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SUMMARY

Latent factormodels, like principal component analysis (PCA), provide a statistical framework to infer low-
rank representation in various biological contexts. However, feature selection is challenging when this
low-rank structure manifests from a sparse subspace. We introduce SuSiE PCA, a scalable sparse latent
factor approach that evaluates uncertainty in contributing variables through posterior inclusion probabil-
ities. We validate our model in extensive simulations and demonstrate that SuSiE PCA outperforms other
approaches in signal detection and model robustness. We apply SuSiE PCA to multi-tissue expression
quantitative trait loci (eQTLs) data fromGTEx v8 and identify tissue-specific factors and their contributing
eGenes. We further investigate its performance on the large-scale perturbation data and find that SuSiE
PCA identifiesmoduleswith a higher enrichment of ribosome-related genes than sparse PCA (false discov-
ery rate [FDR] = 9:2310�82 vs. 1:43 10�33), while being� 18x faster. Overall, SuSiE PCA provides an effi-
cient tool to identify relevant features in high-dimensional biological data.

INTRODUCTION

Principal component analysis (PCA) is a popular dimension reduction technique1 that has been widely applied for exploratory data analysis in

many fields. One notable functionality of PCA is to synthesize crucial information across features into a small number of principal components

(PCs). For example, PCA is commonly used to infer population structure from large-scale genetic data.2,3 The top PCs explain differences in

genetic variation arising from different geographic origins and ancestry of individuals, due to historical migration, admixture, etc.4 Moreover,

PCA provides a means to rank contributing relevant variables for each latent component, as Tipping and Bishop (1986) proposed the prob-

abilistic reformulation of principal component analysis (PPCA).5 Specifically, each PC is independent of other PCs and has its unique weights

to represent the ‘‘importance’’ of original features, suggesting different latent components arise from different combinations of variables, or

distinct aspects of information from the data.

However, one disadvantage of conventional PCA is that PCs provide limited interpretability, as each results from a linear combination of

variables in the data.6 To improve the interpretability of PCs, while providing an identifiable solution in high-dimensional data, a common

approach is to impose sparsity on the PCA loadings. Broadly speaking, there are two types of approaches to achieving sparsity on the loading

matrix. The first is the regularization methods such as sparse PCA,6 which rewrites the PCA as a regression-based optimization problem and

then includes a L1 penalty on the objective function to achieve sparse loadings. The second type ofmethod is the Bayesian treatment of PPCA,

which imposes sparsity-induced prior on the factor loading matrix.7–12 Despite various methods that focus on inducing sparse solutions for

PCA, few provide a statistically rigorous way to select variables relevant to each factor in a post hoc manner. Although several sparse models

are capable of shrinking the loadings of uninformative variables to zero, for those variables with non-zero weights, neither a reasonable

threshold nor a formal statistical test is provided to inform feature prioritization for validation or follow-up.

Here, we propose SuSiE PCA, a highly scalable Bayesian framework for sparse PCA, that quantifies the uncertainty of contributing features

for each latent component. Specifically, SuSiE PCA leverages the recent ‘‘sum of single effects’’ (SuSiE) approach13 to model a loading matrix

such that each latent factor contains atmost L contributing features. Latent factors and sparse loadingweights are learned through an efficient

variational algorithm. In addition to providing a sparse loading matrix, SuSiE PCA computes posterior inclusion probabilities (PIPs) for

each feature, which enables defining r� level credible sets for feature selection. We demonstrate through extensive simulations that SuSiE

PCA outperforms sparse PCA6 and empirical Bayes matrix factorization (EBMF)12 in identifying relevant features contributing to structured

data while being robust to data-generating assumptions. Next, we apply SuSiE PCA to multi-tissue expression quantitative trait loci (eQTLs)

data from the the genotype-tissue expression (GTEx) v812,14 study to identify tissue-specific components of regulatory genetic features and

contributing eGenes (genes that have an associated eQTL). We also apply SuSiE PCA to high-dimensional perturb-seq data (CRISPR-based
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Figure 1. PIPs exhibit a higher efficiency in selecting the true signals than the posterior weights in SuSiE PCA

The proportion of correct classified signals using PIPs as cutoff (A) or posterior weights as cutoff (B). The green dots represent sensitivity, i.e.,

PrðPIPs R cutoffj True positive signalÞ, and the red dots represent specificity, i.e., PrðPIPs < cutoffj True false signalÞ. For consistency and to ensure

comparability between PIPs and weights, the weights are normalized to be ranged from 0 to 1.
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screens with single-cell RNA-sequencing readouts)15 and identify gene setsmore enriched in the ribosome and coronavirus disease pathways

when compared with sparse PCA (false discovery rate (FDR) = 9:23 10� 82, 63 genes involved vs. 1:43 10� 33, 35 genes involved) while

requiring 17.8 times less computing time. Overall, we find that SuSiE PCA provides an efficient approach to compute interpretable latent

factors from high-dimensional biological data. We provide an open-source python implementation that can run seamlessly on central pro-

cessing unit (CPU), graphics processing unit (GPU), or tensor processing unit (TPU) available at http://www.github.com/mancusolab/susiepca.

RESULTS

PIPs from SuSiE PCA outperform existing approaches for PCA feature selection

To evaluate the performance of SuSiE PCA, we performed extensive simulations (see details in STARMethods). Briefly, we performed 100 sim-

ulations by varyingmodel parameters one at a time and performed inference using SuSiE PCAwith the true number of latent variables (K) and

effects (L) known. First, we evaluated the ability of inferred PIPs to discriminate between relevant and non-relevant features for latent factors.

Specifically, we compared the sensitivity and specificity of inferred PIPs to normalized posterior mean weights from SuSiE PCA (see Figure 1).

When selecting variables based on PIPs> 0:90, SuSiE PCA identifies 88.9%of true positive (non-zero) signals, demonstrating largely calibrated

posterior inference.Weobservednearly all true negative signals exhibitedPIPs< 0:05. As a comparison, the normalized posteriorweights per-

formedwell on excluding the truenegative signals but failed to capture truepositive signals as rapidly as PIP thresholds.Overall, the simulation

demonstrates that PIPsprovide an intuitive andmoreefficient indicator for feature selection thannormalizedposteriorweights in SuSiEPCA. In

addition, we also examined the sensitivity and specificity using weights estimated from sparse PCA and EBMF (see Figure S1), which have

similar trends to the curves in Figure 1B and can only capture a small proportion of the true positive signals as the cutoff threshold increases.

SuSiE PCA is robust to model mis-specification

Next, we examined the estimation accuracy of the loading matrix as a function of sample size (N), feature dimension (P), latent dimension (K),

and the number of single effects (or sparsity level) (L), via the Procrustes errors16 (the Frobenius norm after Procrustes transformation,17 see

STAR Methods) (Figures 2A–2D). We found that SuSiE PCA has the smallest Procrustes errors across all simulation settings compared to

sparse PCA and EBMF. And we noticed that the Bayesian methods including SuSiE PCA and EBMF maintain a low error even with a small

sample size or high feature dimension. Moreover, we found that SuSiE PCA has the lowest relative root mean squared error (RRMSE) across

all simulations compared with other methods (Figure S2); and EBMF and SuSiE PCA have a lower level of Procrustes error of factor Z than

sparse PCA (Figure S3). In summary, SuSiE PCA exhibits the highest estimation accuracy, which is consistent with its superior performance

in variable selection.

We next investigated model robustness under model mis-specification. Similar to other latent factor models, SuSiE PCA could be mis-

specified as it requires manually inputting the latent dimension K and the number of single effects L. Considering the potential model

mis-specification setting, the simulation datasets are generated based on K = 4; L = 40 and then input into SuSiE PCA, sparse PCA, and

EBMF with twomis-specified situations: vary Lwhile fixing K, or vary Kwhile fixing L. The model estimation accuracy is then compared among

three models with Procrustes error (see Figures 2E and 2F). We observed that as K and L in the model approach the true value (i.e., K = 4 or

L = 40), the Procrustes error decreases rapidly to the lower level in SuSiE PCA and remains the same even when K > 4 or L> 40. However, the

error for sparse PCA has a V shape and reaches itsminimumat the real K. The explanation is that when there are over-specified latent factors in

the model, SuSiE PCA and EBMF will not extract any information from the data due to their probabilistic model structure; the sparse PCA, on

the other hand, cannot handle the weights since it does not impose a probabilistic assumption on them. Instead, the value of the redundant

latent factor in sparse PCA is close to 0, which ensures the latent component does not contribute.

Finally, to compare the generative capacity, we computed and compared the log likelihood of held-out data between sparse PCA and

SuSiE PCA. We observed that SuSiE PCA outperforms sparse PCA and obtains higher log likelihoods for simulations (Figure S5). In addition
2 iScience 26, 108181, November 17, 2023
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Ŵ
P2

C

0.00

0.08

0.16

0.24

0.32

10 20 30 40 50 60
Number of signals in each factor

W
Q

Ŵ
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Figure 2. SuSiE PCA outperforms sparse PCA and EBMF in estimation accuracy and model robustness

SuSiE PCA generates the smallest Procrustes error in weight matrix than sparse PCA and EBMF (A–D) and is robust to over-specified K and L (E and F). For each

scenario in (A–D) we vary one of the parameters at a time to generate the simulation data while fixing the other three parameters, and then input the true

parameters ( N; P; K ; L) into models. Finally, we compute the Procrustes error and plot them as a function of N; P; K ; L. For (E and F), we use the same

simulation setting in Figure 1 to generate data but vary the specified L in SuSiE PCA (E) and K in all three models (F). Reference lines refer to the error from

the models with correctly specified parameters (i.e., L = 40;K = 4).

ll
OPEN ACCESS

iScience
Article
to the overall superior model performance, SuSiE PCA remains faster on both CPU and GPU than sparse PCA and EBMF due to the efficient

variational algorithm we implement (see STAR Methods) with the JAX library developed by Google.18

Dissecting cross-tissue eQTLs in GTEx

To illustrate the utility of SuSiE PCA tomake inferences in biological data, we analyzedmulti-tissue eQTL Z score results computed fromGTEx

v812,14 (see STARMethods). Specifically, we sought to identify latent factors corresponding to tissue-specific and tissue-shared eQTLs similar

to ref. 12. Overall, we found that 27 latent factors explained 53.1% of the variance in the data (see Figure S6). Althoughwe set L = 18 across all

factors, we found the number of tissues with PIP> 0:9 is frequently lower than 18 in different factors (see Figure S9), which is due to inferred t0kl
acting to ‘‘shut off’’ uninformative features. Indeed, we observed 30 out of 486 t0kl with estimates greater than e10 (see Figure S7) which effec-

tively shrink the effect size of the corresponding single effect toward 0, driving the number of non-zero single effects in some factors smaller

than specified L. We found this behavior also reflected in estimated level-0.9 credible sets, where 456 out of 486 contained a single tissue, and

the remaining 30 credible sets contained at least two tissues.

To understand what each factor represents, we examined inferred PIPs (Figure S9) and posterior mean weights of each tissue across 27

factors (Figure S8). Here we present the results from factor z1 and z3 through the posterior weights (Figure 3; see Figure S8 for the remainder).

We observed that the latent factor z1 with the second largest percentage of variance (PVE) demonstrates high absolute weights on most tis-

sues except for the brain tissues, while the latent factor z3 has large weights almost exclusively on brain tissues. Moreover, we observed that

brain tissue tends to appear as a group and has similar effects, implying the eQTLs in brain tissue are different from those in other tissue and

those strong signals are specifically captured by the factor z1. For the rest of the factors, we noticed that factors with large PVE such as z2; z4; z5
tended to have large weights on multiple tissues; for example, factor z2 has large weights on esophagus and thyroid, suggesting the eQTLs

signals are mostly shared across those tissues, while the factors with small PVE usually have large weights exclusively on one or a few tissues,

for example, liver-specific component z12, lung-specific component z15, etc. The only exception is that the factor z0 with the largest PVE has an

exclusively large weight only on the testis, implying the z0 captures the testis-specific eQTL signals. This is consistent with the investigation of

the latent factor values of z0: the gene with the largest factor value in z0 is D-dopachrome tautomerase (DDT) (Figure S10), which is shown to
iScience 26, 108181, November 17, 2023 3
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tissues with non-zero weights in each factor since we set L = 18 while the feature dimension is 44.
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be associatedwith testis cancer.19 Tomake a comparisonwith the existingmethod, we expandedour investigation by applying sparse PCA to

the GTEx Z score dataset and observed comparable tissue weights and factor scores across components in both SuSiE PCA and sparse PCA

(Figure S11). However, a notable distinction arises where certain tissues exhibit tiny weights and can potentially be neglected in sparse PCA; in

contrast, the SuSiE PCA can successfully capture the signals in those tissues through the PIP. For example, from the original analysis, both

models identify adipose gland as the most relevant tissue in factor 10, while the remaining tissues have a much smaller relative weight

and can effectively be ignored. Despite this, SuSiE PCA assigns a PIP of 1 to the lowly weighted tissues, suggesting that important signals

would be missed if weights alone were used to provide insight. Overall, we find that SuSiE PCA is able to identify tissue-specific components

from multi-tissue eQTL data in an intuitive, interpretable manner.

Identifying regulatory modules from perturb-seq data

To identify gene regulatory modules from genome-wide perturbation data, we ran SuSiE PCA on perturb-seq in cell lines15 (see STAR

Methods) with K = 10 and L = 300. Briefly, we inputted the normalized expression data (20573 8563) to SuSiE PCA to identify gene regu-

latory modules (i.e., Z) and downstream-regulated networks (i.e., W). To ensure our results were robust to K and L, we explored a grid of

possible combinations and found that K = 10 and L = 300 retain the most important information while keeping the relevant gene set

much smaller (see Figure S12 for a detailed explanation).

Overall, we found the total PVE was 10.71% across all components (Figure S13), with each component exhibiting 299 downstream genes

with PIP > 0:9 on average. Focusing on the leading component, we found that perturbations with the top 10 largest absolute factor scores

are primarily related to Ribosomal Protein Small (RPS) subunit genes and Ribosomal Protein Large (RPL) subunit family (Figure 4A). To pro-

vide a broader characterization of the module function, we extracted downstream genes with PIP greater than 0.9 (298 genes) as input

into ShinyGO20 to perform a gene set enrichment analysis (Figure 4B). We observed the most enriched pathway was related to ribosome

function (FDR = 9:23 10� 82, 63 genes involved), followed by coronavirus disease (FDR = 2:53 10� 62, 62 genes involved). Inspecting the

loadings at these downstream genes, we found nearly all weights were positive, suggesting that the knockout of RPS and RPL genes down-

regulates the expression level of those downstream genes. We found multiple elongation factor genes (EEF1G, EEF1A1, EEF1B2, EIF4B,

EIF3L) among the leading downstream genes, which are known to be involved in ribosome function. Additionally, recent studies have

suggested that the decreased expression of elongation factor genes is associated with less severe conditions among COVID-19 pa-

tients.21,22 We repeated pathway analysis for each latent factor using corresponding loadings at genes with PIP greater than 0.9 (see

Figures S14–S22).

To compare with sparse PCA, we performed the same pathway analysis on factor loadings and assessed enrichments. From the sparse

PCA with the largest PVE (alpha = 1), we observed components identified by sparse PCA to be less enriched with biological pathways

when compared to SuSiE PCA (80 unique enriched pathways in sparse PCA versus 88 pathways in SuSiE PCA), and the top enriched pathways

such as ribosome and coronavirus disease are less significant and contain less number of selected genes (FDR = 1:43 10� 33, 35 genes; FDR

= 2:93 10� 18, 29 genes).We noticed that, when alpha equals 17, the sparse PCAachieves an approximate similar total PVE (10.91%) with that

of ourmodel (10.71%) but with lower sparsity level (Figure S23).We then extracted the top 300 geneswith non-zeroweights in sparse PCAwith

alpha = 17 and performed the gene set enrichment analysis and found that the significance level is almost similar to that in SuSiE PCA (Fig-

ure S24). However, this is a post hoc analysis that suggests SuSiE PCA is more suitable for sparse data analysis while maintaining the power to

perform the feature selection in a more statistical and reasonable manner.

Overall, we find distinct biological functions identified by each component, with groupings consistent with those reported in previous

works.23–25

DISCUSSION

In this paper, we propose SuSiE PCA, an efficient Bayesian variable selection approach to PCA for structured biological data. The sparsity of

the loading matrix is achieved by restricting the number of features associated with each factor to be at most L. Through simulations and
4 iScience 26, 108181, November 17, 2023
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real-data application, we find that SuSiE PCA outperforms existing approaches to sparse latent structure learning in identifying contributing

features, while maintaining a more efficient run time.

There are several advantages of SuSiE PCA as compared to other sparse factor models. First, SuSiE PCA generates the PIPs for each

feature that quantifies the uncertainty of the selected feature, which can not be provided by other sparse models, such as sparse PCA

with regularization13 or the Bayesian treatment of PPCA. And assessing the selected variables based on the probability is more reasonable

and convenient than usingweights. Second, PIPs are capable of selectingmore signals with high confidence. In simulations, we demonstrated

that usingweights for variable selection from SuSiE PCA, sparse PCA, and EBMF can deliver a high specificity (low FDR) but with low sensitivity

as the cutoff value increases, while using PIPs as selection tools can maintain a high sensitivity for any positive cutoff value between 0 and 1.

Third, SuSiE PCA provides a more precise estimate of the loadings and higher prediction accuracy, even in the mis-specified case, as we

impose a probabilistic distribution over the loadings that enables a much more accurate inference on the posterior distribution. Finally,

the inference procedure of SuSiE PCA works on the dimension of K and L, which is typically set to be much smaller than feature dimension

P; therefore, it is scalable to high-dimensional data and requires less computational demands. We implement the SuSiE PCA with the JAX

library developed by Google18 to enable fast convergence on CPU, GPU, or TPU. The comparison of run time among SuSiE PCA, sparse

PCA, and EBMF is listed in Table 1.

In the SuSiE PCA, two parameters, the number of components K, and the number of single effects L, need to be prespecified by the user

before fitting the model. The selection of K follows a similar strategy as conventional PCA, often informed by researchers’ domain expertise.

The merit of SuSiE PCA is that when there are excessive latent components being specified, the variance explained for those components

would be extremely minimal with a near-zero count of single effects exhibiting PIP> 0:9. This effectively allows for an initial choice of a

relatively large K and subsequently inspecting the PVE and PIPs in each component to decide the most suitable K.

The choice of L determines the sparsity in the SuSiE PCA. Although SuSiE PCA only allows one common L specified across all factors, the

number of non-zero effects captured across factors can be varied and learned from the data. This is because we treat the inverse of variance

t0kl of the lth single effect in factor zk as a random variable. As the Algorithm 1 demonstrates, themaximum likelihood estimate (MLE) of t0kl at

the step 3 is derived before inference of other parameters. When the L specified in the model, for a certain factor k, is greater than the true

number of signals associated with that factor, the MLE of the t0kl will be extremely large for those excessive single effects, which then shrinks
Table 1. Comparison of mean and standard deviation of running time (seconds) between models

Modela Simulationb GTEx Z score Perturb-seq

SuSiE PCA 3.14(0.49) 1.20 68.11

Sparse PCA 51.96(33.50) 41.22 1213.21

EBMF 39.83(5.80) 498.60 243.03

aAll run time data in the table are based on the analyses performed on the same CPU for consistency. The CPU we used is the Apple M2 chip with 16 GBmemory.
bRun time for simulation is recorded based on simulation setting in Figure 1, i.e., N = 1000;P = 6000;K = 4;L = 40; the average run time and corresponding

standard deviation are computed for 100 simulations. We presented a more detailed run time comparison in simulation in Figure S4.

iScience 26, 108181, November 17, 2023 5



Algorithm 1. Algorithm for SuSiE PCA

Require: Data XN3P

Require: Number of Factors K; Number of single effects in each factor L

Require: Initialize variational parameters ðmZ;SZ;mwkl
;swkl

;aklÞ; hyperparameters t;t0kl , for l = 1;/;L; k = 1;/;K

Require: update equations on different variables FZ;Fwkl
; Fakl

; Ft0 ; Ft :

Require: function to compute ELBO;FELBO

Ensure: ELBO increase

1: repeat

2: W)
PL

l = 1mw+a. 8 Define mw;a as ðL;K ;PÞ arrays by arranging mwkl
;akl

3: t0)Ft0 ðmw;sw;aÞ
4: for k in 1;/;K do

5: E½Ru
kl Zk �ð1Þ = Xumzk � P

k0sk

E½wk0 �E½Zu
k0 Zk � 8 compute the first two terms in Eq

6: for l in 1;/; L do

7: E½wkl0 � = wk � mwkl
+akl 8 removing the lth effect from wk

8: E½Ru
kl Zk � = E½Ru

kl Zk �ð1Þ � wkE½Zu
k Zk � 8 complete the calculation of E½Ru

kl Zk �
9: ðmwkl

;swkl
Þ)Fwkl

ðE½Ru
kl Zk �;E½Zu

k Zk �;t0kl ;tÞ
10: akl)Fakl

ðE½Ru
kl Zk �;mwkl

;swkl
Þ

11: wk = E½wkl0 �+mwkl
+akl 8 Update the wk

12: end for

13: end for

14: ðmZ;SZÞ)FZ ðX;t;E½W�Þ
15: t = FtðX;t;E½W�;E½Z�Þ
16: ELBO)FELBO

17: until ELBO convergence criterion satisfied
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the wkl and PIP to be 0 or close to 0, and therefore removes the redundant single effects from the model. For example, in the simulation and

GTEx Z score data analysis, we have shown that when the user-specified L is larger than the data-generating L, the automatic relevance deter-

mination-like (ARD) prior over loadings will shrink effects toward 0, thus adding little additional predictive power and overall mean square

error (MSE) from the true loadings matrix. Although it seems like the L parameter may be automatically set to the total number of variables

(and thus ‘‘shut off’’ if necessary), we emphasize that this still comeswith an added computational cost, albeit a low one due to the scalability of

our approach. Therefore, we allow users to specify their own choice of L. From this point of view, without prior knowledge of the data, one can

specify a relatively larger L during the initial model fitting and then examine the estimates of t0kl to explore how many single effects are

reasonable for the dataset.

Overall, SuSiE PCA provides a flexible approach to high-dimensional biological data with a low-rank structure and allows for feature se-

lection in sparse PCA.

Limitations of the study

One limitation of SuSiE PCA is that under the mean-field approximation, all the posteriors, i.e., QðWÞ and QðZÞ, are factorized to facilitate

inference. Under this factorization, estimation for mean terms (i.e., E½W� and E½Z�) is approximately unbiased.26 However, it produces over-

confident covariance structures within variables (W, Z, etc) due to the assumed independence across Q functions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Genotype-Tissue Expression Z score data Wei Wang and Matthew Stephens,

Empirical Bayes Matrix Factorization, 20211
https://github.com/ysfoo/sparsefactor

Genome-scale Perturb-seq experiment data Joseph Replogle and Jonathan Weissman,

Mapping information-rich genotype-phenotype

landscapes with genome-scale Perturb-seq, 20222

https://plus.figshare.com/articles/dataset/_

Mapping_information-rich_genotype-

phenotype_landscapes_with_genome-

scale_Perturb-seq_Replogle_et_al_2022_

processed_Perturb-seq_datasets/20029387

Software and algorithms

Scikit-learn library: sparse principal

component analysis

Python library scikit-learn https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.

SparsePCA.html; RRID:SCR_002577

R Package: Factors and Loadings by Adaptive

SHrinkage in R (flashr)

Wei Wang and Matthew Stephens,

Empirical Bayes Matrix Factorization1
https://stephenslab.github.io/flashr/index.html

Variational algorithm in SuSiE PCA This paper http://www.github.com/mancusolab/susiepca

Python 3.9 Python Software Foundation https://www.python.org/

R 4.0.0 R Software https://www.r-project.org

ShinyGO v0.77 Ge SX, Jung D & Yao R3 http://bioinformatics.sdstate.edu/go/;

RRID:SCR_019213
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dong Yuan (dongyuan@

usc.edu).

Material availability

This study did not generate new unique materials or reagents.

Data and code availability

� This paper analyzes existing, publicly available data, i.e., the GTEx z-score dataset14 and the perturb-seq data.15 These accession

numbers for the datasets are listed in the key resources table.

� All original codes related to SuSiE PCA have been deposited and are publicly available on GitHub (https://github.com/mancusolab/

susiepca).
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not include experiments with a specific model or subject.

METHOD DETAILS

Overview of SuSiE PCA

In this section, we will give a detailed description of SuSiE PCA. Let XN3P be the observed data matrix, ZN3K be the K dimensional latent

vectors, and WK3P be the loading matrix. We denote the normal distribution with mean m and variance s2 as N ðm;s2Þ, the multinomial dis-

tribution with n choices and probabilities p as Multiðn;pÞ and the matrix normal distribution with dimensionN3 K , meanM, row-covariance

R, and column-covariance C asMNN;K ðM;R;CÞ. We denote the basis vector in which kth coordinate is 1 and 0 elsewhere as ek . The sampling

distribution of X under the SuSiE PCA model is given by,

X
�� Z;W; s2 � MNN;P

�
ZW; IN;s

2IP
�

(Equation 1)
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Z � MNN;K ð0; IN; IK Þ (Equation 2)
W =
XK
k = 1

ekw
u
k (Equation 3)
wk =
XL
l = 1

wkl (Equation 4)
wkl = wklgkl (Equation 5)
wkl

�� s2
0kl � N

�
0; s2

0kl

�
(Equation 6)
gkl j p � Multið1;pÞ; (Equation 7)

wherewk corresponds to the kth row ofW, and contains at most L non-zero elements determined by the sum of L single-effect vectorswkl.

These single-effect vectors are described by a single random effect wkl and indicator vector gkl which assigns the effect to a feature with prior

probabilities p = 1
p 1.

Posterior inclusion probability

One of the distinguishing features that the SuSiE model13 provides is a posterior inclusion probability (PIP). The PIP reflects the posterior

probability that a given variable has a non-zero effect given the observed data. Here we extend the PIP definition to include latent

factors. Specifically, given variational parameters akl we can define the PIP that the ith variable has a non-zero effect in the kth latent compo-

nent as,

PIPki : = Prðwki s0 j XÞ = 1 �
YL
l = 1

ð1 � akliÞ (Equation 8)

Similarly, a level-r credible set (CS) refers to a subset of variables that cumulatively explain at least r of the posterior density. Here, we

define factor-specific level-r CSs, which can be computed across each akl independently, resulting in K3L total level-r credible sets. This

lets us reflect on the uncertainty in identified variables to explain a single-effect for each latent factor.

Variational inference in SuSiE PCA

We seek to perform inference ofmodel variablesZ; wkl andgkl conditional on observeddataX, however, themarginal likelihood is intractable

to compute and therefore, we cannot evaluate the posterior exactly. While sampling based approaches such as Markov Chain Monte Carlo

(MCMC) methods provide a numerical approximation of the exact posterior distribution,27 they often lack computational efficiency in high-

dimensional settings. As an alternative, we leverage recent advancements in the variational inference that provides an analytical approxima-

tion to the posterior distribution28 and remains computationally efficient.

Briefly, To approximate the conditional distribution of latent variables Z given the observed samples X, variational methods first impose a

family of densities over the latent variables, QðZÞ, usually predefined as known distributions parameterized with a set of variational param-

eters. Then the goal is to infer those variational parameters such that the variational distributionQðZÞ is as similar as possible to the true pos-

terior distribution PðZ j XÞ. A quantity commonly used to measure dissimilarity between distributions is Kullback-Leibler divergence

DKLðQ k PÞ.29 However, since KL divergence contain the unknown true posterior distribution PðZ j XÞ, it cannot be directly computed. Instead,

we can show that the log-likelihood of data, log PðXÞ can be decomposed as:

log PðXÞ = DKLðQ k PÞ+LðQÞ (Equation 9)

WhereLðQÞ = EQ½log PðZ;XÞ � logQðZÞ�, which is also known as the Evidence Lower Bound (ELBO). Since the log PðXÞ is a constant with
respect to the variational parameters, minimizing KL divergence is equivalent to maximizing ELBO. As the ELBO does not contain the un-

known posterior distribution and therefore is tractable to compute and maximize for variational parameters.

Mean-field approximation

Mean field approximation30 is a common solution to find the optimal solution that maximizes ELBO. The basic assumption is that we can fac-

torize the variational distribution into independent components. Then using the calculus of variations, one can show that the distribution

Q�
j ðzjÞ minimizing KL divergence for each factor Zj can be expressed as:

lnQ�
j

�
zj
�� X� = Eisj½ln PðZ;XÞ�+ constant (Equation 10)
10 iScience 26, 108181, November 17, 2023
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Applying the Mean-Field approximation to SuSiE PCA the approximate posterior given by,

QðZ;WÞ = QðZÞQðWÞ (Equation 11)
QðWÞ =
YK
k = 1

YL
l = 1

Qðwkl j gklÞQðgklÞ (Equation 12)

Equation 11 factorizes the variational densities of the latent variables Z and the loading matrix W into independent parts. We further as-

sume that the variational distribution of loadingswkl from each factor across L single effects are independent as well, leading to Equation 12.

For ease of notation we first define t = 1
s2
;t0kl = 1

s2
0kl

. Based on the factorization, the complete-data log-likelihood of data and parameters of

SuSiE PCA is given by:

lc

�
s2; s2

0;p
�� X;Z;W� = logPr

�
X
�� Z;W; s2

�
+ logPrðZÞ+ logPr

�
W
�� s2

0;p
�

= log MN n;p

�
X
�� ZW; In; Ips

2
�
+ logMN n;kðZ j 0; In; IkÞ+XL

l = 1

XK
k = 1

�
logMultiðgkl j 1;pÞ+ logN

�
wkl

�� 0;s2
0

��

Helpful definitions

Before proceeding to the full derivation of variational distribution of parameters Z;wkl;and gkl, we first give some helpful definitions, including

the expansion of the first and second moment of W and Z.

The second moment of Z is:

E½ZuZ� = trðInÞSZ + E½Z�uE½Z�
= nSZ + E½Z�uE½Z�

E
�
Zu
k Zk

�
= trðV½Zk �Þ+ E½Zk �uE½Zk �

= tr
�
InðSZÞkk

�
+ E½Zk �uE½Zk �

= nðSZÞkk + E½Zk �uE½Zk �
The first and second moments of wk are listed as follows:

E½wkl j gkl� = p � vector of posterior

conditional means

V½wkl j gkl� = p � vector of posterior

conditional variances

E½wk � = E

"X
l

wkl

#
=
X
l

E½wkl�

E½wkl� =
X
l

E½wkl j gkl�+E½gkl�

V½wk � = V

"X
l

wkl

#
=
X
l

V½wkl�

V½wkl� = E
�
wklw

u
kl

�� E½wkl�E½wkl�u
= E
�
w2

klgklg
u
kl

�� E½wkl�E½wkl�u
= diagðE½wkl+wkl j gkl�+E½gkl�Þ � E½wkl�E½wkl�u

diagðV½wkl�Þ = E½wkl+wkl j gkl�+E½gkl� � ðE½wkl j gkl�+E½gkl�Þ2

E
�
wu

k wk

�
= trðV½wk �Þ+ E½wk �uE½wk �

E
�
w2

kl

�
=
�
E2½wkl j gkl�+V½wkl j gkl�

�
+E½gkl�

The first and second moments of W are listed as follows:
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Other terms in likelihood function:

log MN n;p

�
X
�� ZW; In; Ips

2
�
= � 1

2s2
tr½ðX � ZWÞuðX � ZWÞ� � np

2
log
�
2ps2

�
log MN n;kðZ j 0; In; IkÞ = � 1

2
tr½ZuZ� � nk

2
logð2pÞ

logMultiðgkl j 1;pÞ =
Xp
i = 1

gkli logðpiÞ

log N
�
wkl

�� 0;s2
0

�
= � 1

2s2
0

w2
kl �

1

2
log
�
2ps2

0

�
tr½E:Z½ðX � ZWÞuðX � ZWÞ�� = tr½E:ZðXuX � XuZW � WuZuX+WuZuZWÞ�

= trðXuXÞ � 2trðE½W�XuZÞ+ trðZuZE½WWu�Þ
= trðXuXÞ � 2trðE½W�XuZÞ+

Xp
i = 1

trðZsWiZ
uÞ+ E½Wu�ZuZE½W�

tr½E:W½ðX � ZWÞuðX � ZWÞ�� = tr½E:WðXuX � XuZW � WuZuX+WuZuZWÞ�
= trðXuXÞ � 2trðXuE½Z�WÞ+ tr

�
E
�
ZTZ

�
WWu

�

E½trððX � ZWÞuðX � ZWÞÞ� = E½trðXuX � XuZW � WuZuX+WuZuZWÞ�

= trðXuX � XuE½Z�E½W� � E½Wu�E½Zu�X+ E½WuZuZW�Þ
= trðXuXÞ � 2trðXuE½Z�E½W�Þ+ trðE½ZuZ�E½WWu�Þ

Rkl : = X� E½Z�
 X

k0sk

ek0E½wk0 �u +
X
l0sl

ekE½wkl0 �u
!

= X �
X
k0sk

E½Zk0 �E½wk0 �u �
X
l0sl

E½Zk �E½wkl0 �u

Derivation of model parameters

In this section, we present the detailed derivation of the optimal variational distributions of variables Z; wkl, and gkl. First, we derived

the logQðZÞ:
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Second, we derive the logQðwkljgkli = 1Þ:
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Noticed that we can update wkl for all feature at once:
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Finally we derive the logQðgklÞ: Note that tRu
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QðgklÞ = Multið1;akl = softmaxðlog ~aklÞÞ

In summary, the optimal variational distribution of model parameters can be summarized as:

QðZÞ : = MN n;kðZ j mZ; In;SZÞ (Equation 13)
QðwkljgklÞ : = N
	
mwkl

;s2
wkl



(Equation 14)
QðgklÞ : = Multið1;aklÞ: (Equation 15)

The corresponding update rules for variational parameters from Qð $Þ can be expressed as,

mZ = tXE½Wu�SZ (Equation 16)
SZ = ðE½WWu�t+IkÞ� 1 (Equation 17)
mwkl
= ts2

wkl
E
�
Ru
kl Zk

�
(Equation 18)
Swkl
= s2

wkl
Ip (Equation 19)
s2
wkl

=
�
tE
�
Zu
k Zk

�
+t0kl

�� 1
(Equation 20)
akl = softmax
	
log p � log N

	
0
��� mwkl

;s2
wkl




: (Equation 21)

Derivation of evidence lower bound (ELBO)

The ELBO provides a natural criterion for evaluatingmodel performance duringmodel training, and also provides a means to perform hyper-

parameter optimization for model variance t and t0 (or equivalently precision) parameters. Given the above definitions for Q, we derive the

ELBO for SuSiE PCA as
14 iScience 26, 108181, November 17, 2023
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ELBOðW;ZÞ = EQ½logPrðX;Z;WÞ � logQðZ;WÞ�
= EQ½logPrðXjZ;WÞ�+ EQ½logPrðZ;WÞ � logQðZ;WÞ�
= EQ½logPrðXjZ;WÞ�+ EQðZÞ½logPrðZÞ � logQðZÞ�+XL
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= EQ½logPrðXjZ;WÞ�+ EQðZÞ½logPrðZÞ � log QðZÞ�
+ EQðW;GÞ½logPrðW;GÞ � log QðW;GÞ�

Based on the above derivation, ELBO can be decomposed into three parts. The first term is the expectation of the data with respect to all

the parameters in the model:
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The second term is the negative KL divergence of Z.
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The last term contains joint negative KL divergence of W and G can be further decomposed as following:

EQðW;GÞ½logPrðW;GÞ � logQðW;GÞ� = EQðW;GÞ½logPrðW j GÞPrðGÞ � log QðW j GÞQðGÞ�
= EQðW;GÞ½logPrðW j GÞ � log QðW j GÞ�

+ EQðW;GÞ½logPrðGÞ � logQðGÞ�
=
XK
k = 1

XL
l = 1
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Egkl
½logPrðgkli = 1Þ � log Qðgkli = 1Þ�

The first expectation term of the last line of equation EQðwkl jgklÞ can be expanded as following:
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And the second expectation term Egkl

can be decomposed as

EQðGÞ½logPrðGÞ � logQðGÞ� =
XK
k = 1

XL
l = 1
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i = 1

EQðgkli = 1Þ½ðgkli log pi � gkli log akliÞ�
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With the explicit form of ELBO, we obtained the maximum likelihood estimates of model precision parameters t; t0kl by setting the de-

rivative of ELBO with respect to each variance parameter to be 0, which results in closed-form update equations given by,

bt0kl =

PP
i = 1akliPP

i = 1akli
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wkli

+s2
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 (Equation 22)
bt =
NPP

i;jX
2
ij � 2trðE½W�Xu

mZÞ
: (Equation 23)

Simulations

To investigate the performance of SuSiE PCA in variable selection and model fitting, we simulated various data sets that are controlled

by 4 parameters: the sample size N, number of features P, number of latent factors K, and number of single effects L in each of the

factors. For simplicity, we assume L is the same across different factors. The simulated data X is generated according to equation ((0.1)),

where N = 1000; P = 6000, and zk and wk , for k = 1;/; 4 are simulated such that each factor only contain 40 non-zero effects (0.67%)

given by,

zk � N ð0; INÞ (Equation 24)
w1;i �N ð0;1Þ i = 1;/;40 (Equation 25)
w2;i �N ð0; 1Þ i = 41;/;80 (Equation 26)
w3;i �N
�
0;22

�
i = 81;/; 120 (Equation 27)
w4;i � N ð0; 1Þ i = 121;/;160 (Equation 28)

with the remaining effects set to zero. Considering the scale of the estimates of loadings may differ from various types of methods, we

normalized the loading matrix with respect to Frobenius norm, i.e. trðAuAÞ = trðBuBÞ = 1.

To evaluate the accuracy of SuSiE PCA, we compared inferred posterior expectations with the true latent variables. However, due to the

rotational invariance property in latent factor models, evaluating loading or latent factor accuracy can be challenging. To account for possible

rotation, we leverage the Procrustes transformation,17 which finds an orthogonal rotation matrix P to transform the estimated loading matrix
16 iScience 26, 108181, November 17, 2023
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to the true loading matrix space. Specifically, given an estimated loading matrix cW : = EQ½W� under approximate posterior distribution Q

and true effect matrix W, the ‘‘Procrustes Norm’’ can be obtained as following:

kW � cWk2P : = min
fPjP� 1 = Pug

kcWP � Wk2F (Equation 29)

Here we perform the Procrustes analysis via Procrustes package,16 fromwhich P is obtained by performing a singular value decomposition

on matrix cWucW (padding zeros on matrix cW would ensure the above operation process correctly).

In addition, we employ the relative root mean squared error (RRMSE) to evaluate the reconstructed data loss as,

RRMSEðbX;XÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j

�bxij � xij
�2P

i;jx
2
ij

vuut (Equation 30)

Lastly, to assess generative modeling proficiency, we computed the log-likelihood under held-out data. Specifically, we first trained the

model on simulated training data. Next, we computed latent space representations for the testing data under each of the trained models.

Lastly, we computed log-likelihoods under normality assumptions given the latent representations and learned loadings and parameters.

For model comparison, we also evaluate the performance of sparse PCA6 and Empirical Bayes Matrix Factorization (EBMF) (a recently

described variational approach)12 on the same simulation data sets with the same K, and compare the model performance with SuSiE

PCA via criterion described above.
GTEx Z score dataset

To illustrate the application of SuSiE PCA in genetic research, we downloaded the Genotype-Tissue Expression (GTEx)14 summary statistics

data, composed of z-scores computed from the testing association between genetic variants and the gene expression levels across

44 different human tissues.12 The GTEx project collected genotype data and gene expression data from 49 non-disease tissues across

n = 838 individuals, providing an ideal resource database to study the relationship between genetic variants and gene expression levels.14

The genetic variants that are statistically associated with gene expression levels are referred to as expression quantitative trait loci (eQTLs). To

identify eQTLs, the GTEx project tested the association between each nearby genetic variant of a certain gene with its expression levels using

linear regression to yield a Z score. The summary data we explored reflects the most significant eQTL (equivalently, the largest absolute Z

score in each SNP and gene pair) at each of 16069 genes (row) from 44 tissues (column) curated from GTEx v8,12,14 as those 16069 genes

show indication of being expressed in 44 of all 49 human tissues. To identify tissue-specific components of regulatory genetic features

and contributing genes, we applied SuSiE PCA across this Z score matrix with a latent dimension of 27 and the number of single effects

of 18. The prior information on the number of latent dimensions comes from Wang et al. (2021)12 who contribute to the Z score dataset

and run the EBMF model with 27 factors. To determine the appropriate L that fits the data, we run the SuSiE PCA with L ranged from 10

to 25, and select the model when the increase in the total percentage of variance explained (PVE) is less than 5%. PVE is a measure of the

amount of signals in the data captured by the latent component, the PVE of the factor zk is calculated based on the following equation:

PVEk =
skP

ksk+NP
�
t

(Equation 31)

where sk =
PN

i = 1

PP
j = 1ðE½zik �E½wkj�Þ2.
Purturb-seq dataset

We next investigated genome-scale Perturb-seq data15 to discover the co-regulated gene sets affected by some common type of perturba-

tions. The Perturb-seq data originated from Perturb-seq experiments performed by Replogle et al.15 Perturb-seq is a cutting-edge technique

combining CRISPR-based perturbations with single-cell RNA-sequencing readouts, enabling the investigation of co-regulated gene sets

affected by various perturbations. The researchers employed three cell lines: K562 cells, hTERT-immortalized RPE1 cells, and HEK293T cells.

CRISPRi technology was used to generate cell lines expressing dCas9-BFP-KRAB (KOX1-derived) for the perturbation experiments. Since we

focus our analyses on the expression data from the K562 cell line, we give a brief description of the experiments performed on the K562 cell

lines. Namely, the authors targeted genes expressed in K562 cells, transcription factors, Cancer Dependency Map common essential genes,

and included non-targeting control sgRNAs accounting for 5%of the total library. The gene sets were defined based on a combination of bulk

RNA-seq data from ENCODE and 10x Genomics 30 single-cell RNA-seq data. Libraries were constructed with dual-sgRNA pairs targeting

each gene, expressed from tandem U6 expression cassettes in a single lentiviral vector, and ranked based on empirical data and computa-

tional predictions. Subsequently, the author conducted Perturb-seq experiments on the K562 cells, with 2056 distinct knocked-out genes and

one non-targeting control group over an average of 150 different single cells, and then measured the expression levels of the downstream

8563 genes from each cell.

The final dataset contains 310385 rows, each representing one perturbation in a specific cell, and the expression levels of 8563 downstream

genes as the column. As an exploratory analysis, we omitted the single-cell level information and aggregated the expression levels of down-

stream genes with the same perturbation over all the cells, which resulted in a ‘‘psuedo-bulk’’ data matrix with 2057 rows and 8563 columns.
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We then performed the SuSiE PCA and Sparse PCA to investigate the regulatory modules from the common perturbations. To exclude the

batch effects and other non-genetic covariates, we regressed out the germ-line group and the mitochondrial percent from the original

expression data and then aggregated the expression level of downstream genes with the same perturbation. Finally, the aggregated

data is centered and standardized before input into SuSiE PCA.

As a comparison, we also run the sparse PCA with the same K in both datasets. While choosing an appropriate sparsity parameter alpha in

sparse PCA is less straightforward than tuning L in the SuSiE PCA, as we cannot directly pull all of the non-zero genes even with a fairly large

alpha (higher sparsity). To make a reasonable comparison, we run sparse PCA with a set of alpha from 1 to 20 and choose two models to

compare: first, choose the model giving the highest PVE, then investigate the model having a similar level of PVE with SuSiE PCA.
18 iScience 26, 108181, November 17, 2023
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