV10. CV model 7 was validated by an external independent testing data 

set.
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FIG. 2. 
Sample heatmaps generated by class activation mapping analyses, showing strong activation 

outside of the optic disc. Both (A and B) contain a normal optic disc but were erroneously 

identified as “abnormal” by the algorithm. Note the areas of highlighted image artifacts in 

(B).
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FIG. 3. 
Sample heatmaps generated by class activation mapping analyses, showing strong activation 

at the optic disc: optic disc swelling with hemorrhages (A) and normal (B).
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