Table 2.
LVSI prediction performance of SVM model.
Models | Task | AUC | 95% CI | Accuracy | Sensitivity | Specificity | PPV | NPV | P |
---|---|---|---|---|---|---|---|---|---|
Habitat1 | train | 0.873 | 0.824 - 0.922 | 0.803 | 0.779 | 0.830 | 0.835 | 0.772 | 0.015 |
test | 0.683 | 0.577 - 0.789 | 0.686 | 0.963 | 0.375 | 0.634 | 0.900 | 0.346 | |
Habitat2 | train | 0.869 | 0.821 - 0.917 | 0.798 | 0.913 | 0.670 | 0.754 | 0.875 | 0.023 |
test | 0.649 | 0.540 - 0.757 | 0.647 | 0.833 | 0.438 | 0.625 | 0.700 | 0.729 | |
Habitat3 | train | 0.870 | 0.821 - 0.920 | 0.803 | 0.788 | 0.819 | 0.828 | 0.778 | 0.018 |
test | 0.780 | 0.692 - 0.869 | 0.745 | 0.741 | 0.750 | 0.769 | 0.720 | 0.006 | |
Whole tumour | train | 0.805 | 0.745 - 0.864 | 0.732 | 0.942 | 0.500 | 0.676 | 0.887 | ref |
test | 0.629 | 0.519 - 0.739 | 0.657 | 0.778 | 0.521 | 0.646 | 0.676 | ref |
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
P values are derived from the DeLong’s test of AUCs where AUC of whole tumour is the reference standard for comparison.