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Alpha-frequency feedback to early visual cortex 
orchestrates coherent naturalistic vision 
Lixiang Chen1*, Radoslaw M. Cichy1†, Daniel Kaiser2,3*† 

During naturalistic vision, the brain generates coherent percepts by integrating sensory inputs scattered across 
the visual field. Here, we asked whether this integration process is mediated by rhythmic cortical feedback. In 
electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) experiments, we experimen-
tally manipulated integrative processing by changing the spatiotemporal coherence of naturalistic videos pre-
sented across visual hemifields. Our EEG data revealed that information about incoherent videos is coded in 
feedforward-related gamma activity while information about coherent videos is coded in feedback-related 
alpha activity, indicating that integration is indeed mediated by rhythmic activity. Our fMRI data identified 
scene-selective cortex and human middle temporal complex (hMT) as likely sources of this feedback. Analyti-
cally combining our EEG and fMRI data further revealed that feedback-related representations in the alpha band 
shape the earliest stages of visual processing in cortex. Together, our findings indicate that the construction of 
coherent visual experiences relies on cortical feedback rhythms that fully traverse the visual hierarchy. 
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INTRODUCTION 
We consciously experience our visual surroundings as a coherent 
whole that is phenomenally unified across space (1, 2). In our 
visual system, however, inputs are initially transformed into a spa-
tially fragmented mosaic of local signals that lack integration. How 
does the brain integrate this fragmented information across the sub-
sequent visual processing cascade to mediate unified perception? 

Classic hierarchical theories of vision posit that integration is 
solved during feedforward processing (3, 4). On this view, integra-
tion is hard wired into the visual system: Local representations of 
specific features are integrated into more global representations of 
meaningful visual contents through hierarchical convergence over 
features distributed across visual space. 

More recent theories instead posit that visual integration is 
achieved through complex interactions between feedforward infor-
mation flow and dynamic top-down feedback (5–7). On this view, 
feedback information flow from downstream adaptively guides the 
integration of visual information in upstream regions. Such a con-
ceptualization is anatomically plausible, as well as behaviorally 
adaptive, as higher-order regions can flexibly adjust current 
whether or not stimuli are integrated through the visual system’s 
abundant top-down connections (8–10). 

However, the proposed interactions between feedforward and 
feedback information pose a critical challenge: Feedforward and 
feedback information needs to be multiplexed across the visual hi-
erarchy to avoid unwanted interferences through spurious interac-
tions of these signals. Previous studies propose that neural systems 
meet this challenge by routing feedforward and feedback informa-
tion in different neural frequency channels: High-frequency gamma 
(31 to 70 Hz) rhythms may mediate feedforward propagation, 

whereas low-frequency alpha (8 to 12 Hz) and beta (13 to 30 Hz) 
rhythms carry predictive feedback to upstream areas (11–14). 

Here, we set out to test the hypothesis that rhythmic coding acts 
as a mechanism mediating coherent visual perception. We used a 
novel experimental paradigm that manipulated the degree to 
which stimuli could be integrated across space through the spatio-
temporal coherence of naturalistic videos shown in the two visual 
hemifields. Combining electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI) measurements, we 
show that when inputs are integrated into a coherent percept, cor-
tical alpha dynamics carry stimulus-specific feedback from high- 
level visual cortex to early visual cortex. Our results show that 
spatial integration of naturalistic visual inputs is mediated by feed-
back dynamics that traverse the visual hierarchy in low-frequency 
alpha rhythms. 

RESULTS 
We experimentally mimicked the spatially distributed nature of nat-
uralistic inputs by presenting eight 3-s naturalistic videos (Fig. 1A) 
through two circular apertures right and left of fixation (diameter, 
6° visual angle; minimal distance to fixation, 2.64°). To assess spatial 
integration in a controlled way, we varied how the videos were pre-
sented through these apertures (Fig. 1B): In the right- or left-only 
condition, the video was shown only through one of the apertures, 
providing a baseline for processing inputs from one hemifield, 
without the need for spatial integration across hemifields. In the co-
herent condition, the same original video was shown through both 
apertures. Here, the input had the spatiotemporal statistics of a 
unified scene expected in the real world and could thus be readily 
integrated into a coherent unitary percept. In the incoherent condi-
tion, by contrast, the videos shown through the two apertures 
stemmed from two different videos (see fig. S1). Here, the input 
did not have the spatiotemporal real-world statistics of a unified 
scene and thus could not be readily integrated. Contrasting brain 
activity for the coherent and incoherent condition thus reveals 
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neural signatures of spatial integration into unified percepts across 
visual space. 

Participants viewed the video stimuli in separate EEG (n = 48) 
and fMRI (n = 36) recording sessions. Participants performed an 
unrelated central task (Fig. 1C) to ensure fixation and to allow us 
to probe integration processes in the absence of explicit 
task demands. 

Harnessing the complementary frequency resolution and spatial 
resolution of our EEG and fMRI recordings, we then delineated how 
inputs that either can or cannot be integrated into a coherent 
percept are represented in rhythmic neural activity and regional ac-
tivity across the visual hierarchy. Specifically, we decoded between 
the eight different video stimuli in each of the four conditions from 
frequency-resolved EEG sensor patterns (15, 16) and from spatially 
resolved fMRI multivoxel patterns (17). 

Rhythmic brain dynamics mediate integration across 
visual space 
Our first key analysis determined how the feedforward and feedback 
information flows involved in the processing and integrating visual 
information across space are multiplexed in rhythmic codes. We hy-
pothesized that conditions not affording integration lead to neural 
coding in feedforward-related gamma activity (11, 14), whereas 
conditions that allow for spatiotemporal integration lead to 
coding in feedback-related alpha/beta activity (11, 14). 

To test this hypothesis, we decoded the video stimuli from spec-
trally resolved EEG signals, aggregated within the alpha, beta, and 
gamma frequency bands, during the whole stimulus duration 
(Fig. 2A; see Materials and Methods for details). Our findings sup-
ported our hypothesis. We observed that incoherent video stimuli, 
as well as single video stimuli, were decodable only from the gamma 
frequency band [all t(47) > 3.41, P < 0.001; Fig. 2, B and C]. By stark 
contrast, coherent video stimuli were decodable only from the 
alpha-frequency band [t(47) = 5.43, P < 0.001; Fig. 2C]. Comparing 

the pattern of decoding performance across frequency bands re-
vealed that incoherent video stimuli were better decodable than co-
herent stimuli from gamma responses [t(47) = 3.04, P = 0.004] and 
coherent stimuli were better decoded than incoherent stimuli from 
alpha responses [t(47) = 2.32, P = 0.025; interaction: F(2, 94) = 7.47, 
P < 0.001; Fig. 2C]. The observed effects also held when analyzing 
the data continuously across frequency space rather than aggregated 
in predefined frequency bands (see fig. S2) and were not found triv-
ially in the evoked broadband responses (see fig. S3). We also ana-
lyzed the theta (4 to 7 Hz) and high-gamma bands (71 to 100 Hz) 
using the decoding analysis. For the theta band, we did not find any 
significant decoding (see figs. S2 and S4). The results from the high- 
gamma band were highly similar to the results obtained for the 
lower-gamma frequency range (see figs. S2 and S4). In addition, 
we conducted both univariate and decoding analyses on time- 
and frequency-resolved responses, but neither of these analyses re-
vealed any differences between the coherent and incoherent condi-
tions (see fig. S5), indicating a lack of statistical power for resolving 
the data both in time and frequency. Together, our results demon-
strate the multiplexing of visual information in rhythmic informa-
tion flows. When no integration across hemifields was required, 
visual feedforward activity is carried by gamma rhythms. When 
spatiotemporally coherent inputs allow for integration, integra-
tion-related feedback activity is carried by alpha rhythms. 

The observation of a frequency-specific channel for feedback in-
formation underlying spatial integration immediately poses two 
questions: (i) Where does this feedback originate from? and (ii) 
Where is this feedback heading? We used fMRI recordings to 
answer these two questions in turn. 

Scene-selective cortex is the source of integration-related 
feedback 
To reveal the source of the feedback, we evaluated how representa-
tions across visual cortex differ between stimuli that can or cannot 

Fig. 1. Stimuli and experimental design. (A) Snapshots from the eight videos used. (B) In the experiment, videos were either presented through one aperture in the 
right or left visual field or through both apertures in a coherent or incoherent way. (C) During the video presentation, the color of the fixation dot changed periodically 
(every 200 ms). Participants reported whether a green or yellow fixation dot was included in the sequence.  
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be integrated across space (Fig. 3A). We reasoned that regions 
capable of exerting integration-related feedback should show stron-
ger representations of spatiotemporally coherent inputs that can be 
integrated, compared to incoherent inputs that do not. Scene-selec-
tive areas in visual cortex are a strong contender for the source of 
this feedback, as they have been previously linked to the spatial in-
tegration of coherent scene information (18, 19). 

To test this assertion, we decoded the video stimuli from multi-
voxel patterns in a set of three early visual cortex regions (V1, V2, 
and V3), one motion-selective region [human middle temporal 
complex (hMT)/V5], and three scene-selective regions [the occipi-
tal place area (OPA), the medial place area (MPA), and the parahip-
pocampal place area (PPA)]. 

In a first step, we decoded between the single video stimuli and 
found information in early visual cortex (V1, V2, and V3) and 
scene-selective cortex (OPA, MPA, and PPA) only when video 
stimuli were shown in the hemifield contralateral to the region in-
vestigated [all t(35) > 3.75, P < 0.001; Fig. 3B]. This implies that any 
stronger decoding for coherent, compared to incoherent, video 
stimuli can only be driven by the interaction of ipsilateral and con-
tralateral inputs, rather than by the ipsilateral input alone. On this 
interpretative backdrop, we next decoded coherent and incoherent 
video stimuli. Both were decodable in each of the seven regions [all t 
(35) > 4.43, P < 0.001; Fig. 3C]. Critically, coherent video stimuli 
were only better decoded than incoherent stimuli in the MPA [t 
(35) = 3.61, P < 0.001; Fig. 3C] and PPA [t(35) = 3.32, P = 0.002; 
Fig. 3C]. A similar trend was found in hMT [t(35) = 1.73, P = 0.092; 
Fig. 3C]. In hMT, MPA, and PPA, coherent video stimuli were also 
better decoded than contralateral single video stimuli [all t(35) > 
2.99, P < 0.005]. Similar results were found in the whole-brain 
searchlight-decoding analysis. We found significant decoding for 
single video stimuli across the visual cortex in the contralateral 
hemisphere (see fig. S6) as well as significant decoding across the 
visual cortex for both coherent (Fig. 3D) and incoherent stimuli 
(Fig. 3E). The differences between coherent and incoherent condi-
tions were only found in locations overlapping—or close to— 
scene-selective cortex and hMT (Fig. 3F). Given the involvement 

of motion-selective hMT in integrating visual information, we 
also tested whether differences in motion coherence (operational-
ized as motion energy and motion direction) contribute to the in-
tegration effects observed here. When assessing differences between 
videos with high and low motion coherence across hemifields, 
however, we did not find qualitatively similar effects to our main 
analyses (see fig. S7), suggesting that motion coherence is not the 
main driver of the integration effects. 

Together, these results show that scene-selective cortex and hMT 
aggregate spatiotemporally coherent information across hemifields, 
suggesting these regions as likely generators of feedback signals 
guiding visual integration. 

Integration-related feedback traverses the visual hierarchy 
Last, we determined where the feedback-related alpha rhythms are 
localized in brain space. We were particularly interested in whether 
integration-related feedback traverses the visual hierarchy up to the 
earliest stages of visual processing (20, 21). To investigate this, we 
performed an EEG/fMRI fusion analysis (22, 23) that directly 
links spectral representations in the EEG with spatial representa-
tions in the fMRI. To link representations across modalities, we 
first computed representational similarities between all video 
stimuli using pairwise decoding analyses and then correlated the 
similarities obtained from EEG alpha responses and fMRI activa-
tions across the seven visual regions (Fig. 4A). Here, we focused 
on the crucial comparison of regional representations (fMRI) and 
alpha-frequency representations (EEG) between the coherent and 
the incoherent conditions. Our fMRI decoding analyses for the 
single video stimuli demonstrate that V1 only receives sensory in-
formation from the contralateral visual field. As feedforward inputs 
from the contralateral visual field are identical across both condi-
tions, any stronger correspondence between regional representa-
tions and alpha-frequency representations in the coherent 
condition can unequivocally be attributed to feedback from 
higher-order systems, which have access to both ipsi- and contralat-
eral input. We found that representations in the alpha band were 
more strongly related to representations in the coherent condition 

Fig. 2. EEG decoding analysis. (A) Frequency-resolved EEG decoding analysis. In each condition, we used eight-way decoding to classify the video stimuli from patterns 
of spectral EEG power across electrodes, separately for each frequency band (alpha, beta, and gamma). (B and C) Results of EEG frequency-resolved decoding analysis. The 
incoherent and single video stimuli were decodable from gamma responses, whereas the coherent stimuli were decodable from alpha responses, suggesting a switch 
from dominant feedforward processing to the recruitment of cortical feedback. Error bars represent SEs. *P < 0.05 (FDR-corrected).  
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than in the incoherent condition in V1 [t(35) = 3.37, P = 0.001; 
Fig. 4B]. A similar trend emerged in V2 [t(35) = 2.32, Puncorrected 
= 0.025; Fig. 4B] and V3 [t(35) = 2.15, Puncorrected = 0.036; 
Fig. 4B] but not in hMT [t(35) = −0.28, P = 0.783; Fig. 4B] and 
scene-selective cortex [OPA: t(35) = 0.94, P = 0.351; MPA: t(35) = 
0.005, P = 0.996; PPA: t(35) = −1.64, P = 0.108; Fig. 4B]. The cor-
respondence between alpha-band representations in the EEG and 
activity in early visual cortex persisted after we controlled for 
motion coherence in the fusion analysis (see fig. S8), suggesting 
that the effect was not solely attributable to coherent patterns of 
motion. By contrast, no such correspondences were found 
between beta/gamma EEG responses and regional fMRI activations 
(see fig. S9). The results of the fusion analysis show that when inputs 
are spatiotemporally coherent and can be integrated into a unified 
percept, feedback-related alpha rhythms are found at the earliest 
stages of visual processing in cortex. 

DISCUSSION 
Our findings demonstrate that the spatial integration of naturalistic 
inputs integral to mediating coherent perception is achieved by cor-
tical feedback: Only when spatiotemporally coherent inputs can be 
integrated into a coherent whole, stimulus-specific information was 
coded in feedback-related alpha activity. We further show that 
scene-selective cortex and hMT interactively process information 
across visual space, highlighting them as likely sources of integra-
tion-related feedback. Last, we reveal that integration-related 
alpha dynamics are linked to representations in early visual 
cortex, indicating that integration is accompanied by feedback 
that traverses the whole cortical visual hierarchy from top to 
bottom. Together, our results promote an active conceptualization 
of the visual system, where concurrent feedforward and feedback 
information flows are critical for establishing coherent naturalis-
tic vision. 

Fig. 3. fMRI decoding analysis. (A) fMRI decoding analysis in regions of interest (ROIs). In each condition, we used eight-way decoding to classify the video stimuli on 
response patterns in each ROI (V1, V2, V3, hMT, OPA, MPA, and PPA). (B) Results of fMRI ROI decoding analysis for the right- and left-only conditions. Single video stimuli 
were decodable in regions contralateral to the stimulation. In the ipsilateral hemisphere, they were only decodable in hMT but not in early visual cortex (V1, V2, and V3) 
and scene-selective cortex (OPA, MPA, and PPA). (C) Results of fMRI ROI decoding analysis for the coherent and incoherent conditions. Video stimuli were decodable in 
both conditions in each of the seven regions. Coherent stimuli were decoded better than incoherent stimuli in scene-selective cortex (MPA and PPA). (D) Results of fMRI 
searchlight decoding analysis for the coherent condition. Coherent stimuli were decodable across visual cortex. (E) Results of fMRI searchlight decoding analysis for the 
incoherent condition. Incoherent stimuli were decodable across visual cortex. (F) Significant differences between coherent and incoherent conditions in fMRI searchlight 
decoding analysis. Significant differences between the coherent and incoherent conditions were observed in locations overlapping—or close to—scene-selective cortex 
and hMT. Together, the results suggested that scene-selective cortex and hMT integrate dynamic information across visual hemifields. Error bars represent SEs. *P < 0.05 
(FDR-corrected).  
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Our finding that feedback reaches all the way to initial stages of 
visual processing supports the emerging notion that early visual 
cortex receives various types of stimulus-specific feedback, such 
as during mental imagery (24, 25), in cross-modal perception (26, 
27), and during the interpolation of missing contextual information 
(28, 29). Further supporting the interpretation of such signals as 
long-range feedback, recent animal studies have found that contex-
tual signals in V1 are substantially delayed in time, compared to 
feedforward processing (30–32). Such feedback processes may use 
the spatial resolution of V1 as a flexible sketchpad mechanism (33, 
34) for recreating detailed feature mappings that are inferred from 
global context. 

Our fMRI data identify scene-selective areas in the anterior 
ventral temporal cortex (the MPA and the PPA) and motion-selec-
tive area hMT as probable sources of the feedback to early visual 
cortex. These regions exhibited stronger representations for spatio-
temporally coherent stimuli placed in the two hemifields. Scene-se-
lective cortex is a logical candidate for a source of the feedback: 
Scene-selective regions are sensitive to the typical spatial configura-
tion of scene stimuli (18, 19, 35, 36), allowing them to create feed-
back signals that carry information about whether and how stimuli 
need to be integrated at lower levels of the visual hierarchy. These 
feedback signals may stem from adaptively comparing contralateral 
feedforward information with ipsilateral information from inter-
hemispheric connections. In the incoherent condition, the ipsilat-
eral information received from the other hemisphere does not 
match with typical real-world regularities and may thus not 
trigger integration. Conversely, when stimuli are coherent, inter-
hemispheric transfer of information may be critical for facilitating 

integration across visual fields. This idea is consistent with previous 
studies showing increased interhemispheric connectivity when 
object or word information needs to be integrated across visual 
hemifields (37, 38). Motion-selective hMT is also a conceivable can-
didate for integration-related feedback. The region not only showed 
enhanced representations for spatiotemporally coherent stimuli but 
also had representations for both contralateral and ipsilateral 
stimuli. The hMT’s sensitivity to motion (39, 40) and its bilateral 
visual representation (41) make it suited for integrating coherent 
motion patterns across hemifields. Although speculative at this 
point, scene-selective and motion-selective cortical areas may 
jointly generate adaptive feedback signals that combine information 
about coherent scene content (analyzed in MPA and PPA) and co-
herent motion patterns (hMT). Future studies need to map out 
cortico-cortical connectivity during spatial integration to test 
this idea. 

Our results inform theories about the functional role of alpha 
rhythms in cortex. Alpha is often considered an idling rhythm 
(42, 43), a neural correlate of active suppression (44–46), or a cor-
relate of working memory maintenance (47, 48). More recently, 
alpha rhythms were associated with an active role in cortical feed-
back processing (12, 14, 49, 50). Our results highlight that alpha dy-
namics not only modulate feedforward processing but also encode 
stimulus-specific information. Our findings thus invite a different 
conceptualization of alpha dynamics, where alpha rhythms are crit-
ically involved in routing feedback-related information across the 
visual cortical hierarchy (15, 16, 51, 52). An important remaining 
question is whether the feedback itself traverses in alpha rhythms 
or whether the feedback initiates upstream representations that 

Fig. 4. EEG-fMRI fusion analysis. (A) For each condition, EEG representational dissimilarity matrices (RDMs) for each frequency band (alpha, beta, and gamma) and fMRI 
RDMs for each ROI (V1, V2, V3, hMT, OPA, MPA, and PPA) were first obtained using pairwise decoding analyses. To assess correspondences between spectral and regional 
representations, we calculated Spearman correlations between the participant-specific EEG RDMs in each frequency band and the group-averaged fMRI RDMs in each 
region, separately for each condition. (B) Results of EEG-fMRI fusion analysis in the alpha band. Representations in the alpha band corresponded more strongly with 
representations in V1 (with a similar trend in V2 and V3) when the videos were presented coherently, rather than incoherently. No correspondences were found between 
the beta and gamma bands and regional activity (see fig. S9). Error bars represent SEs. *P < 0.05 (FDR-corrected), +P < 0.05 (uncorrected).  
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themselves fluctuate in alpha rhythms (53, 54). The absence of a 
correspondence of alpha-band representations and regional activity 
in scene-selective cortex may suggest that it is not the feedback itself 
that is rhythmic, but alpha dynamics in scene-selective cortex may 
also be weaker—or to some extent initiated for both coherent and 
incoherent stimuli. More studies are needed to dissociate between 
the rhythmic nature of cortical feedback and the representations it 
instills in early visual cortex. 

The increased involvement of alpha rhythms in coding the co-
herent visual stimuli was accompanied by an absence of concurrent 
representations in the gamma band. A potential reason for the 
absence of decoding from feedforward-related gamma activity in 
the coherent condition is that feedforward representations were ef-
ficiently suppressed by accurate top-down predictions (5). In our 
experiment, the video stimuli were presented for a relatively long 
time, without many rapid or unexpected visual events, potentially 
silencing feedforward propagation in the gamma range. We also did 
not find a correspondence between gamma dynamics and regional 
fMRI activity. Despite a general difficulty in linking high-frequency 
EEG activity and fMRI signals, another reason may be that, unlike 
the alpha dynamics, the gamma dynamics were relatively broad-
band and did not reflect a distinct neural rhythm (see fig. S2). 

Our findings can be linked to theories of predictive processing 
that view neural information processing as a dynamic exchange of 
sensory feedforward signals and predictions stemming from higher- 
order areas of cortex (5, 6, 51). On this view, feedback signals arising 
during stimulus integration are conceptualized as predictions about 
sensory input derived from spatially and temporally coherent con-
tralateral input. In our paradigm, feedback signals can be conceptu-
alized as predictions for the contralateral input generated from the 
spatiotemporally coherent ipsilateral input. A challenge for predic-
tive coding theories is that it requires a strict separation of the feed-
forward sensory input and the predictive feedback. Our results 
indicate a compelling solution through multiplexing of feedforward 
and feedback information in dedicated frequency-specific channels 
(11, 13, 14, 49) in human cortex. It will be interesting to see whether 
similar frequency-specific correlates of predictive processing are 
unveiled in other brain systems in the future. 

Our findings further pave the way toward researching integra-
tion processes under various task demands. In our experiments, 
we engaged participants in an unrelated fixation task, capitalizing 
on automatically triggered integration processes for spatiotempor-
ally coherent stimuli. Such automatic integration is well in line with 
phenomenological experience: The coherent video stimuli, but not 
the incoherent stimuli, strongly appear as coherent visual events 
that happen behind an occlude. Future studies should investigate 
how integration effects vary when participants are required to 
engage with the stimuli that need to be integrated. It will be partic-
ularly interesting to see whether tasks that require more global or 
local analysis are related to different degrees of integration and dif-
ferent rhythmic codes in the brain. These future studies could also 
set out to determine the critical features that enable integration and 
what is integrated. As our incoherent stimuli were designed to be 
incoherent along many different dimensions (e.g., low- and mid- 
level visual features, categorical content, and motion patterns), a 
comprehensive mapping of how these dimensions independently 
contribute to integration is needed. Future studies could thereby de-
lineate how integration phenomenologically depends on the coher-
ence of these candidate visual features. 

More generally, our results have general implications for under-
standing and modeling feedforward and feedback information 
flows in neural systems. Processes like stimulus integration that 
are classically conceptualized as solvable in pure feedforward cas-
cades may be more dynamic than previously thought. Discoveries 
like ours arbitrate between competing theories that either stress the 
power of feedforward hierarchies (3, 4) or emphasize the critical role 
of feedback processes (5, 6). They further motivate approaches to 
computational modeling that capture the visual system’s abundant 
feedback connectivity (55, 56). 

Together, our results reveal feedback in the alpha-frequency 
range across the visual hierarchy as a key mechanism for integrating 
spatiotemporally coherent information in naturalistic vision. This 
strongly supports an active conceptualization of the visual system, 
where top-down projections are critical for the construction of co-
herent and unified visual percepts from fragmented sensory 
information. 

MATERIALS AND METHODS 
Participants 
Forty-eight healthy adults (gender: 12 males/36 females, age: 21.1 ± 
3.8 years) participated in the EEG experiment, and another 36 
(gender: 17 males/19 females, age: 27.3 ± 2.5 years) participated 
in the fMRI experiment. Sample size resulted from convenience 
sampling, with the goal of exceeding n = 34 in both experiments 
(i.e., exceeding 80% power for detecting a medium effect size of d 
= 0.5 in a two-sided t test). All participants had normal or corrected- 
to-normal vision and had no history of neurological/psychiatric dis-
orders. They all signed informed consent before the experiment, 
and they were compensated for their time with partial course 
credit or cash. The EEG protocol was approved by the ethical com-
mittee of the Department of Psychology at the University of York, 
and the fMRI protocol was approved by the ethical committee of the 
Department of Psychology at Freie Universität Berlin. All experi-
mental protocols were in accordance with the Declaration of 
Helsinki. 

Stimuli and design 
The stimuli and design were identical for the EEG and fMRI exper-
iments unless stated otherwise. Eight short video clips (3 s each; 
Fig. 1A) depicting everyday situations (e.g., a train driving past 
the observer; a view of red mountains; a view of waves crashing 
on the coast; first-person perspective of walking along a forest 
path; an aerial view of a motorway toll station; a group of zebras 
grazing on a prairie; first-person perspective of skiing in the 
forest; and first-person perspective of walking along a street) were 
used in the experiments. During the experiment, these original 
videos were presented on the screen through circular apertures 
right and left of central fixation. We manipulated four experimental 
conditions (right-only, left-only, coherent, and incoherent) by pre-
senting the original videos in different ways (Fig. 1B). In the right- 
or left-only condition, we presented the videos through right or left 
aperture only. We also showed two matching segments from the 
same video in the coherent condition, while we showed segments 
from two different videos in the incoherent condition, through 
both apertures. In the incoherent condition, the eight original 
videos were yoked into eight fixed pairs (see fig. S1), and each 
video was always only shown with its paired video. Thus, there  
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were a total of 32 unique video stimuli (8 for each condition). The 
diameter of each aperture was 6° visual angle, and the shortest dis-
tance between the stimulation and central fixation was 2.64° visual 
angle. The borders of the apertures were slightly smoothed. The 
central fixation dot subtended 0.44° visual angle. We selected our 
videos to be diverse in content (e.g., natural versus manmade) 
and motion (e.g., natural versus camera motion). This was done 
to maximize the contrast between the coherent and incoherent 
video stimuli. For assessing motion, we quantified the motion 
energy for each video stimulus using Motion Energy Analysis soft-
ware (https://psync.ch/mea/). We did not find any significant 
between-condition differences [comparison on the means of 
motion energy: right- versus left-only, t(7) = 0.36, P = 0.728, coher-
ent versus incoherent, t(7) = 0.03, P = 0.976; comparison on the SDs 
of motion energy: right- versus left-only, t(7) = 1.08, P = 0.316, co-
herent versus incoherent, t(7) = 1.13, P = 0.294]. Although this sug-
gests that there was no difference in overall motion between 
conditions, there are many other candidates for critical differences 
between conditions, which will have to be evaluated in 
future studies. 

The experiments were controlled through MATLAB and the 
Psychophysics Toolbox (57, 58). In each trial, a fixation dot was 
first shown for 500 ms, after which a unique video stimulus was dis-
played for 3000 ms. During the video stimulus playback, the color of 
the fixation changed periodically (every 200 ms) and turned either 
green or yellow at a single random point in the sequence (but never 
the first or last point). After every trial, a response screen prompted 
participants to report whether a green or yellow fixation dot was in-
cluded in the sequence. Participants were instructed to keep central 
fixation during the sequence so they would be able to solve this task 
accurately. In both experiments, participants performed the color 
discrimination with high accuracy (EEG: 93.28 ± 1.65% correct; 
fMRI: 91.44 ± 1.37% correct), indicating that they indeed focused 
their attention on the central task. There were no significant differ-
ences in behavioral accuracy and response time (RT) between the 
coherent and incoherent conditions in both the EEG and fMRI ex-
periments [accuracy-EEG, t(47) = 1.07, P = 0.29; accuracy-fMRI, t 
(35) = 0.20, P = 0.85; RT-fMRI, t(35) = 0.41, P = 0.69]. Note that RTs 
were not recorded in the EEG experiment. The mean accuracy and 
RT for each condition in both experiments are listed in table S1. In 
the EEG experiment, the next trial started once the participant’s re-
sponse was received. In the fMRI experiment, the response screen 
stayed on the screen for 1500 ms, irrespective of participants’ RT. 
An example trial is shown in Fig. 1C. 

In the EEG experiment, each of the 32 unique stimuli was pre-
sented 20 times, resulting in a total of 640 trials, which were present-
ed in random order. In the fMRI experiment, participants 
performed 10 identical runs. In each run, each unique stimulus 
was presented twice, in random order. Across the 10 runs, this 
also resulted in a total of 640 trials. The extensive repetition of 
the incoherent combinations may lead to some learning of the in-
consistent stimuli in our experiment (59). However, such learning 
would, if anything, lead to an underestimation of the effects: Learn-
ing of the incoherent combination would ultimately also lead to an 
integration of the incoherent stimuli and thus create similar—albeit 
weaker—neural signatures of integration as found in the coherent 
condition. 

To make sure that our intuition about the coherence of video 
stimuli in the coherent and incoherent conditions is valid, we 

conducted an additional behavioral experiment on 10 participants 
(gender: 4 males/6 females, age: 24.8 ± 2.5 years). In the experiment, 
we presented each of the coherent and incoherent video stimuli 
once. After each trial, we asked the participants to rate the degree 
of unified perception of the stimulus on a 1 to 5 scale. We found 
that the rating of coherent stimuli was higher than the rating of in-
coherent stimuli (mean ratings for coherent stimuli: 4.1 to 4.6, mean 
ratings for incoherent stimuli: 1.2 to 1.6; t(9) = 36.66, P < 0.001), 
showing that the coherent stimuli were indeed rated as more coher-
ent than the incoherent ones. 

To assess the general fixation stability for our paradigm, we col-
lected additional eye-tracking data from six new participants (see 
fig. S10 for details). We calculated the mean and SD of the horizon-
tal and vertical eye movement across time (0 to 3 s) in each trial and 
then averaged the mean and SD values across trials separately for 
each condition. For all participants, we found means of eye move-
ment lower than 0.3°, and SDs of eye movement lower than 0.2°, 
indicating stable central fixation (see fig. S10A). In addition, partic-
ipants did not disengage from fixating after the target color was pre-
sented (see fig. S10B). 

EEG recording and preprocessing 
EEG signals were recorded using an ANT waveguard 64-channel 
system and a TSMi REFA amplifier, with a sample rate of 1000 
Hz. The electrodes were arranged according to the standard 10-10 
system. EEG data preprocessing was performed using FieldTrip 
(60). The data were first band-stop filtered to remove 50-Hz line 
noise and then band-pass filtered between 1 and 100 Hz. The fil-
tered data were epoched from −500 to 4000 ms relative to the 
onset of the stimulus, re-referenced to the average over the entire 
head, downsampled to 250 Hz, and baseline corrected by subtract-
ing the mean prestimulus signal for each trial. After that, noisy 
channels and trials were removed by visual inspection, and the 
removed channels (2.71 ± 0.19 channels) were interpolated by the 
mean signals of their neighboring channels. Blinks and eye move-
ment artifacts were removed using independent component analy-
sis and visual inspection of the resulting components. 

EEG power spectrum analysis 
Spectral analysis was performed using FieldTrip. Power spectra were 
estimated between 8 and 70 Hz (from alpha to gamma range), from 
0 to 3000 ms (i.e., the period of stimulus presentation) on the pre-
processed EEG data, separately for each trial and each channel. A 
single taper with a Hanning window was used for the alpha band 
(8 to 12 Hz, in steps of 1 Hz) and the beta band (13 to 30 Hz, in 
steps of 2 Hz), and the discrete prolate spheroidal sequences multi-
taper method with ±8 Hz smoothing was used for the gamma band 
(31 to 70 Hz, in steps of 2 Hz). 

EEG decoding analysis 
To investigate whether the dynamic integration of information 
across the visual field is mediated by oscillatory activity, we per-
formed multivariate decoding analysis using CoSMoMVPA (61) 
and the Library for Support Vector Machines (LIBSVM) (62). In 
this analysis, we decoded between the eight video stimuli using pat-
terns of spectral power across channels, separately for each frequen-
cy band (alpha, beta, and gamma) and each condition. Specifically, 
for each frequency band, we extracted the power of the frequencies 
included in that band (e.g., 8 to 12 Hz for the alpha band) across all  
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channels from the power spectra and then used the resulting pat-
terns across channels and frequencies to classify the eight video 
stimuli in each condition. For all classifications, we used linear 
support vector machine (SVM) classifiers to discriminate the 
eight stimuli in a 10-fold cross-validation scheme. For each classifi-
cation, the data were allocated to 10 folds randomly, and then an 
SVM classifier was trained on data from 9 folds and tested on 
data from the left-out fold. The classification was done repeatedly 
until every fold was left out once, and accuracies were averaged 
across these repetitions. The amount of data in the training set 
was always balanced across stimuli. For each classification, a 
maximum of 144 trials (some trials were removed during prepro-
cessing) were included in the training set (18 trials for each stimu-
lus) and 16 trials were used for testing (2 trials for each stimulus). 
Before classification, principal components analysis (PCA) was 
applied to reduce the dimensionality of the data (63). Specifically, 
for each classification, PCA was performed on the training data, 
and the PCA solution was projected onto the testing data. For 
each PCA, we selected the set of components that explained 99% 
of the variance of the training data. As a result, we obtained decod-
ing accuracies for each frequency band and each condition, which 
indicated how well the video stimuli were represented in frequency- 
specific neural activity. We first used a one-sample t test to investi-
gate whether the video stimuli could be decoded in each condition 
and each frequency band. We also performed a 2-condition (coher-
ent and incoherent) × 3-frequency (alpha, beta, and gamma) two- 
way analysis of variance (ANOVA) and post hoc paired t tests [false 
discovery rate (FDR)–corrected across frequencies; Pcorrected < 0.05] 
to compare the decoding differences between coherent and incoher-
ent conditions separately for each frequency band. The compari-
sons of right- and left-only conditions were conducted using the 
same approaches. To track where the effects appeared across a con-
tinuous frequency space, we also decoded between the eight stimuli 
at each frequency from 8 to 70 Hz using a sliding window approach 
with a five-frequency resolution (see fig. S2). 

fMRI recording and processing 
MRI data were acquired using a 3T Siemens Prisma scanner 
(Siemens, Erlangen, Germany) equipped with a 64-channel head 
coil. T2*-weighted BOLD images were obtained using a multiband 
gradient-echo echo-planar imaging (EPI) sequence with the follow-
ing parameters: multiband factor = 3, repetition time (TR) = 1500 
ms, echo time (TE) = 33 ms, field of view = 204 mm by 204 mm, 
voxel size = 2.5 mm by 2.5 mm by 2.5 mm, 70° flip angle, 57 slices, 
and 10% interslice gap. Field maps were also obtained with a 
double-echo gradient echo field map sequence (TR = 545 ms, 
TE1/TE2 = 4.92 ms/7.38 ms) to correct for distortion in EPI. In ad-
dition, a high-resolution 3D T1-weighted image was collected for 
each participant (magnetization-prepared rapid gradient-echo, TR 
= 1900 ms, TE = 2.52 ms, TI = 900 ms, 256 × 256 matrix, 1-mm by 1- 
mm by 1-mm voxel, 176 slices). 

MRI data were preprocessed using MATLAB and SPM12 (www. 
fil.ion.ucl.ac.uk/spm/). Functional data were first corrected for geo-
metric distortion with the SPM FieldMap toolbox (64) and re-
aligned for motion correction. In addition, individual 
participants’ structural images were coregistered to the mean re-
aligned functional image, and transformation parameters to Mon-
treal Neurological Institute (MNI) standard space (as well as inverse 
transformation parameters) were estimated. 

The GLMsingle Toolbox (65) was used to estimate the fMRI re-
sponses to the stimulus in each trial based on realigned fMRI data. 
To improve the accuracy of trialwise beta estimations, a three-stage 
procedure was used, including identifying an optimal hemodynam-
ic response function (HRF) for each voxel from a library of 20 HRFs, 
denoising data-driven nuisance components identified by cross- 
validated PCA, and applying fractional ridge regression to regular-
ize the beta estimation on a single-voxel basis. The resulting single- 
trial betas were used for further decoding analyses. 

fMRI regions of interest definition 
fMRI analyses were focused on seven regions of interest (ROIs). We 
defined three scene-selective areas—OPA [also termed transverse 
occipital sulcus (66, 67)], MPA [also termed retrosplenial cortex 
(68, 69)], and PPA (70)—from a group functional atlas (71) and 
three early visual areas—V1, V2, and V3, as well as motion-selective 
hMT/V5—from a probabilistic functional atlas (72). All ROIs were 
defined in MNI space and separately for each hemisphere and then 
transformed into individual-participant space using the inverse 
normalization parameters estimated during preprocessing. 

fMRI ROI decoding analysis 
To investigate how the video stimuli were processed in different 
visual regions, we performed multivariate decoding analysis using 
CoSMoMVPA and LIBSVM. For each ROI, we used the beta values 
across all voxels included in the region to decode between the eight 
video stimuli, separately for each condition. Leave-one-run-out 
cross-validation and PCA were used to conduct SVM classifications. 
For each classification, there were 144 trials (18 for each stimulus) in 
the training set and 16 trials (2 for each stimulus) in the testing set. 
For each participant, we obtained a 4-condition × 14-ROI (7 ROIs 
by two hemispheres) decoding matrix. Results were averaged across 
hemispheres, as we consistently found no significant interhemi-
spheric differences (condition × hemisphere and condition × 
region × hemisphere interaction effects) in a 2-condition (coherent 
and incoherent) × 7-region (V1, V2, V3, hMT, OPA, MPA, and 
PPA) × 2-hemisphere (left and right) three-way ANOVA test. We 
first tested whether the video stimuli were decodable in each condi-
tion and each region using one-sample t tests (FDR-corrected across 
regions; Pcorrected < 0.05). To further investigate the integration 
effect, we used paired t tests to compare the decoding difference 
between coherent and incoherent conditions in different regions. 
For the right- and left-only conditions, we averaged the decoding 
results in a contralateral versus ipsilateral fashion (e.g., left stimulus, 
right brain region was averaged with right stimulus, left brain region 
to obtain the contralateral decoding performance). 

fMRI searchlight decoding analysis 
To further investigate the whole-brain representation of video 
stimuli, we performed searchlight decoding analyses using CoS-
MoMVPA and LIBSVM. The single-trial beta maps in the native 
space were first transformed into the MNI space using the normal-
ization parameters estimated during preprocessing. For the search-
light analysis, we defined a sphere with a radius of five voxels around 
a given voxel and then used the beta values of the voxels within this 
sphere to classify the eight video stimuli in each condition. For the 
left- and right-only conditions, the decoding analysis was per-
formed separately for each hemisphere. The decoding parameters 
were identical to the ROI-decoding analysis. The resulting  
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searchlight maps were subsequently smoothed with a Gaussian 
kernel (full width at half maximum = 6 mm). To investigate how 
well the video stimuli in each condition were represented across 
the whole brain, we used one-sample t tests to compare decoding 
accuracies against chance separately for each condition [Gaussian 
random field (GRF) correction, voxel-level P < 0.005, cluster- 
extent P < 0.05]. To investigate the integration effect in the whole 
brain, we used paired t tests to compare the differences in decoding 
accuracy between coherent and incoherent conditions and per-
formed multiple comparisons correction within the voxels 
showing significant decoding for either coherent or incoherent 
stimuli (GRF correction, voxel-level P < 0.005, cluster-extent P 
< 0.05). 

EEG-fMRI fusion with representational similarity analysis 
To investigate the relationship between the frequency-specific 
effects obtained in the EEG and the spatial mapping obtained in 
the fMRI, we performed EEG-fMRI fusion analysis (22, 23). This 
analysis can be used to compare neural representations of stimuli 
as characterized by EEG and fMRI data to reveal how the represen-
tations correspond across brain space and spectral signatures. Spe-
cifically, we first calculated representational dissimilarity matrices 
(RDMs) using pairwise decoding analysis for EEG and fMRI data, 
respectively. For the EEG power spectra, in each frequency band, we 
decoded between each pair of eight video stimuli using the oscilla-
tory power of the frequencies included in the frequency band, sep-
arately for each condition; for the fMRI data, in each ROI, we 
classified each pair of eight stimuli using the response patterns of 
the region, separately for each condition. Decoding parameters 
were otherwise identical to the eight-way decoding analyses (see 
above). In each condition, we obtained a participant-specific EEG 
RDM (8 stimuli × 8 stimuli) in each frequency band and a partici-
pant-specific fMRI RDM (8 stimuli × 8 stimuli) in each ROI. Next, 
we calculated the similarity between EEG and fMRI RDMs for each 
condition; this was done by correlating all lower off-diagonal entries 
between the EEG and fMRI RDMs (the diagonal was always left 
out). To increase the signal-to-noise ratio, we first averaged fMRI 
RDMs across participants and then calculated the Spearman corre-
lation between the averaged fMRI RDM for each ROI with the par-
ticipant-specific EEG RDM for each frequency. As a result, we 
obtained a 4-condition × 3-frequency × 14-ROI fusion matrix for 
each EEG participant. For the coherent and incoherent conditions, 
the results were averaged across hemispheres, as no condition × 
hemisphere, no condition × region × hemisphere, and no condition 
× frequency × hemisphere interaction effects were found in a 2-con-
dition (coherent and incoherent) × 7-region (V1, V2, V3, hMT, 
OPA, MPA, and PPA) × 2-hemisphere (left and right) × 3-frequen-
cy (alpha, beta, and gamma) four-way ANOVA test. We first used 
one-sample t tests to test the fusion effect in each condition (FDR- 
corrected across regions; Pcorrected < 0.05) and each frequency- 
region combination and then used a 2-condition × 3-frequency × 
7-region three-way ANOVA to compare the frequency-region cor-
respondence between coherent and incoherent conditions. As we 
found a significant condition × frequency × region interaction 
effect, we further performed a 2-condition × 7-region ANOVA 
and paired t tests (FDR-corrected across regions; Pcorrected < 0.05) 
to compare frequency-region correspondence between coherent 
and incoherent conditions separately for each frequency. For the 
right- and left-only conditions, we averaged the fusion results 

across two conditions separately for contralateral and ipsilateral pre-
sentations and then compared contralateral and ipsilateral presen-
tations using the same approaches we used for the comparisons of 
coherent and incoherent conditions (see fig. S9). 

Supplementary Materials 
This PDF file includes: 
Figs. S1 to S10 
Table S1 
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