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Quantum-enhanced greedy combinatorial
optimization solver
Maxime Dupont1*, Bram Evert1, Mark J. Hodson1, Bhuvanesh Sundar1, Stephen Jeffrey1,
Yuki Yamaguchi1, Dennis Feng1, Filip B. Maciejewski2,3, Stuart Hadfield2,3, M. Sohaib Alam2,3,
Zhihui Wang2,3, Shon Grabbe2, P. Aaron Lott2,3, Eleanor G. Rieffel2, Davide Venturelli2,3,
Matthew J. Reagor1*

Combinatorial optimization is a broadly attractive area for potential quantum advantage, but no quantum al-
gorithm has yet made the leap. Noise in quantum hardware remains a challenge, and more sophisticated
quantum-classical algorithms are required to bolster their performance. Here, we introduce an iterative
quantum heuristic optimization algorithm to solve combinatorial optimization problems. The quantum algo-
rithm reduces to a classical greedy algorithm in the presence of strong noise. We implement the quantum al-
gorithm on a programmable superconducting quantum system using up to 72 qubits for solving paradigmatic
Sherrington-Kirkpatrick Ising spin glass problems. We find the quantum algorithm systematically outperforms
its classical greedy counterpart, signaling a quantum enhancement. Moreover, we observe an absolute perfor-
mance comparable with a state-of-the-art semidefinite programming method. Classical simulations of the algo-
rithm illustrate that a key challenge to reaching quantum advantage remains improving the quantum device
characteristics.
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INTRODUCTION
A handful of promising classes of quantum algorithms have been
advanced for combinatorial optimization problems, such as
quantum adiabatic evolution algorithms (1), variational quantum
algorithms (2–4), as well as others (5, 6). In all cases, the problem
takes the form of an objective function to extremize, which can be
interpreted as an Ising-type Hamiltonian whose ground state is the
global extremum of the problem. Solving a generic Ising model is
NP-hard (7), and it remains open whether quantum computers can
indeed provide a practical advantage over classical methods. A tre-
mendous amount of work has been dedicated to quantum an-
nealers, which leverage adiabatic evolution (8–10), while the focus
for gate-based quantum computers has been mainly on parameter-
ized quantum circuits like the quantum approximate optimization
algorithm (QAOA) (2, 3, 11–15).

The QAOA has been implemented on several experimental plat-
forms to solve a range of combinatorial optimization problems (13–
22). However, a major challenge in these demonstrations has been
the stringent technical requirement of reducing hardware noise to
provide good quality solutions that are well-separated from trivial
classical approaches such as random sampling. In particular,
loading arbitrary graph problems, beyond the native topology of
the quantum computer, often demands an additional overhead, in-
creasing noise and lowering the performance of the quantum algo-
rithm. For example, while an early implementation of the QAOA on
a superconducting quantum system for solving hardware-native
maximum cut problems on 19 qubits already showed performance
better than random sampling (13), an implementation for solving
high-dimensional graph problems beyond the hardware-native

topology on 23 qubits found results only as good as random guess-
ing on contemporary devices (15), with similar trends for Rydberg
atoms and trapped ions (14, 16, 17, 20, 23). Yet, it is unavoidable for
quantum computers to tackle more intricate problem instances en-
route to solving universal and real-world problems.

To date, noise has made even the most straightforward classical
optimization approaches better candidates for solving real-world
optimization. For instance, classical greedy algorithms, which iter-
atively build a solution by making the locally optimal choice at each
stage, are intuitive, easy to implement, and will most likely outper-
form a modern noisy quantum computer. This raises the question:
Can one design algorithms using current quantum technologies to
their advantage with performance guarantees, making them realis-
tically competitive against classical ones for arbitrary problems
at scale?

Overall, our goal is to minimize the objective function

C ¼ uþ
XN

i¼1
viZi þ

XN

j,i
wijZiZj ð1Þ

where u, vi, and wij are problem-specific scalar parameters, and Zi ∈
{ − 1, + 1} are Ising spin variables with corresponding bit values Bi =
1/2 − Zi/2 ∈ {0,1}. The goal is to find a bit string B = (B1, B2, …, BN)
minimizing Eq. 1. Substituting the Ising variables for Pauli Z oper-
ators (we use the same symbol for both when clear from context) in
Eq. 1, the minimization can be achieved on a quantum computer
using quantum adiabatic evolution or variational algorithms. The
latter, such as the QAOA [2, 3], are better suited for near-term
digital devices with their theoretical performance at least on par
with a discretized adiabatic evolution with a fixed number of
layers. A QAOA circuit with p layers reads

j γ; βi ¼ ½
Yp

d¼1
UMðβdÞUPSðγdÞ�H�N j 0i�N ð2Þ
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whereH is the one-qubit Hadamard gate. The unitariesUPS andUM
are called the phase separator and the mixer, respectively, and are
parametrized with the real-valued angles γd and βd, respectively.
They are defined as

UPSðγdÞ ¼ eiγdC and UMðβdÞ ¼ e
iβd
XN

j¼1
Xj

ð3Þ

where C is the operator corresponding to the objective function of
Eq. 1 and where Xj is the Pauli operator on qubit j. The search for
optimal angles γ* and β* is done in a quantum-classical hybrid
fashion by minimizing the expectation value 〈C〉 = 〈γ, β ∣ C ∣ γ, β〉.
Candidate bit string solutions {B} are obtained by sampling the
quantum state ∣γ*, β*〉.

The quality of a solution is ranked by its cost value C* with
respect to the maximum (worst) and minimum (optimal) ones,
Cmax and Cmin, respectively, through the approximation ratio

r ¼ ðCmax � C�Þ=ðCmax � CminÞ ð4Þ

which is equal to 1 for an optimal solution C* = Cmin. On difficult
problem instances, it is proven to be NP-hard to achieve an ensem-
ble-average approximation ratio greater than a given value r⋆, and
intensive ongoing theoretical efforts (2, 3, 11, 24–30) are attempting
to establish whether QAOA with p layers can lead to an average ap-
proximation ratio larger than the best-known classical methods on
some problem classes. Because of noise, when QAOA is run on
current generation (noisy) quantum hardware, it leads to approxi-
mation ratios much smaller than theoretical bounds and those ob-
tained on small-scale classical emulations (13–15). In a strong noise
regimewhere the quantum state tends to be described as a maximal-
ly mixed state, the expected performance is that of a random bit
string sampling. Under the assumption that the spectrum of C
(Eq. 1) is symmetric about u, this corresponds to r = 1/2.

In the following, we develop a hybrid classical-quantum algo-
rithm performing as good as a randomized classical greedy algo-
rithm in the presence of strong noise. For instance, the classical
greedy approach has a performance r ≃ 0.848497… for Sherring-
ton-Kirkpatrick (SK) Ising spin glass problems (see Methods),
much larger than random guessing and a very noisy vanilla
QAOA execution. We implement the quantum algorithm on
Rigetti Aspen-M-3 programmable superconducting quantum
system using up to 72 qubits and find that it systematically outper-
forms its classical greedy counterpart, signaling a quantum
enhancement.

RESULTS
We introduce an iterative algorithm for solving discrete optimiza-
tion problems which bears similarities with divide-and-conquer
methods (31) and more closely with other iterative/recursive tech-
niques referred as RQAOA (32,33) or greedy decompositions in
quantum annealing (34)—the main difference being the freezing
procedure. At each iteration, a set of variables are frozen to their
classical values depending on the output returned by a quantum
computer—although, as discussed later, the approach works with
any sampleable distribution over bit strings, quantum or classical.
These variables are removed, and an updated, smaller optimization
problem is generated. The procedure is repeated until all variables

are frozen or until the remaining problem is small enough for
brute force.

A main difference between the quantum-enhanced greedy algo-
rithm that we develop and prior iterative approaches is its robust-
ness to noise, which is key when executing quantum algorithms at
scale on current quantum hardware. In a strong depolarizing noise
regime, our quantum algorithm maps to a classical randomized
greedy algorithm for which one can analytically estimate its
average performance for problems such as SK Ising spin glasses.
In the same strong noise regime, as expectation values, such as
two-point correlations ⟨ZiZj⟩, tend towards zero, other existing it-
erative algorithms (31–34) would perform as well as a random sam-
pling strategy in the absence of a mapping to a classical greedy
baseline.

Each iteration ‘ of our quantum-enhanced greedy algorithm
follows the steps,

#1. Obtain a list of M(‘) bit strings {B (‘)} that encode candidate
solutions to the problem. In the quantum version, these bit strings
are sampled from the output of the quantum computer, where the
quantum circuit optimizes the objective function C(‘) (Eq. 1). In the
classical randomized greedy version, these bit strings are sampled
from a uniform distribution of all bit strings.

#2. Find a set {k} of K variables to freeze. Different heuristics can
be envisioned (32, 33), including a majority vote based on one-body
expectation values, i.e., maxi ∣ 〈Zi〉∣, or based on two-body expecta-
tion values, as well as many others. In the following, we use a two-
body expectation strategy developed in Methods to select K = 1
variable.

#3. Find the frozen value of each variable selected in #2: For each
variable in {k}, loop over all the possible values {s} of the variable (i.
e., s = 0 or 1 for a binary variable), substitute them for all bit string of
the list such that fBð‘Þk  sg, and compute the expectation value of
the cost based on the modified {B (‘)}. The assignment s leading to
the best expectation value of the cost is taken as the variable’s frozen
value (see Methods).

#4. Update the problem C(‘) by replacing each of the operators in
{Zk} by a constant based on the expectation value of 〈Zk〉. The scalars
are absorbed into u, vi, and wij in Eq. 1 to create a new problem C(‘ +

1) with at least K fewer variables (see Methods).
Other strategies can be implemented in the third step (#3). The

essential point is that for random bit strings {B (‘)}, the freezing de-
cisions are locally optimal with respect to the objective function, in-
dependently of the selected variables. As such, the average
approximation ratio from random bit strings and optimal freezing
is r ≃ 0.848497⋯ (see Methods). Also, if {B (‘)} is replaced by
optimal bit strings with respect to the objective function, then the
above algorithm will preserve an optimal solution, and yield r = 1.
Therefore, the intuition is that for bit strings which are between
random and optimal, there should be a performance boost with
respect to the classical greedy baseline. Better-than-random bit
strings, on average, should help make better-informed decisions
for the selection and thus guide an otherwise randomized greedy
process. The complexity of the above algorithm is O[(N/K)Nedges]
with Nedges the number of two-body terms in the graph problem.
Taking K ∼ O(1) and Nedges ∼ O(N2) for the SK instances consid-
ered in the following leads to O(N3) complexity. We note that the
complexity of the classical randomized version of the algorithm can
be reduced to O(N2) when not working with explicit bit strings and
considering that all expectation values average to zero.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Dupont et al., Sci. Adv. 9, eadi0487 (2023) 10 November 2023 2 of 9



We implement the quantum-enhanced greedy algorithm on SK
problem instances (35) by setting u = vi = 0 in Eq. 1 and draw the
parameters wij uniformly from { + 1, − 1}. SK models correspond to
paradigmatic Ising spin glasses. Although it was recently proven
that the ground state energy of SK models can be efficiently approx-
imated with an approximation ratio (1 − ɛ) by an approximate
message passing algorithm (36), SK models remain a relevant
benchmark for combinatorial optimization methods.

We run the algorithm on Rigetti’s superconducting quantum
processor Aspen-M-3 with a planar square-octagon topology of
79 qubits (see the Methods for the parameters used in practice
and more details). The limited connectivity of the hardware, dis-
played in Fig. 1, requires an extensive swap network to cover two-
qubit gates between arbitrary qubits (37). Consequently, implemen-
tation of the phase separator unitary of Eq. 2 is not practical (due to
noise) for SK problems with large N (Fig. 1, A and B]. Instead, we
use a truncated one-layer QAOA ansatz: At each iteration of the al-
gorithm, the problem is randomly mapped to the hardware-native
architecture, and only gates involving qubits connected within 2
swap cycles are considered, with the others dismissed, as exempli-
fied in Fig. 1C. The circuit (Eq. 2) is compiled into hardware-native
gates, resulting in about 400 native

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

two-qubit gates for the
largest problems considered, as detailed in Methods. We collect a
total of M(‘) = 256 bit strings for all steps ‘.

We use the quantum-enhanced greedy algorithm to solve a set of
10 random SK problem instances for sizes N = 8, 24, 40, 56, and 72.
We freeze one variable (K = 1) at a time and use two-body expecta-
tion values to inform the selection process. We report the estimated
expectation value of the approximation ratio r ≡ 〈r〉γ*, β* by comput-
ing the expectation value of the corresponding objective function
over all sampled candidate bit string solutions at angles γ* and β*.

ForN ≤ 24, we use brute force to compute Cmax and Cmin (Eq. 4) for
a given problem instance. For larger N, we rely on the fact that the
cost of the optimal solution is self-averaging, known exactly forN→
+ ∞, and that finite-size corrections have also been studied over an
ensemble of random instances (38). This gives access to a proxy for
approximating r, assuming one is not interested in the performance
for an individual problem but that of an ensemble. Additional detail
is given in Methods.

We show the obtained approximation ratio as a function of the
iteration step in Fig. 2. Iteration step 0 corresponds to a truncated
one-layer QAOA ansatz run on the initial problem of N variables.
For all sizes, this is slightly above the r = 1/2 random sampling bar,
emphasizing that the QAOA displays a low average performance on
current hardware. The last step corresponds to the final solution of
the quantum-enhanced greedy algorithm. Its average performance
is systematically above that of the classical greedy baseline. We note
that the approximation ratio in both the classical greedy and the
quantum-enhanced algorithms have a distribution around the
average. This is more evident at small N, for example, N = 8 and
N = 24 in Fig. 2, where the quantum greedy results for some
problem instances dip below the average classical greedy results.
The estimated approximation ratio at the last step is displayed in
Fig. 3 as a function of problem sizeN. We observe a decrease in per-
formance with increasing problem size, which has two primary
causes. First, the larger the size, the larger the quantum circuit,
leading to a higher error rate. Second, the phase separator unitary
of the truncated QAOA ansatz only covers an O(1/N ) density of
edges of the graph problem, which accounts for a vanishing fraction
of two-body terms in the SK problem instances (about 3% for N =
72). For comparison, a noiseless simulation of a nontruncated stan-
dard single-layer QAOA circuit leads to an average approximation

Fig. 1. Problemmapping and quantum circuit. (A) Binary optimization problemwith N = 72 variables (Eq. 1). (B) Binary variables are randomlymapped to a qubit of the
square-octagon topology of the Rigetti Aspen-M-3 quantum processor. The edges are divided into three independent sets A, B, and C on which two-qubit gates can be
executed in parallel. (C) QAOA quantum circuit (Eq. 2). We show a truncated version run on hardware: We apply Rzz gates on the yellow edges in subcycle A, then Rzz gates
on the teal edges in subcycle B, then Rzz and SWAP gates on the magenta edges in subcycle C, and so on as shown above.
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ratio r ¼ 1=2þ 1=4P
ffiffi
e
p
≃ 0:698688. . . on large SK problem in-

stances (29), where P is the Parisi constant (39, 40).
Embedding the QAOA into the quantum-enhanced algorithm

greatly enhances the quality of the end result. From step 0 to step
N of the iterative loop (Fig. 2), we experimentally obtain a six- to
sevenfold increase in the average approximation ratio for N = 72
where 1 − r ≃ 0.49 → 0.08 (Fig. 3). A fairer comparison point is
the classical greedy baseline which runs the same algorithm with
random bit strings as input instead. For the SK problem instances
considered here, the expected approximation ratio of this classical
heuristic is r ≃ 0.848497… as N → + ∞ (see Methods). It is a high
absolute bar to pass, much higher than what we obtain from a noisy
and truncated one-layer QAOA run at iteration step 0. For refer-
ence, it requires at least a perfectly executed nontruncated four-
to five-layer QAOA circuit to meet this classical performance [see
the Supplementary Materials and (29)]. Here, the quantum-en-
hanced greedy algorithm run on noisy quantum hardware improves
upon the average approximation ratio of its classical counterpart by
about a factor 2 (1 − r ≃ 0.151503…→ 0.08) for the largest problem
sizeN = 72 (Fig. 3), empirically confirming the intuition that better-
than-random bit strings should, on average, help make better-in-
formed decisions in the freezing process. An explanation is that
while bit strings look close to random as a whole because of
noise, they might still locally retain relevant information. Here,
we look for the most correlated variable (see Methods), as this sug-
gests a well-defined value for the corresponding bit, making it a
good candidate for freezing. We observe an absolute performance
comparable with state-of-the-art semidefinite programming (SDP)
method, corresponding to a spectral relaxation rounding to ±1 each
entry of the leading eigenvector of the adjacency matrix of the graph
problem (41–43).

DISCUSSION
While our empirical results demonstrate that the quantum-en-
hanced algorithm can outperform the classical greedy threshold,

signaling a quantum boost, proving this rigorously remains as
future work. All the iterative algorithm needs is a bit string gener-
ator at step #1, analogous to classical methods such as genetic algo-
rithms and Monte Carlo methods. We highlight the work ahead for
reaching a quantum advantage by using noiseless classical tensor
network simulations to generate bit strings from a truncated one-
layer QAOA circuit with two swap cycles embedded into a one-di-
mensional lattice (see Methods). This leads to an average approxi-
mation ratio r ≃ 0.95 for the largest problems considered (Fig. 3),
higher than what we obtained with the quantum runs. We, there-
fore, expect that the performance of the quantum-enhanced greedy
algorithm will continue to improvewith advances in hardware fidel-
ity. The algorithm can use expectation-based error mitigation tech-
niques (44) for improving the freezing decisions—and therefore,
the final solution—, which are otherwise not usable for more tradi-
tional quantum optimization methods when one is typically inter-
ested in enhancing an individual bit string. Further, classical
postprocessing methods (45) may be leveraged to develop and
explore more sophisticated variable freezing procedures, such as
postselecting only bit strings that do at least as well as random guess-
ing. Ultimately, the backbone remains the quantum device, and the
overarching goal should be to improve its characteristics. Improving
those will allow running deeper QAOA circuits as well as other
state-of-the-art quantum circuits, leading to an overall performance
increase through better-informed decisions (see the Supplementary
Materials). This would warrant additional, comprehensive bench-
marks against a panoply of state-of-the-art classical algorithms
and techniques, such as Ising machines (46), to assess on the exis-
tence of a practical quantum speedup or advantage.

The freezing decisions have a classical component that can be
adapted to deal with some hard constraints; such as postselecting
on valid solutions. Hard constraints are ubiquitous in real-world
optimization problems and are notoriously difficult to handle in
practice. A possible strategy is to design quantum circuits
working within the in-constraint space with dynamics restricted
to the subspace of feasible solutions (12, 47, 48), but these

Fig. 2. Approximation ratio versus iteration step. Each panel corresponds to an SK problem instance of different size: (A) N = 8, (B) N = 24, (C) N = 40, (D) N = 56, and (E)
N = 72. A random sampling strategy leads to an average approximation ratio r = 0.5. The performance of the classical greedy baseline is shown by the shaded regionwith a
final average approximation ratio r ≃ 0.848497… for N → +∞ (see Methods). The quantum-enhanced greedy data show the expectation value of the approximation ratio
for 10 randomly generated problem instances (see Fig. 1). The performance at iteration step 0 is that of the truncated one-layer QAOA. The performance at iteration step N
is that of the quantum-enhanced algorithm, also reported in Fig. 3. Because we display all individual instances, we omit the error bar for the average case.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Dupont et al., Sci. Adv. 9, eadi0487 (2023) 10 November 2023 4 of 9



methods may require greater quantum resources. Another typical
approach uses penalty terms that will disfavor the appearance of
out-of-constraint bit strings, but implementing them on near-
term devices and tuning their strength can be similarly challenging.
Here, the idea is to make only freezing decisions which do not
violate any constraints. Note that this is only possible for some
classes of constraints, as a general satisfiability problem is NP-com-
plete. We investigate a proof of concept of the modified algorithm
on a constrained binary portfolio optimization problem in the Sup-
plementary Materials, comparing it to the state of the art (49).

In practice, scaling to hundreds of qubits will require freezing
variables simultaneously to keep the runtime under control. We
suggest the following modification (32): After selecting K variables
in step #2, the decision in step #3 attempts the 2K substitutions in
{B (‘)} and keeps the best one.

Last, it is interesting to think of iterative hybrid classical-
quantum setups with performance guarantees on noisy hardware
in the context of quantum problems rather than classical ones.
For instance, can one enhance the performance of variational
quantum eigensolvers (4, 50) for chemistry and other quantum
many-body problems by embedding ideas from real-space renorm-
alization group methods, such as linked-cluster expansions or the
contractor renormalization group technique (51)?

METHODS
Rigetti Aspen-M-3 superconducting platform
Rigetti’s Aspen-M-3 is a programmable and universal supercon-
ducting quantum computer based on transmon qubits. There are
79 qubits arranged on a planar square-octagon topology. We
make use of one-qubit rotation gates about the x axis Rx(ϕ ∈ ℤ)

= exp ( − iXϕπ/4), one-qubit rotation gates about the z axis Rz(θ
∈ ℝ) = exp ( − iZθ/2), and the two-qubit gate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

¼

exp½iπðXX þ YYÞ=8� (52). X, Y, and Z are Pauli operators. The
qubits have an average relaxation time T1 = 25(2) μs, an average de-
phasing time T2 = 28(2) μs, an average readout fidelity of 94.6(7)%,
and an average one-qubit Rx fidelity of 99.4(2)% estimated by ran-
domized benchmarking (53).

To estimate the fidelity of the operations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

, we use cycle
benchmarking (54). In the circuit, cycles were constructed by split-
ting the three independent edge groups of Fig. 1C each into two
clock cycles (for a total of six), where the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

gates are sepa-
rated by at least one idle qubit. This is done to minimize cross-talk
between the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

gates. Cycle benchmarking provides a mea-
surement of fidelity that is less forgiving, but more realistic, than
isolated randomized benchmarking. The cycles are benchmarked
the same way they are played in the application circuit, accumulat-
ing additional error from decoherence while idling and from the
single-qubit gates which precede each two-qubit gate in the cycle.
We report in Fig. 4 the marginal process fidelity contributed by
each pair of qubits playing an entangling gate in the cycle. In
general, the majority of the infidelity is contributed by the entangl-
ing operations. We expect further refinements to the cycle calibra-
tion process to reduce control errors and yield better cycle
performance.

As the quantum-enhanced greedy algorithm iteratively reduces
the size of the problem and thus the number of qubits at each iter-
ation step, we successively target smaller and smaller subsets of
qubits of higher and higher overall quality. This is visible from
the general trends of Fig. 4 where the mean and median fidelities
increase and the spread decreases with each iteration step.

Hardware-native quantum circuits
The unitaries of the QAOA in Eq. 3 are expressed through one- and
two-qubit gates exclusively, as pictured in Fig. 1C. These gates are
further decomposed into the hardware native gate set. For instance,
the one-qubit gate Rx(ϕ) is implemented for arbitrary angles using
the standard “ZXZXZ” decomposition (55). We use the hardware-

Fig. 3. Performance boost. Approximation ratio based on different bit string gen-
erators: The hardware-run QAOA of Fig. 2, averaged over 10 problem instances, and
quantum-inspired classical tensor network simulations (see Methods), averaged
over 100 random SK problem instances. The different horizontal dashed lines cor-
respond to the average performance of various algorithms in the limit N → + ∞.
From bottom to top: Random sampling r = 1/2, a perfectly executed single-layer,
nontruncated, QAOA circuit r ¼ 1=2þ 1=4P

ffiffiffi
e
p
≃ 0:698688. . . (29), the classical

greedy baseline r ¼ 1=2þ
ffiffiffiffiffiffiffiffi
2=π

p
=3P ≃ 0:848497. . . (see Methods), a classical

SDP approach r = 1/2 + 1/πP ≃ 0.917090… (41–43) where P is the Parisi constant
(39, 40). Error bars indicate 1 standard deviation. Numerical values are tabulated in
the Supplementary Materials.

Fig. 4. Cycle fidelity for two-qubit gates. Statistics for the cycle fidelity of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

at different iteration steps for a problem size N = 72. The boxes cover
the first to the third quartile. The whiskers cover the whole range of the data.
With each iteration step of the algorithm, the size of the problem is reduced
and we successively target smaller and smaller subsets of qubits of higher and
higher overall quality resulting in an increasing mean and median with decreasing
spread.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Dupont et al., Sci. Adv. 9, eadi0487 (2023) 10 November 2023 5 of 9



native two-qubit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

gate to express Rzz(ϕ) = exp ( − iϕZZ/2)
and SWAP. Because we always precede a SWAP gate by Rzz(ϕ), we
decompose directly the combination of these two gates. Both Rzz
and Rzz × SWAP can be implemented using hardware-native
one-qubit gates and at most two and three two-qubit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

gates (56), respectively, as shown in Fig. 5; the precise decomposi-
tion is given in the Supplementary Materials. While this may not be
the optimal synthesis in general, it is optimal in terms of number of
pulses for the Rigetti Aspen-M-3 quantum processor with respect to
alternatives.

Optimization of QAOA circuits and sampling bit strings
A QAOA circuit with p layers is defined in Eq. 2. It is parameterized
by 2p angles, which should be such that the resulting quantum state
minimizes the expectation value of the objective function C of Eq. 1.
In this work, we consider truncated one-layer QAOA circuits (Fig.
1B) with only two angles γ and β. As such, we optimize them
through a 16 × 16 grid search in the range γ ∈ [0,2π] and β ∈ [0,
π]. For each of the 16 × 16 = 256 pairs of angles, we collect M = 256
bit strings {B} by sampling the quantum state ∣γ, β〉 to compute the
expectation value

hCiγ;β ¼ hγ; β j C j γ; βi ¼
1
M

X

fBghB j C j Bi ð5Þ

The angles leading to the minimum expectation value of 〈C〉γ, β
are γ* and β*. TheM bit strings that led to the minimum expectation
value 〈C〉γ*, β* during the grid search are used in the first step (#1) of
the iterative quantum-enhanced greedy algorithm. Examples of
〈C〉γ, β are shown in the Supplementary Materials.

Iterative process
We provide additional detail on our implementation of the iterative
steps #2, #3, and #4 of the algorithm. At this stage, we have already
obtained a list of bit strings {B} sampled from the quantum state of
the optimized QAOA circuit at angles γ* and β*. At step #2, we find
K = 1 variable to freeze based on a two-body expectation strategy.

Precisely, for each active node k of the graph, we compute

Fk ¼
1
M
½
X

i[factiveg=k j wik
X

fBghB j ZiZk j Bi j þ

j vk
X

fBghB j Zk j Bi j� ð6Þ

where we find k such that maxkFk. The function Fk corresponds to
the expectation value of the objective function at the given iteration
step where all the terms involving the node k have been individually
sandwiched by a modulus symbol. We now move to step #3 and
generate two modified versions of the bit strings {B} by setting
the bit k on all the M bit strings to either 0 or 1. We then
compute the expectation value of the cost 〈C0〉 =

P
{Bk ← 0} 〈B ∣ C

∣ B〉/M and 〈C1〉 =
P

{Bk ← 1} 〈B ∣ C ∣ B〉/M. The value Bk = 0 or 1
which provided the smallest of 〈C0〉 and 〈C1〉 will be used as the var-
iable’s frozen value σk = ( − 1)Bk. Following the freezing decision of
the variable k, the problem is updated as follows

wikZiZk ! v0iZi8i with v0i ¼ vi þ wikσk;
vkZk ! u0 ¼ uþ vkσk

ð7Þ

where the notation of Eq. 1 is used for scalar parameters u, vi,
and wij.

Classical simulations of quantum circuits
We supplement the quantum experimental results with classical
simulations of the circuits. We use two methods throughout this
work. The first one, used in the Supplementary Materials, is
based on a state vector approach where the quantum state for N
qubits is represented as a complex vector of 2N components. It is
an exact method. The second one, used for generating the data of
Fig. 3, is a tensor network approach based on matrix product states
(57). The circuits we simulate with matrix product states are a trun-
cated one-layer QAOA circuit with two swap cycles embedded into
a one-dimensional lattice with open boundary conditions. The cir-
cuits are shallow enough to be executed exactly with a relatively low
bond dimension (the bond dimension is a control parameter of a
matrix product state simulator), independent of the number of
qubits involved, thus enabling exact classical simulations at N =
72. Precisely, the circuits have a brick wall pattern of two-qubit
gates with a total of four layers in addition to one-qubit gates. Ad-
ditional details on matrix product states are given in the Supple-
mentary Materials.

Optimal cost of SK instances
Computing the approximation ratio of Eq. 4 requires the extremum
(best Cmin and worst Cmax) cost values for the SK problem instance
of interest. For problems N ≤ 24, we compute them through brute
force by enumerating the 2N bit strings. For larger N, we rely on the
fact that the cost of the optimal solution is self-averaging, known
exactly for N → + ∞, and that finite-size corrections have also
been studied over an ensemble of random instances (38). In partic-
ular, one has,

Cmin � N � 3=2 ≃ � Pþ aN� ω ð8Þ

where P = 0.763166726566547… is a universal constant known as
the Parisi value (39, 40), ω = 2/3 is a universal exponent accounting
for finite-N corrections, and a ≃ 0.70(1) is a nonuniversal constant
(38). Moreover, on average, Cmax = − Cmin since it corresponds to
solving an equivalent problem with flipped signs for the parameters

Fig. 5. Two-qubit gate decompositions. (A) Decomposition of the parametric
two-qubit gate Rzz(ϕ) = exp ( − iϕZZ/2) using two hardware-native

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

¼

exp½iπðXX þ YYÞ=8� gates. X, Y, and Z are Pauli operators. (B) Decomposition of
the parametric two-qubit gate Rzz(ϕ) directly followed by a SWAP using three
hardware-native

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP
p

gates. In each case, the one-qubit gates U1...14 carry
the angle ϕ and are decomposed explicitly as a function of Rx and Rz gates (see
the Supplementary Materials for details).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Dupont et al., Sci. Adv. 9, eadi0487 (2023) 10 November 2023 6 of 9



wij (Eq. 1) (see the Supplementary Materials). Hence, for an ensem-
ble of SK problems leading to an average cost value of C*, we ap-
proximate the obtained approximation ratio as

r ≃
1
2

1þ
C�

Cmin

� �

ð9Þ

where Cmin is evaluated numerically using Eq. 8. For randomly gen-
erated bit strings, C* is symmetrically distributed between Cmin and
Cmax, i.e., C* = 0 in expectation, and the corresponding average ap-
proximation ratio is r ≃ 1/2.

Classical greedy baseline
The classical greedy algorithm iteratively builds a solution by
making the locally optimal choice at each stage. There are as
many iteration steps as variables in the problem. We note Zi = ±
1 the contribution to the cost function of the frozen variable i.
We consider the SK problem instances of the main text (Eq. 1
with wij = ± 1, u = vi = 0) for which the freezing decisions go as
follows. Iteration step 1, freeze Z1 arbitrarily to ±1. Iteration step
2, freeze Z2 such that w12Z1Z2 is minimized, i.e., minZ2

[w12Z1Z2].
Iteration step 3, freeze Z3 such that minZ3

[Z3(w13Z1 + w23Z2)]. At
iteration step ‘, freeze Z‘ such that Z‘

P‘� 1
i¼1wi‘Zi is minimized.

This is repeated until iteration step N. The final cost value is

Cgreedy ¼ �
XN

‘¼2
j
X‘� 1

i¼1
wi‘Zi j ð10Þ

The absolute value terms in Eq. 10 can be seen as individual
random walks containing ‘ − 1 steps of length ±1. As such, for ‘
→ + ∞, their average contribution will be ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘ � 1Þ=π

p
. This

step is analogous to averaging over different freezing orders for
the variables. Under the hood, this corresponds to running the al-
gorithm of the main text with a finite number of random bit strings
from which statistical fluctuations will lead to different freezing se-
lections in #2 from one run to the next. Hence, one finds that, on
average,

Cgreedy ≃ �
ffiffiffiffiffiffiffiffi
2=π

p XN� 1

‘¼1

ffiffi
‘
p

ð11Þ

As N → + ∞, an asymptotic expansion based on Euler-Maclau-
rin formula leads to

PN� 1
‘¼1

ffiffi
‘
p
≏ ð2=3ÞN3=2 þ . . .;, which makes it

possible to evaluate the average approximation ratio of the classical
greedy algorithm using Eqs. 8 and 9 for an infinite-size SK problem
instance

Cgreedy

Cmin
¼

2
ffiffiffiffiffiffiffiffi
2=π

p

3P
) r ¼

1
2
þ

ffiffiffiffiffiffiffiffi
2=π

p

3P
≃ 0:848497. . . ð12Þ

The case of finite N is studied numerically in the Supplementary
Materials. By definition, this is also the average approximation ratio
of the quantum-enhanced algorithm with random input. Physically,
this would mean that the quantum computer generates a maximally
mixed state ρ = I/2N, as the result of, e.g., strong depolarizing noise:
Here, ρ is the density matrix describing N qubits and I the Identity
matrix of dimensions 2N × 2N.

For comparison, other algorithms yield the following average
performance: Random sampling r = 1/2, a perfectly executed
single-layer, nontruncated, QAOA circuit r ¼ 1=2þ 1=4P

ffiffi
e
p
≃

0:698688. . . (29), a classical SDP approach r = 1/2 + 1/πP ≃
0.917090… (41–43). We extend nonexhaustively the analytical anal-
ysis of the classical greedy baseline to other problems in the Supple-
mentary Materials.
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