Skip to main content
. 2023 Oct 26;13:1252074. doi: 10.3389/fonc.2023.1252074

Table 2.

LVSI prediction performance of SVM model.

Models Task AUC 95% CI Accuracy Sensitivity Specificity PPV NPV P
Habitat1 train 0.873 0.824 - 0.922 0.803 0.779 0.830 0.835 0.772 0.015
test 0.683 0.577 - 0.789 0.686 0.963 0.375 0.634 0.900 0.346
Habitat2 train 0.869 0.821 - 0.917 0.798 0.913 0.670 0.754 0.875 0.023
test 0.649 0.540 - 0.757 0.647 0.833 0.438 0.625 0.700 0.729
Habitat3 train 0.870 0.821 - 0.920 0.803 0.788 0.819 0.828 0.778 0.018
test 0.780 0.692 - 0.869 0.745 0.741 0.750 0.769 0.720 0.006
Whole tumour train 0.805 0.745 - 0.864 0.732 0.942 0.500 0.676 0.887 ref
test 0.629 0.519 - 0.739 0.657 0.778 0.521 0.646 0.676 ref

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

P values are derived from the DeLong’s test of AUCs where AUC of whole tumour is the reference standard for comparison.